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Structural diversity as a reliable and novel 
predictor for ecosystem productivity
Elizabeth A LaRue1,2*, Jonathan A Knott2,3, Grant M Domke3, Han YH Chen4, Qinfeng Guo5, Masumi Hisano4,  
Christopher Oswalt6, Sonja Oswalt6, Nicole Kong7, Kevin M Potter5,8, and Songlin Fei2†

The physical structure of vegetation is thought to be closely related to ecosystem function, but little is known of its pertinence 
across geographic regions. Here, we used data from over three million trees in continental North America to evaluate structural 
diversity – the volumetric capacity and physical arrangement of biotic components in ecosystems – as a predictor of productivity. 
We show that structural diversity is a robust predictor of forest productivity and consistently outperforms the traditional meas-
ure – species diversity – across climate conditions in North America. Moreover, structural diversity appears to be a better surro-
gate of niche occupancy because it captures variation in size that can be used to measure realized niche space. Structural diversity 
offers an easily measured metric to direct restoration and management decision making to maximize ecosystem productivity and 
carbon sequestration.
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Globally, ecosystems are increasingly threatened by ever-
mounting pressure from environmental stressors. One 

major effort to mitigate these stressors is to understand how 
changes in the diversity of life forms impact ecosystem 
function (Loreau et al. 2001; Hooper 2002). The most com-
mon measure of diversity – species diversity – has been 

hypothesized to play an essential role in long-term sustaina-
bility, with a fundamental assumption that greater species 
diversity results in higher niche occupancy, resource use, 
and ecosystem function (Loreau et al.  2001; Hooper 
et al.  2005). Unfortunately, species diversity generally has 
limited usefulness for predictions of ecosystem productivity, 
with varying strength and directionality across environmen-
tal conditions (Winfree et al. 2015; Ratcliffe et al. 2017; Fei 
et al. 2018).

Structural diversity – the volumetric capacity (total, 
occupied, and unoccupied) and physical arrangement of 
biotic components within ecosystems (LaRue et al. 2023) – 
has the potential to serve as an additional and possibly even 
superior predictor of productivity. Despite having roots in 
early ecology (MacArthur and MacArthur  1961), the idea 
that diverse vegetation structure plays a crucial role in eco-
system function has been given surprisingly little considera-
tion since its origin (LaRue et al. 2023). In general, plants of 
varying sizes and structure are located across different hori-
zontal and vertical spaces within an ecosystem, leading to 
the unique occupancy of niche axes such as light (Vieilledent 
et al.  2010; Forrester et al.  2017). The occupancy of more 
niche space, in turn, can be closely linked to essential eco-
system functions, such as an elevated capacity for ecosystem 
vegetation to convert more resources into growth (Tilman 
et al. 1997).

Unlike species diversity, which measures the potential 
niche space that organisms might occupy (Elton  1927), 
structural diversity offers a more direct measure of realized 
niche occupancy. Structural diversity captures variation in 
vegetation size and structure (Figure 1), and plants of differ-
ent sizes – even those of the same species – can be function-
ally distinct in obtaining and utilizing resources. Therefore, 
structural diversity can provide estimations of not only the 
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In a nutshell:
•	�The concept of structural diversity, a surrogate of niche 

occupancy, was developed from common forestry data
•	�Structural diversity varies across North America and serves 

as a better predictor of forest productivity than species 
diversity

•	�Along with the traditionally used species diversity, structural 
diversity can help practitioners to enhance ecosystem services, 
climate-change mitigation, and conservation across geo-
graphic regions

•	�Due to the consistent relationship between it and produc-
tivity, structural diversity has great potential to be applied 
in other ecosystems worldwide
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actual volumetric occupancy and arrangement of the niche 
space but also the total volumetric capacity of the niche 
space. Existing diversity measures, such as species diversity, 
cannot be used to directly measure niches filled by the pres-
ence of additional species or different-sized individuals of 
the same species. Furthermore, structural diversity is influ-
enced by both genetics and environmental conditions, such 
that structural diversity can be high due to environmental 
conditions even when the genetic diversity of a community’s 
component species is low.

