How Do We Read Formal Claims? Eye-Tracking
and the Cognition of Proofs about Algorithms

Hammad Ahmad*, Zachary Karas', Kimberly Diaz*, Amir Kamil$,
Jean-Baptiste Jeannin¥ and Westley Weimer!
University of Michigan, Ann Arbor
*hammada@umich.edu, Tzackar@umich.edu, JLfkkhalsa@umich.edu, §akamil@umich.edu,
Al jeannin @umich.edu, Il weimerw @umich.edu

Abstract—Formal methods are used successfully in high-
assurance software, but they require rigorous mathematical and
logical training that practitioners often lack. As such, integrating
formal methods into software has been associated with numerous
challenges. While educators have placed emphasis on formalisms
in undergraduate theory courses, such courses often struggle with
poor student outcomes and satisfaction. In this paper, we present
a controlled eye-tracking human study (n = 34) investigating the
problem-solving strategies employed by students with different
levels of incoming preparation (as assessed by theory coursework
taken and pre-screening performance on a proof comprehension
task), and how educators can better prepare low-outcome stu-
dents for the rigorous logical reasoning that is a core part of
formal methods in software engineering. Surprisingly, we find
that incoming preparation is not a good predictor of student
outcomes for formalism comprehension tasks, and that student
self-reports are not accurate at identifying factors associated with
high outcomes for such tasks. Instead, and importantly, we find
that differences in outcomes can be attributed to performance for
proofs by induction and recursive algorithms, and that better-
performing students exhibit significantly more attention switch-
ing behaviors, a result that has several implications for pedagogy
in terms of the design of teaching materials. Our results suggest
the need for a substantial pedagogical intervention in core theory
courses to better align student outcomes with the objectives of
mastery and retaining the material, and thus bettering preparing
students for high-assurance software engineering.

Index Terms—formalism comprehension, student cognition,
eye-tracking, facial behavior analysis, human study

I. INTRODUCTION

Formal methods have long been used to provide rigorous
guarantees for software engineering [1] (e.g., ensuring that
executions of a program never reach an invalid state), and
have been incorporated into various core stages of the software
process. Successful applications of formal methods to software
include requirements elicitation [2], software specification
(e.g., design by contract [3]), software design (e.g., VDM [4]),
software verification [5, 6], testing [7], and maintenance (e.g.,
legacy code at Microsoft makes use of assertions [8]). Unfor-
tunately, many formal methods require advanced mathematical
training and theorem proving skills that practitioners typically
lack [9].

Given the extensive use of, and increased opportunities for,
formal methods in software engineering [10], educators have
been putting an increased focus on formalisms (e.g., proofs of
algorithmic properties, runtime complexity analyses, etc.) in

undergraduate computer science curricula to prepare future de-
velopers for logical algorithmic reasoning [11]. Unfortunately,
despite the emphasis placed on formalisms in undergraduate
computer science theory courses, students have historically
struggled with course outcomes (e.g., in terms of final grades,
mastery and retention of material, etc.). For instance, publicly-
available survey data from a university in the US highlight a
trend of dissatisfaction and low outcomes from core theory
courses focusing on formalisms [12, 13]. Given the difficulty
associated with having engineers integrate formal methods into
the software process [14], it remains important for educators to
ensure that future practitioners are trained in logical reasoning
skills, especially as they relate to code.

We hypothesize that understanding how people less familiar
with formalisms think about formal methods and proofs of
algorithmic properties is critical to how educators should teach
formalisms. For instance, since the most vulnerable population
groups with non-traditional backgrounds are also most likely
to drop the computer science major [12], educators need to
make sure the needs of such groups are not overlooked. It also
indirectly impacts how high-assurance software engineering
firms might train new workers. One way to acquire this
understanding is through the investigation of the cognition
(e.g., problem-solving strategies, cognitive load, visual atten-
tion, etc.) for computer science students while performing
formalism comprehension tasks.

Previous work has used methodologies like eye track-
ing, occasionally coupled with functional magnetic resonance
imaging or functional near-infrared spectroscopy [15, 16],
to investigate student cognition for computer science tasks
relevant to software engineering, including reading [17] and
writing code [18], manipulating data structures [19], and
reviewing code [20]. Researchers have also examined the
cognitive models associated with higher-level math tasks [21],
including number processing and arithmetic. However, since
formal methods fundamentally differ from other software engi-
neering processes in their focus on mathematical and logical
reasoning instead of coding, lessons learned from cognition
for coding tasks may not clarify how students comprehend
formalisms, what distinguishes an expert in formal reasoning
from a novice, and how educators can better train students for
formal reasoning for software.

We propose to use eye-tracking to gather insights into (i) the

problem-solving strategies for such formalism comprehension
tasks employed by students with different levels of familiarity
with, or incoming preparation for, formal methods, and (ii)
how educators can better prepare struggling students for the
rigorous logical reasoning required by high-assurance software
engineering. We consider both prior coursework and current
performance in our definition of incoming preparation. We first
ask participants to outline the number of computer science
theory courses covering formalisms (e.g., derivations and
proofs) they have either completed with passing grades or are
currently taking. We then tested participants to identify the
mistake in a proof taken from an undergraduate textbook [22].
We partition our sample based on whether a participant has
taken more than the median number of courses in our sample
and passed the screening test (see Section V-A for a more in-
depth discussion on incoming preparation). Since eye-tracking
methods allow for the possibility of adding a webcam to
examine facial behavior as an additional information source
in the context of formalism comprehension, we also employ
facial behavior analysis to investigate behavioral differences
between students with different outcomes.

We performed a controlled experiment investigating how
students read and assess formal proofs about algorithms for
correctness. We recruited 34 participants with varying levels
of expertise with formalisms to perform these comprehension
tasks. Participants were presented with pseudocode algorithms
from a widely used undergraduate textbook [22], a theorem
about the algorithm with an accompanying formal proof, and
a graphical illustration of the algorithm or proof. Participants
were asked to evaluate the presented proofs for correctness.

Contrary to conventional wisdom suggesting that students
with greater incoming preparation achieve better outcomes for
STEM courses [23, 24, 25, 26], we found no evidence that stu-
dents with higher incoming preparation perform better at these
formalism tasks (p = 0.96, Cohen’s d = 0.007). We further
find no evidence that student experience reports are accurate
predictors of outcomes for formalism comprehension tasks
(t = 0.21,p = 0.15), or that students are able to correctly
identify the parts of a formalism presentation most pivotal to
understanding a proof. Our results also indicate more-prepared
students employ different problem solving strategies, with an
increased visual attention on proof prose text (p = 0.005) and
correct (p = 0.03) and distractor (p = 0.038) answer choices,
but this ultimately does not affect task outcomes.

We do find, however, that higher outcome students demon-
strate significantly more attention switching behaviors (i.e.,
frequently going back and forth between presented materials)
(p = 0.002), and are more likely to perform better at proofs
by induction (p = 0.01) and recursive algorithms (p = 0.006)
compared to lower outcome students. Our results argue for the
need for pedagogical intervention in theory courses to ensure
student outcomes are aligned with the objectives of better
teaching formal reasoning to undergraduates and preparing
future software engineers for formal methods.

The main contributions of this paper are:

o A controlled experimental study investigating student

cognition for computer science formalisms.

o Experimental evidence that suggests incoming prepara-
tion does not predict outcomes for formalism comprehen-
sion tasks, and that students with higher outcomes employ
different problem-solving strategies and exhibit better
performance for certain types of proofs and algorithms.

+ Recommendations for educators to better prepare future
software engineers for logical reasoning, including de-
signing teaching materials to facilitate going back and
forth between the presented content with ease, and em-
phasizing proofs by induction.

o An exploratory discussion on the use of objective facial
behavior metrics in the context of pedagogy.

« A publicly-available dataset for future studies investigat-
ing cognition for computer science formalisms.

II. BACKGROUND AND MOTIVATION

In this section, we summarize the techniques related to the
eye-tracking and facial behavior analysis measures for a gen-
eral software engineering audience, and provide a motivating
example for our work.

A. Eye-Tracking

Eye-trackers are non-invasive, cost-effective, and easy-to-
use devices that measure visual attention and effort in variety
of tasks, including human-computer interactions [27], software
engineering [28, 29, 30], and marketing [31].

