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Abstract-Software containers are becoming the newstate of the
art in the industry as they are extensively used to deploy systems.
Indeed, the use of containers enables better modularity, reusability,
and portability compared to other technologies. As the complexity
of software systems is dramatically increasing, it is critical to
enable optimal usage of the needed resources to execute them
such as memory and CPU. Thus, different scheduling strategies
are proposed to select the most suitable nodes to execute a set
of containers. For instance, the default strategy in the Docker
Swarm kit scheduling framework is based on an equal distribution
of the containers between nodes independent of their sizes and
consumed resources. However, balancing the containers' workload
is a complex problem due to the conflicting objectives of minimizing
the number of selected nodes, minimizing the number ofcontainers
per node, the numbel -of changes compared to theoriginal schedule,
and the coupling between containers allocated to different nodes.
To deal with those conflicting scheduling objectives, we propose
a scheduler based on a many-objective optimization approach for
scheduling the execution of containers between multiple nodes. The
proposed approach aims at finding the best allocation for
containers in nodes that leads to efficient utilization of resources.
To evaluate our approach, we compared the performance of
multiple many and multi-objective techniques based on NSGA-11,
NSGA-111, and IBEA algorithms using 48 Docker-related systems
and the results show that NSGA-111 outperforms the other
algorithms in quality attributes as well as in CPU, Memory and
Network usage.

bzdex Temls-Container scheduling, docker, many-objective
optimization.

1. INTRODUCTION
S OFrWARE containers are becoming the newstate of the art

in the industry as they are extensively used to deploy sys-
tems [ 1]. Indeed, the use of containers enables better modularity,
reusability, and portability compared to other traditional tech-
nologies [2]. For instance, the Docker container is considered
one of the most important pillars for software deployment as it
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provides higher performanceand flexibility in comparison with a
traditional hypervisor-basedvirtualisation[ 1]. Thus, Docker and
the software containerizationtechnology are becoming the main
parts of the cloud strategies of most industry organizations [3].
Despite the benefits and popularity of using Docker containers,
there are several challenges associated with the optimal usage
of the resources consumed by this technology as a large number
of containers may need to be executed and orchestrated due to
the high modularity of Docker architectures [4].

Due to the dramatic increase in the number and size of
containers needed to build systems, there is a critical need for
efficient mechanisms to schedule and orchestrate the execution
of containers among many nodes in the cloud clusters. Thus,
several container scheduling tools are proposed, such as Docker
Swarm developed by Docker [5], Mesos by Apache [6], and
Kubernetes by Google [7]. Generally speaking, despite their
efficiency, these strategies are too simple to handle complex
container execution. It is assumed that Docker Swarm has no
prior knowledge regarding the workload or the container's re-
source requirements. The only available scheduling strategy is
called Spread, which basically schedules a service task based on
spreading the number of containers equally to all Docker hosts,
and all the extra configuration has to be performed manually [8].
Thus, it is important to create more sophisticated,high-level, and
adaptive allocation strategies in order to guarantee a balanced
workload among devices, the service's performance require-
ments, efficient communications between containers, and more
efficient utilization of resources in terms of CPU and memory.

To deal with these challenges, several scheduling techniques
for containers were recently proposed [9], [10), [11), [12]. Most
of them are based on the useof optimization techniques due to the
complexity of the problem in terms of the number of scheduling
alternatives. For instance, Kaewkasi et al. [9] adopted the Ant
Colony Optimization (ACO) algorithm to implement a new con-
tainer scheduler for SwarmKit which spread the containers over
Docker hosts to balance the overall resource usagesand therefore
lead to increased performance of applications. The proposed
approach continuously computes theavailable resources inevery
node every time it schedules a container. Guerrero et al. [10)
proposed a genetic algorithm approach to implement a container
allocation strategy andelasticity management by optimizing the
elasticity of thecurrently deployed applications and maximizing
the reliability of the micro-services by avoiding single points
of failure. However, the proposed strategies are limited to only
two objectives while many conflicting criteria should be taken
into consideration within the container scheduling problem.

1939-1374 © 2023 IEEE. Personal use is perrnitted, but republication/redistribution requires IEEE perrnission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-8035-1369
https://orcid.org/0000-0001-7010-8306
https://orcid.org/0000-0002-0053-3443
mailto:marouane@umich.edu
mailto:thiagod@umich.edu
mailto:ahusain4@ford.com
http://www.ieee.org/publications/rights/index.html

2576

Indeed, an efficient scheduling approach for containers may
need to consider the available resources in terms of memory and
CPU but also reduce the changes in the current configuration
(e.g., moving containers between nodes), the communications
between containers located in different nodes (e.g., coupling)
and balancing the software load between multiple nodes.

To address the above challenges, we propose a new many-
objective optimization approach for the Docker containers
scheduling problem. The goal is to find the best allocation
of containers that can lead to a better workload balance and
performance. The number of scheduling combinations to assign
containers to nodes is high. Thus, the search space to explore is
combinatorial which requires the use of an intelligent compu-
tational search technique. Furthermore, the different scheduling
criteria are conflicting thus, we adopted a many-objectivesearch
algorithm, based on NSGA-III [13], to find a trade-off between
four conflicting objectives. Our many-objective search-based
software engineering approach aims at finding the rescheduling
solution that: optimizes the structure of thecluster byoptimizing
some metrics such as the number of selected nodes in thecluster,
the average of containers per node, optimizes the communica-
tionsbetween containers byminimizing thecoupling (dependent
containers allocated to different nodes), and finally minimiz-
ing the number of required changes to move from the current
scheduling to the new one (e.g., move container) to guarantee a
fast allocation of containers to the cluster nodes.

To evaluate our approach, we compared the performance of
multiple many and multi-objective techniques based on NSGA-
11, NSGA-ill [14], [15], and IBEA algorithms [16] using 48
Docker-related systems. The results show that NSGA-ill can
generate the best scheduling solutions considering thetraditional
quality indicators for computational searches, such as Hypervol-
ume, IGO, and Contribution metrics, as well as other validation
metrics such as CPU, memory, and network usage. We have
also created an online appendix for a demo of our platform and
related experiments material [17].

The primary contributions of this article can be summarized
as follows:

* We introduced a novel formulation of the containers
scheduling problem as a many-objective problem that
considers several conflicting objectives such as structural
improvement, coupling, and the number of changes. The
definition of the fitness functions was formulated based on
the needs of our industry partner, theFord Motor Company,
to optimize specific objectives related to the usage of ECUs
resources in the car.

*  We compared three different many-objective optimization
algorithms as it is the first formulation in the literature of
container scheduling as a many-objective problem.

* We reported the results of an empirical study of our
many-objective technique compared to the docker default
approach.The obtained results provide evidence tosupport
the claim that our proposal is, on average, more efficient
than the existing techniques based on a benchmark of 48
open-source docker projects.