For the above reasons, we hypothesized that structural 
diversity could serve as a more reliable predictor of ecosys-
tem productivity than traditional diversity measures 
(Figure  1). To test this, we quantified structural diversity 
using metrics of forest stands that were measured from the 
most basic forest inventory data (eg national forest invento-
ries [NFIs]) (MacArthur and MacArthur 1961; Tyrrell and 
Crow 1994; Sullivan et al. 2001). We first identified ecologi-
cal factors associated with variability of structural diversity 
across North America, and then investigated structural 
diversity’s relative ability versus species diversity to predict 
forest productivity across North America’s climate gradi-
ents. Diversity–productivity relationships that are general-
izable across biomes will provide practical management 

solutions to enhance forest productivity 
and carbon sequestration.

Methods

Forest inventory data

We obtained data for individual trees from 
NFI plots across North America, from the 
following sources: 102,072 plots from the most 
recent US Department of Agriculture Forest 
Service Forest Inventory Analysis (FIA) pro-
gram sample (2004–2019, downloaded August 
2021) (Smith 2002), 15,746 plots from Mexico’s 
Comisión Nacional Forestal (CONAFOR) 
(2009–2014) (CONAFOR 2008), and 686 plots 
from the Natural Resources Canada (NRCAN) 
National Forest Inventory (1992–2007) (Gillis 
et al.  2005). FIA and CONAFOR plots are 
composed of four subplots, with FIA having 
a total area of 0.067 ha and CONAFOR of 
0.16 ha; NRCAN has a single 0.04 ha plot 
design. Individual-level tree data of height, 
diameter, and species identity were obtained 
from trees with a diameter at breast height 
(DBH) greater than 12.7 cm, because this was 
the smallest DBH sampled across all NFIs. 
As NFI geographic coordinates are typically 
considered classified information, plot coor-
dinates were assumed to be offset by up to 
several kilometers.

Structural diversity

We estimated the structural diversity of forest stands from 
metrics that measure horizontal, vertical, and three-dimensional 
(3D) structural richness using tree diameter and height size 
classes from forest inventory data. Structural richness provides 
a proxy of the number of structural niche spaces filled by 
trees of different sizes, because trees of different sizes will be 
able to capture resources at different horizontal and vertical 
locations within the canopy (that is, filling a unique niche 
space). Horizontal richness was measured as the number of 
different diameter size classes (Tyrrell and Crow  1994). We 
clarify that we refer to the number of diameter size classes 
as a measure of horizontal richness. We used 13 size intervals 
from DBH of each tree within plots, with a median DBH for 
each class of 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, 
45 cm, 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, and 100 cm. 
Vertical richness was measured as the number of different 
tree height size classes (MacArthur and MacArthur  1961; 
Sullivan et al.  2001). We used 15 height classes to sort each 
tree into median height classes of 5 m, 10 m, 15 m, 20 m, 
25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 60 m, 70 m, 80 m, 
90 m, and 100 m. We chose 10 cm and 10 m as intervals 
for classes greater than 50 cm DBH and 50 m height, 

Figure 1. (a) Structural diversity captures variation in vegetation size that is representative of 
the genetic and the environmental determinants of realized niche space, whereas species diver-
sity is genetically determined and representative of the theoretical niche. (b) Structural diversity 
considers which structural spaces are filled (solid icons) by trees of different sizes within eco-
system niche space (cylinder shading). The number of spaces filled by vegetation translates into 
canopy packing and higher resource use. (c) When the number of species increases (different 
colored tree icons), not all species are functionally distinct (unique shaped icons), and therefore 
niche occupancy does not always increase.
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respectively, because there would be fewer large trees than 
small trees and therefore doing so helped to even out the 
number of trees that fell into each size class. To provide a 
composite metric of 3D richness, we normalized the horizontal 
and vertical richness for each plot and then added them 
together.

The number of species and structural size classes is sensi-
tive to the size of the area sampled (species–area relation-
ship; MacArthur  1965). Therefore, given the unequal 
sampling areas of the three NFIs, we used Hill numbers 
(rarefaction and extrapolation; Hill  1973) to standardize 
sampling efforts via individual abundance (Chao and 
Jost 2012; Chao et al. 2014). Hill numbers provide a stand-
ardized estimate of the effective number of species or struc-
tural size classes from plots that do not have equal sampling 
areas. Hill numbers for structural size classes (q  =  0) were 
estimated using the estimateD function in the R package 
iNEXT (Hsieh et al. 2016). Hill numbers for structural rich-
ness in our study can be interpreted as the number of struc-
tural size classes that would be expected 
from a sample of ten individuals. 
Extrapolations greater than twice the small-
est sample can be biased (Hsieh et al. 2016), 
and therefore we used ten individuals as the 
reference sample size and discarded plots 
with fewer than five trees.

