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Abstract-Software containers are becoming the newstate of the 
art in the industry as they are extensively used to deploy systems. 
Indeed, the use of containers enables better modularity, reusability, 
and portability compared to other technologies. As the complexity 
of software systems is dramatically increasing, it is critical to 
enable optimal usage of the needed resources to execute them 
such as memory and CPU. Thus, different scheduling strategies 
are proposed to select the most suitable nodes to execute a set 
of containers. For instance, the default strategy in the Docker 
Swarm kit scheduling framework is based on an equal distribution 
of the containers between nodes independent of their sizes and 
consumed resources. However, balancing the containers' workload 
is a complex problem due to the conflicting objectives of minimizing 
the number of selected nodes, minimizing the number ofcontainers 
per node, the numbe1·of changes compared to theoriginal schedule, 
and the coupling between containers allocated to different nodes. 
To deal with those conflicting scheduling objectives, we propose 
a scheduler based on a many-objective optimization approach for 
scheduling the execution of containers between multiple nodes. The 
proposed approach aims at finding the best allocation for 
containers in nodes that leads to efficient utilization of resources. 
To evaluate our approach, we compared the performance of 
multiple many and multi-objective techniques based on NSGA-11, 
NSGA-111, and IBEA algorithms using 48 Docker-related systems 
and the results show that NSGA-111 outperforms the other 
algorithms in quality attributes as well as in CPU, Memory and 
Network usage. 

bzdex Tem1s-Container scheduling, docker, many-objective 
optimization. 

 
 

I. INTRODUCTION 

OFrWARE containers are becoming the newstate of the art 

in the industry as they are extensively used to deploy sys­ 

tems [ l]. Indeed, the use of containers enables better modularity, 

reusability, and portability compared to other traditional tech­ 

nologies [2]. For instance, the Docker container is considered 

one of the most important pillars for software deployment as it 
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provides higher performanceand flexibility in comparison with a 

traditional hypervisor-basedvirtualisation[ l]. Thus, Docker and 

the software containerizationtechnology are becoming the main 

parts of the cloud strategies of most industry organizations [3]. 

Despite the benefits and popularity of using Docker containers, 

there are several challenges associated with the optimal usage 

of the resources consumed by this technology as a large number 

of containers may need to be executed and orchestrated due to 

the high modularity of Docker architectures [4]. 

Due to the dramatic increase in the number and size of 

containers needed to build systems, there is a critical need for 

efficient mechanisms to schedule and orchestrate the execution 

of containers among many nodes in the cloud clusters. Thus, 

several container scheduling tools are proposed, such as Docker 

Swarm developed by Docker [5], Mesos by Apache [6], and 

Kubernetes by Google [7]. Generally speaking, despite their 

efficiency, these strategies are too simple to handle complex 

container execution. It is assumed that Docker Swarm has no 

prior knowledge regarding the workload or the container's re­ 

source requirements. The only available scheduling strategy is 

called Spread, which basically schedules a service task based on 

spreading the number of containers equally to all Docker hosts, 

and all the extra configuration has to be performed manually [8]. 

Thus, it is important to create more sophisticated,high-level, and 

adaptive allocation strategies in order to guarantee a balanced 

workload among devices, the service's performance require­ 

ments, efficient communications between containers, and more 

efficient utilization of resources in terms of CPU and memory. 

To deal with these challenges, several scheduling techniques 

for containers were recently proposed [9], [10), [11), [12]. Most 

of them are based on the useof optimization techniques due to the 

complexity of the problem in terms of the number of scheduling 

alternatives. For instance, Kaewkasi et al. [9] adopted the Ant 

Colony Optimization (ACO) algorithm to implement a new con­ 

tainer scheduler for SwarmKit which spread the containers over 

Docker hosts to balance the overall resource usagesand therefore 

lead to increased performance of applications. The proposed 

approach continuously computes theavailable resources inevery 

node every time it schedules a container. Guerrero et al. [10) 

proposed a genetic algorithm approach to implement a container 

allocation strategy andelasticity management by optimizing the 

elasticity of thecurrently deployed applications and maximizing 

the reliability of the micro-services by avoiding single points 

of failure. However, the proposed strategies are limited to only 

two objectives while many conflicting criteria should be taken 

into consideration within the container scheduling problem. 
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Indeed, an efficient scheduling approach for containers may 

need to consider the available resources in terms of memory and 

CPU but also reduce the changes in the current configuration 

(e.g., moving containers between nodes), the communications 

between containers located in different nodes (e.g., coupling) 

and balancing the software load between multiple nodes. 

To address the above challenges, we propose a new many­ 

objective optimization approach for the Docker containers 

scheduling problem. The goal is to find the best allocation 

of containers that can lead to a better workload balance and 

performance. The number of scheduling combinations to assign 

containers to nodes is high. Thus, the search space to explore is 

combinatorial which requires the use of an intelligent compu­ 

tational search technique. Furthermore, the different scheduling 

criteria are conflicting thus, we adopted a many-objectivesearch 

algorithm, based on NSGA-III [13], to find a trade-off between 

four conflicting objectives. Our many-objective search-based 

software engineering approach aims at finding the rescheduling 

solution that: optimizes the structure of thecluster byoptimizing 

some metrics such as the number of selected nodes in thecluster, 

the average of containers per node, optimizes the communica­ 

tionsbetween containers byminimizing thecoupling (dependent 

containers allocated to different nodes), and finally minimiz­ 

ing the number of required changes to move from the current 

scheduling to the new one (e.g., move container) to guarantee a 

fast allocation of containers to the cluster nodes. 

To evaluate our approach, we compared the performance of 

multiple many and multi-objective techniques based on NSGA- 

11, NSGA-ill [14], [15], and IBEA algorithms [16] using 48 

Docker-related systems. The results show that NSGA-ill can 

generate the best scheduling solutions considering thetraditional 

quality indicators for computational searches, such as Hypervol­ 

ume, IGO, and Contribution metrics, as well as other validation 

metrics such as CPU, memory, and network usage. We have 

also created an online appendix for a demo of our platform and 

related experiments material [17]. 

The primary contributions of this article can be summarized 

as follows: 

•  We introduced a novel formulation of the containers 

scheduling problem as a many-objective problem that 

considers several conflicting objectives such as structural 

improvement, coupling, and the number of changes. The 

definition of the fitness functions was formulated based on 

the needs of our industry partner, theFord Motor Company, 

to optimize specific objectives related to the usage ofECUs 

resources in the car. 

•  We compared three different many-objective optimization 

algorithms as it is the first formulation in the literature of 

container scheduling as a many-objective problem. 

•  We reported the results of an empirical study of our 

many-objective technique compared to the docker default 

approach.The obtained results provide evidence tosupport 

the claim that our proposal is, on average, more efficient 

than the existing techniques based on a benchmark of 48 

open-source docker projects. 

The remaining of this article has been organized as fol­ 

lows: Section II reviews the Docker Container tool, as well as 

TABLE I 

OOCKERFILE SETIJP INSTRUCTIONS 

 
Instruction Description 

ENV Setting the environment variables 

ARG 
Defining variables that can be set at build 
time 

WORKDIR 
Setting working directory for all subsequent 
instructions 

COPY Copying files from host to the Docker image 

 

 
ADD 

Similar to COPY instruction but supports two 
additional tricks. It supports the use of a URL 
instead of a local file and can recognize the 
archive format and extract it directly into the 
destination 

LABEL Key value pairs, indicating image metadata 

I RUN I Executing any command 

EXPOSE 
Informs Docker that the container is expos- 
ing a particular port 
Setting a command and/or parameters, that 

CMD executes when the container is starting and 

I  which can be overwritten at build time 

Setting executable that will always run when 
ENTRYPOINT the container is initiated and cannot be over- 

 written.  

 
Listing 1. Dockerfile example 

 

 FROM node:argon 
 # Create app directory 
 WORKDIR /usr/src/app 
 # Install app dependencies 
 COPY package*.json /usr/src/app/ 
 RUN npm install 
 # Bundle app source 
 COPY . /usr/src/app 
 # Expose the app to the outside world 

10 EXPOSE 8080 

11 CMD [ "npm", "start" ) 

 
 

the three, used multi-objective optimization algorithms used in 

our approach. Section III then discusses the proposed approach, 

the population presentation and the objective functions. Section 

IV is an empirical study to evaluate the feasibility of our ap­ 

proach by defining the research questions, quality indicators, 

used systems and algorithm configuration. Section V presents 

some related works. Finally, Section VI concludes this article. 

 
IL BACKGROUND 

A. Docker and Container-Based Projects 

Docker [18], is one of the most popular container virtualiza­ 

tion technologies [3], [19]. It packs the application's code and 

dependencies into a lightweight, standalone, and portable exe­ 

cution environment aiming to deploycontainerized applications 

in a quick process. 

Dockerfile is a document containing a sequence of instruc­ 

tions used for creating the computational environment, follow­ 

ing the notion of Infrastructure-as-Code (laC) [20] and it is used 

by Docker to build the container images. 

An illustrative example of a Dockerfile is shown in Listing 1. 

In this listing, the Dockerfile has seven instructions where the 

definition of each one is described in Table I. 
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Listing 2. Docker-compose example 
 

 version: "3. 7" 
 services: 
 server: 
 build: 
 ports: 

 - 8080:4040 
 environment: 
 - DB_ADDRESS=database-mongo 
 - DB_PORT=27017 

10 - PORT=4040 

11 depends_on: 

12 - database 

13 database: 

14 image: mongo:latest 

15 volumes: 

16 - mydata:/data/db 

17 volumes: 

18 mydata: 

 
TABLE II 

DOCKER-COMPOSE SEnJP ArrRIBITTES 

 
Attritiute Descri tion 

BUILD Settin  path to the build context 

IMAGE 
Setting the image to start the container 

 from 
PORTS 

ENVIRONMENT  

Expressing dependency between services 

Setting volume bindings (host paths or 
named volumes) 

DEPENDS_ON 

VOLUMES 

 

 

Docker-compose [21] provides a unified setup routine that 

deploys several containers using a YAML configuration file, 

as known as, Docker-compose.yml (or just Docker­ 

compose). In the Docker paradigm, each container captures 

one particular component of the software (e.g., database). Thus, 

when creating a multi-component application using Docker, it 

is inevitable to combine multiple software components (con­ 

tainers) into a workflow. Then, Docker-compose can tackle this 

problem by integrating containers and running them properly. 