The remaining of this article has been organized as fol-

lows: Section II reviews the Docker Container tool, as well as
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TABLEI
OOCKERFILE SETIJP INSTRUCTIONS
Instruction Description
| ENV | Setting the environment variables
ARG Defining variables that can be set at build
time
Setting working directory for all subsequent
WORKDIR instruégtions ¢ v !
COPY Copying files from host to the Docker image
Similar to COPY instruction but supports two
additional tricks. It supports the use of a URL
ADD instead of a local file and can recognize the
archive format and extract it directly into the
destination
LABEL Key value pairs, indicating image metadata
| RUN | Executing any command ) )
EXPOSE Informs Docker that the container is expos-
ing a particular port
Setting a command and/or parameters, that
CMD executes when the container is starting and
| which can be overwritten at build time
Setting executable that will always run when
ENTRYPOINT the container is initiated and cannot be over-
written.

Listing 1. Dockerfile example

FROM node:argon

# Create app directory

WORKDIR /usr/src/app

# Install app dependencies

COPY package*.json /usr/src/app/

RUN npm install

# Bundle app source

COPY /usr/src/app

# Expose the app to the outside world
10 EXPOSE 8080

1 CMD [ "npm", "start" )

the three, used multi-objective optimization algorithms used in
our approach. Section III then discusses the proposed approach,
the population presentation and the objective functions. Section
IV is an empirical study to evaluate the feasibility of our ap-
proach by defining the research questions, quality indicators,
used systems and algorithm configuration. Section V presents
some related works. Finally, Section VI concludes this article.

IL BACKGROUND
A. Docker and Container-Based Projects

Docker [18], is one of the most popular container virtualiza-
tion technologies [3], [19]. It packs the application's code and
dependencies into a lightweight, standalone, and portable exe-
cution environment aiming to deploycontainerized applications
in a quick process.

Dockerfile is a document containing a sequence of instruc-
tions used for creating the computational environment, follow-
ing the notion of Infrastructure-as-Code (1aC) [20] and it is used
by Docker to build the container images.

An illustrative example of a Dockerfile is shown in Listing 1.
In this listing, the Dockerfile has seven instructions where the
definition of each one is described in Table I.
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Listing 2. Docker-compose example

version: "3.7"
services:
server:
build:
ports:
- 8080:4040
environment:
- DB_ADDRESS=database-mongo
- DB _PORT=27017
10 - PORT=4040
11 depends on:
12 - database
13 database:
14 image: mongo:latest
15 volumes:
16 - mydata:/data/db
17 volumes:
18 mydata:
TABLE I

DOCKER-COMPOSE SEnJP ArrRIBITTES

Attritiute Descri tion
BUILD Settin path to the build context
IMAGE Setting the image to start the container
from
PORTS Specify ports binding
ENVIRONMENT  Setting environment variables
DEPENDS_ON Expressing dependency between services
VOLUMES Setting volume bindings (host paths or
named volumes)

Docker-compose [21] provides a unified setup routine that
deploys several containers using a YAML configuration file,
as known as, (or just Docker-
compose). In the Docker paradigm, each container captures
one particular component of the software (e.g., database). Thus,
when creating a multi-component application using Docker, it
is inevitable to combine multiple software components (con-
tainers) into a workflow. Then, Docker-compose can tackle this
problem by integrating containers and running them properly.

An example of a Docker-compose file is available in Listing
2. The example shows that the Docker-compose file is com-
posed of two components/containers (SERVER and DATABASE).
The SERVER component is represented by a local image (built
from a Dockerfile, for instance, that one available in Fig.
Listing 1), and the DATABASE component is created from the
"mongo" image, hosted in DockerHub [22] (an online registry
for Docker Images). Docker-compose file also provides a list of
setup attributes which can be listed in Table II.

Any typical Docker project includes the abovefiles alongwith
sourcecodefiles written in typical programming languages,such
as Java, to host the containers and enable their executions and
synchronization with other features of the app that may not be
containerized.

The way that tasks or containers are scheduled on a Swarm
Mode cluster is governed by a scheduling strategy. Cur-
rently, Swarm Mode has a single scheduling strategy, called
"Spread" [8]. The spread strategy attempts to schedule a service

Docker-compose.yml

Algorithm 1: Generation 7 of NSGA-III. Adapted from[14],
[15]

: H structured reference points Zr or supplied

aspiration points Zo. , parent population A
Output:Pt+1

1 St=0,i =1;

2 Ot = Recombination+Mutation(A);

3 Rt= PtuQ;

4 (Fi, F2,... ) Non-dominated-sort(Rt);

s repeat

6 | St=S8StUFyand i=i+1;

7 until IStl 2:: N;

s Fi =F;(Last front to be included);

9 if /St{ = N then

10 | pPr+1=St,break;

11 else

v pr1=LJ:, Fi

13 Points to be chosen from F7 : K =N - IA+1I;

Input

14 Normalize objectives and create reference set Zr :
Normalize(fn, St, Zr, Z.,Zo0.)i
Is Associate each member s of St with a reference point:

[TI(s),d(s)] =Associate(St, Z.,.) {II(s): closest reference
point, d: distance betweens and 11(s) };

16 Compute niche count of reference point j E
Zr . Pj=LsES/Ft (II(s)=j)?1 :O),
17 Choose K members one at a time from Fi to construct

Pt+1: Niching(K, P17, d, Zr , Fi, A+1 );

1s_end

task based onan assessment of the resources available on cluster
nodes. In its simplest form, this means that tasks are evenly
spread across the nodes in a cluster. For example, if we create a
service with threereplicas,each replicated task will be scheduled
on a different node.

B. Many-Objective Evolutionary Algorithm: NSGA-IIT

Non-dominated Sorting Genetic Algorithm ill (NSGA-ill)
is a more recent optimization algorithm proposed by Deb et
al. [14], [15], similar to NSGA-11, but with significant changes
in its selection mechanism aiming to improve the results of
many-objective problems. Unlike in NSGA-11, the diversity
among population members in NSGA-III is aided by supplying
a number of well-spread reference points.

NSGA-IIT demonstrates its efficacy in solving 2 to 15-
objective optimization problems, and it is also extended easily
to solve constrained optimization problems, and can be used
with small population size (such as a population of size 100 for
a 10-objective optimization problem). The algorithm is shown
in Algorithm 3.

First, same as NSGA-11, the parent population A is randomly
initialized in the specified domain, then the binary tournament
selection, crossover, and mutation operators are applied to create

an offspring population Q¢ (Line 1-2). Thereafter, both popu-

lations are combined and sorted according to their domination
level and the best Nmembers are selected for the nextgeneration.

Unlike in NSGA-11 (which uses the crowding distance mea-

sure for selecting the best set of points from the last front that

can be partially accepted), in NSGA-ill the supplied reference
points Zr are used to select these remaining members. The
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Dependency
Graph
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State
LoadBalancin1 Docker Swarm
Fig. 1. Proposed approach.

chosen reference points can either be predefined in a structured
manner or supplied preferentially by the user. To accomplish
this, objective values and reference points are first normalized
to have an identical range. Thereafter, the orthogonal distance
between a member in S? and each of the reference lines (joining
the ideal point and a reference point) is calculated.