Modern eye-tracking cameras measure and track a par-
ticipant’s eyes and use event detection algorithms to report
gaze data that is then analyzed with respect to pre-defined
areas of interest (AOIs) in a stimulus. AOIs are typically
manually defined by an experimenter based on the nature of
the study [32, 33].

Two aspects of gaze data, based on ocular behavior, can
clarify cognitive load and task difficulty. A fixation is an eye
gaze that lasts for approximately 200-300ms on a specific
AOI and results in the focus of visual attention on the AOIL
The majority of information processing for humans occurs
during fixations [34, 35] and a small number of fixations
usually suffices for a human to process a complex visual
input [32, 36]. As such, fixation data is widely used to
measure cognitive load for different tasks, with longer fixations
and higher number of fixations indicating higher cognitive
load [29, 30]. A saccade is a rapid eye gaze movement (40—
50ms) that occurs between fixations on AOIs, and often does
not correspond to cognitive processing [34, 36]. The regression
rate is the ratio of backward or regressive saccades (e.g.,
leftward in left-to-right text reading) to the total number of
saccades, and higher regression rates often indicate increased
difficulty in performing and completing a task [37].

Modern eye-trackers can also report the pupil diameter
of participants. Pupil diameter has widely been used in the
context of eye-tracking to approximate the cognitive load for
participants working on study tasks [38, 39, 40], with higher
pupil diameters indicating increased cognitive load [41].

figs/mot_higher_prep.png

figs/mot_lower_prep_gotwrong.png

(a) Higher incoming preparation participant heatmap

(b) Lower incoming preparation participant heatmap

Fig. 1: Visual eye-gaze heatmaps for a stimulus shown to two participants with different incoming preparations. The more-
prepared participant focuses visual attention primarily on the proof and answer choices, while the less-prepared participant
focuses on the algorithm and figure. Both participants choose the wrong answer.

B. Facial Behavior Analysis

Facial expressions constitute an important channel of non-
verbal communication in humans [42], and facial behav-
ior analysis has been increasingly used to facilitate human-
computer interactions in an array of applications [43], includ-
ing education [44, 45].

Facial behavior analysis often involves the detection,
via cameras and image processing, of facial Action Units
(AUs) [46] that correspond to individual components of facial
muscle movement. The Facial Action Coding System (FACS)
is an anatomically-based model used to describe any visually-
discernible facial movement in terms of AUs [47].

While care must be taken to avoid linking facial behaviors
directly to human emotions without considering context [48,
49], AUs hold the benefit of being objective measures of
facial muscle activity, and can be used independently of any
interpretation for higher-order modeling of facial expressions
and behavior [50].

C. Motivating Example

We desire a deeper understanding of the problem-solving
strategies for formalism comprehension tasks employed by
students with different levels of incoming preparation, and how
educators can better prepare struggling students for the use of
formal methods in software engineering. Traditional metrics,
such as evaluating student transcripts or self-reports, are not
as effective at teasing apart the problem-solving strategies

employed by higher performing students (e.g., [51]). We
hypothesize that eye-tracking can serve as a cost-effective,
insightful methodology to investigate the factors that result
in better outcomes for formalism comprehension tasks. For
instance, struggling students may demonstrate higher regres-
sion rate for (i.e., re-read text and figures more frequently), or
increased visual attention to, certain aspects of a formalism
presentation, suggesting greater difficulty completing the task.

As an indicative example, we present a snapshot of the
strategies (in terms of visual attention) employed by two
students with different incoming preparations for undergrad-
uate theory courses (Figure 1). Figure la shows the visual
heatmap, constructed from gaze data collected by an eye-
tracker, for a participant with higher incoming preparation for
theory courses. The heatmap indicates a significant proportion
of visual attention to the proof text and answer choices
(lower left and right quadrants respectively). By contrast,
the visual heatmap for a participant with lower incoming
preparation suggests a comparatively increased emphasis on
the algorithmic pseudocode and figures (upper left and right
quadrants respectively). While the increased focus by a less-
prepared participant on the algorithm and figures aligns with
instructor expectations, one would also expect a more-prepared
participant focusing attention on the proof text to achieve
better response accuracy. Quite surprisingly, we find that not
only do both participants fail at correctly identifying the
presence of mistakes in the proof, but also that this trend

of no correlation between traditional measures of incoming
preparation and task outcomes extends to the entirety of our
participants (see Section V-A for a discussion on preparation
and outcomes). Note that our use of heatmaps is intended to
present a snapshot of what participants focus on, and is not the
sole point of comparison between participants with different
outcomes. Our results in Section V incorporate eye-tracking
metrics better suited to understanding the complete picture.
Given that neither incoming preparation nor the strategies
employed by more-prepared students is sufficient at teasing
apart factors that result in better outcomes for such formalism
comprehension tasks, we turn to eye-tracking to clarify factors
correlated with student successes. Our results help us better
understand what makes students succeed, and how educators
can teach formalisms in a way that may potentially better
prepare future engineers to reason about formal methods.

III. EXPERIMENTAL METHODOLOGY

Our experiment centers on a human study in which par-
ticipants answered questions about computing formalisms (al-
gorithms, theorems, proofs, and figures) while subjected to
eye-tracking and facial behavior measurement. We make the
replication materials for our study (including the pre- and post-
questionnaires, stimuli, and de-identified raw data) publicly
available at https://doi.org/10.5281/zenodo.7626901.

A. Participant Recruitment

We recruited 34 undergraduate and graduate computer sci-
ence students at the University of Michigan in an IRB-exempt
study. Of our 34 participants, 23 identified as men, while 11
identified as women. Breaking down our participants by class
standing, we recruited 5 first-year students, 10 sophomores,
12 juniors, 6 seniors, and one graduate student. We required
participants be over 18, have completed an undergraduate
discrete mathematics course, and be either enrolled in or have
completed an undergraduate data structures and algorithms
course. In addition, to reduce noise in the recorded gaze data,
we encouraged (but did not require) our participants to wear
contact lenses in lieu of glasses to the experiment session
where possible. Participants were compensated $25.

B. Materials and Design

Participants were asked to complete a sequence of for-
malism comprehension tasks. Each individual task stimulus
consisted of an algorithmic solution to a problem commonly
taught in core computer science undergraduate courses, a
theorem for that algorithm, an accompanying proof of that
theorem, and a relevant graphical illustration (or figure). Each
formalism comprehension task presented four multiple-choice
answers for the presence of mistakes in the proof, of which
only one was correct and three were distractors.

We seeded each proof with mistakes commonly made by
undergraduate students in discrete mathematics courses (e.g.,
incorrect base case for proof by induction, logical contra-
dictions in deductive reasoning, arithmetic errors leading to
incorrect conclusions, etc.), and asked participants to evaluate

each proof for correctness. For each algorithm, participants
were always given the option to indicate that a presented proof
contains no mistakes.

For our study, we presented 7 algorithms taken from
a commonly-used undergraduate discrete mathematics text-
book [22]: binary search, greedy change-making, merge-sort,
Towers of Hanoi, greedy job scheduling, in-order tree walk,
and the Halting Problem. Each algorithm was accompanied
by a theorem and a proof copied verbatim from the textbook
prior to mistake-seeding. Since the textbook is widely used by
educators for introductory computer science theory courses,
we are interested in evaluating the efficacy of the presented
material for student outcomes, and as such, do not alter the
proof to make the prose or logic more or less comprehensible.
Since figures are frequently used as an educational instrument
(e.g., [52]), we included, with each stimulus, a figure related
to that formalism comprehension task taken from the textbook
or instructor slides for the theory courses. Figure 2 shows a
sample stimulus for the Towers of Hanoi problem.

We make all of our stimuli publicly available in our repli-
cation package.

C. Experimental Protocol

We recruited participants via in-class invitations and online
class discussion forums. Participants were asked to read and
sign the general consent form prior to their scheduled 60-
minute experimental session. Each session had three compo-
nents: pre-questionnaire survey, eye-tracking session, and post-
questionnaire survey and debriefing.