An example of a Docker-compose file is available in Listing 

2. The example shows that the Docker-compose file is com­ 

posed of two components/containers (SERVER and DATABASE). 

The SERVER component is represented by a local image (built 

from a Dockerfile, for instance, that one available in Fig. 

Listing 1), and the DATABASE component is created from the 

"mongo" image, hosted in DockerHub [22] (an online registry 

for Docker Images). Docker-compose file also provides a list of 

setup attributes which can be listed in Table II. 

Any typical Docker project includes the abovefiles alongwith 

sourcecodefiles written in typical programming languages,such 

as Java, to host the containers and enable their executions and 

synchronization with other features of the app that may not be 

containerized. 

The way that tasks or containers are scheduled on a Swarm 

Mode cluster is governed by a scheduling strategy. Cur­ 

rently, Swarm Mode has a single scheduling strategy, called 

"Spread" [8]. The spread strategy attempts to schedule a service 

Algorithm 1: Generation t ofNSGA-III. Adapted from [14], 

[15] 
 

 

Input : H structured reference points Zr or supplied 
aspiration points Zo. , parent population A 

Output:Pt+1 

1 St = 0, i =1; 
2 Qt  = Recombination+Mutation(A); 

3 Rt= Pt UQt; 

4 (Fi, F2,... ) Non-dominated-sort(Rt); 

s repeat 
6  I  St = St U F; and i = i + 1; 
7 until IStl 2:: N; 
s  Fi =F;(Last front to be included); 

9 if /St{ = N then 
10  I  Pt+1 = St , break; 
11 else 

u Pt+1 =LJ :, Fi; 

13 Points to be chosen from Fi : K = N - IA+1I; 
14 Normalize objectives and create reference set Zr : 

Normalize(fn, St, Zr, z.,Zo.)i 
1s Associate each member s of St with a reference point: 

[II(s), d(s)] =Associate(St, Z.,.) {II(s): closest reference 
point, d: distance betweens and II(s) }; 

16 Compute niche count of reference point j E 

Zr : ,Pj=L,sES,/Ft ((II(s) = j) ?l : O); 

17 Choose K members one at a time from Fi to construct 
Pt+1 : Niching(K, ,Pj,IT, d, Zr I Fi, A+1 ) ; 

 1s end  

 
 

task based onan assessment of the resources available on cluster 

nodes. In its simplest form, this means that tasks are evenly 

spread across the nodes in a cluster. For example, if we create a 

service with threereplicas,each replicated task will be scheduled 

on a different node. 

 
B. Many-Objective Evolutionary Algorithm: NSGA-III 

Non-dominated Sorting Genetic Algorithm ill (NSGA-ill) 

is a more recent optimization algorithm proposed by Deb et 

al. [14], [15], similar to NSGA-11, but with significant changes 

in its selection mechanism aiming to improve the results of 

many-objective problems. Unlike in NSGA-11, the diversity 

among population members in NSGA-III is aided by supplying 

a number of well-spread reference points. 

NSGA-III demonstrates its efficacy in solving 2 to 15- 

objective optimization problems, and it is also extended easily 

to solve constrained optimization problems, and can be used 

with small population size (such as a population of size 100 for 

a IO-objective optimization problem). The algorithm is shown 

in Algorithm 3. 

First, same as NSGA-11, the parent population A is randomly 

initialized in the specified domain, then the binary tournament 

selection, crossover, and mutation operators are applied to create 

an offspring population Qt (Line 1-2). Thereafter, both popu­ 

lations are combined and sorted according to their domination 

level and the best Nmembers are selected for the nextgeneration. 

Unlike in NSGA-11 (which uses the crowding distance mea­ 

sure for selecting the best set of points from the last front that 

can be partially accepted), in NSGA-ill the supplied reference 

points Zr are used to select these remaining members. The 
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Fig. I.  Proposed approach. 

 

chosen reference points can either be predefined in a structured 

manner or supplied preferentially by the user. To accomplish 

this, objective values and reference points are first normalized 

to have an identical range. Thereafter, the orthogonal distance 

between a member in St and each of the reference lines (joining 

the ideal point and a reference point) is calculated. 

Next, the member is then associated with the reference point 

having the smallest orthogonal distance, and the niche counts 

<p for each reference point, defined as the number of members 

in St!F1 that is associated with the reference point, is computed 

for further processing. The reference point having the minimum 

niche count is identified and the member in front last front F1 

that isassociated with theidentified reference point is included in 

the final population. The niche count of the identified reference 

point is increased by one and the procedure is repeated to fill up 

population Pt+l · 

 
ill. AMANY-OBJECTNE SCHEDULING APPROACH FOR 

SOFTWARE CONTAINERS 

We describe, in this section, an overview of the proposed 

scheduling approach for assigning software containers to the 

nodes, then we explain the different adaptation steps of the 

computational algorithm to our problem, including the solution 

representation and the fitness functions. 

 
A. Approach Overview 

The main goal of the proposed approach is to schedule con­ 

tainers by considering four conflicting objectives to be opti­ 

mized. Each solution generated by the evolutionary algorithm 

represents a possible container scheduling by assigning the 

containers into nodes. Fig. 1 shows an overview of the proposed 

approach composed of three maincomponents. The firstcompo­ 

nent is a parser that automatically extracts from docker cli (e.g., 

command line) theinitialswarm statein thecluster, including the 

number of nodes, the total number of containers, their images, 

and their distribution per node. The docker-compose file is also 

parsed to extract the dependencies between containers using the 

parser tool. The second component takes as inputs the different 

information collected by the parser, including the extracted 

dependency graph and the swarm state, to generate a new swarm 

state using a many-objective optimization algorithm to find a 

balance between the different objectives. The third component 

executes the best solution found by the multi/many-objective 

algorithm by updating the docker-compose file to specify a new 

placement for every container. Then, the docker-compose file is 

deployed again, and the Load Balancing module reallocates the 

containers as suggested. 

In our approach, the user provides a docker-compose file 

as input, and then a Parser tool is used for generating a de­ 

pendency graph G = (V,E) where V = { v1, v2, v3, ... , Vn} 

means the set of containers or services and E is the set of 

calls or requests among them. The latter is written as a tuple 

{v;, vi},wherev;, vi E V, and they are usually expressed in the 

docker-composefile as DEPENDS_ONor LINKS properties. Fig. 2 

shows an example of such conversion. 

In this example, five services were converted to a graph 

G with five nodes and six edges. Aiming to ease the node's 

assignment, we assign a unique identifier (id) to every con­ 

tainer/service and node to be used in the optimization pro­ 

cess. Thus, let's consider 0, 1, 2, 3, and 4 as the id's 

for the following containers, respectively: CBEDB, CBEDBAD­ 

MIN, CBEMQ, HAPROXY, CBEAPP. Then, the dependency graph 

generated for such example is V = {O,1, 2, 3, 4} and E = 

{{1,0},{3,1},{3,2},{3,4},{4,0},{4,2}}. 

Theselected many-objective algorithm uses this dependency 

graph G and a Swarm State p(t) asinput, where the latter means 

the current allocation of containers and nodes in Docker Swarm 

mode. Then, by taking into account the set of objectives to be 

optimized (details in Section III-C), a new Swarm Statep(t+l) 

isgenerated, and the docker-compose file is changed aiming to 

reflect the new scheduling (see Scheduler in Fig. 1). 

Docker Swarm service is based ona declarative model, which 

means that once the service runs, we are not allowed to move 

or replace containers when some node gets started. Thus, to 

bypass such limitations, we generate a new docker-compose file 

by changing the CONSTRAINTS property from the file. The Load 

Balancing module in our approach is responsible for monitoring 

the currentstateof Docker Swarm byconsidering several metrics 

such as CPU and Memory usage, network metrics, and so on. 

In our approach, we can define some thresholds for each of 

them, and once such thresholds are reached, the many-objective 

algorithm is automatically run to reschedule the containers. 

Finally, if the Swarm State is unavailable (for instance, when 
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Fig. 2.  Convert docker-compose file. 
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Fig. 3.  Solution representation. 

 

 
 

we are running the proposed approach for the first time), all 

containers are randomly assigned to nodes to compose this one. 

In the following subsections, we describe the different adap­ 

tation steps of the multi/many-objective algorithms described in 

Section II, including mainly the solution representation and the 

fitness functions. 

 
B. Population Representation 

An individual (or solution) in our population consists of an 

integer encoding, where each gene represents the node id, and 

the index is the container id. By using this approach, we have the 

advantage of the flexibility of having more than one container 

per node. Thus, let S = {s1, s2, s3, ... , sn}beanindividual 

with n containers. Fig. 3 shows an example of an individual 

considering the containers available in Fig. 2. 

In this example, the chromosome representation uses five 

containers (n = 5) and a total of three nodes. The individual 

S represented in figure Fig. 3 assigns containers 2 and 4 to node 

l, container 3 to node 2, and containers O and l to node 3. Fig. 

4 shows a visual representation considering all containers and 

nodes (consider the dependency graph available in Fig. 2). 

 
C. Objective Functions 

Even though different proposed scheduling techniques for 

containers [9], [10], [11], [12]. The proposed strategies are 

limited to at most two objectives, while many conflicting cri­ 

teria should be taken into consideration within the container 

scheduling problem. We believe that our chosen objectives are 

extensively constructed based on preliminary research [13], [23] 

to obtain the optimal design that considers the most essential 

 

 

 
 

Nodal Node2 Node3 

 

Fig.4.  Solution representation converted. 