Next, the member is then associated with the reference point
having the smallest orthogonal distance, and the niche counts
<p for each reference point, defined as the number of members
in St/F'1 that is associated with the reference point, is computed
for further processing. The reference point having the minimum
niche count is identified and the member in front last front /'y
that isassociated with theidentified reference point is included in
the final population. The niche count of the identified reference
point is increased by one and the procedure is repeated to fill up
population P+

il. AMANY-OBJECTNE SCHEDULING APPROACH FOR
SOFTWARE CONTAINERS

We describe, in this section, an overview of the proposed
scheduling approach for assigning software containers to the
nodes, then we explain the different adaptation steps of the
computational algorithm to our problem, including the solution
representation and the fitness functions.

A. Approach Overview

The main goal of the proposed approach is to schedule con-
tainers by considering four conflicting objectives to be opti-
mized. Each solution generated by the evolutionary algorithm
represents a possible container scheduling by assigning the
containers into nodes. Fig. 1 shows an overview of the proposed
approach composed of three maincomponents. The firstcompo-
nent is a parser that automatically extracts from docker cli (e.g.,
command line) theinitialswarm statein thecluster, including the
number of nodes, the total number of containers, their images,
and their distribution per node. The docker-compose file is also
parsed to extract the dependencies between containers using the
parser tool. The second component takes as inputs the different
information collected by the parser, including the extracted
dependency graph and the swarm state, to generate a new swarm
state using a many-objective optimization algorithm to find a

balance between the different objectives. The third component
executes the best solution found by the multi/many-objective
algorithm by updating the docker-compose file to specify a new
placement for every container. Then, the docker-compose file is
deployed again, and the Load Balancing module reallocates the
containers as suggested.

In our approach, the user provides a docker-compose file
as input, and then a Parser tool is used for generating a de-
pendency graph G = (V,E) where V = { vi,va, v3. .. . Vn}
means the set of containers or services and E is the set of
calls or requests among them. The latter is written as a tuple
{v;, vi}, wherev;, vi E V, and they are usually expressed in the
docker-composefile as DEPENDS_ONor LINKS properties. Fig. 2
shows an example of such conversion.

In this example, five services were converted to a graph
G with five nodes and six edges. Aiming to ease the node's
assignment, we assign a unique identifier (id) to every con-
tainer/service and node to be used in the optimization pro-
cess. Thus, let's consider 0, 1, 2, 3, and 4 as the id's
for the following containers, respectively: CBEDB, CBEDBAD-
MIN, CBEMQ, HAPROXY, CBEAPP. Then, the dependency graph
generated for such example is V = {O,1, 2,3,4} and E =
{{1,03.{3.1}.{3.2},{3,4},{4,0}.{4.2} }.

Theselected many-objective algorithm uses this dependency
graph G and a Swarm State p(z) asinput, where the latter means
the current allocation of containers and nodes in Docker Swarm
mode. Then, by taking into account the set of objectives to be
optimized (details in Section III-C), a new Swarm Statep(t-+1)
isgenerated, and the docker-compose file is changed aiming to
reflect the new scheduling (see Scheduler in Fig. 1).

Docker Swarm service is based ona declarative model, which
means that once the service runs, we are not allowed to move
or replace containers when some node gets started. Thus, to
bypass such limitations, we generate a new docker-compose file
by changing the CONSTRAINTS property from the file. The Load
Balancing module in our approach is responsible for monitoring
the currentstateof Docker Swarm byconsidering several metrics
such as CPU and Memory usage, network metrics, and so on.
In our approach, we can define some thresholds for each of
them, and once such thresholds are reached, the many-objective
algorithm is automatically run to reschedule the containers.
Finally, if the Swarm State is unavailable (for instance, when
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services:
haproxy:
links:
-cbemq
- cbeapp
- cbedbadmin
cheapp:
depends_on:
-cbedb

cbedb:- cbemq

image: postgres:latest
cbemq:
image: rabbltmq:3-management-alpine
cbedbadmin:
image: dpage/pgadmin4
links:
- cbedb

Fig.2. Convert docker-compose file.
$= 3 I 3 I 112 1 -+ NodelD's
0 I1 I2 3 4 .+-Container ID's
Fig.3.  Solution representation.

we are running the proposed approach for the first time), all
containers are randomly assigned to nodes to compose this one.

In the following subsections, we describe the different adap-
tation steps of the multi/many-objective algorithms described in
Section II, including mainly the solution representation and the
fitness functions.

B. Population Representation

An individual (or solution) in our population consists of an
integer encoding, where each gene represents the node id, and
the index is the container id. By using this approach, wehave the
advantage of the flexibility of having more than one container
per node. Thus, let S = {si, s2 s3, ... ., .s 72 b enndividual
with » containers. Fig. 3 shows an example of an individual
considering the containers available in Fig. 2.

In this example, the chromosome representation uses five
containers (n = 5) and a total of three nodes. The individual
S represented in figure Fig. 3 assigns containers 2 and 4 to node
1, container 3 to node 2, and containers O and 1 to node 3. Fig.
4 shows a visual representation considering all containers and
nodes (consider the dependency graph available in Fig. 2).

C. Objective Functions

Even though different proposed scheduling techniques for
containers [9], [10], [11], [12]. The proposed strategies are
limited to at most two objectives, while many conflicting cri-
teria should be taken into consideration within the container
scheduling problem. We believe that our chosen objectives are
extensively constructed based on preliminary research [13], [23]
to obtain the optimal design that considers the most essential

Nodal Node2 Node3

Fig.4.  Solution representation converted.

container attributes and scheduling limitations. We expect these
functions to be valuable in future software container manage-
ment efforts.

ConsiderC = {ci.cs. ¢, .. .C.,.} thesetofall available con-
tainers, and N = {nj;,nz, ns, ... , nm} the set of all available
nodes. The objective functions proposed in this work are de-
scribed as follows:

1) First Objective: Minimizing the Number of Selected Nodes
(1 ): The first objective corresponds to the number of selected
nodes when rescheduling containers. Software containerization
in many domains, such as smart automobiles [24], connected
vehicles [25], [26], or different other domains [27], becomes
critical, particularly in highly constrained environments For
example, best practices [28] recommend that the load associated
with one docker cluster node be lightweight to minimize con-
gestion problems while running the applications, which explains
the usage of the objective: Minimizing the number of containers
per node. This would avoid exceeding the resource consumption
limits that might affect the behavior of the node that deploys the
software.

This objective is expressed as the ratio of the number of
selected nodes and the number of available ones. It is computed
as follows:

|distinct(S)]

NON(8) = —;

)
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where IN|> 0 and distinct(S) returns a distinct set of se-
lected nodes from S. Forexample, if S = {2, 2,2,1,2}, then
distinct(S) ={1,2}.