Pre-Questionnaire Survey. After participants re-affirmed
their consent, we administered a survey to collect basic de-
mographic data (e.g., gender, native language, class standing,
etc.). To measure the incoming preparation for participants,
we collected data on the theory-related courses they have
completed or are currently enrolled in, and asked participants
to complete a screening question from a widely-used under-
graduate discrete mathematics textbook [22].

Eye-Tracking Session. Participants were seated in front of
a computer screen with a Tobii Pro X3-120 eye tracker in a
quiet room with controlled ambient light and screen brightness
levels. Participants were encouraged not to look away from the
computer screen to help reduce noise in the gaze and facial
behavior data. We first calibrated the eye-tracker for each
participant. We then showed the participants training slides
explaining the study design and purpose. Participants were
informed they would be reading several algorithmic proofs
from an undergraduate textbook and determining whether or
not each proof is correct. Each participant was presented with
7 stimuli. All stimuli were presented within the interface
provided by Tobii Pro Lab [53], and participants selected their
answers via key presses.

Post-Questionnaire Survey. After the eye-tracking session,
we instructed participants to complete a post-questionnaire
survey and asked them to self-report (on a 1-5 Likert scale)
their prior perceived experience with computer science for-
malisms, difficulty of tasks they were asked to perform, and

https://doi.org/10.5281/zenodo.7626901

figs/toh_stim.png

Fig. 2: A sample formalism comprehension stimulus for the Towers of Hanoi problem. The algorithm (upper-left), figure
(upper-right), theorem and proof (lower-left) and correct and distractor answer choices (lower-right) represent the six AOIs for
the stimulus. The correct answer is (2): the base case should apply when n = 1, and more reasoning is required to establish

the claim for the base case.

helpfulness of different aspects of the formalism presentation.
Note that while it is common to ask participants to self-report
their experience prior to the start of the experiment, we include
such questions in the post-questionnaire to mitigate potential
decrease in performance due to stereotype threat [54]. This
is especially relevant for pedagogy since stereotype threat is
reported to disproportionately affect underrepresented groups
and students with non-traditional backgrounds [55] that may
already struggle with outcomes in theory courses. In addition
to the Likert scale data, we also collected qualitative responses
from participants on attributes that make a formalism compre-
hension task easier to complete.

D. Data Collection

We conducted all experiments on a 64-bit Windows 10
machine connected to a 27 inch monitor with a 1920x1080
resolution. To collect eye gaze data, we used the Tobii Pro
X3-120, a non-invasive eye tracker that can detect fixations at
the granularity of a single line of 10pt text. Our eye tracker
was set to sample readings at a frequency of 120hz (i.e., 120
times per second). We processed this raw data using Tobii Pro
Lab to generate analyzable gaze data.

To collect facial behavior data, we used the Logitech C920
webcam. Our webcam was set to record 1080p video at 30
frames per second. The high-definition recorded video was
then processed offline using OpenFace [56], an open source
toolkit capable of automatically detecting the presence of
facial AUs and reporting degrees of confidence.

IV. DATA ANALYSIS APPROACH

In this section, we present the mathematical analyses applied
to our eye-tracking and facial behavior data. We applied a
false discovery rate (FDR) threshold at ¢ < 0.05 to correct
for multiple comparisons (i.e., to avoid false positives as a
result of repeated analyses). All reported measures of statistical
significance in Section V correspond to p-values corrected for
multiple comparisons.

A. Eye-Tracking Analysis Approach

To preprocess for data quality, we filter outlier data points
by removing the responses that were keyed in too quickly
(outside 1.5xSD of the mean response time) and therefore,
could not reasonably correspond to the participants reading
a formalism presentation entirely before selecting an answer.
We also filter out data points that correspond to noisy gaze
data [17, Sec. 7.1]. This filtering resulted in 191 out of
the original 236 data points being usable for experimental
analyses.

Following the Goldberg and Helfman guidelines [32] for
defining AOIs in terms of size and granularity, we manually
divide each presented stimulus into six AOIs: Algorithm,
Theorem, Proof, Figure, Correct Answer, and Distractors.
The Algorithm AOI represents the pseudocode algorithm of
interest, including the inputs and outputs of the algorithm and
any explanatory comments. The Theorem and Proof AOIs rep-
resent the prose text for the theorem and the proof respectively.
The Figure AOI corresponds to a graphical illustration of the
formalism comprehension task and includes relevant captions
and labels. Finally, the Correct Answer and Distractors AOls
represent the multiple choice responses.

We analyzed raw eye-movement data to detect velocity-
based fixations (I-VT) [57], a commonly-used fixation ex-
traction method in the research community [58]. We use
the following standard metrics to analyze and compare the
strategies employed by participants for the formalism compre-
hension tasks. A strategy models gaze data and visual attention
trends over time for the duration of a task. The fixation time
corresponds to the total duration of all fixations on an AOI,
while the fixation count indicates the total number of fixations
on an AOI. Longer fixation times indicate either higher levels
of interest or increased difficulty, and as such, increased
strain on the working memory, in extracting information from
the AOI [30, 59]. The regression rate depends on saccadic
eye movements and indicates the percentage of backward
saccades [60], and higher regression rates indicate increased
difficulty in completing a task [35]. The attention switching
metric depends on fixation counts and measures the total
number of switches between AOIs, and can approximate the
dynamics of visual attention during a task [30].

Previous work has argued for the use of baseline pupil
diameters [39], and we used the training slides administered
after eye-tracking calibration to measure the baseline pupil
diameter (and as such, approximate the cognitive load) for
participants prior to working on the formalism comprehension
tasks.

TABLE I: The facial Action Units (AUs) in our study

AU Description AU Description
1 Inner brow raiser 14 Dimpler
2 Outer brow raiser 15 Lip corner depressor
4 Brow lowerer 17 Chin raiser
5 Upper lid raiser 20 Lip stretcher
6 Cheek raiser 23 Lip tightener
7 Lid tightener 25 Lips part
9 Nose wrinkler 26 Jaw drop
10 Upper lip raiser 28 Lip suck
12 Lip Corner Puller | 45 Blink

B. Facial Behavior Analysis Approach

We use the open-source toolkit OpenFace [56] to analyze
recorded webcam video from participants and automatically
detect the presence of facial action units (AUs).

During the preprocessing stage, since we intend to use facial
behavior analysis as exploratory research and wish to mitigate
threats to conclusion validity (given the lack of widely-
accepted metrics for analyzing facial behavior data [48, 49]),
we only use measurements reported by the OpenFace classifier
with the highest possible confidence value (98%). Addition-
ally, we also filter out facial behavior data for any timestamps
not corresponding to a fixation on an AOI in the gaze data,
since we wish to analyze facial behavior for different study
outcomes. After the preprocessing step, we are left with around
24 thousand high-quality data points (out of about 1.7 million
original) for facial behavior analysis.

We analyze facial data “as is” in terms of AUs without
attempting to link it to emotions. Using facial behavior data
to classify human emotions has been widely studied [42, 43,
44, 45] but remains controversial, given that emotions are
highly subjective and depend on the context [48, 49]. Even
a categorization of the valence of emotions (i.e., positive and
negative) has been met with skepticism by the research com-
munity recently. By contrast, facial AUs remain an effective
measure of the facial behavior, since they report the objective
physiological behavior of an individual’s facial muscles, not
obfuscated by machine-learned emotion classifications trained
on certain population demographics. As such, we consider
only the high-confidence values of 18 different facial AUs
reported by OpenFace (see Table I for the official anatomic
description of each AU [47]). To encourage conversations
about facial behavior analysis in the context of pedagogy, we
discuss exploratory results from our facial behavior analysis in
Section VI-B. We also make our de-identified facial behavior
data publicly available for researchers to replicate and build
on our work.

V. EXPERIMENTAL RESULTS

We consider the following research questions:

RQ1. What is the effect of incoming preparation on student
outcomes for formalism comprehension tasks?

RQ2. How do student self-reports of formalism comprehen-
sion tasks align with empirical results?

RQ3. What factors most distinguish higher-performing in-
dividuals from lower-performing ones?