 

 
container attributes and scheduling limitations. We expect these 

functions to be valuable in future software container manage­ 

ment efforts. 

Consider C = {c1, c2, c3, ... , c.,.} the set of all available con- 

tainers, and N = {n1, n2, n3, ... , nm} the set of all available 

nodes. The objective functions proposed in this work are de­ 

scribed as follows: 

1) First Objective: Minimizing the Number of Selected Nodes 

(1 ): The first objective corresponds to the number of selected 

nodes when rescheduling containers. Software containerization 

in many domains, such as smart automobiles [24], connected 

vehicles [25], [26], or different other domains [27], becomes 

critical, particularly in highly constrained environments For 

example, best practices [28] recommend that the load associated 

with one docker cluster node be lightweight to minimize con­ 

gestion problems while running the applications, which explains 

the usage of the objective: Minimizing the number of containers 

per node. This would avoid exceeding the resource consumption 

limits that might affect the behavior of the node that deploys the 

software. 

This objective is expressed as the ratio of the number of 

selected nodes and the number of available ones. It is computed 

as follows: 

 
(l) 

services: 

haproxy: 

links: 

-cbemq 

- cbeapp 
- cbedbadmin 

cbeapp: 
depends_on: 

- cbedb 

cbedb:· cbemq 

image: postgres:latest 

cbemq: 

image: rabbltmq:3-management-alpine 

cbedbadmin: 
image: dpage/pgadmin4 

links: 

- cbedb 
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4 

where INI > 0 and distinct(S) returns a distinct set of se­ 

lected nodes from S. Forexample, if S = {2, 2, 2, 1, 2}, then 

distinct(S) ={1, 2}. 
2) Second Objective: Minimizing the Average of Containers 

Per Node (2): Minimizing the number of containers per node 

can avoid exceeding the resource consumption limits. However, 

minimizing the resource consumption of each node leads to 

activating a large number of nodes and spreading the load 

across them, on the other hand, would considerably increase the 

cluster's resource utilization, so adding considering minimizing 

the average number of containers per node in the cluster as a 

conflicting objective to the first is important in our context. For 

example, if we have 10 containers and 10 nodes, the worst solu­ 

tion would be to allocate every container to a single node; thus, 

the nodes will consume more resources. An optimal solution 

would be to choose a smaller number of nodes to distribute the 
containers while respecting the load between them and their 

 

4) Fourth Objective: Minimizing the Number of Changes 

(4): Finally, the fourth objective corresponds to the number 

of changes required to reschedule the containers. The fourth 

objective is considered a very important objective that previous 

works on container optimization did not consider. To ensure 

on-demand usage of the applications running in the containers, 

it is important to use a scheduler that is not only efficient but also 

fast to reallocate the containers to different nodes depending on 

the objectives without taking too much time that can affect the 

performance of the software, Thus a scheduler that does the 

minimal needed number of changes to balance the load between 

the nodes and respect the resources constraints of each of them 

is the one that we worked on in this project. 

Tothisend, wecompare theSwarm Statep(t) and the solution 

S aiming to count the number of changes required to move a 

container to another node. The objective is defined as follows: 

resource limits. At the same time, we don't want to allocate all 

containers to one node so we can prevent violating the resource 

CHG(S=) hamming(S,P) 

IPI 
(4) 

limits of the nodes and try to balance the node between the 

different nodes. Thus, minimizing the number of containers per 

node is a second objective to optimize despite conflicting with 

the first objective. 

This objective is related to the average number of containers 

per node. The objective is calculated based on the normalized 

standard deviation taking into account the number of containers 

for each node. The objective is defined as: 

 

 

where F = {f 1, h, h, ...,fm} is the number of containers for 

each nodemdivided byICIand µis the mean of F. Forexample, 

if S = {2, 3, 2,1, 2}, then F = {0.2, 0.6, 0.2}. 

3) Third Objective: Minimizing the Nodes Coupling (3): The 

third objective, "minimizing the coupling between containers 

allocated to different nodes", can be considered a security ob­ 

jective that helps save the data and the good performance of 

applications deployed in containers in case one of the nodes has 

been shut down for a software upgrade or operational failure: 

Containers sharing data or depending from each other are better 

to be running in the same physical ecus. (This reduces the risks 

of losing data or performance when for example, a container 

running in a different node and necessary for the work of another 

important container is shut down because of node failure), 

and also reduces the network transmission between the nodes. 

Although important, this objective conflicts with the objectives 

related to minimizing the number of containers per node. 

This is expressed as a ratio between the number of inter-edges 

(calls or requests) in different nodes and the total number of 

edges E. The objective is defined as follows: 

where hamming(S, P) isthehamming distance between P and 

sand IPI = 1s1.If IPI= 0, then CHG(S) = 0. 

Therefore, the goal of our proposed approach is the following: 

minimize  NON(S), FRQ(S), COP(S),CHG(S) (5) 
s 

where all objective functions are normalized in the range [0, 1] 

where 0 is the best value and 1 the worst one. 

To clarify how the objective functions are computed, con­ 

sider C = {0, 1, 2, 3, 4} as the set of available containers, N = 
{1, 2, 3, 4} as theset of available nodes, p(t) ={3,3,3, 1, 2}as 

thecurrentSwarmStateand Gas thedependency graph available 

in Fig. 2. 

Now, consider that a solution S = {3, 3, 1, 2,1} (the same 

available in Fig. 3) was generated by an optimization algorithm 

to be evaluated, theobjective functions are calculated as follows: 

NON(S) = ¾ =  0.75 

 
FRQ(S) =  = 0.18 

 

COP(S) = 
6 

= 0.66 

CHG(S) = ¾ =  0.60 (6) 

Therefore, the objective values are S (0.75, 0.18, 0.66, 0.6). 

 
D) Intelligent Software Containers Scheduler Framework 

Based on the proposed many-objective formulation, We im­ 

plemented a platform that helps the user to monitor the resource 

usage for every node in the cluster (CPU usage, memory usage, 

network1/0) andautomatically rescheduled thecontainers using 

COP(S=) 
OP(S ab) 

L..,{a,b}EE ,  , 

IEI 
(3) 

our many-objective approach. Fig. 5 shows a screenshot of our 

dashboard, which provides an overview of the current live status 

of the cluster, the number of activated nodes, the number of 

where OP(S,a,b) = 1 if sa -/= sb for sa, sb ES,  otherwise, 

OP(S,a, b) = 0. If IEI= 0, then COP(S) = 0. 

nodes, and the distribution per node. Fig. 5 shows real-time 

resource usage and the received and transmitted network per 
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node. These metrics are extracted from the nodes using Node­ 

exporter [29] and Cadvisor [30] to monitor the performance of 

each working node in the experiment, including CPU, memory 

usage, and network UO. The tool also generates warnings when 

CPU and memory usage exceed 80%. 

The candidate solutions are selected taking into account the 

preferences of the user interacting with the scheduler via the 

dashboard. Particularly, before running the scheduler, the user is 

asked to set the weight of each objective basedon the user's pref­ 

erences.These weights indicate theimportanceof theconsidered 

objective. For example, the user can specify that the container 

running the database is a high-priority container containing 

very sensitive data and needed for a good performance of the 

containers that depend on the database; other containers can 

have less priority. 

The user can manually choose to reschedule the containers 

if needed. Otherwise, the rescheduling is automatically based 

on the continuous monitoring of resource consumption metrics. 

Our tool periodically collects all the required data to calculate 

the objective functions defined by our approach and identifies 

the most suitable solution as detailed in Section ill. Once the 

rescheduling is performed, the user can view the differences in 

termsof resource usage andnetwork transmission after applying 

our new approach. Furthermore, the user can select the option 

to return to the docker default scheduler if needed. 

 
IV. EMPIRICAL STUDY 

To evaluate our approach for software container scheduling 

using NSGA-ill, we conducted a set of experiments based on 

48 containers. Each experiment is repeated 30 times, and the 

obtained results are subsequently statistically analyzed with the 

aim of comparing our NSGA-ill proposal with a variety of 

existing approaches. In this section, we first present our research 

questions and then describe and discuss the obtained results. 

Finally, we discuss the various threats to the validity of our 

experiments. 

 
A. Research Questions 

In our study, we assess the performance of our approach by 

finding out whether it could generate meaningful scheduling 

solutions for the software containers that improve the usage of 

resources. Our study aims at addressing the following research 

questions outlined below. We alsoexplain how our experiments 

are designed to address these questions. We define in the fol­ 

lowing the two main research questions that we are addressing: 

RQJ. To what extent can the proposed NSGA-111approach 

provide efficient scheduling solutions based on differ­ 

ent multi-objective (NSGA-11) and many-objective al­ 

gorithms (JBEA)?This question aims to investigate the 

efficiency of our many-objective NSGA-III approach 

for container scheduling to find trade-offs between 

the different conflicting objectives compared to other 

multi/many-objective algorithms. 

RQ2. To what extent can the proposed NSGA-111 approach 

minimize the resources consumption in the cluster and 

balance the software workload (i.e., CPU and memory 

usage, the network l/O of each node) compared to 

the deterministic Docker Swarm's default scheduler? 

Since it is not sufficient to validate the outperformance 

of our approach compared to other search-based al­ 

gorithms, this question evaluates the ability of our ap­ 

proach compared to the deterministic by default sched­ 

uler of the Docker Swarm in terms of the resources 

consumption (i.e., CPU and memory usage). 