2) Second Objective: Minimizing the Average of Containers
Per Node (2): Minimizing the number of containers per node
can avoid exceeding the resource consumption limits. However,
minimizing the resource consumption of each node leads to
activating a large number of nodes and spreading the load
across them, on the other hand, would considerably increase the
cluster's resource utilization, so adding considering minimizing
the average number of containers per node in the cluster as a
conflicting objective to the first is important in our context. For
example, if we have 10 containers and 10 nodes, the worst solu-
tion would be to allocate every container to a single node; thus,
the nodes will consume more resources. An optimal solution
would be to choose a smaller number of nodes to distribute, the
containers while respecting the load between them and their
resource limits. At the same time, we don't want to allocate all
containers to one node so we can prevent violating the resource
limits of the nodes and try to balance the node between the
different nodes. Thus, minimizing the number of containers per
node is a second objective to optimize despite conflicting with
the first objective.

This objective is related to the average number of containers
per node. The objective is calculated based on the normalized
standard deviation taking into account the number of containers
for each node. The objective is defined as:

FRQ(S) = \/ T+ e Ui 2

where = {f1. h, h, ...,fm} is the number of containers for
each nodemdivided by| Cland pis the mean of F. Forexample,
if §={2,3,2,1,2},then F = {0.2,0.6,0.2}.

3) Third Objective: Minimizing the Nodes Coupling (3): The
third objective, "minimizing the coupling between containers
allocated to different nodes", can be considered a security ob-
jective that helps save the data and the good performance of
applications deployed in containers in case one of the nodes has
been shut down for a software upgrade or operational failure:
Containers sharing data or depending from each other are better
to be running in the same physical ecus. (This reduces the risks
of losing data or performance when for example, a container
running in a different node and necessary for the work of another
important container is shut down because of node failure),
and also reduces the network transmission between the nodes.
Although important, this objective conflicts with the objectives
related to minimizing the number of containers per node.

This is expressed as a ratio between the number of inter-edges
(calls or requests) in different nodes and the total number of
edges E. The objective is defined as follows:

2

OP(S ab)

COP(SF7 L..{ablEE IE] . 3)

where OP(S,a,b)=1 if sa -/= sb for sa, sbES, otherwise,
OP(S,a, b) = 0.1f |El= 0, then cOP(S) = 0.
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4) Fourth Objective: Minimizing the Number of Changes
(4): Finally, the fourth objective corresponds to the number
of changes required to reschedule the containers. The fourth
objective is considered a very important objective that previous
works on container optimization did not consider. To ensure
on-demand usage of the applications running in the containers,
it is important to use a scheduler that is not only efficient but also
fast to reallocate the containers to different nodes depending on
the objectives without taking too much time that can affect the
performance of the software, Thus a scheduler that does the
minimal needed number of changes to balance the load between
the nodes and respect the resources constraints of each of them
is the one that we worked on in this project.

Tothisend, wecompare theSwarm Statep() and the solution
S aiming to count the number of changes required to move a
container to another node. The objective is defined as follows:

hamming(S.P) 4
IPI @

where hamming(S, P) isthehamming distance between P and
sand IP1=181.if IPl= 0, then crrG(S) =0.
Therefore, the goal of our proposed approach s the following:

minimize NON(S), FRO(S), COP(S),CHG(S)  (5)
S

CHG(SF

where all objective functions are normalized in the range [0, 1]
where 0 is the best value and 1 the worst one.

To clarify how the objective functions are computed, con-
siderC = {0, 1,2,3,4} as theset of available containers, N =
{1, 2, 3,4} as theset of available nodes, px) ={3,3,3,1,2}as

thecurrentSwarmStateand Gas thedependency graph available
in Fig. 2.

Now, consider that a solution S = {3, 3,1,2,1} (the same
available in Fig. 3) was generated by an optimization algorithm
to be evaluated, theobjective functions are calculated as follows:

NON(S) = Ya= 0.75

FRO(S) = =0.18

COP(S) = g =0.66

CHG(S)= Ya= 0.60 6)

Therefore, the objective values are S (0.75, 0.18, 0.66, 0.6).

D) Intelligent Software Containers Scheduler Framework

Based on the proposed many-objective formulation, We im-
plemented a platform that helps the user to monitor the resource
usage for every node in the cluster (CPU usage, memory usage,
network1/0) andautomatically rescheduled thecontainers using
our many-objective approach. Fig. 5 shows a screenshot of our
dashboard, which provides an overview of the current live status
of the cluster, the number of activated nodes, the number of
nodes, and the distribution per node. Fig. 5 shows real-time
resource usage and the received and transmitted network per
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node. These metrics are extracted from the nodes using Node-
exporter [29] and Cadvisor [30] to monitor the performance of
each working node in the experiment, including CPU, memory
usage, and network UO. The tool also generates warnings when
CPU and memory usage exceed 80%.

The candidate solutions are selected taking into account the
preferences of the user interacting with the scheduler via the
dashboard. Particularly, before running the scheduler, the user is
asked to set the weight of each objective basedon the user's pref-
erences. These weights indicate theimportanceof theconsidered
objective. For example, the user can specify that the container
running the database is a high-priority container containing
very sensitive data and needed for a good performance of the
containers that depend on the database; other containers can
have less priority.

The user can manually choose to reschedule the containers
if needed. Otherwise, the rescheduling is automatically based
on the continuous monitoring of resource consumption metrics.
Our tool periodically collects all the required data to calculate
the objective functions defined by our approach and identifies
the most suitable solution as detailed in Section ill. Once the
rescheduling is performed, the user can view the differences in
termsof resource usage andnetwork transmission after applying
our new approach. Furthermore, the user can select the option
to return to the docker default scheduler if needed.

IV. EMPIRICAL STUDY

To evaluate our approach for software container scheduling
using NSGA-ill, we conducted a set of experiments based on
48 containers. Each experiment is repeated 30 times, and the
obtained results are subsequently statistically analyzed with the
aim of comparing our NSGA-ill proposal with a variety of
existing approaches. In this section, we first present our research
questions and then describe and discuss the obtained results.
Finally, we discuss the various threats to the validity of our
experiments.

A. Research Questions

In our study, we assess the performance of our approach by
finding out whether it could generate meaningful scheduling
solutions for the software containers that improve the usage of
resources. Our study aims at addressing the following research
questions outlined below. We alsoexplain how our experiments

are designed to address these questions. We define in the fol-
lowing the two main research questions that we are addressing:
RQJ. To what extent can the proposed NSGA-111approach
provide efficient scheduling solutions based on differ-
ent multi-objective (NSGA-11) and many-objective al-
gorithms (JBEA)?This question aims to investigate the
efficiency of our many-objective NSGA-III approach
for container scheduling to find trade-offs between
the different conflicting objectives compared to other
multi/many-objective algorithms.
RQ?2. To what extent can the proposed NSGA-111 approach
minimize the resources consumption in the cluster and
balance the software workload (i.e., CPU and memory

2581

usage, the network l/O of each node) compared to
the deterministic Docker Swarm's default scheduler?
Since it is not sufficient to validate the outperformance
of our approach compared to other search-based al-
gorithms, this question evaluates the ability of our ap-
proach compared to the deterministic by default sched-
uler of the Docker Swarm in terms of the resources
consumption (i.e., CPU and memory usage).