TABLE II: Independent and dependent variables for each RQ, along with associated metrics. Descriptions of key terms follow

in the relevant RQ subsections.

| | Independent Variables

Metrics: Independent Variables

| Dependent Variables |

Metrics: Dependent Variables |

. ' Coursework count, T}?.Sk perforn}ance R.esp(.)nse.tlmes and accuracy
RQ1 | Incoming preparation screening proof performance Visual attention Fixation times on AOIs
) gp P Task difficulty Regression rates for proof types
Self-perceived experience
Self—percgved task filfﬁculty] Likert scale
RQ2 Self-perceived helpfulness of figures Task performance Response accuracy
Self-perceived proof readability
Visual attention to pseudocode Fixation time
Visual attention to figures and proofs
Proof type Categorical (inductive, contradictive, and
direct proofs)
RQ3 Algorithm type Categorical (recursive, iterative, and non- Task performance Response accuracy
repeating algorithms)
Visual behavior Attention switching count
Cognitive load Pupil diameter

Table II outlines the independent and dependent variables
for each RQ, including the metrics used for each variable. Ex-
planations of key terms and eye-tracking metrics in a software
engineering context follow in the relevant RQ subsections.

A. RQI. Role of Incoming Preparation

We examine the relationship between incoming preparation
of participants and outcomes for the formalism comprehension
tasks. We consider two facets of preparation: coursework count
and performance. First, for coursework count, we enumerate
the number of computer science theory courses covering
formalisms (i.e., courses that include proofs and derivations
in their syllabi) that participants have either completed with
passing grades or are currently taking. Second, for screening
proof performance, we asked participants to identify a mistake
in a proof distinct from the stimuli used in the study, and note
whether the participant correctly identified the mistake. Both
facets we consider have been used previously in the context
of pedagogy to approximate incoming preparation [23, 25].
While we note that factoring in grades for the theory courses
would result in a more accurate approximation of incoming
preparation, instructors for upper-level courses typically only
require a student to pass the prerequisite courses, and do not
know how well students did in the core courses. As such, we
do not consider grades as a proxy for incoming preparation.
We classify a participant who has taken above the median
number of theory courses (i.e., coursework count > 4 for our
dataset) and passes the screening question as more-prepared.
Applying our approximations for incoming preparation re-
sulted in 16 out of 34 participants being classified as more-
prepared, with the remaining 18 deemed less-prepared.

The mean response accuracy (i.e., percentage of correct
answers) and response time (i.e, time taken to choose an
answer) for more-prepared and less-prepared participants is
shown in Table III. Surprisingly, we found no evidence of
a statistically-significant difference in the outcomes between
more-prepared and less-prepared students, both in terms of
response accuracy (two-tailed Mann-Whitney U-test with the

TABLE III: Mean response accuracy, response time, and
fixation times (FT) on different AOIs for more-prepared and
less-prepared participants. Response and fixation times are
given in seconds, while response accuracy is shown as a
percentage.

Mean (SD)

More-prepared Less-prepared p
Response Time 248.7(£109.6) 240.0(£105.3) 0.93
Response Accuracy 34.8(£17.3) 32.5(+16.1) 0.96
Algorithm FT 19 5(£16.2) 17 I(£i74) 021
Correct Answer FT 3(£2.0) 8(+1.2) 0.038
Distractor Choices FT 14 6(:|:12 3) 11 1(:|:11 5) 0.03
Figure FT 11.0(+45.8) 10.9(+38.6) 0.88
Proof FT 66.8(+£12.3) 46.1(+£11.5) 0.005
Theorem FT 12.9(£2.0) 11.2(£1.2) 0.12

Benjamini-Hochberg [61] procedure to correct for false dis-
coveries, p = 0.96) and response time (p = 0.93). Notably,
while absence of evidence is not evidence of absence, the
effect sizes for both results were extremely small (Cohen’s
d = 0.007 for response accuracy and d = 0.08 for response
time), giving statistical confidence in the null result (i.e., even
if an effect were present, it would be of very low magnitude
and thus unlikely to influence outcomes).

We further found no correlation between the number of
theory courses taken and response accuracy (Pearson’s r =
0.036,p = 0.84), nor a correlation between participants’ self-
perceived experience with formalisms (on a 1-5 Likert scale)
and response accuracy (Kendall’s 7 = 0.21,p = 0.18). Our
results indicate that, contrary to conventional wisdom [23, 24,
25, 26] and instructor expectations, students with greater in-
coming preparation perform no better at these formalism tasks,
on average, than students with lower incoming preparation.
Indeed, the two participants with the highest number of courses
taken had the lowest and second-lowest response accuracies.

These results have potentially major implications, both for
pedagogy and the training of new hires for formal software
engineering. On the pedagogy front, our results raise questions
about course design and undergraduate curricula: upper-level

undergraduate courses are often designed with the expectation
that students will have completed, and will be familiar with,
material covered in core courses. If students with more expo-
sure to the formal material do not show evidence of retention
over time, educators may need to reconsider upper-level course
design with more of an emphasis on reviewing relevant
material covered in lower-level courses. For high-assurance
software engineering, some managers may be tempted to
make hiring and training decisions based on the number of
theory courses taken (e.g., from a transcript or resume list).
Our results add confidence that regardless of the number of
relevant courses taken, new hires for high-assurance software
engineering should be put through the same level of training
to ensure that they are prepared for the challenges of the job,
and that managers should not default to “courses completed”
as a proxy of preparation for the job.

Even though participants have similar final outcomes, they
employ different strategies. An analysis of visual behaviors
between students with different incoming preparations reveals
that more-prepared students fixate longer on (i.e., spend more
time looking at) AOIs corresponding to the proof (two-tailed
Mann-Whitney U-test with the Benjamini-Hochberg proce-
dure, p = 0.005), correct answer (p = 0.038), and distractor
answer choices (p = 0.03). The mean fixation times for all six
AOIs for more- and less-prepared participants are included in
Table III. Our results suggest that while incoming preparation
teaches students to read a proof and the answer choices
thoroughly before selecting an answer, this increased attention
to the AOIs does not actually help students achieve better
outcomes.

Recall that regression rate is the ratio of backward or
regressive saccades to the total number of saccades. Quite
surprisingly, we observed that students with greater incoming
preparation show a higher regression rate (i.e., informally,
spend more time re-reading text and figures) — and as
such, increased difficulty [35] — while reading direct proofs
(p = 0.035). Given that we found no evidence of a statistically-
significant difference in the performance of students with
different incoming preparation for direct proofs, our results
suggest that, for our sample, students may be trained in
theory courses to default to induction or contradiction as proof
strategies, and may need to put in more mental effort when
analyzing a direct proof — a style that remains highly relevant
in formal methods for software engineering (e.g., [8]).

We found no evidence that students with higher incoming
preparation, as traditionally assessed, perform better at for-
malism comprehension tasks (p = 0.96). This suggests the
need for pedagogical intervention in core theory courses to
ensure student outcomes are aligned with course objectives
of having students master the material and better preparing
them for formal methods in software engineering.

B. RQ2. Self-Reporting and Formalism Comprehension Tasks

To collect richer free-response data from our study, we
instructed all 34 participants to provide answers to a post-
questionnaire reflecting on their experiences with the study

and outlining what they thought to be the most important parts
of a formalism presentation. In addition to having participants
self-report (on a 1-5 Likert scale) the difficulty of tasks they
were asked to perform, the helpfulness different aspects of
the formalism presentation, and so on, we asked three free-
response questions:

1) Having completed the study session, would you do

anything different the next time around?

2) What is the most important thing that makes a proof

easier to understand?

3) What is the most important thing that makes it easier to

spot a mistake in the proof?

To better understand the relationship between participant
Likert scale responses and response accuracy, we use the
Kendall’s 7 test to conduct a quantitative analysis of the data.
When analyzing participants’ self-reported experience with
formalisms, we found no evidence of a correlation between
experience and response accuracy (7 = 0.21,p = 0.18).
We also observed no correlation between self-reported task
difficulty and study outcomes (7 = 0.14,p = 0.35), nor a
correlation between the self-reported helpfulness of figures
for formalism comprehension tasks and study outcomes (7 =
—0.22,p = 0.13). Our results do not provide evidence that
students are accurate at self-reporting their experience with
formalism comprehension tasks.