To answer RQJ, we considered the widely-used quality in­ 

dicators in multi-objective optimization (described in Section 

IV-B) to evaluate the different search algorithms such as Hy­ 

pervolume (HV), Inverted Generation Distance (IGD), Contri­ 

butions (IC). These metrics validate the quality, spread, and 

diversity of the generated scheduling solutions on the Pareto 

front. Thus, we can determine which search algorithm per­ 

forms better to find the best trade-offs between the conflicting 

scheduling objectives. Furthermore, wehave alsoconsidered the 

execution time to compare the different algorithms since we are 

considering a large number of objectives. We did not compare 

our algorithm to random search as it is evident that the space 

to explore is too large, requiring an intelligent search. We have 

also did not compare with mono-objective search (aggregating 

all theobjectives into one fitnessfunction) as it is evident thatthe 

different objectives are conflicting: In a cluster where containers 

are connected to each other, minimizing the coupling between 

them will automatically increase the number of containers per 

node; and if we aim to decrease the number of containers per 

node we will automatically increase the number of selected 

nodes. Thus, we aimed in this research question to focus only 

on comparing our NSGA-ill adaption and twoother algorithms: 

IBEA and NSGA-11. We selected NSGA-11to evaluate its per­ 

formance with a larger number of objectives than two, which 

may justify the need to use many-objectivealgorithms. We have 

also selected IBEA as it is known to be widely used in the 

current many-objective optimization literature after NSGA-III. 

We used the same adaptation for all three algorithms to enable 

a fair comparison. 

We believe that the quality metrics results discussed in RQJ 

would affect the results regarding resource consumption. The 

algorithm giving the best set of solutions will be able to give the 

best resource consumption compared to the other algorithms. 

Therefore, we only compared the default scheduler with the 

NSGA-III algorithm for resource consumption. 

As a result, to answer RQ2, we compared the results from the 

default Docker Swarm's scheduling algorithm against the best 

search algorithm from RQJ, by considering ApacheBench [31] 

as a stress testing tool. Using ApacheBench, we set a total of 

100000 requests that should be made when running each project 

and 100 requests concurrently (simultaneously) at a time, ensur­ 

ing scalable testing settings. We also used Node-exporter [29] 

and Cadvisor [30] to monitor the status and performance of each 

working node in the experiment, including CPU and memory 

usageand network UO.We used theseevaluation metrics instead 

of the objective functions to avoid any bias when comparing 

the search-based and deterministic techniques. We have also 

created an online appendix for a demo of our platform, and 

related experiments material [17]. 



IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO.4, JULY/AUGUST 2023 2582 

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

B. Quality Indicators TABLE ill 
00CKER-8ASED PROJECfS STUDIED 

Aiming to compare the search-based algorithms, we consid- 

erect the following sets of solutions [32]: i) PFappmx: set of 

non-dominated solutions obtained by one algorithm execution; 

ii) PFknawn: set of non-dominated solutions of an algorithm 

obtained by the union of all the P Fapprox from all theexecutions, 

removing the non-dominated and repeated solutions; and iii) 

PFtrue: formed by all sets PFknown obtained from different 

algorithms by removing dominated solutions andrepeated ones. 

The analysis was conducted by using the widely used quality 

indicators in the computational search field to evaluate both the 

quality and spread/diversity of the solutions: 

• Hypervolume (HY) [33] measures the volume covered by 
members of a Pareto-front in objective space delimited 

by a reference point. An important feature of this metric 

is its ability to capture the diversity and convergence of 

solutions. A higher hypervolume value is desirable. 

• Inverted Generational Distance (IGD) [34] is a conver- 
gence measure that corresponds to the average euclidean 

distance between theapproximate Pareto-front provided by 

an algorithm and the reference Pareto-front. Small values 

are desirable. 

• Contributions (IC) [35] measures the proportion of solu- 
tioos that lie on the reference front (RS) [36]. The higher 

this proportion, the better the quality of solutions. 

 

 
(Kb) 

 

 
 

 

CS.tudied Docker Projects 

In the experiments, we selected 48 Docker-based projects 

available on GitHub. Table ill provides some descriptive statis- 

tics about all of them, such as the number of stars, contrib- 

utors, services, and containers. We selected these projects for 

our validation because they range from medium to large-sized 

open-source projects, which were actively developed over the 

past 10 years, they are widely used. They are based on several 

programming languages. Regarding the number of containers, 

the figureshows that thesmallest project has twocontainers(e.g., 

RAMMYGIT/MEWBASE), and thelargestone has eleven containers 

to be scheduled (e.g., MARINANIEROD/DOCKER_pRESTASHOP). 

Furthermore, the list of projects contains containers coded in 

several programming languages such as JavaScript, Python, 

Ruby, PHP, etc. 

 
D. Parameter Settings 

Parameter setting significantly influences the performance of 

a search algorithm on a particular problem. For this reason, for 

each multi/many-objective algorithm and for each project, we 

perform a set of experiments using several population sizes [37], 

[38], [39]. Each algorithm is executed 30 times with each con- 

figuration, and then the comparison between the configurations 

is done based on IGD using the Wilcoxon test. In order to have 

significant results for each couple (algorithm, project), we use 

the trial and error method to obtain a good parameter config- 

uration. Since we are comparing different search algorithms, 

we classify parameters into common parameters and specific 

#  Name Size 
Star Contrib. 

ro 
Serv. 

of 
Cont. 

vegas nanc 
prometheus 3133 2.9k 33 5 5 

Zappelphilipp/ docker-      

2 graylog-kibana-nginx- 23 2 1 5 5 

  

  

  

  5 5 

  94  3 4 

10 5.2k 0 2 6 6 

11 
 

400 360 7 3 3 

12 FedorSelitsky/  even- 
track 1.5k 5 3 5 5 
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3 

2 
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79 

 

2 
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11 

 
11 

291 30 2 2 
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eclectic- 
  

0 

 

2 

 

2 

 

2 

36 
zebresel-com/ 

 
73 

 
179 

 
3 

 
2 

 
2 

 648 55 1 2 2 

38 
rails event store 8.3k 923 58 4 4 

39 
a positiva pywor - 
place 5k 1 2 2 2 

40 
busino/ 

exam le
 

30 0 1 3 3 

 359.6k 1.2k 152 3 3 

  3 1 4 4 

  2 2 

  

  2 2 

  3 3 

rm-  
0 1 9 9 
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TABLE IV 

PARAMETER SETTINGS 
 
 
 

I 

 
 
 
 
 
 
 
 

 
parameters. If the results are similar for a given combination 

of parameters, the execution time was considered. As evolu­ 

tionary operators, we adopted Integer SBX crossover, Integer 

Polynomial mutation, and binary tournament for selecting the 

individuals [40] because they have been designed to work with 

integer solutions. Therefore, the list of selected parameters 

used to answer the stated research questions is described in 

Table IV. 

As we have also measured the execution time, the algorithms 

were executed in a machine with an Intel(R), Core(TM) i7- 

5930 K, CPU 3.50 GHz with 40 Gb RAM. 

 
E. Statistical Tests 

Since meta-heuristic algorithms are stochastic ones, they can 

provide different results for the same problem instance from 

one run to another. For this reason, our experimental study is 

performed based on 30 independent simulation runs for each 

problem instance. The obtained results are statistically analyzed 

using the Wilcoxon rank-sum test [41] with a 99% confidence 

level (a = 1%).The latter verifies the null hypothesis HO that the 

obtained results of two algorithms are samples from continuous 

distributions withequal medians,against the alternative that they 

are not Hl. The p-value of the Wilcoxon test corresponds to 

the probability of rejecting the null hypothesis HO while it is 

true (type I error). A p-value less than or equal to a(<= 0.01) 

means that we accept Hl and reject HO. However, a p-value that 

is strictly greater than a (> 0.01) means the opposite. In fact, 

for each problem instance, we compute the p-value obtained by 

comparing NSGA-II and IBEA search results with NSGA-ill 

ones. This way, we determine whether the performance dif­ 

ference between NSGA-ill and one of the other approaches is 

statistically significant or just a random result. 

 
F. Results 

1) Results for RQJ: Table V summarizes the results of mean 

values and standard deviations for HV, IGO, and IC indicators 

over 30 independent simulation run where the bold values rep­ 

resent the best ones. The results of Table V are based on the 

consideration of all 4 objectives for the evolutionary algorithms. 

The objectives values were normalized between O and 1 and set 

to be minimized; the order of the objectives is not important 

and has no impact on the results. The users can select the best 

solution based on their preferences (fitness function values) and 

programming behavior from the non-dominated (trade-off) set 

of solutions. All the results were statistically significant on the 

30 independent simulations using the Wilcoxon rank sum test 

with a 99% confidence level (a< 1%). 

Whencomparing NSGA-III againstNSGA-II andIBEA using 

all three performance indicators, it is clear that NSGA-11 has the 

weakest performance. On small-scale docker projects including 

up to 4 containers (e.g., docker-bro, miso-lims, docker-flow­ 

letsencrypt, docker-laravel, re-ca-blinds) all algorithms present 

similar results for IGO, HV, and IC. For example, for the 

re-ca-blinds, both algorithms give the best results in terms of 

the three quality metrics (0 for the IGO, 0.065 for the HY, 

and 1 for the IC). On medium-scale docker projects with up to 

7 containers (e.g., e-petitions, compose-magenta, hcxp/hcxp), 

NSGA-ill and IBEA present similar results, and both provide 

better results than NSGA-II. For hcxp/hcxp project, NSGA-ill 

and IBEA output as results 0, 0.078, and 1 for the IGO, HV, and 

IC metrics compared to 0.056, 0.714, and 0.833 for NSGA-11 

respectively with the same metrics. Furthermore, the project 

compose-magenta shows that both many objectives algorithms 

output0 for the IGO, 0.078 for theHV, and 1for the IC compared 

to 0.056, 0.071, and 0.833, respectively, when NSGA-II is used. 

For large-scale docker projects, NSGA-III is significantly better 

than NSGA-II and IBEA on most projects with a large number 

of containers (e.g., hanna-agency, Terraform-linode-oextcloud, 

docker-prestashop,and stencila/hub). Considering the example 

of the project "znly/docker-druid," NSGA-III outperformed both 

other algorithms by providing as results 0, 0.146, and 1 for 

IGO, HY, and IC compared to 0.004, 0.144, 0.978, and 0.103, 

0.135 AND 0.806 respectively for both IBEA, NSGAII. This 

outcome is consistent with existing studies in other domains 

where NSGA-11 is not able to handle more than 2-3 objectives. 