To answer RQJ, we considered the widely-used quality in-
dicators in multi-objective optimization (described in Section
IV-B) to evaluate the different search algorithms such as Hy-
pervolume (HV), Inverted Generation Distance (IGD), Contri-
butions (IC). These metrics validate the quality, spread, and
diversity of the generated scheduling solutions on the Pareto
front. Thus, we can determine which search algorithm per-
forms better to find the best trade-offs between the conflicting
scheduling objectives. Furthermore, wehave alsoconsidered the
execution time to compare the different algorithms since we are
considering a large number of objectives. We did not compare
our algorithm to random search as it is evident that the space
to explore is too large, requiring an intelligent search. We have
also did not compare with mono-objective search (aggregating
all theobjectives into one fitnessfunction) as it is evident thatthe
different objectives are conflicting: In a cluster where containers
are connected to each other, minimizing the coupling between
them will automatically increase the number of containers per
node; and if we aim to decrease the number of containers per
node we will automatically increase the number of selected
nodes. Thus, we aimed in this research question to focus only
on comparing our NSGA-ill adaption and twoother algorithms:
IBEA and NSGA-11. We selected NSGA-11to evaluate its per-
formance with a larger number of objectives than two, which
may justify the need to use many-objectivealgorithms. We have
also selected IBEA as it is known to be widely used in the
current many-objective optimization literature after NSGA-III.
We used the same adaptation for all three algorithms to enable
a fair comparison.

We believe that the quality metrics results discussed in RQJ
would affect the results regarding resource consumption. The
algorithm giving the best set of solutions will be able to give the
best resource consumption compared to the other algorithms.
Therefore, we only compared the default scheduler with the
NSGA-III algorithm for resource consumption.

As aresult, to answer RQ2, we compared the results from the
default Docker Swarm's scheduling algorithm against the best
search algorithm from RQJ, by considering ApacheBench [31]
as a stress testing tool. Using ApacheBench, we set a total of
100000 requests that should be made when running each project
and 100 requests concurrently (simultaneously) at a time, ensur-
ing scalable testing settings. We also used Node-exporter [29]
and Cadvisor [30] to monitor the status and performance of each
working node in the experiment, including CPU and memory
usageand network UO.We used theseevaluation metrics instead
of the objective functions to avoid any bias when comparing
the search-based and deterministic techniques. We have also
created an online appendix for a demo of our platform, and
related experiments material [17].
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B. Quality Indicators

Aiming to compare the search-based algorithms, we consid-
erect the following sets of solutions [32]: i) PFappmx: set of
non-dominated solutions obtained by one algorithm execution;
ii) PFknawn: set of non-dominated solutions of an algorithm
obtained by the union of all the P Fapprox from all theexecutions,
removing the non-dominated and repeated solutions; and iii)
PFtrue: formed by all sets PFknown obtained from different
algorithms by removing dominated solutions andrepeated ones.
The analysis was conducted by using the widely used quality
indicators in the computational search field to evaluate both the
quality and spread/diversity of the solutions:

® Hypervolume (HY)[33] measures the volume covered by

members of a Pareto-front in objective space delimited
by a reference point. An important feature of this metric
is its ability to capture the diversity and convergence of
solutions. A higher hypervolume value is desirable.

® [nverted Generational Distance (IGD) [34] is a conver-

gence measure that corresponds to the average euclidean
distance between theapproximate Pareto-front provided by
an algorithm and the reference Pareto-front. Small values
are desirable.

® Contributions (IC) [35] measures the proportion of solu-

tioos that lie on the reference front (RS) [36]. The higher
this proportion, the better the quality of solutions.

CS.tudied Docker Projects

In the experiments, we selected 48 Docker-based projects
available on GitHub. Table ill provides some descriptive statis-
tics about all of them, such as the number of stars, contrib-
utors, services, and containers. We selected these projects for
our validation because they range from medium to large-sized
open-source projects, which were actively developed over the
past 10 years, they are widely used. They are based on several
programming languages. Regarding the number of containers,
the figureshows that thesmallest project has twocontainers(e.g.,
RAMMYGIT/MEWBASE), and thelargestone has eleven containers
to be scheduled (e.g., MARINANIEROD/DOCKER_pRESTASHOP).
Furthermore, the list of projects contains containers coded in
several programming languages such as JavaScript, Python,
Ruby, PHP, etc.

D. Parameter Settings

Parameter setting significantly influences the performance of
a search algorithm on a particular problem. For this reason, for
each multi/many-objective algorithm and for each project, we
perform a set of experiments using several population sizes [37],
[38], [39]. Each algorithm is executed 30 times with each con-
figuration, and then the comparison between the configurations
is done based on IGD using the Wilcoxon test. In order to have
significant results for each couple (algorithm, project), we use
the trial and error method to obtain a good parameter config-
uration. Since we are comparing different search algorithms,
we classify parameters into common parameters and specific

TABLE ill
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TABLE IV

PARAMETER SETTINGS
Parameter NSGA-111 NSGA-11 IBEA
Pppulation 200 200 | 100
Size \ |
Maximum
Number  of 2500 2500 2500
Generations
Crossover
Probabiliy | %% | % | oo
Mutation X )
Probability 0.05 0.01 0.01
Crossover
Operator | Integer SBX
Mutation Op- .
er;tf,irlon P Integer Polynomial

parameters. If the results are similar for a given combination
of parameters, the execution time was considered. As evolu-
tionary operators, we adopted Integer SBX crossover, Integer
Polynomial mutation, and binary tournament for selecting the
individuals [40] because they have been designed to work with
integer solutions. Therefore, the list of selected parameters
used to answer the stated research questions is described in
Table IV.

As we have also measured the execution time, the algorithms
were executed in a machine with an Intel(R), Core(TM) i7-
5930 K, CPU 3.50 GHz with 40 Gb RAM.

E. Statistical Tests

Since meta-heuristic algorithms are stochastic ones, they can
provide different results for the same problem instance from
one run to another. For this reason, our experimental study is
performed based on 30 independent simulation runs for each
problem instance. The obtained results are statistically analyzed
using the Wilcoxon rank-sum test [41] with a 99% confidence
level(a = 1%).Thelatter verifies the null hypothesis HO thatthe
obtained results of two algorithms are samples from continuous
distributions withequal medians,against the alternative that they
are not Hl. The p-value of the Wilcoxon test corresponds to
the probability of rejecting the null hypothesis HO while it is
true (type I error). A p-value less than or equal to a(<= 0.01)
means that we accept Hl and reject HO. However, a p-value that
is strictly greater than a (> 0.01) means the opposite. In fact,
for each problem instance, we compute the p-value obtained by
comparing NSGA-II and IBEA search results with NSGA-ill
ones. This way, we determine whether the performance dif-
ference between NSGA-ill and one of the other approaches is
statistically significant or just a random result.

F. Results

1) Results for RQJ: Table V summarizes the results of mean
values and standard deviations for HV, IGO, and IC indicators
over 30 independent simulation run where the bold values rep-
resent the best ones. The results of Table V are based on the
consideration of all 4 objectives for the evolutionary algorithms.
The objectives values were normalized between O and 1 and set
to be minimized; the order of the objectives is not important
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and has no impact on the results. The users can select the best
solution based on their preferences (fitness function values) and
programming behavior from the non-dominated (trade-off) set
of solutions. All the results were statistically significant on the
30 independent simulations using the Wilcoxon rank sum test
with a 99% confidence level (a< 1%).