To further investigate whether student self-perception is an
accurate predictor of factors associated with high outcomes,
we also performed a qualitative analysis on the participants’
self-reported free-response data. 26 out of 34 participants
indicated they would employ a different problem-solving
strategy if asked to do the study again. Tied for the most
common change in strategy were paying more attention to the
algorithmic pseudocode and reviewing the materials from core
theory courses prior to the study. Our experimental results, on
the other hand, do not indicate a relationship between fixation
time on algorithmic pseudocode (i.e., time spent reading
pseudocode) and higher response accuracy (p = 0.91, see
Section V-C). The desire to review materials from core theory
courses is aligned with our experimental results: students with
greater incoming preparation do not perform better, suggesting
a lack of retention of course materials over time, and hence,
preparation for high-assurance software.

When asked to describe the features that make a proof
easier to comprehend, about a third of the participants men-
tioned concise, easy-to-read English prose in the proof. The
second most popular answer (6/34 participants) corresponded
to the use of figures and visuals while reading the proof.
Interestingly, our empirical results do not show evidence of a
significant correlation between self-perceived proof readability
and outcomes for formalism comprehension tasks (Kendall’s
7 = —0.14, p = 0.32), or a statistically significant relationship
between increased fixation on (or attention to) figures and
response accuracy (p = 0.81).

In response to the traits that make a mistake in a proof
easier to spot, the most popular answer (7/34 participants)
focused on step-by-step logical reasoning. The second most

common answer themes (6/34 participants each) were logical
inconsistencies in the proof text and an understanding of the
proof strategy. By contrast, only one participant answered
“thinking through a different worked example”, a strategy
that is commonly taught in undergraduate theory courses. Our
results suggest that educators should put more of an emphasis
on providing students with effective tools for evaluating logical
deductions for correctness. The student-perceived traits (i.e.,
breaking down logical reasoning steps and evaluating the
reasoning for logical inconsistencies) remain effective strate-
gies for formalism comprehension tasks. However, the lower
outcomes for these tasks suggests that students are less able
to apply those strategies in a mistake-finding context.

We find no evidence that students experience reports are
accurate predictors of outcomes for comprehending for-
malisms (7 = 0.21,p = 0.18). We also find no evidence
that the factors identified by students are associated with
high outcomes for such tasks.

C. RQ3. Factors Associated with Higher Outcomes

Given the apparent lack of effect of incoming preparation on
the outcomes for our study, we are interested in investigating
the factors that cause students to perform better at formalism
comprehension tasks. To do so, we perform a sub-population
analysis of students with higher and lower outcomes. We
require a participant to have achieved above the median
response accuracy (i.e., > 3/7 answers correct for our dataset)
to be classified as higher performing. Using this metric, we
classify 15 out of 34 participants as higher performing, with
the remaining 19 considered lower performing participants.
Only 7 out of the 16 more-prepared participants (Section V-A)
were classified as higher performing.

We examined the outcomes for higher and lower performing
students for different proof categories (inductive, contradic-
tory, and direct) and algorithm categories (recursive, iterative,
and non-repeating'). We found that, independent of algorithm
category, higher performing students are more likely to spot
mistakes in proofs by induction than the lower performing ones
(x? test with the Benjamini-Hochberg procedure, p = 0.01).
Endres et al. [62] have investigated student performance for
iterative and recursive problem formulations, and observed
poorer student performance for recursive algorithms involving
non-branching computation but better student performance for
recursive algorithms involving array manipulation. We find
that independent of problem or proof type, higher performing
students are more likely to get proofs for recursive algorithms
correct compared to lower performing students (p = 0.006).

Our results have implications for both teaching formalisms
for improved outcomes and preparing students for formal
methods in software engineering. Previous work by Polycar-
pou [63] suggests that students who understand recursive or
inductive definitions can more successfully perform proofs

'The only algorithm in our stimuli that does not involve loops or recursion
corresponds to a proof gadget used for the Halting Problem. For completeness,
we consider “non-repeating” a separate category of algorithms.

by induction, while students who do not are either not able
to perform proofs by induction, or do so mechanically. The
fact that students with higher outcomes in our study are not
necessarily those with greater incoming preparation suggests
that undergraduate theory courses taken by our participants
may not be putting emphasis on teaching and making students
comfortable with recursive or inductive definitions. In formal
verification for high-assurance software, there has been an
increasing interest in automated theorem proving (e.g., the
Z3 theorem prover [64]), an activity that often involves the
identification of an inductive invariant to prove that a certain
property holds at all time [65]. Finding an inductive invariant
has a direct parallel to correctly identifying an inductive
hypothesis for proofs by induction, suggesting that students
who are better trained to correctly establish inductive proofs
may be better equipped for automated theorem proving tasks.

Recall that attention switching measures the total number
of switches between AOIs, and can approximate the dynam-
ics of visual attention during a task. We found that higher
performing students demonstrate more attention switching
behaviors, or frequently go back and forth between AOIs on
the presented materials (two-tailed Mann-Whitney U-test with
the Benjamini-Hochberg procedure, p = 0.002). In particular,
we observed a statistically-significant difference in attention
switching for proofs by contradiction (p = 0.009) and iterative
algorithms (p = 0.007). We also observed trends for increased
attention switching for higher-performing students for proofs
by induction and recursive algorithms, but these trends did not
survive correcting for multiple comparisons. Figure 3 shows
two illustrative visual gaze plots for a higher outcome and an-
other lower outcome participant for a stimulus involving proof
by contradiction. The higher-outcome participant displays sig-
nificantly more attention switching behavior (as indicated by
the increased number of lines between the AOI quadrants,
see Figure 3a) compared to the lower-outcome participant
(Figure 3b). In the context of pedagogy, these results strongly
argue for the development of teaching materials, such as online
tools, lecture slides, and exams, that facilitate perusal with ease
(e.g., without requiring multiple page flips).

To estimate the cognitive load (i.e., increased strain on
the working memory) due to formalism comprehension tasks
(e.g., due to the need for remembering the theorem or vari-
able names while evaluating the proof for correctness), we
record the pupil diameters reported by the eye tracker for
each stimulus and obtain the pupil diameter delta against a
measured baseline (see Section IV-A). We found that students
with poorer performance also show increased cognitive load
when going over the figures in general (p = 0.012). In
particular, we saw trends for increased cognitive load for
lower outcome students looking at figures for inductive proofs
and recursive algorithms, though the latter did not survive
correcting for multiple comparisons (p = 0.032 and p = 0.06
respectively). These results indicate that students who got
inductive proofs incorrect more frequently (in a statistically-
significant manner) also had increased difficulty when going
over figures explaining the algorithm or proof strategy when

figs/attention_switching_high_no_circles_v2

fdryp/attention_switching low_no_circles_v2.

(a) Higher-outcome participant gaze plot

(b) Lower-outcome participant gaze plot

Fig. 3: Visual gaze plots for a stimulus shown to two participants. The higher-outcome participant (left) displays significantly
more attention switching behaviors, as indicated by the number of lines crossing between different AOI quadrants.

compared to their higher-performing peers, suggesting that
educators can make targeted efforts to have lower-outcome
students practice tracing through graphical illustrations of the
presented material.

Higher-performing students are more likely to get proofs
by induction (p = 0.01) and recursive algorithms cor-
rect (p = 0.006) compared to lower-performing students.
Higher-outcome students also demonstrate significantly
more attention switching behaviors (p = 0.002), suggesting
that students who frequently go back and forth between
presented materials are more likely to achieve better results.

VI. DISCUSSION AND IMPLICATIONS

In this section, we present a discussion of our results
and discuss several implications for pedagogy (and indirectly,
preparing future software engineers for formal methods).

A. Eye-tracking Discussion and Implications for Pedagogy

The results from our study suggest that traditional metrics
for incoming preparation, like course counting and pretests,
are ineffective predictors of student performance with formal-
ism comprehension tasks, and that students across the board
are not well-trained to employ different tools for evaluating
presented logical deductions for correctness. Indeed, the two
most-prepared participants in our study had the lowest and
second-lowest response accuracies, and the highest-outcome
participants were more junior.

Our results provide confidence that students with more
exposure to the formal material may not show evidence of re-
tention over time. As such, it may benefit students if educators
focus on upper-level course design strategies that encourage
reviewing relevant material from lower-level undergraduate
courses. The trade-off between using a few lectures to ensure
students who took core courses several semesters ago still
remember key concepts and exposing students to novel topics
is worth considering.