For most of the test results, IBEA evaluation was consis­ 

tent with the NSGAII algorithm and presented similar results, 

whereas, for the other docker projects, NSGA-ill outperformed 

both algorithms. This could be explained by the interaction 

between (1) Pareto dominance-based selection and (2) refer­ 

ence point-based selection, which is the distinguishing feature 

of NSGA-III compared to other existing many-objective algo­ 

rithms. For a better comparison between NSGA-III, and IBEA, 

sincethey showed similar results in different projects, we studied 

the execution time of all many/multi-objective algorithms used 

in our experiments. The execution time is critical when using 

evolutionary algorithms. This metric is important to compare 

the algorithms regarding the spread of identifying scheduling 

solutions. It is important to give not only efficient scheduling of 

the containers butalsoa fastandsmooth reallocation required for 

normal behavior of the applications deployed in the containers 

when rescheduling. 

Fig. 6 shows the average running times of the different al­ 

gorithms, over 30 runs, on the different projects used in our 

experiments. It is clear from Fig. 6 that NSGA-ill is the fastest, 

on average, compared to NSGAII and IBEA. 

For hcxp/hcxp project, NSGA-III output ran in 122 seconds 

compared to 145 seconds for 145 and 133 respectively, for 

I Parameter 

Population 
Size 
Maximum 
Number of 
Generations 
Crossover 
Probability 
Mutation 
Probability 

 
I 

 
 

I 

NSGA-111 
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0.95 

 

0.05 

NSGA-11 

I 
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I 
0.9 
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I 

IBEA 
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2500 
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TABLEV 

HV, IGO, AND IC MEAN VAWES WITH NSGA-lll, NSGA-Il, AND IBEA 

 

I Docker Project 
NSGAIII JBEA 

IGD HV IC 
NSGAII 

IGD HV IC IGD HV IC 

j terratorm-linode-nextcloud 
docker-grocery 

0.028 :1: 0.013 
0.007 :1: 0.000 

0.123 :1:0.013 I o.942 :1: 0.013 
0.150 :t 0.000 0.987 ± 0.000 

o.os1 :1: 0.010 1 0.124 :1: 0.010 1 o.858 :1: 0.010 
0.013:t 0.000 0.150 ± 0.000 0.980 ± 0.000 

o.089 :1: 0.013 I 0.123 :1:0.013 I o.725:1: 0.013 
0.141 :t 0.000 0.150 ± 0.000 0.800 ± 0.000 

I cbe-utilities 0.000 :I: 0.000 o.063 :1: 0.000 I 1.000 ± 0.000 0.000 :1: 0.000 I o.063 :1: 0.000 11.000 :1: 0.000 0.118 :1: 0.000 I o.031 :1:0.000 I o.soo :1: 0.000 

docker-bro 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000 0.000 :1: 0.000  0.065 :1: 0.000 1.000 :I: 0.000 0.000 :1: 0.000 0.065 :1: 0.000 1.000 ± 0.000 

I miso-llins 0.000 :I: 0.000 o.us :1: 0.000 I 1.000 ± 0.000 0.000 :I: 0.000 I O.U5 :I: 0.000 I 1.000 :I: 0.000 0.000 :1: 0.000 I 0.12s :1: 0.000 I 1.000 ± 0.000 

screenlv-ose 0.000 :1: 0.000 0.111 :1: 0.000 1.000 ± 0.000 0.008 :1: 0.000 0.111 :1: 0.000 o.987:1: 0.000 0.128 :1: 0000 0.111 :1:0.000 0.793 ± 0.000 

I pju 
docker-flow-letsencrypt 

0.000 :I: 0.000 
0.000 :I: 0.000 

0.089 :I: 0.000 11.000 :I: 0.000 
0.065 ± 0.000 1.000 ± 0.000 

0.000 :I: 0.000I 0.089 :I: 0.000I LOOO :I: 0.000 
0.000 :I: 0.000 0.065 :I: 0.000 1.000:I: 0.000 

o.098 :1: 0.000 1 o.044 :1:0.000 1 o.625:1: 0.000 
0.000 :I: 0.000 0.065 :I: 0.000 1.000 ± 0.000 

j hanna-agency 
stencila/hub 

0.000 :I: 0.000 
0.023 ± 0.001 

0.150 :1: 0.000 1 o.987:1: 0.000 
0.144 :I: 0.001 0.644 ± 0.001 

0.013 :1: 0.000 I 0.150:1: 0.000 I o.980:1: 0.000 
0.021 :1: 0.007 0.138 ± 0.007 0.612 ± 0.007 

0.141 :1: 0.000 1 0.150 :1: 0.000 1 o.800 :1: 0.000 
0.054 ± 0.020 0.108 ± 0.020 0.355± 0.020 

J eventrack 
docker-laravel 

0.000 :1: 0.000 
0.000 :1: 0.000 

0.074 :1: 0.000 11.000 ± 0.000 
0.065 :1: 0.000 1.000 :1: 0.000 

0.002 :1: 0.000 I o.074 :1: 0.000 I o.993 :1: 0.000 
0.000 :1: 0.000 0.065 :1: 0.000 1.000 :I: 0.000 

o.176 :1: 0.000 I o.074 :1: 0.000 I o.600 :1: 0.000 
0.000 :1: 0.000 0.065 :1: 0.000 1.000 :I: 0.000 

I rc-ca-D1inas 0.000 :I: 0.000 o.065 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 11.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 I 1.000 :1: 0.000 

compose-magento 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :1: 0.000 1.000:I: 0.000 0,056 :1: 0,000 0.714 :1:0.000 0.833 :1: 0,000 
I eShopModernizing 0.000 :I: 0.000 0.083 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.083 :1: 0.000 11.000 :1: 0.000 0.228 ± 0.000 I o.005 :1:0.000 I 0.750 :1: 0.000 

docker-gitlab 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.056 :1: 0000 0.714 :1:0.000 0.833 ± 0.000 

j hcxp/hcxp 
froghouse-lightning-talk 

0.000 :I: 0.000 
0.000 ± 0.000 

0.078 :I: 0.000 11.000 :I: 0.000 
0.083 :1: 0.000 1.000 :I: 0.000 

0.000 :I: 0.000 I 0.078 :I: 0.000 I LOOO :I: 0.000 
0.000 :1: 0.000 0.083 :1: 0.000 1.000:I: 0.000 

o.056 :1: 0.000 I 0.114 :1:0.000 I o.833 :1: 0.000 
0.228 ± 0.000 0.000 ± 0.000 0.750 ± 0.000 

j Hygieia/Hygieia 
 bartTC/dpaste  

j znly/ docker-druid 

gogo-garage-opener 

0.000 ± 0.000 

0.000 ± 0.000 
0.000 :I: 0.000 
0.000 :1: 0.000 

0.083 :1: 0.000 11.000 ± 0.000 
0.083 :I: 0.000 1.000 ± 0.000 

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 :1: 0.000 
0.000 :I: 0.000 0.083 :1: 0.000 1.000:1: 0.000 

o.228 :1: 0.000 1 0.000 :1:0.000 1 o.750:1: o ooo 
0.228 :1: 0.000 0.000 :1:0.000 0.750 :1: 0.000 

0.146 :I: 0.000 11.000 :1: 0.000 
0.083 :I: 0.000 1.000 :1: 0.000 

o.004 :1: o.004 I 0.144 :1: o.004 I o.978 :1: o.004 
0.000 :I: 0.000 0.083 :1: 0.000 1.000:1: 0.000 

0.1m :1: 0.024 I 0.135 :1: 0.024 I o.806 :1: 0.024 
0.228 ± 0,000 0.000 :1:0.000 0.750 :1: 0,000 

I deiain 0.000 :I: 0.000 0.083 :I: 0.000 I 1.000 :I: 0.000 0.000 :I: 0.000 I 0.083 :I: 0.000 I 1.000 :I: 0.000 0.228 :1: 0.000 I 0.005 :1:0.000 I 0.750 ± 0.000 

Uiacket/diacket 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.083 :I: 0.000 1.000:I: 0.000 0.228 :1: 0.000 0.000 :1:0.000 0.750:1: 0.000 

I p6spy/ p6spy 0.000 :1: 0.000 0.078 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.078 :1: 0.000 11.000 :1: 0.000 0.056 :1: 0.000 I 0.714 :1:0.000 I 0.833 :1: 0.000 

memodir/cv 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.228 :1: 0.000 0.005 :1:0.000 0.750 ± 0.000 

j docker_prestashop 
 artifactorv-<locker  

j magento2-apache-dev 
double_entry 

0.091 :I: 0.000 

0.000 :I: 0.000 

0.000 :t 0.000 
0.000 :t 0.000 

0.210 :1: 0.000 1 o.696 :1: 0.000 
0.083 :I: 0.000 1.000 :I: 0.000 

o.084 :1: 0.000 1 0.210 :1: 0.000 1 o.654:1: 0.000 
0.000 :I: 0.000 0.083 :I: 0.000 1.000:I: 0.000 

0.108 :1: 0.000 1 0.210 :1: 0.000 1 o.583 :1: 0.000 
0 228 :1: 0.000 0.005 :1:0.000 0.750 ± 0.000 

0.083 ± 0.000 11.000 ± 0.000 
0.083 :I: 0.000 1.000 :I: 0.000 

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 :1: 0.000 
0.000 ± 0.000 0.083 ± 0.000 1.000 :I: 0.000 