Whencomparing NSGA-III againstNSGA-II andIBEA using
all three performance indicators, it is clear that NSGA-11 has the
weakest performance. On small-scale docker projects including
up to 4 containers (e.g., docker-bro, miso-lims, docker-flow-
letsencrypt, docker-laravel, re-ca-blinds) all algorithms present
similar results for IGO, HV, and IC. For example, for the
re-ca-blinds, both algorithms give the best results in terms of
the three quality metrics (0 for the IGO, 0.065 for the HY,
and 1 for the IC). On medium-scale docker projects with up to
7 containers (e.g., e-petitions, compose-magenta, hcxp/hcxp),
NSGA-ill and IBEA present similar results, and both provide
better results than NSGA-II. For hexp/hexp project, NSGA-ill
and IBEA output as results 0, 0.078, and 1 for the IGO, HV, and
IC metrics compared to 0.056, 0.714, and 0.833 for NSGA-11
respectively with the same metrics. Furthermore, the project
compose-magenta shows that both many objectives algorithms
output0 for the IGO, 0.078 for theHV, and 1for the IC compared
to 0.056, 0.071, and 0.833, respectively, when NSGA-II is used.
For large-scale docker projects, NSGA-III is significantly better
than NSGA-IT and IBEA on most projects with a large number
of containers (e.g., hanna-agency, Terraform-linode-oextcloud,
docker-prestashop,and stencila/hub). Considering the example
of the project "znly/docker-druid," NSGA-III outperformed both
other algorithms by providing as results 0, 0.146, and 1 for
1GO, HY, and IC compared to 0.004, 0.144, 0.978, and 0.103,

0.135 AND 0.806 respectively for both IBEA, NSGAII. This
outcome is consistent with existing studies in other domains
where NSGA-11 is not able to handle more than 2-3 objectives.

For most of the test results, IBEA evaluation was consis-

tent with the NSGAII algorithm and presented similar results,
whereas, for the other docker projects, NSGA-ill outperformed
both algorithms. This could be explained by the interaction
between (1) Pareto dominance-based selection and (2) refer-
ence point-based selection, which is the distinguishing feature
of NSGA-IIT compared to other existing many-objective algo-
rithms. For a better comparison between NSGA-III, and IBEA,
sincethey showed similarresults in different projects, we studied
the execution time of all many/multi-objective algorithms used
in our experiments. The execution time is critical when using
evolutionary algorithms. This metric is important to compare
the algorithms regarding the spread of identifying scheduling
solutions. It is important to give not only efficient scheduling of
the containers butalsoa fastandsmooth reallocation required for
normal behavior of the applications deployed in the containers
when rescheduling.

Fig. 6 shows the average running times of the different al-
gorithms, over 30 runs, on the different projects used in our
experiments. It is clear from Fig. 6 that NSGA-ill is the fastest,
on average, compared to NSGAII and IBEA.

For hexp/hexp project, NSGA-III output ran in 122 seconds
compared to 145 seconds for 145 and 133 respectively, for
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TABLEV