Given that higher-outcome participants exhibited signifi-
cantly more attention switching, we consider whether cur-
rent educational materials admit this sort of problem-solving
strategy. For instance, our results argue against exams that
require page flips to get relevant information, since turning
or scrolling between pages is not conducive to going back
and forth between presented materials with ease (e.g., [66,
Sec. 6.2.1]). In an era of an increasing number of online exams
and teaching tools, similar concerns arise: while administering
online lectures, quizzes, and exams, educators should remain
wary of requiring significant page scrolling or user interface
navigation to gather information before answering a question,
and instead place relevant bits of information in a spatially-
proximate manner for a formalism comprehension task.

Additionally, since we observe differences in performance
depending on the type of algorithm or proof, we advocate for
increased emphasis on certain types of proofs. Notably, our
study shows that differences in outcomes can be attributed,
in a statistically-significant manner, to proofs by induction.

png

Previous work has shown that students’ performance with
proofs by induction improves after class instruction, but not
to the extent intended during course design [63], yet strategies
involving proofs by induction remain highly relevant in formal
verification of software (e.g., the use of inductive invariants
in automated theorem proving [65]). We encourage educators
to have students practice proofs by induction more, and
emphasize familiarity and comfort with recursive or inductive
definitions and data structures.

Note that while motivated by our experimental results, our
recommendations for educators (and, more indirectly, hiring
managers) are speculative and only intended for discussion
purposes: a controlled study would be required to assess any
interventions. We leave such studies for future work.

B. Facial Behavior Analysis Exploratory Results

We wish to analyze any differences in facial behavior
between participant interactions with different outcomes. We
note that, to the best of our knowledge, no widely-accepted
metrics for analyzing facial behavior data in the context of
pedagogy exist (e.g., previous use of facial behavior analy-
sis in a teaching setting [44, 45] involves the controversial
use of emotion detection [48, 49, 67]). We perform a sub-
population analysis of facial behavior data points correspond-
ing to participant correct and incorrect answers. 56% of the 24
thousand high-quality facial behavior data points correspond
to participant interactions getting the response correct, with
the remaining associated with incorrect answers. For each AU
(see Table I), we analyze the number of times the OpenFace
classifier detected its presence or absence. We compare this
AU activation metric for correct vs. incorrect interactions
(x? contingency test, corrected for false discoveries using the
Benjamini-Hochberg procedure). Our exploratory results in-
dicate a statistically-significant difference between participant
interactions for different response accuracies for 16 of the 18
AUs; only AU7 (lid tightener) and AU9 (nose wrinkler) were
not relevant. Differences in all but two AUs suggest an easy-
to-observe, robust effect.

While our exploratory results suggest the presence of
statistically-significant differences in many different facial
behaviors between participant interaction outcomes, there un-
fortunately remains a lack of metrics and analysis (other than
generic emotion classifications — see Section IV-B) methods
to help us interpret these results. A qualitative theory to
explain this difference in facial behavior is left as future work.
We present this discussion on the preliminary facial behavior
analysis results in the context of formalism comprehension
tasks to draw attention of the research community to a more
objective method of facial behavior analysis (that is also
observable and robust in this domain).

VII. THREATS TO VALIDITY

One threat to validity for our study is that our results
may not generalize to a wider population. To mitigate this
threat, we recruited participants from a large public university
with a wide array of different backgrounds (including native

language, incoming preparation, class standings, etc.). We also
note that the primary goal of our study is to understand how
to better teach formalisms at the undergraduate level (and
indirectly, to shed light on hiring considerations for certain
software engineering sectors), and thus, recruiting seasoned
industry professionals is less relevant.

Another threat to the generalizability of our study is that
our stimuli may not be indicative (e.g., all of the proofs are
in English). To mitigate this threat, we select our stimuli
from an undergraduate textbook widely used by educators,
and supplement any figures from undergraduate course lecture
slides serving thousands of students each year.

Finally, to mitigate threats to conclusion validity, we use
state-of-the-art software to calibrate the eye-tracker [53],
widely-used eye-tracking metrics and analyses [30], and
present any facial behavior analysis conclusions as discussions
meant to stimulate conversations in the research community.

VIII. RELATED WORK

In this section, we discuss previous work related to eye-
tracking, student cognition, and facial behavior analysis in a
pedagogical context.

A. Eye-tracking and Cognition

Previous eye-tracking work investigating problem-solving
strategies employed by students has shown that differences
in search strategies can lead to significant differences in task
outcomes [68, 69, 70].

For instance, Netzel et al. found that high-accuracy stu-
dents were better able to use information in science-related
diagrams [68]. We similarly observed that high-performing
participants display reduced cognitive load when going over
figures related to formalism comprehension tasks. Hegarty et
al. [69] investigated arithmetic problem solving involving rela-
tional terms inconsistent with the required arithmetic operator
(e.g., the use of less than for tasks involving addition), and
found that low-accuracy students made more reversal errors for
inconsistent problems, and that high-accuracy ones required
more re-readings for previous text fixations. Our study does
not reveal a difference in response accuracy between high- and
low-outcome students for proofs by contradiction (that involve
logical inconsistencies in proof text). We do find, however, that
higher-outcome students display significantly more attention
switching as they assimilate presented information, a strategy
that is analogous re-reading text.

Figures are frequently used as educational instruments [52,
71, 72], yet their importance as a medium of instruction for
a particular field is not always well-understood. For instance,
Susac et al. [70] found that diagram were rarely helpful for
physics. By contrast, Yoon et al. [73] studied the importance
of figures for causal reasoning problems, and found that
even for questions missing a figure, 48% of the students still
frequently fixate on the area where the figure would have been,
indicating a relative higher importance for figures. For both
studies, however, the inclusion of diagrams did not affect the
participants’ time taken to respond or response accuracy. In

a mistake-finding context for formalism comprehension, we
similarly do not find a relationship between fixation on, or
perceived importance of, figures on task outcomes.

B. Facial Behavior Analysis

Previous work exploring facial behavior analysis in a ped-
agogical setting has analyzed videos of faces as they interact
with a teaching tool to assign general notions of affective
states (e.g., boredom, delight, surprise, etc.) during learning
tasks [44, 45, 74]. Such studies argue that highly-animated
affective states or emotions, such as delight or confusion,
are easily detectable and have numerous applications for
pedagogy, including real-time feedback for learners [44].

Crucially, while these studies use AUs as measures of facial
behavior, their assignment of affective states or emotions is
based on generic classifiers [75] and fails to account for
the context around the task, a feature considered imperative
for emotion recognition [48, 49]. Additionally, Alfenbein and
Ambady [76] show that the accuracy of facial emotion recog-
nition can depend on race and culture. As such, we argue that
emotion classifiers trained on certain population demographics
can inadvertently affect vulnerable student populations if used
without caution in a pedagogical setting.

We present our exploratory results from facial behavior
analysis independent of emotion classification to promote dis-
cussion in the research community for a less controversial use
of facial behavior data that could still yield benefits similar to
those of previous tools like AutoTutor [75] without potentially
negatively affecting minority or non-traditional students.

IX. CONCLUSION

Formal methods have been increasingly applied to software
engineering, but often require mathematical training and ad-
vanced logical reasoning abilities that software practitioners
often do not possess. Given the challenges associated with in-
tegrating formal methods into software, educators may increas-
ingly focus on formalisms in undergraduate theory courses that
already suffer from unsatisfactory student outcomes.

We propose to use eye-tracking to better understand the
problem solving strategies employed by students with different
levels of incoming preparation and task outcomes, and more
indirectly, gather insights into how educators can prepare
future software engineers for the rigorous logical reasoning
that is a core part of high-assurance software engineering. We
also provide an exploratory discussion on the use of facial
behavior analysis in a pedagogical context.

In a controlled human study involving 34 participants, we
find that incoming preparation is not an accurate predictor
of task outcomes, that student experience reports and self-
perceptions are not effective at predicting task outcomes, and
that the increased attention to proof text by more-prepared
students does not yield higher task outcomes. We instead find
that students who exhibit more attention switching behaviors
are more likely to succeed, and that differences in formalism
comprehension outcomes can be attributed to performance for

proofs by induction and recursive algorithms. Our results ad-
vocate for pedagogical interventions in theory courses to better
teach formalisms to students and prepare future developers for
formal reasoning for software. We make our datasets publicly
available for researchers to replicate or build on our study.