0.228 :1: 0.000 1 0.005 :1: 0.000 1 o.750 :1: 0.000 
0.228 ± 0.000  0.005 ± 0.000 0.750 ± 0.000 

j camd67/ moebot 
rhodonea mapper 

0.000 :1: 0.000 
0.000 :t 0.000 

0.083 :I: 0.000 11.000 :1: 0.000 
0.083:t 0.000 1.000 :1: 0.000 

0.000 :1: 0.000I o.083 :1: 0.000 11.000 :1: 0.000 
0.000 :t 0.000 0.083:t 0.000 1.000:1: 0.000 

0.228 :1: 0.000 1 0.005 :1: 0.000 I o.750:1: 0.000 
0,228 :t 0,000 0.005 :t 0.000 0.750 ± 0.000 

j OOCl<erspace 
sakuya-blog 

0.000 :t 0.000 
0.000 :t 0.000 

0.065 :t 0.000 11.000 ± 0.000 
0.083:t 0.000 1.000 :I: 0.000 

0.000 :t 0.000 1 o.065 :t 0.000 11.000 :t 0.000 
0.000 :t 0.000 0.083 :1: 0.000 1.000:1: 0.000 

0.000 :t 0.000 1 o.065 :t 0.000 11.000 :1: 0.000 
0,228 :1: 0,000 0.000 :1:0.000 0.750 ± 0.000 

I moni,;odm 0.000 :I: 0.000 o.065 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 11.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 I 1.000 :1: 0.000 

i:owcbapi 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000:I: 0.000 0.056 :1: 0.000 0.714 :1:0.000 0.833 ± 0.000 

I rails_event_store 0.000 :t 0.000 0.078 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.078 :1: 0.000 I 1.000 :1: 0.000 0.056 :1: 0.000 I 0.714 :1:0.000 I 0.833 :1: 0.000 

pyworkplace 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0056 :1: 0.000  0.714 :1:0.000 0.833 :1: 0.000 

j azerothcore-wotlk 
dj_farm example 

0.000 :t 0.000 
0.000 :t 0.000 

0.000 ± 0.000 
0.000 :t 0.000 

0.065 ± 0.000 11.000 ± 0.000 
0.083 :I: 0.000 1.000 :I: 0.000 

0.000 :1: 0.000 1 o.065 :1: 0.000 11.000 :1: 0.000 
0.000 :t 0.000 0.083 :I: 0.000 1.000:I: 0.000 

0.000 :1: 0.000 1 o.065 :1: 0.000 11.000 :1: 0.000 
0.228 ± 0.000 0.000 ± 0.000 0.750:1: 0.000 

J rosterbater 
laravel-meetup-v.2.0 

0.083 :I: 0.000 11.000 :1: 0.000 
0.083:t 0.000 1.000 ± 0.000 

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 ± 0.000 
0.000 :t 0.000 0.083 ± 0.000 1.000 ± 0.000 

0.228 :1: 0.000 1 0.000 :1: 0.000 1 o.750 :1: 0.000 
0.228 ± 0.000 0.000 :1:0.000 0.750 ± 0.000 

j mastodon 
timetracker 

0.000 :t 0.000 
0.000 :I: 0.000 

0.078 :1: 0.000 11.000 ± 0.000 
0.083 :I: 0.000 1.000 :I: 0.000 

0.000 :1: 0.000 I 0.018 :1: 0.000 11.000 :1: 0.000 
0.000 :1: 0.000 0.083 :1: 0.000 1.000:I: 0.000 

o.056 :1: 0.000 I 0.114 :1:0.000 I o.833 :1: 0.000 
0,228 :1: 0,000 0.000 :1:0.000 0.750 ± 0.000 

I graylog-kibana 0.000 :I: 0.000 o.078 :1: 0.000 I 1.000 ± 0.000 0.000 :1: 0.000 I o.078 :t 0.000 11.000 :1: 0.000 0.100 :t 0.000 I 0.078 :1: 0.000 I 0.714 ± 0.000 

e-petitions 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :t 0.000 1.000:t 0.000 0.095 ± 0.000 0.078:t 0.000 0.714 ± 0.000 

I vei:asbriancp/rometheus 0.000 :I: 0.000 0.078 :I: 0.000 I 1.000 :I: 0.000 0.000 :I: 0.000 I 0.078 :I: 0.000 I 1.000 :I: 0.000 0.056 :1: 0.000 I 0.714 ± 0.000 I 0.833 ± 0.000 

github-metrics 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.065 :I: 0.000 LOOO :I: 0.000 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000 

The results were statistically significant on 30 independent simulation runs using the WILCOXON rank sum test with a 99% confidence level (a< I%). 
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(a) The current state of the cluster. 

 
Fig. S.  Our dashboard. 
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(b) Real-time resource usage per node. 
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Key findings: NSGA-III outperforms the different search 

algorithms based on NSGA-II and IBEA regarding the qual­ 

ity and spread of identified scheduling solutions in the Pareto 

front. 

 

Docker Project 
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Fig. 6.  Average Computational time values on 30 independent runs. The results were statistically significant on 30 independent runs using the Wilcoxon rank 

sum test witha 99% confidence level (a< 1%). 
 

IBEA and NSGA-II. Furthermore, theprojectcompose-magento 

shows the out-performance of NSGA-II with 107 seconds com­ 

pared to 145 seconds for 152 and 143, respectively, for IBEA and 

NSGA-II. Also, NSGA-ill is significantly better than NSGA-II 

and IBEA on most projects with a large number of contain­ 

ers (e.g., hanna-agency, Terraform-linode- nextcloud, docker­ 

prestashop, and stencila/hub). Considering the example of the 

project "znly/docker-druid", NSGA-ill outperformed both other 

algorithms by providing results92 seconds compared to 126 and 

132 seconds, respectively, for both IBEA and NSGAII. 

This observation could be explained by the computational 

effort required to compute each solution's contribution (IGD) 

when using IBEA. Furthermore, NSGA-II may take longer time 

to find relevant solutions than many-objective algorithms due 

to the limited spread of the solutions in the Pareto front when 

using more than 3 objectives. We note that the experiments were 

conducted on a single machine (i7 - 2.70 GHz, 8.0 GB - DDR3, 

SSD - 520 MB/s); thus, the different algorithms will run faster 

on better hardware configurations. 

 

 
2) Results forRQ2: In thisresearch question, wecompare the 

NSGA-ill results against the Docker Swarm's default scheduler 

on 30 independent runs. 

We used the first three objectives NON, FRQ, and COP. CHG 

is not considered in this experiment because CHG corresponds 

to the number of changes required to reschedule the containers 

from a swarm state P generated by the default scheduler to a new 

swarm stategenerated byour tool. We believe that it is important 

to consider only the required changes when moving containers 

between nodes. Thus, we find the best and fastest solution 

that reallocates the containers for better resource usage while 

keeping the normal behavior of the applications deployed in 

the containers. However, we cannot compare the docker default 

scheduler with our new scheduler using this metric since we are 

calculating these changes when moving from the default state 

presented by the docker. 

The default Docker Swarm'sscheduler is basedon a determin­ 

istic adhoc approach based on filters and strategies. Filters are 

used to narrow the domain of nodes for scheduling by taking the 

nodeandcontainer properties as inputs, among other parameters. 

Strategies are used to decide on which node the next container 

runs using three alternatives: random, spread, and binpack. 

As described in Table VI, our proposed approach provides 

significant improvements in terms of the number of selected 

nodes (NON), the average number of containers per node (FRQ), 

and the node's coupling values (COP) compared to Docker 

Swarm's default scheduler. This is an interesting result confirm­ 

ing that NSGA-ill can find very good compromises between 

the different conflicting objectives and outperform those pro­ 

duced by the Docker default scheduler. In some cases, applying 

NSGA-ill solutions give slightly higher values for the average 

number of containers per node (e.g., docker-grocer,cbe-utilities, 

     

I INSGAill 
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TABLE VI 

NUMBER OF SELECTED NODES{NON), AVERAGE NUMBER OFCONTAINERS PER NODES (FRQ), NUMBER OF COUPLING (COP) 

MEAN VALUES OF NSGA-III OVER 30 INDEPENDENT SIMULKl10N RUNS 

 

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test with a 99% 

confidence level (a< I%). 

 

 

screenly-ose, pju and examples shown in Table VI). This can be 

explained by the fact that decreasing the number of depending 

containers allocated on different nodes and decreasing the num­ 

ber of selected nodes will automatically increase the number of 

containers per node. Overall, the NSGA-III algorithm was able 

to find a good trade-off between all four objectives since most 

of them were significantly decreased comparing the initial state 

of the cluster before rescheduling. 

Since comparing the performance of NSGA-ill with the 

default scheduler using similar evaluation metrics to the fit­ 

ness functions is not sufficient, we considered three evaluation 

metrics in terms of CPU usage, memory usage, and network 

transmission. For this purpose, we selected ten projects with 

different sizes and numbers of containers in a cluster composed 

of 3 nodes. The results described in Table VII provide for every 

project the % of CPU usage, memory usage (average of the 

resources consumption for the three nodes), and the network 

usage (received and transmitted values in bytes per second) in 

the cluster using NSGA-III versus the default Docker swarm 

scheduler. Table VIII describes also in more details the % of 

resource consumption per node. 

We found interesting results as described in Table VII, in­ 

cluding a decrease in all resource usage for almost all projects 

using our approach compared to the Docker Swarm scheduler. 