We initially measured six metrics of struc-
tural diversity, including three each of struc-
tural richness and structural evenness, but we 
discarded the evenness metrics from our 
analyses because their high correlations with 
richness meant that they did not add useful 
information (WebPanel 1; WebTable 1). The 
remaining structural diversity metrics 
revealed variations in their spatial patterns 
(Figure  2) and sometimes in the direction 
and strength of their correlation with eco
logical variables (WebTable 2). All analyses were 
conducted in R (v3.6.3; The R Group 2020).

Forest productivity

Given that forest productivity is directly 
related to aboveground biomass (Fei 
et al.  2018), we used mean annual incre-
ments (MAI) and periodic annual incre-
ments (PAI) of tree biomass and basal 
area increments (BAI) per plot to estimate 
forest productivity. MAI of biomass was 
calculated by dividing total aboveground 
biomass by stand age, whereas PAI of 
biomass was calculated by taking the dif-
ference between two time points (ranging 
from 3 to 15 years to maximize the number 
of sampling units included, Nplots) divided 

by the re-measurement period; both MAI and PAI were 
standardized to kilograms per hectare. These two variables 
were only available for plots in the US and do not include 
belowground biomass and trees <12.7 cm DBH. Plots used 
to measure PAI that did not have the same number of 
subplots sampled between the two time periods or that 
experienced high mortality or harvesting (PAI < 0) were 
excluded. FIA also did not contain re-measurements for 
plots in Wyoming and western Oklahoma. Our study 
accounts for the correlation between tree height and DBH 
variables used in the structural diversity metrics and the 
proxies of productivity by considering the variability in 
DBH and tree height instead of actual values. We also 
used BAI (basal area) as a proxy of productivity across 
North America, standardized as BAI expressed in square 
meters per hectare (m2/ha). BAI from NRCAN and FIA 
data were calculated as the total basal area (m2/ha) divided 
by stand age (standardized to hectare from subplot area). 
Because stand age was unavailable for plots in Mexico, 

Figure 2. Spatial variation across North America for structural diversity as horizontal richness, 
vertical richness, and three-dimensional (3D) richness, and for species diversity as species rich-
ness. Plot values (Nplots = 118,504) were averaged within a 20-km × 20-km raster grid for visu-
alization purposes. Horizontal, vertical, and species richness can be interpreted as the effective 
number of structural classes or species estimated from Hill numbers for a sample of ten individ-
uals; 3D richness is a normalized richness value. The color scale indicates blue (low) to yellow 
(moderate) to red (high) values of richness.

 15409309, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/fee.2586 by Purdue U

niversity (W
est Lafayette), W

iley O
nline Library on [30/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Front Ecol Environ doi:10.1002/fee.2586

EA LaRue et al.36    ECOSYSTEM STRUCTURAL DIVERSITY

we took the difference in the basal area between two time 
points divided by the re-measurement period (ranging 
from 2 to 10 years). Plots from Mexico with unequal 
sampling or a BAI < 0 were excluded. Finally, where age 
information was available, we removed plots <10 years 
old to filter out young forests that may not yet have 
reached the point of canopy closure.

Ecological correlates

We obtained variables that represent major ecological and 
compositional factors likely related to forest structural 
diversity: species diversity, stand density, stand age, ele-
vation, and climate. For each forest inventory plot, we 
calculated species richness as the number of unique tree 
species that had a DBH > 12.7 cm and corrected for uneven 
sampling with Hill numbers as described for structural 
diversity. We measured stand density as the number of 
tree stems within the sampling area standardized to 1 ha. 
We obtained the stand age of forests and plot elevation 
from the NFI records, but stand age was only available 
for plots in Canada and the US. Climate variables were 
obtained by extracting mean annual temperature (MAT) 
and total annual precipitation (TAP) at 30-second reso-
lution (1970–2000, WorldClim 1.4 [www.world​clim.org]) 
(Hijmans et al.  2005). Finally, we identified the North 
American ecoregions (level 1) within which each plot was 
located (CEC 1997).