HV, IGO, AND IC MEAN VAWES WITH NSGA-IIl, NSGA-Il, AND IBEA

I - NSGAIII JBEA NSGAII

Docker Project IGD HV IC IGD HV IC IGD HV IC

j terratorm-linode-nextcloud | 0.028:1:0.013 [ 0.123:1:0.013 [ 0.942:1:0.013 | 0.0s1:1:0.010 10.124:1:0.010 1 0.858 :1:0.010 [ 0.089:1:0.013 10.123 :1:0.013 [ 0.725:1:0.013
docker-grocery 0.007:1:0.000 | 0.150:¢ 0.000 0.987 + 0.000 [ 0.013:t 0.000 0.150 + 0.000 0.980+ 0.000 | 0.141:¢0.000 0.150+ 0.000 0.800% 0.000
T che-utilities 0.000 :1: 0.000 | 0.063 :1: 0.000 I 1.000 £ 0.000 | 0.000:1: 0.000 I 0.063 :1: 0.000 11.000 .1:0.000 | 0.118.1.0.00010.031:1:0.000 I 0.500 1. 0.000
docker-bro 0.000 :1: 0.000 | 0.065:1:0.000 1.000:1:0.000| 0.000 :1: 0.000 0.065:1:0.000 1.000 :: 0.000 | 0.000:1:0.000 0.065:1:0.000 1.000 £ 0.000|
Tmiso-Tns 0.000 :1: 0.000 | 0.us:1:0.000 11.000 * 0.000 | 0.000 :I: 0.000 I O.U5 :1:0.000 11.000 i 0.000 | 0.000:1:0.000 I 0.12s :1:0.000 1 1.000  0.000
screenlv-ose 0.000:1:0.000 | 0.111:1:0.000 1.000 £ 0.000 | 0.008 :1:0.000 0.111:1:0.000 0.987:1:0.000 0.128:1: 0000 0.111:1:0.000 0.793 = 0.000
I pju 0.000:1: 0.000 | 0.089:1:0.000 11.000:1: 0.000 | 0.000:1:0.000] 0.089:1:0.000] LO0OO:I: 0.000 | 0.098 :1:0.000 1 0.044 :1:0.000 1 0.625:1:0.000
docker-flow-letsencrypt 0.000:1: 0.000 | 0.065 0.000 1.000 + 0.000 | 0.000:1:0.000 0.065:1: 0.000 1.000:1: 0.000 | 0.000:1:0.000 0.065 :I: 0.000 1.000+ 0.000
J hanna-agency 0.000:1: 0.000 | 0.150:1:0.000 1 0.987:1:0.000 | 0.013 :1:0.000 I 0.150:1:0.000 1 0.980:1:0.000 | 0.141:1:0.000 1 0.150:1:0.000 1 0.800 :1:0.000
stencila’hub 0.023£0.001| 0.144:1:0.001 0.644+ 0.001 0.021:1:0.007 0.138+ 0.007 0.612 % 0.007 | 0.054+ 0.020 0.108+ 0.020 0.355+ 0.020
T eventrack 0.000:1:0.000 [ 0.074:1:0.000 11.000 + 0.000 [ 0.002:1:0.000 T 0.074:1:0.000 T0.993:1:0.000 | 0.176:1:0.000 T'0.074 :1:0.000 T 0.600 :1:0.000
docker-laravel 0.000:1:0.000 | 0.065:1:0.000 1.000:1:0.000 | 0.000:1:0.000 0.065:1: 0.000 1.000 :I: 0.000 | 0.000:1:0.000 0.065:1:0.000 1.000 :I: 0.000
Trcca-Dlmas 0.0001: 0.000 | 0.065:1:0.000 11.000:1:0.000 | 0.000:1:0.000 I 0.065 :1:0.000 11.000 :1:0.000 | 0.000:1:0.000 I 0.063 :1:0.000 I 1.000:1:0.000)
Compose-magento 0.000:1: 0.000| 0.078:1:0.000 1.000 1: 0.000| 0.000:1:0.000 0.078:1:0.000 1.000:1: 0.000| 0,056:1:0,000 0.714:1:0.000 0.833:1:0,000
TeShopModernizing 0.0001: 0.000 | 0.083:1:0.000 I1.000:1:0.000 | 0.000:1:0.000 I 0.083 :1:0.000 11.000:1:0.000 | 0.228 £0.000 I 0.005:1:0.000 10.750 :1:0.000
docker-gitlab 0.000:1: 0.000| 0.078::0.000 1.000 :1: 0.000| 0.000:1:0.000 0.078:1: 0.000 1.000:1: 0.000|] 0.056 :1:0000 0.714:1:0.000 0.833 £ 0.000
j hexp/hexp 0.000:1: 0.000 | 0.078:1:0.000 11.000:1: 0.000 [ 0.000:1:0.000 10.078:1: 0.000 | LOOO:1: 0.000 | 0.056 :1:0.000 10.114:1:0.000 | 0.833:1:0.000
froghouse-lightning-talk 0.000+ 0.000| 0.083:1:0.000 1.000 :1: 0.000 | 0.000:1:0.000 0.083:1:0.000 1.000:1: 0.000 | 0.228 + 0.000 0.000z 0.000 0.750+ 0.000
] Hygicia/Hygieia 0.000 =+ 0.000 | 0.083:1:0.000 11.000 = 0.000 [ 0.000:1:0.000 1 0.083:1: 0.000 11.000:1:0.000 | 0.228:1:0.000 10.000:1:0.000 1 0.750:1:0 000
bartTC/dpaste 0.000 = 0.000 | 0.083:1:0.000 1.000 + 0.000| 0.000:1:0.000 0.083:1:0.000 1.000:1:0.000| 0.228:1:0.000 0.000:1:0.000 0.750:1:0.000
j znly/ docker-druid 0.000:1: 0.000 | 0.146:1: 0.000 11.000:1:0.000 | 0.004:1:0.004 10.144:1:0.004 [ 0.978:1:0.004 [ 0.1m:1:0.024 10.135:1:0.024 1 0.806 :1:0.024
gogo-garage-opener 0.000:1:0.000 | 0.083:1:0.000 1.000:1:0.000 | 0.000:1:0.000 0.083:1:0.000 1.000:1:0.000| 0.228+ 0,000 0.000:1:0.000 0.750:1: 0,000
T detain 0.000:1: 0.000 | 0.083:1:0.00011.000:1: 0.000| 0.000:1:0.00010.083:I: 0.000 1 1.000:1 0.000| 0.228:1:0.000 1 0.005 :1:0.000 1 0.750 % 0.000
Utacket/diacket 0.000:1: 0.000| 0.083:1:0.000 1.000:1 0.000| 0.000:1:0.000 0.083:1: 0.000 1.000:1: 0.000| 0.228:1:0.000 0.000:1:0.000 0.750:1:0.000
T p6spy/ pospy 0.000:1:0.000 | 0.078:1:0.000 11.000:1:0.000 | 0.000:1:0.000 1 0.078:1:0.000 11.000 :1:0.000 | 0.056:1:0.00010.714:1:0.000 1 0.833 :1:0.000
‘memodir/cv 0.000:1: 0.000| 0.083:1:0.000 1.000:1: 0.000| 0.000:1:0.000 0.083:1: 0.000 1.000:1: 0.000| 0.228:1:0.000 0.005:1:0.000 0.750% 0.000
Jdocker_prestashop 0.091:1: 0.000| 0.210:1:0.000 1 0.696:1:0.000 [ 0.084:1:0.000 10.210:1:0.000 1 0.654:1:0.000 [ 0.108 :1:0.000 1 0.210:1:0.000 10.583 :1:0.000
artifactorv-<locker 0.000:1: 0.000 | 0.083:1:0.000 1.000 :I: 0.000 | 0.000:1:0.000 0.083:1:0.000 1.000:1:0.000 | 0228:1:0.000 0.005:1:0.000 0.750+ 0.000
j magento2-apache-dev 0.000:t 0.000| 0.083+0.000 11.000 + 0.000| 0.000:1:0.000 10.083:1:0.000 11.000:1:0.000 | 0.228 :1:0.000 1 0.005:1:0.000 1 0.750:1:0.000
double_entry 0.000:t 0.000| 0.083:1:0.000 1.000:1: 0.000 [ 0.000 + 0.000 0.083% 0.000 1.000:1:0.000f 0.228 + 0.000 0.005+ 0.000 0.750  0.000
J camd67/ moebot 0.000:1:0.000 | 0.083:1: 0.000 11.000:1:0.000 [ 0.000:1:0.000! 0.083:1:0.000 11.000:1:0.000 | 0.228:1:0.000 1 0.0051:0.000 I 0.750:1: 0.000
rhodonea mapper 0.000:t 0.000| 0.083:t 0.000 1.000:1:0.000 0.000:t 0.000 0.083:t 0.000 1.000:1:0.000| 0,228:t 0,000 0.005:t 0.000 0.750+ 0.000
JOOCT<erspace 0.000:t 0.000| 0.065:t0.000 11.000 = 0.000| 0.000:t 0.000 I 0.065:t 0.000 11.000:t 0.000 | 0.000:t 0.000 1 0.065:t 0.000 11.000:1:0.000
sakuya-blog 0.000:t 0.000| 0.083:t 0.000 1.000:1: 0.000| 0.000:t0.000 0.083:1:0.000 1.000:1:0.000 | 0,228:1:0,000 0.000:1:0.000 0.750+ 0.000
Tmoni,;odm 0.0001: 0.000 | 0.065:1:0.000 11.000:1:0.000 | 0.000:1:0.000 I 0.065:1:0.000 11.000:1:0.000 | 0.000:1:0.000 1 0.065 :1:0.000 1 1.000:1:0.000
T:owcbapi 0.000:1: 0.000| 0.078::0.000 1.000:1:0.000| 0.000:1:0.000 0.078:: 0.000 1.000:1: 0.000| 0.056:1:0.000 0.714:1:0.000 0.833 % 0.000
Trails_event store 0.000: 0.000| 0.078:1:0.000 11.000:1:0.000 | 0.000:1:0.000 10.078:1:0.000 1 1.000:1:0.000 | 0.056:1:0.000 10.714 1:0.000 I 0.833:1:0.000
pyworkplace 0.000 :0.000 | 0.078::0.000 1.000 1 0.000 | 0.000:1:0.000 0.078 1 0.000 1.000 :I- 0.000| 0056:1:0.000 0.714:1:0.000 0.833:1:0.000
J azerothcore-wotlk 0.000:t 0.000| 0.065+0.000 11.000 % 0.000 | 0.000:1:0.000 1 0.065 :1:0.000 11.000:1:0.000 | 0.000:1:0.000 1 0.065:1:0.000 11.000 :1:0.000
dj farm example 0.000:t 0.000| 0.083:1:0.000 1.000:1: 0.000 [ 0.000:t 0.000 0.083:1: 0.000 1.000:1:0.000| 0.228 + 0.000 0.000+ 0.000 0.750:1:0.000
1 rosterbater 0.000 = 0.000 [ 0.083 :1: 0.000 11.000:1:0.000 | 0.000:1:0.000 1 0.083:1:0.000 11.000 = 0.000 | 0.2281:0.000 1 0.0001:0.000 I 0.750 -1: 0.000
laravel-meetup-v.2.0 0.000:t 0.000| 0.083:t 0.000 1.000+ 0.000 | 0.000:t 0.000 0.083% 0.000 1.000+ 0.000| 0.228+ 0.000 0.000:1:0.000 0.750+ 0.000
] mastodon 0.000:t 0.000 0.078:1:0.000 11.000 + 0.000 [ 0.000:1:0.000 T 0.078:1:0.000 11.000:1:0.000 | 0.056:1:0.000 T0.114:1:0.000 T 0.833 :1:0.000
timetracker 0.000:1: 0.000| 0.083:1:0.000 1.000:1:0.000| 0.000:1:0.000 0.083:1:0.000 1.000:1: 0.000 | 0,228:1:0,000 0.000:1:0.000 0.750 + 0.000
T graylog-Kibana 0.000 1: 0.000 | 0.078:1:0.000 I1.000 £ 0.000 | 0.000:1:0.000 I 0.078:t 0.000 11.000:1:0.000 | 0.100: 0.000 10.078:1:0.00010.714 % 0.000
e-petitions 0.000:1: 0.000| 0.078::0.000 1.000 :I: 0.000| 0.000:1:0.000 0.078:t 0.000 1.000:t 0.000| 0.095 0.000 0.078:t 0.000 0.714 0.000|
Tver:asbriancp/rometheus 0.000 - 0.000| 0.0781-0.000 11.000 - 0.000 | 0.0001: 0.000 1 0.078 - 0.00071 1.0001-0.000| 0.056.1:0.000 1 0.714 % 0.0001 0.833 £ 0.000
github-metrics 0.000:1: 0.000 | 0.065:1:0.000 1.000 :I: 0.000| 0.000:1:0.000 0.065:1: 0.000 LOOO:I: 0.000 [ 0.000:1:0.000 0.065 :1: 0.000 1.000:1: 0.000