Considering the example of project "cbe-utilities," the percent­ 

age of CPU usage for the cluster decreased from 16.89% to 

13.90%, and the decrease in the memory usage exceeded 6% 

(from 40.3% to 33.90%) after applying our new many-objective 

approach. Further details in Table VIII about theresults per node 

are described. We notice that the CPU usagefor both node 2 and 

node 3 decreased from 14.860% and 15.130% to 11.5% and 

5.650%, respectively, with a little increase within node 1 which 

can be explained by an increase in the number of containers 

in node!. Regarding memory usage, we notice a decrease for 

node 3 to half (from 40.5% to 20.210%) while keeping approx­ 

imately the same memory usage for both other nodes. Also, in 

other projects such as docker-flow-letsencrypt, e-petitions, and 

docker-laravel, we notice a decrease of approximately 3% in the 
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TABLEVIl 

AVERAGE OF CPU, MEMORY, AND NEIWORK USAGES COMPARING OUR APPROACH AND SPREAD IN THE 0..USTER THE RESUCTS WERE STATISTICALLY 

SIGNIFICANT ON 30 INDEPENDENT RUNS USING THE WILCOXON RANK SUM TEST WITH A 99% CONFIDENCE LEVEL {ct < 1 %) 

 
Network Usage (bytes/s) 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
TABLE VIII 

CPU, MEMORY, AND NETWORK USAGES COMPARING OUR APPROACH AND SPREAD FOR EVERY NODE 

 
 

Docker Project 
CPU Usage Memory Usage  I Network Usage (bytes/s)  

Nodes  I I I Received I Transmitted 

Our Appr. Spread Our Appr. Spread OurAppr. Spread Our Appr. Spread 

graylog-kibana 
1 
2 
3 

  
I 

19.700% 
5.700% 
5.070% 

15.140% I 
11.930% 
4.600% 

53.390% 
40.850% 
35.830% 

51.090% I 
40.500% 
40.500% 

1537.520 
997.570 
959.680 

2632.610 I 
1228.150 
960.120 

3366.580 
59.120 
57.820 

14830.660 
60.610 
65.050 

 1   15.890% 11.140% 62.090% 62.390% 1542.520 1752.320 3366.580 3892.660 

e-petitions 2   2.700% 11.930% 40.500% 41.850% 997.570 1260.150 59.850 62.420 

3 2.070% 4.600% 40.300% 40.830% 658.680 872.120 53.840 65.444 

cbe-utilities 
1 
2 
3 

  
I 

24.560% 
11.500% 
5.650% 

20.660% I 
14.860% 
15.130% 

41.560% 
40.120% 
20.210% 

40.470% I 
40.500% 
40.621% 

1609.970 
966.870 
960.290 

1832.780 I 
1825.150 
960.120 

3233.000 
58.660 
60.442 

4830.660 
91.610 

I 61.050 
 1   21.520% 17.820% 51.850% 55.230% 1456.520 2242.61 3366.580 4120.66 

docker-bro 2   13.140% 15.620% 40.500% 41.850% 1100.570 1628.15 59.120 63.610 

3   10.260% 19.520% 40.600% 42.830% 959.680 960.12 62.820 62.650 

miso-lims 
 

- 

 1 
2 
3 
1 

 

I 

 5.454% 
0.256% 
1.233% 
11.500% 

2.200% 
2.500% 

2.450% 1 
11.620% 
5.820% 
5.600% 

25.090% 
11.500% 
9.500% 
38.090% 

21.390% I 
19.850% 
20.830% 
38.500% 

809.720 
97.410 
658.68 

1409.970 

1100.320 I 
960.150 
612.250 
1632.520 

210.970 
35.450 
62.200 

3830.660 

892.660 
62.780 

I 65.000 
4125.650 
75.125 
88.254 

screenly-ose  2 
3 

 10.700% 
1.120% 

37.000% 
5.300% 

36.850% 
12.830% 

1266.780 
620.290 

1925.150 
960.120 

99.800 
73.000 

 

pju 
1 
2  

I 

 24.820% 
20.320% 

21.337% I 
21.023% 

41.120% 
25.200% 

40.470% I 
42.500% 

1229.520 
1100.570 

1856.610 I 
1562.150 
960.120 
1132.610 
1228.150 
660.120 

2563.000 
60.120 
62.820 

2100.100 
32.120 
27.820 

4120.660 
89.610 

I 62.650 
2530.560 
40.610 
35.050 

3 17.200% 20.130% 44.200% 44.620% 450.680 
 1 21.520% 17.820% 51.850% 55.230% 537.320 

docker-flow-letsencrypt 2 13.140% 15.620% 40.500% 41.850% 937.700 
 3 10.260% 19.520% 40.600% 42.830% 459.680 

hanna-agency 
  1 

2 
3 
1 

2 
3 

 

I 

 5.454% 
0.256% 
1.233% 
26.560% 

12.450% 
22.780% 

2.200% I 
2.500% 

25.090% 
11.500% 

21.390% I 
19.850% 

2001.520 
997.570 

3500.810 I 
1428.150 

3366.580 
478.120 

4730.660 
650.610 

  
- 

2.450% 
25.230% 

9.500% 
66.360% 

20.830% 
62.500% 

959.680 
537.320 

1545.120 
1132.610 

313.487 
2100.100 

I 546.500 
2530.560 

docker-Jaravel   24.180% 25.250% 47.000% 937.700 1228.150 32.120 40.610 

21.550% 45.300% 48.000% 459.680 660.120 27.820 35.050 

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test witha 99% confidence level (a< I%). 

 

CPU usage for the hole cluster when using our approach and a 

memory decrease that exceeds 2%, 2%, and 7% respectively. 

The results for each node for these projects detailed in Table 

VIII are promising. Continuing with the example docker-flow­ 

letsencrypt, the CPU usage for both nodel and node2 was de­ 

creased from 15.620% and 19.520% to 13.140% and 10,260%, 

respectively, and the memory usage for node 1 was decreased 

from55.23%51.850 to55.230%. Also, fore-petition, weobserve 

a decrease that exceeded 9% for node 2 in terms of CPU (from 

11.930% to 2.7% and from 4.6 to 2.070% for node 3) and 

approximately the same average of memory consumption for 

both nodes. The balance in our approach between decreasing 

the number of nodes and the average of containers per node 

succeeded in distributing equally the containers achieving a 

balanced load between nodes that leads to reduced resource 

usage and more efficient utilization of these resources in the 

whole cluster. For a few projects (e.g., graylog-kibana, miso­ 

lims, hanna-agency), the results show unremarkable differences 

between the two approaches in terms of CPU. These results 

can be explained by the low number of containers used in such 

 

Docker Project I  CPU Usage I 
Memory Usage I Received Transmitted 

Our 
Appr. Spread 

Our 
Appr. Spread 

Our 
Appr. Spread 

Our 
Appr. Spread 

graylog-kibana 10.15% 10.60% 43.36% 50.09% 1164.92 1603.96 1161.17 1652.10 

je-petitions I 6.88% n2% I 47.63% 48.35% I 846.70 1294.86 1160.09 1340.18 

cbe-utilities 13.90% 16.89% 33.90% 40.30% 1179.04 1539.35 1117.37 1661.11 

jdocker-bro I 14.97% 17.65% I 44.31% 46.63% I 1112.26 1610.29 1162.84 1415.64 

miso-lims 2.34% 2.38% 15.36% 20.60°/o 521.93 940.86 102.54 340.15 

screenly-ose I 6.77% 7.68% I 29.39% 29.79% I 1099.01 1505.93 1334.49 1429.68 

pju 20.18% 20.78% 36.84% 42.53% 719.01 1459.63 895.31 1424.31 

jdocker-flow-letsencrypt I 14.97% 17.65% I 44.31% 46.63% I 664.90 1006.96 720.01 868.74 

hanna-agency 2.31% 2.38% 15.36% 20.69% 1319.59 2158.03 1386.06 1975.92 

docker-laravel I 20.60% 23.65% I 45.63% 52.soo;. I 664.90 1006.96 720.01 868.74 
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Key findings: Our new many-objectiveapproach outper­ 

forms the docker default scheduler regarding resource usage: 

the CPU, memory, and network transmission in the docker 

cluster. 

 

projects. Thus, we obtained a very similar allocation of nodes 

for both approaches that do not affect resource usage by keeping 

almost the same number of containers per node. 

We have noticed a significant decrease in network transmis­ 

sion for all projects using our approach compared to the Docker 

swarm scheduler. For instance, the project "cbe-utilities" bas an 

average of received and transmitted network in the cluster that 

decreased from 1539.350 and 1661.106 bytes per second while 

the docker strategy provided values of 1179.043 and 1117.367 

(bytes per second). Table VIII summarizes the results for each 

node separately. For the project graylog-k:ibana, for example, 

the received network was decreased from 2632.610, 1228.150, 

and 960.120 for node 1, node 2, and node 3 using the default 

scheduler to 1537.520, 997.570, 959.680 respectively using 

our approach. The Transmitted Network was decreased from 

4830.660, 60.610, and 65.050 to 4830.660, 60.610, and 65.050 

for each node, respectively (node 1, node 2, and node 3). The 

decrease in the network 1/0 values is explained by the fact that 

we are decreasing the container coupling in different nodes for 

better communication between nodes. 

 

 

G. Threats to Validity 

ConclusionValidity.Conclusion validity is concerned with the 

statistical relationship between the treatment and the outcome. 

We addressed conclusion threats to validity by performing 30 

independent simulation runs for each problem instance and 

statistically analyzing the obtained results using the Wilcoxon 

rank sum test with a 99% confidence level (a< 1%). However, 

the parameter tuning of the different optimization algorithms 

used in our experiments creates another internal threat that we 

need to evaluate in our future work. The parameters' values 

used in our experiments are found by trial-and-error, which 

is commonly used in the search-based software engineering 

community. However, it would be an interesting perspective 

to design an adaptive parameter tuning strategy [42] for our 

approach so that parameters are updated during the execution in 

order to provide the best possible performance. 

Construct Validity. Construct validity is concerned with the 

relationship between theory and what is observed. To evaluate 

the results of our approach, we selected solutions at the knee 

point when we compared our approach with fully-automated 

scheduling approaches, but the users may select a different 

scheduling solution based on their preferences to give different 

weights to the objectives when selecting the best solution. To 

mitigate this threat, we have to use the quality indicators of the 

Pareto fronts when comparing the different search algorithms 

and also the average values of the resource usage metrics. 