Statistical analysis

To test for ecological correlates of structural diversity metrics, 
we relied on a mixed-effects modeling approach. We used 
the effect size of coefficients to assess the relative strength 
of the relationship between ecological correlates and structural 

diversity metrics, because statistical significance may not reflect 
ecological significance with the large sample sizes used here 
(Wasserstein et al.  2019). The predictor and response vari-
ables were z-score standardized to assess the effect size. The 
R package lme4 was used to estimate the linear and quadratic 
coefficients between the three structural diversity metrics and 
each of the ecological variables (Bates et al.  2015). Ecological 
predictors were treated as fixed effects and level-1 ecoregion 
as a random intercept. The correlation of stand age with 
structural diversity metrics was assessed in a separate set of 
models because stand age was not available for Mexico. See 
WebPanel 1 for additional modeling details.

To assess the relationships between structural diversity and 
species diversity with productivity across climatic space, we 
defined ten quantile classes for MAT and TAP (together repre-
senting 100 units in climate space). Data for each climatic 
quantile unit were used to model productivity as a function of 
structural or species diversity metrics via a general linear 
model. We natural log (1 + x) transformed productivity varia-
bles to improve normality. Because previous research has 
shown that diversity can exhibit a linear or hump-shaped rela-
tionship with productivity (Fei et al.  2018), we ran a model 
with both linear and quadratic terms and a model with the 
linear term only; the best model was chosen using Akaike 
information criterion. For each of the 100 climate quantiles, we 
subtracted the adjusted R2 (adj R2) of the structural diversity 
metric from the species diversity adj R2 to make a comparison 
of how much more of the variance in productivity was 
explained by structural diversity than species diversity in each 
climate quantile. We included one set of models for which 
stand age was a covariate predictor for one of the productivity 
variables, PAI (ie stand age was already incorporated into the 
other productivity variables). See WebPanel 1 for additional 
modeling details.

Figure 3. Ecological correlates of structural diversity at the continental scale (Nplots = 116,568). Stand age was run in separate models because stand age 
was only available for the US and Canada (Nplots = 99,982). A z-score standardization of the predictors and response variables was used to assess relative 
coefficient effect size. The error bars are a 95% profile-likelihood confidence interval (CI). MAT = mean annual temperature (°C); TAP = total annual pre-
cipitation (mm/year). Coefficients and CIs are shown in WebTable 2. For each ecological factor along the top, the simplified line graphs along the bottom 
depict linear (white shading) or quadratic (gray shading) relationships between that factor and structural diversity.
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Results

Spatial variation in structural diversity and associated 
ecological factors

Several ecological factors were associated with variation in 
structural diversity (Figure  3; WebTable  2; see WebPanel 2 
for bivariate scatterplots). All predictors except for elevation 
and stem density exhibited a strong and consistent direction 
in their correlation with structural diversity. Climate, tree 
species diversity, and stand age (though stand age was run 
in a separate, spatially restricted analysis) were among the 
strongest predictors (highest standardized coefficient values 
or effect size) of structural diversity; there was a positive 
hump-shaped relationship with species diversity, precipitation, 
temperature, and stand age. Stem density exhibited a negative 
hump-shaped relationship with structural diversity metrics, 
with the exception of a positive hump-shaped relationship 
with vertical richness. Elevation exhibited a positive hump-
shaped relationship with horizontal and 3D richness, but a 
negative J-shaped relationship with vertical richness.

Structural diversity is a consistent and strong predictor of 
forest productivity

Our study shows that structural diversity is a more robust 
predictor of productivity than species diversity (Figure  4). 
We found that structural diversity was a stronger predictor 
of productivity when averaged across 100 climate quantile 
units (Figure  4; WebPanel 3). Horizontal, vertical, and 3D 
richness, on average, explained 11.4%, 18.4%, and 17.7% more 
variation in productivity from MAI, respectively, and explained 
1.5%, 8.6%, and 6.7% more variation in productivity from 
PAI, respectively, than species diversity. With stand age added 
as a covariate predictor, horizontal, vertical, and 3D richness, 
on average, explained 1.7%, 8.3%, and 6.7% more variation 
in productivity in PAI, respectively, than species diversity. 
We also determined that the relationships between structural 
diversity and BAI confirmed that structural diversity had a 
stronger relationship with forest productivity than species 
diversity, with the exception of horizontal richness (Figure 4). 
Horizontal, vertical, and 3D richness, on average, explained 
0.7%, 4.1%, and 3.0% more variation in productivity in BAI, 
respectively, than species diversity.