ACKNOWLEDGEMENTS

We gratefully acknowledge the partial support of the NSF
(2211749, 1908633) and the AFRL (FA8750-19-1-0501) as
well as the University of Michigan Center for Academic
Innovation. Additionally, we thank Madeline Endres, Wenxin
He, Priscila Santiestaban, and Amaris Sim for their logistical
help and their help piloting the stimuli.

REFERENCES

[1] E. M. Clarke and J. M. Wing, “Formal methods: State of the art
and future directions,” ACM Computing Surveys, vol. 28, no. 4,
pp. 626643, 1996.

[2] V. George and R. Vaughn, “Application of lightweight formal
methods in requirement engineering,” STSC CrossTalk—The
Journal of Defense Software Engineering, 2003.

[3] B. Meyer, “Applying’design by contract’,” Computer, vol. 25,
no. 10, pp. 40-51, 1992.

[4] C. B. Jones, “Systematic software development using vdm,’
Prentice Hall International Series in Computer Science, 1990.

[5] R. W. Floyd, “Assigning meanings to programs,’ in Program
Verification. Springer, 1993, pp. 65-81.

[6] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp. 576—
580, 1969.

[71 R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause er al., “Using formal specifications to support testing,”
ACM Computing Surveys, vol. 41, no. 2, pp. 1-76, 2009.

[8] T. Hoare, “Assert early and assert often: Practical hints on
effective asserting,” Presentation at Microsoft Techfest, 2002.

[9] C. Heitmeyer, “On the need for practical formal methods,” in

International Symposium on Formal Techniques in Real-Time

and Fault-Tolerant Systems. Springer, 1998, pp. 18-26.

M. Gleirscher, S. Foster, and J. Woodcock, “New opportuni-

ties for integrated formal methods,” ACM Computing Surveys,

vol. 52, no. 6, pp. 1-36, 2019.

S. Liu, K. Takahashi, T. Hayashi, and T. Nakayama, “Teaching

formal methods in the context of software engineering,” ACM

SIGCSE Bulletin, vol. 41, no. 2, pp. 17-23, 20009.

[12] J. Kloosterman and D. Fontenot, Comprehensive Studies Pro-

gram (CSP) Support Planning Discussions AY 2019-2020, 2020,

university of Michigan meeting held on 08/04/2020.

V. Bertacco and A. Kamil, Computing CARES Survey AY 2019-

2020. University of Michigan, 2020.

[14] J.-R. Abrial, “Formal methods in industry: achievements, prob-

lems, future,” in Proceedings of the 28th international confer-

ence on Software engineering, 2006, pp. 761-768.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The

effect of poor source code lexicon and readability on develop-

ers’ cognitive load,” in International Conference on Program

Comprehension (ICPC). 1EEE, 2018, pp. 286-28 610.

N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister,

and A. Brechmann, “Simultaneous measurement of program

comprehension with fmri and eye tracking: A case study,” in

International Symposium on Empirical Software Engineering

and Measurement, 2018, pp. 1-10.

[17] Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on

code: A study on developers code navigation strategies,” I[EEE
Transactions on Software Engineering, pp. 1-1, 2020.

(10]

(11]

(13]

[15]

[16]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

R. Krueger, Y. Huang, X. Liu, T. Santander, W. Weimer,
and K. Leach, “Neurological divide: An fMRI study of prose
and code writing,” in International Conference on Software
Engineering, ser. ICSE ’20, 2020, p. 678-690.

Y. Huang, X. Liu, R. Krueger, T. Santander, X. Hu, K. Leach,
and W. Weimer, “Distilling neural representations of data struc-
ture manipulation using fMRI and fNIRS,” in International
Conference on Software Engineering, 2019, pp. 396-407.

Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and
W. Weimer, “Biases and differences in code review using medi-
cal imaging and eye-tracking: Genders, humans, and machines,”
in Foundations of Software Engineering, 2020, p. 456-468.

J. Mock, S. Huber, E. Klein, and K. Moeller, “Insights into
numerical cognition: Considering eye-fixations in number pro-
cessing and arithmetic,” Psychological Research, vol. 80, no. 3,
pp. 334-359, 2016.

K. H. Rosen, Discrete mathematics and its applications, Tth ed.
McGraw-Hill, 2012.

S. Salehi, S. Cotner, and C. J. Ballen, “Variation in incoming
academic preparation: Consequences for minority and first-
generation students,” in Frontiers in Education, vol. 5. Fron-
tiers Media SA, 2020, p. 552364.

C. A. Stanich, M. A. Pelch, E. J. Theobald, and S. Free-
man, “A new approach to supplementary instruction narrows
achievement and affect gaps for underrepresented minorities,
first-generation students, and women,” Chemistry Education
Research and Practice, vol. 19, no. 3, pp. 846-866, 2018.

P. A. Tolley, C. M. Blat, C. R. McDaniel, D. B. Blackmon, and
D. C. Royster, “Enhancing the mathematics skills of students
enrolled in introductory engineering courses: Eliminating the
gap in incoming academic preparation,” Journal of STEM
Education: Innovations and Research, vol. 13, no. 3, 2012.

J. R. Reisel, M. Jablonski, H. Hosseini, and E. Munson,
“Assessment of factors impacting success for incoming college
engineering students in a summer bridge program,” Intl. J. of
Mathematical Education in Sci. and Tech., vol. 43, no. 4, pp.
421-433, 2012.

T. Strandvall, “Eye tracking in human-computer interaction and
usability research,” in IFIP Conference on Human-Computer
Interaction. Springer, 2009, pp. 936-937.

U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey
on the usage of eye-tracking in computer programming,” ACM
Computing Surveys, vol. 51, no. 1, pp. 1-58, 2018.

Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic litera-
ture review on the usage of eye-tracking in software engineer-
ing,” Information and Software Technology, vol. 67, pp. 79-107,
2015.

Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc, “Eye-
tracking metrics in software engineering,” in Asia-Pacific Soft-
ware Engineering Conference, 2015, pp. 96—103.

M. Wedel and R. Pieters, “A review of eye-tracking research in
marketing,” Review of marketing research, pp. 123-147, 2017.
J. H. Goldberg and J. I. Helfman, “Comparing information
graphics: a critical look at eye tracking,” in BEyond time and
errors: novel evaLuation methods for Information Visualization,
2010, pp. 71-78.

Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik,
and M. Crosby, “A practical guide on conducting eye tracking
studies in software engineering,” Empirical Software Engineer-
ing, vol. 25, no. 5, pp. 3128-3174, 2020.

M. A. Just and P. A. Carpenter, “A theory of reading: from
eye fixations to comprehension.” Psychological review, vol. 87,
no. 4, p. 329, 1980.

J. H. Goldberg and X. P. Kotval, “Computer interface evaluation
using eye movements: methods and constructs,” Journal of
industrial ergonomics, vol. 24, no. 6, pp. 631-645, 1999.

K. Rayner, “Eye movements in reading and information pro-

(37]

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[40]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

cessing: 20 years of research.” Psychological bulletin, vol. 124,
no. 3, p. 372, 1998.

M. A. Eskenazi and J. R. Folk, “Regressions during reading:
The cost depends on the cause,” Psychonomic bulletin & review,
vol. 24, no. 4, pp. 1211-1216, 2017.

S. Chen and J. Epps, “Using task-induced pupil diameter and
blink rate to infer cognitive load,” Human—Computer Interac-
tion, vol. 29, no. 4, pp. 390413, 2014.

J.-L. Kruger, E. Hefer, and G. Matthew, “Measuring the impact
of subtitles on cognitive load: Eye tracking and dynamic audio-
visual texts,” in Eye Tracking South Africa, 2013, pp. 62-66.
P. Kiefer, I. Giannopoulos, A. Duchowski, and M. Raubal,
“Measuring cognitive load for map tasks through pupil diame-
ter,” in Geographic Information Science, 2016, pp. 323-337.
E. H. Hess and J. M. Polt, “Pupil size in relation to mental
activity during simple problem-solving,” Science, vol. 143, no.
3611, pp. 1190-1192, 1964.