External Validity. We selected such Docker projects because 

they are developed considering several programming languages 

and have been developed in the past 10 years. However, we 

cannot state that this is enough to generalize the results since 

the site may not reflect real-world projects. To minimize such 

threats, we tried to evaluate docker projects from different do­ 

mains and sizes. The use of larger docker projects should be 

evaluated in a future experiment. Another threat is related to the 

generalizability of our findings. 

Another threat is that we did not include existing approaches, 

including meta-heuristic algorithms and deep learning models, 

in the validation because they use assumptions different from 

ours. For instance, deep learning models require a very large 

dataset that is not available in practice. The other search algo­ 

rithms use fewer objectives. Thus, they were considered as part 

of the multiple formulations that we proposed in our benchmark. 

We highlighted thelack of existing tools forcontainer scheduling 

beyond Kubernetes and a few other commercial tools. None of 

the existing approaches provided their tools for the community, 

and they are very hard to replicate. 

 

 
V. RELATED WORK 

We summarize, in this section, the most relevant studies to 

our approach, including two main categories of studies related 

to 1) software workload balancing and 2) search-based software 

engineering. 

 
A. Software Workload Balancing 

In this section, we focus on existing container scheduling 

strategies In the last few years, Docker containerization bas 

gained widespread popularity due to its remarkable features, 

such as portability, high performance, agility, modularity, and 

scalability, which pave theway for Docker to stepfurther to more 

practical usage in the industry. Despite its quick growth, Docker 

container scheduling is still a challenging problem, especially 

in optimizing the usage of available resources. 

There are some container scheduling tools such as Docker 

Swarm developed by Docker [5], Mesos by Apache [6], and 

Kubernetes by Google [7]. Generally speaking, despite their 

efficiency, these strategies are not adequate to handle complex 

application scenarios to enable adaptive scheduling strategies. 

It is assumed that Docker Swarm has no prior knowledge 

regarding the workload or thecontainer's resource requirements. 

The onlyavailable scheduling strategy is Spread, which basically 

schedules a service task based on spreading the number of 

containers equally to all Docker hosts. All theextra configuration 

has to be performed manually [8]. Thus, it is crucial to create 

moresophisticated, high-level, and adaptive allocation strategies 

to guarantee a balanced workload among devices, the service's 

performance requirements, efficient communications between 

containers, and more efficient utilization of resources in terms 

of CPU and memory. 

In their paper [43], Feifei Chen et al. propose a container 

Scheduling Method in Edge Computing. Based on the Min-Min 

algorithm, thisapproach aimsto placea container on the physical 

machine with the most minor increase in energy consumption 

by the Min-Min to reduce the energy consumption of the cluster. 

It is an important approach but that targets only the power 

consumption in edge devices. Our work went on a similar path, 

but our target is to reduce the different resource consumption of 
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the cluster, including CPU, memory, and network transmission, 

so we handle more complex objectives simultaneously. 

Sureshkumar et al. [23] introduced a new scheduling algo­ 

rithm based on load balancing. Their approach dynamically 

controls the load of each container within a certain threshold in 

thecluster bykeeping it not too high or too low. If thecontainer's 

load is too high, another container is created to balance that load, 

and if it is toolow, thecontainer will be closed to saveenergy.The 

approach controls the energy consumption of the entire cluster 

and the load balancing of the containers but does not consider 

the problem of allocating a container after a new node is added 

to the cluster. It will lead to the selection of an inappropriate 

node. 

Our work not only considers conflicting objectives but also 

finds the best allocation of the containers depending on the 

cluster properties in a dynamic way. It considers the addi­ 

tion/shutdown of nodes and the regular change in thecontainers' 

resource consumption and properties. It dynamically finds the 

best allocation of the containers depending on the updated 

cluster properties. 

Zhang et al. [12] proposed a solution to the scheduling prob­ 

lem based on a linear programming model. They designed a 

container task scheduling algorithm that aims to reduce the con­ 

sumption of network transmission between server-side container 

and client, network consumption of pulling the required images 

from the remote repository, andenergy consumption of the node 

itself. However, their work only simulates experiments using 

MATLAB without validating the container scheduling process 

in a notsimulated clusterenvironment. In our work, weevaluated 

the approach using real-life docker containers and a cluster 

environment for realistic validation. 

Kaewkasi et al. [9] focused on applying meta-heuristic algo­ 

rithms. They adopted the Ant Colony Optimization algorithm 

(ACO) to implement a new container scheduler for SwarmKit, 

the purpose of which is to balance the use of resourcesso that ap­ 

plications in the container cluster will have better performance. 

A more recent work introduced by Li et al. [11] is also based on 

meta-heuristicalgorithms.This paper proposes a ParticleSwarm 

Optimization-based container scheduling (PSO) algorithm of 

the Docker platform to make the best use of each node's re­ 

sources, avoid the problem of insufficient resource utilization 

and ensure a balanced load in the scheduling algorithm of the 

nodes cluster compared to the default Docker Swarm scheduler. 

Liu et al. [44] proposed a new container scheduling algorithm 

based on multi-objective optimization, namely Multiopt. This 

approach aims to optimize the performance of docker containers 

using five key factors: the resource usage of every cluster node 

(CPU, Memory), the clustering of containers, the association 

between nodes and containers, and the time consumption trans­ 

mitting images on the network. 

Guerrero et al. proposed a genetic algorithm approach to 

implementing a container allocation strategyand elasticity man­ 

agement by optimizing the elasticity of the currently deployed 

applications and maximizing thereliability of the micro-services 

by avoiding single points of failure. However, the proposed 

strategy is limited to only twoobjectives, while manyconflicting 

criteria should be considered within the container's scheduling 

problem. Indeed, our approach considers the available resources 

in terms of memory and CPU to balance the software load 

between multiplenodes but alsoaims to reduce thechanges in the 

current configuration (e.g., moving containers between nodes), 

the communications between containers located in different 

nodes (e.g., coupling) for network and security purpose. 

 

B. Search-Based Software Engineering 

Search-based software engineering (SBSE) is a growing field 

about the design and application of computational search algo­ 

rithms to address software engineering problems [45]. A com­ 

prehensive survey about existing studies can be found in [46]. 

Existing studies cover almost the whole software life cycle, 

including requirements engineering [47], software design [48], 

web application testing [49], software refactoring [50], etc. As 

discussed in the previous section, few studies addressed the 

problem of software container scheduling using SBSE tech­ 

niques. Indeed, noneof theexistingstudiesformulated container 

scheduling as a many-objective problem considering different 

conflicting criteria. In the following, we will summarize some 

of the existing studies on the design and application of many­ 

objective techniques in software engineering. 

Different many-objective techniques are proposed in the liter­ 

ature.The first category is about objective reduction approaches. 

These techniques mainly look for the minimal subset of con­ 

flicting objectives. The objective reduction approach initially 

attempts to examine the degree of conflict among objectives to 

eliminate objectives that do not construct the Pareto- front [51]. 

Regardless of the number of objectives, finding objective reduc­ 

tion opportunities in a problem has a favorable impact on search 

efficiency, computational cost, and decision-making. Although 

this technique has solved benchmark problems involving up 

to 20 objectives, its applicability in real-world settings is not 

straightforward, and it remains to be investigated since most 

objectives are usually in conflict with each other [52]. 

With increasing objectives, the Pareto optimal approximation 

involves investigating many Pareto-equivalent solutions. Con­ 

sequently, the numerous variety of solutions makes the choice 

of the preferred alternative very bard for the human decision­ 

maker (DM). More practically, DMs are not usually interested 

in the whole Pareto front rather than a portion of it that best 

fits their preferences, called the Region of Interest (ROI). The 

main idea is to incorporate the DM's preferences in the search 

space to distinguish between Pareto equivalent solutions that 

can evolve towards the ROI on problems involving more than 

3 objectives [53]. Preference-based MOEAs have given many 

interesting results when addressing concrete problems in several 

engineering fields, including software design, by incorporating 

designer preferences [54]. 

The new preference ordering relations is an alternative ap­ 

proach that takes into account additional information, suchas the 

rank of the particular solution regarding the different objectives 

and the related population [55] in order to overcome the inability 

to differentiate between solutions with the increased of the 

number of objectives; however, these methods do not necessarily 

agree with to the DMs preferences. Another category of work 
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is the decomposition technique that decomposes the problem 

into several sub-problems that can be solved simultaneously by 

using evolutionary algorithms' parallel search capability such 

as MOEA/D [56]. 

The closest application of many-objective techniques to soft­ 

ware engineering is a study related to software modulariza­ 

tion [13]. In that work, the authors proposed to use coupling, 

cohesion, history of changes, and other structural metrics as 

fitness functions to guide the search toward finding relevant 

code restructuring actions. Although applying many-objective 

techniques in software engineering is not new, our study is 

the first to formulate the container scheduling problem as a 

many-objective one. 

 

VI. CONCLUSION 

In this article, we proposed a new dynamic workload balanc­ 

ing for containers that target more complex objectives than the 

typical default scheduler of existing Docker technologies. Our 

new approach aimed to achieve a balanced workload between 

the cluster's nodes and more efficient utilization of resources. 

Therefore, we considered in our approach to minimize the num­ 

ber of selected nodes to reduce resources consumption, minimize 

the average of containers per node for a balanced workload be­ 

tween them, takingintoconsideration the dependencies between 

containers and try to reduce the coupling (dependent containers 

allocated to different nodes) to minimize the network transmis­ 

sion and finally minimize the number of changes between the 

current scheduling and our approach (e.g., move container). The 

experiments performed on 48 docker projects provides strong 

evidence that our approach can significantly reduce resource 

consumption (CPU, memory, network VO) compared with the 

default scheduler and other existing techniques. 

As part of our future work, we plan to generalize our results 

with a more significant number of nodes and containers. We 

are also planning to consider more complex constraints in the 

scheduling based on real-world applications such as connected 

vehicles. 

Finally, we plan to extend our study and investigate the effi­ 

ciency of the proposed approach againstother non-optimization­ 

based algorithms, such as deep learning. 
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