Discussion

Our study points toward the potential to use structural diver-
sity as a management and conservation tool for predicting 
forest productivity, likely due to its capacity for quantifying 
the physically occupied niche spaces in ecosystems. Our results 
suggest that forests with high structural diversity, through 
the horizontal and vertical packing of individual trees 
(Hardiman et al.  2011), have high niche occupancy. As a 
result, structural diversity leads to efficient use of light, water, 
and other resources within the forest (Niinemets  2010). 

Structural diversity is an aspect of forests that could be manip-
ulated and provide a supplemental approach to the manage-
ment paradigms that utilize species diversity for enhancing 
overall productivity and carbon capture at a continental scale.

Structural diversity itself varied across North America in 
patterns that often followed climate variations, indicating 
potential physiological limitations to maximum structural 
diversity (Pan et al.  2013); for instance, structural diversity 
increased in regions with higher humidity and moderate tem-
peratures. Regional climate conditions often influence differ-
ent dimensions of diversity, including structural diversity 
(Franklin et al. 2002; Fotis et al. 2018; Fahey et al. 2019) and 
species diversity (MacArthur 1972; Ricklefs 1987). Climate was 
one of the strongest correlates of forest structural diversity in 
our analysis, and high temperature and precipitation are typi-
cally associated with highly productive ecosystems, which may 
have increased structural diversity and influenced its predic-
tive strength of productivity within different areas of climate 
space. Despite some degree of spatial variation in the strength 
of structural diversity relationships with productivity 
(WebPanel 3), it was still a better predictor of productivity 
across North America. It is also notable that structural diversity 
does not continue to rise with the highest numbers of tree spe-
cies (WebTable  2; WebPanel 2); this finding provides insight 
into why structural diversity relationships with productivity 
are stronger than species diversity as well as further support for 
our hypothesis. Structural diversity maintains that each unique 
structural size class should be functionally different (whether 
arising from inter- or intraspecific genetic variation or from 
environmental variation), which collectively is associated with 
an increase in niche space, whereas species diversity does not 
directly measure any functional differences between individu-
als (Figure  1). Conservation and climate-change mitigation 
initiatives that include structural diversity, in addition to tradi-
tional biodiversity measures, will increase ecosystem produc-
tion and carbon capture (eg Dybala et al. 2019).

Stand age was a significant predictor of structural diver-
sity, highlighting the important interconnections between 
age, tree size, and productivity, but it did not change the fact 
that structural diversity is a stronger predictor of productiv-
ity than species diversity when age was also included as a 
predictor of productivity. Tree size increases with age and 
larger trees can produce biomass faster than smaller trees 
(Lutz et al. 2018; Ouyang et al. 2019). Old growth forests can 
have high structural diversity (Franklin et al. 1981) and, as 
our results highlight, stand age is an important determinant 
of structural diversity. However, we detected a positive 
hump-shaped relationship between stand age and structural 
diversity, indicating that older stands are not always the most 
structurally diverse and that medium-age forests may have 
the highest structural diversity (ie Qiu et al.  2021). 
Furthermore, our results indicate that stand age does not 
substantially change the relative abilities of structural diver-
sity versus species diversity to predict productivity when it 
was added as a covariate.
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Conclusions

The results of our analyses demonstrate that forest struc-
tural diversity can consistently outperform species diversity 
in predicting forest productivity across a wide variety of 
climate conditions in North America, indicating that struc-
tural diversity is a superior predictor of ecosystem pro-
ductivity. Structural diversity metrics may represent a closer 
approximation of the actual niche occupancy of an eco-
system and serve as a new approach to improve upon 
proxies for occupied niche space. Climate, species diversity, 
and stand age were among the strongest predictors of 

structural diversity across North America, indicating that, 
as with other dimensions of diversity (Paquette and 
Messier  2011; Grace et al.  2016), structural diversity is 
sensitive to ecological drivers at a continental scale; none-
theless, its relationship with productivity is consistently 
strong across different climate conditions. The fact that 
niche occupancy can be approximated with structural 
diversity based on only a few commonly measured vari-
ables in forest inventories is encouraging, as these structural 
metrics can be applied and manipulated in managed and 
natural forests to increase ecosystem production and car-
bon capture in an era of global change.
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