P. Ekman, W. V. Friesen, M. O’Sullivan, and K. Scherer,
“Relative importance of face, body, and speech in judgments
of personality and affect.” Journal of personality and social
psychology, vol. 38, no. 2, p. 270, 1980.

M. S. Bartlett, G. Littlewort, I. Fasel, and J. R. Movellan,
“Real time face detection and facial expression recognition:
Development and applications to human computer interaction.”
in 2003 Conference on computer vision and pattern recognition
workshop, vol. 5. 1EEE, 2003, pp. 53-53.

B. McDaniel, S. D’Mello, B. King, P. Chipman, K. Tapp, and
A. Graesser, “Facial features for affective state detection in
learning environments,” in Proceedings of the Annual Meeting
of the Cognitive Science Society, vol. 29, no. 29, 2007.

A. Graesser, B. McDaniel, P. Chipman, A. Witherspoon,
S. D’Mello, and B. Gholson, “Detection of emotions during
learning with autotutor,” in Proceedings of the 28th annual
meetings of the cognitive science society. Citeseer, 2006, pp.
285-290.

E. Friesen and P. Ekman, “Facial action coding system: a
technique for the measurement of facial movement,” Palo Alto,
vol. 3, no. 2, p. 5, 1978.

P. Ekman, W. V. Freisen, and S. Ancoli, “Facial signs of
emotional experience.” Journal of personality and social psy-
chology, vol. 39, no. 6, p. 1125, 1980.

L. F. Barrett, B. Mesquita, and M. Gendron, “Context in emo-
tion perception,” Current Directions in Psychological Science,
vol. 20, no. 5, pp. 286290, 2011.

M. Kayyal, S. Widen, and J. A. Russell, “Context is more
powerful than we think: contextual cues override facial cues
even for valence.” Emotion, vol. 15, no. 3, p. 287, 2015.

R. Zhi, M. Liu, and D. Zhang, “A comprehensive survey on
automatic facial action unit analysis,” The Visual Computer,
vol. 36, no. 5, pp. 1067-1093, 2020.

N. R. Kuncel, M. Credé, and L. L. Thomas, “The validity
of self-reported grade point averages, class ranks, and test
scores: A meta-analysis and review of the literature,” Review
of educational research, vol. 75, no. 1, pp. 63-82, 2005.

K. Yim, D. D. Garcia, and S. Ahn, “Computer science illus-
trated: Engaging visual aids for computer science education,” in
Proceedings of the 41st ACM technical symposium on computer
science education, 2010, pp. 465-469.

Tobii Pro AB, “Tobii pro lab,” Computer software, Danderyd,
Stockholm, 2014. [Online]. Available: http://www.tobiipro.com/
J. R. Shapiro and S. L. Neuberg, “From stereotype threat to
stereotype threats: Implications of a multi-threat framework
for causes, moderators, mediators, consequences, and interven-
tions,” Personality and Social Psychology Review, vol. 11, no. 2,
pp. 107-130, 2007.

S. J. Spencer, C. M. Steele, and D. M. Quinn, “Stereotype
threat and women’s math performance,” Journal of experimental

http://www.tobiipro.com/

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

social psychology, vol. 35, no. 1, pp. 4-28, 1999.

T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency,
“OpenFace 2.0: Facial behavior analysis toolkit,” in Automatic
Face Gesture Recognition, 2018, pp. 59-66.

A. Olsen, “The Tobii I-VT fixation filter,” Tobii Technology,
vol. 21, pp. 4-19, 2012.

D. D. Salvucci and J. H. Goldberg, “Identifying fixations and
saccades in eye-tracking protocols,” in Eye tracking research &
applications, 2000, pp. 71-78.

R. J. Jacob and K. S. Karn, “Eye tracking in human-
computer interaction and usability research: Ready to deliver
the promises,” Mind, vol. 2, no. 3, p. 4, 2003.

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,
C. Schulte, B. Sharif, and S. Tamm, “Eye movements in code
reading: Relaxing the linear order,” in International Conference
on Program Comprehension, 2015, pp. 255-265.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,” J.
of the Royal statistical society: series B, vol. 57, no. 1, pp.
289-300, 1995.

M. Endres, W. Weimer, and A. Kamil, “An analysis of iterative
and recursive problem performance,” in Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education,
2021, pp. 321-327.

I. Polycarpou, “Computer science students’ difficulties with
proofs by induction: an exploratory study,” in Proceedings of the
44th annual Southeast regional conference, 2006, pp. 601-606.
L. d. Moura and N. Bjgrner, “Z3: An efficient SMT solver,”
in International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2008, pp.
337-340.

J. M. Schumann, Automated theorem proving in software engi-
neering. Springer Science & Business Media, 2001.

K. A. Gamage, R. G. Pradeep, and E. K. de Silva, “Rethinking
assessment: The future of examinations in higher education,”
Sustainability, vol. 14, no. 6, p. 3552, 2022.

L. F Barrett, “Was Darwin wrong about emotional expres-
sions?” Current Directions in Psychological Science, vol. 20,
no. 6, pp. 400-406, 2011.

R. Netzel, B. Ohlhausen, K. Kurzhals, R. Woods, M. Burch,
and D. Weiskopf, “User performance and reading strategies
for metro maps: An eye tracking study,” Spatial Cognition &
Computation, vol. 17, no. 1-2, pp. 39-64, 2017.

M. Hegarty, R. E. Mayer, and C. E. Green, “Comprehension
of arithmetic word problems: Evidence from students’ eye
fixations.” Journal of educational psychology, vol. 84, no. 1,
p. 76, 1992.

A. Susac, A. Bubic, M. Planinic, M. Movre, and M. Palmovic,
“Role of diagrams in problem solving: An evaluation of eye-
tracking parameters as a measure of visual attention,” Physical
Review Physics Education Research, vol. 15, no. 1, p. 013101,
2019.

M. Manoharan and B. Kaur, “Mathematics teachers’ perceptions
of diagrams,” International Journal of Science and Mathematics
Education, pp. 1-23, 2022.

C. Buckley and C. Nerantzi, “Effective use of visual repre-
sentation in research and teaching within higher education,”
International Journal of Management and Applied Research,
vol. 7, no. 3, pp. 196-214, 2020.

D. Yoon and N. H. Narayanan, “Mental imagery in problem
solving: An eye tracking study,” in Proceedings of the 2004
symposium on Eye tracking research & applications, 2004, pp.
77-84.

M. S. Hussain, O. AlZoubi, R. A. Calvo, and S. K. D’Mello,
“Affect detection from multichannel physiology during learning
sessions with autotutor,” in International conference on artificial
intelligence in education. Springer, 2011, pp. 131-138.

[75]

[76]

S. Craig, S. D’Mello, B. Gholson, A. Witherspoon, J. Sullins,
and A. Graesser, “Emotions during learning: The first steps
toward an affect sensitive intelligent tutoring system,” in E-
Learn: World Conference on E-Learning in Corporate, Gov-
ernment, Healthcare, and Higher Education. Association for
the Advancement of Computing in Education (AACE), 2004,
pp. 264-268.

H. A. Elfenbein and N. Ambady, “On the universality and
cultural specificity of emotion recognition: a meta-analysis.”
Psychological bulletin, vol. 128, no. 2, p. 203, 2002.

	Introduction
	Background and Motivation
	Eye-Tracking
	Facial Behavior Analysis
	Motivating Example

	Experimental Methodology
	Participant Recruitment
	Materials and Design
	Experimental Protocol
	Data Collection

	Data Analysis Approach
	Eye-Tracking Analysis Approach
	Facial Behavior Analysis Approach

	Experimental Results
	RQ1. Role of Incoming Preparation
	RQ2. Self-Reporting and Formalism Comprehension Tasks
	RQ3. Factors Associated with Higher Outcomes

	Discussion and Implications
	Eye-tracking Discussion and Implications for Pedagogy
	Facial Behavior Analysis Exploratory Results

	Threats to Validity
	Related Work
	Eye-tracking and Cognition
	Facial Behavior Analysis

	Conclusion