The results were statistically significant on 30 independent simulation runs using the WILCOXON rank sum test witha 99% confidence level (a< 1%).
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(b) Real-time resource usage per node.
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Fig. 6.
sum test witha 99% confidence level (a< 1%).

IBEA and NSGA-II. Furthermore, theprojectcompose-magento
shows the out-performance of NSGA-II with 107 seconds com-
pared to 145 seconds for 152 and 143, respectively, for IBEA and
NSGA-II. Also, NSGA-ill is significantly better than NSGA-II
and IBEA on most projects with a large number of contain-
ers (e.g., hanna-agency, Terraform-linode- nextcloud, docker-
prestashop, and stencila/hub). Considering the example of the
project "znly/docker-druid", NSGA-ill outperformed both other
algorithms by providing results92 seconds compared to 126 and
132 seconds, respectively, for both IBEA and NSGAII.

This observation could be explained by the computational
effort required to compute each solution's contribution (IGD)
when using IBEA. Furthermore, NSGA-II may take longer time
to find relevant solutions than many-objective algorithms due
to the limited spread of the solutions in the Pareto front when
using more than 3 objectives. We note that the experiments were
conducted on a single machine (i7 - 2.70 GHz, 8.0 GB - DDR3,
SSD - 520 MBY/s); thus, the different algorithms will run faster
on better hardware configurations.

Key findings: NSGA-III outperforms the different search
algorithms based on NSGA-II and IBEA regarding the qual-
ity and spread of identified scheduling solutions in the Pareto
front.

2) Results forRQ2: In thisresearch question, wecompare the
NSGA-ill results against the Docker Swarm's default scheduler
on 30 independent runs.

Average Computational time values on 30 independent runs. The results were statistically significant on 30 independent runs using the Wilcoxon rank

We used the first three objectives NON, FRQ, and COP. CHG
is not considered in this experiment because CHG corresponds
to the number of changes required to reschedule the containers
from a swarm state P generated by the default scheduler to a new
swarm stategenerated byour tool. We believe that it is important
to consider only the required changes when moving containers
between nodes. Thus, we find the best and fastest solution
that reallocates the containers for better resource usage while
keeping the normal behavior of the applications deployed in
the containers. However, we cannot compare the docker default
scheduler with our new scheduler using this metric since we are
calculating these changes when moving from the default state
presented by the docker.

The default Docker Swarm'sscheduler is basedon a determin-
istic adhoc approach based on filters and strategies. Filters are
used to narrow the domain of nodes for scheduling by taking the
nodeandcontainer properties as inputs, among other parameters.
Strategies are used to decide on which node the next container
runs using three alternatives: random, spread, and binpack.

As described in Table VI, our proposed approach provides
significant improvements in terms of the number of selected
nodes (NON), the average number of containers per node (FRQ),
and the node's coupling values (COP) compared to Docker
Swarm's default scheduler. This is an interesting result confirm-
ing that NSGA-ill can find very good compromises between
the different conflicting objectives and outperform those pro-
duced by the Docker default scheduler. In some cases, applying
NSGA-ill solutions give slightly higher values for the average
number of containers per node (e.g., docker-grocer,cbe-utilities,
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TABLE VI

MEAN VALUES OF NSGA-III OVER 30 INDEPENDENT SIMULKI10N RUNS

NUMBER OF SELECTED NODES{NON), AVERAGE NUMBER OFCONTAINERS PER NODES (FRQ), NUMBER OF COUPLING (COP)

Docker Frojects Our Approach Default Scheduler
[ NON(S) [ FRQ(S) [ COP({5) [ NON(5) [ FRQ(S COP(5) |
terraform-Tinode-nextcloud | 0.66666 | 0.00000 0.00000 | 1.00000 | 0.1178F . |
docker-grocery 066666 025000 | 0.00000 100000  0.117 !
| cbe-utilities [ 066666 | 0.09999 | 033333 | 1.00000 | 0.09428 | 0.83333
docker-bro 0.66666  0.09999 | 0.80000  1.00000  0.09428  1.00000
[ miso-Tims [ 033333 [ 0.00000 | 0.00000 [ 1.00000 [ 0.00000 [ 1.00000
screenly-ose 066666 0.00000 | 0.33333 T.00000 011785  (.66666
P [ T.OOO00 | 013608 | 0.71428 | L.00000 | 0.00000 | 0.85714
docker-flow-letsencrypt 1.00000 0.09428 | 060000 1.00000 0.09428  1.00000
[ hanna-agency [ 0.66666 | 0.16666 | 0.00000 | 1.00000 [ 0.00000 [ 0.00000
docker-laravel 1.00000 0.06734 0.25000 1.00000 0.06734 0.50000
| re-ca-blinds [ 066666 | 0.16666 | 0.00000 [ 1.00000 | 0.00000 [ 0.00000
eventrack 0.33333  0.00000 | 0.00000  1.00000  0.00000  1.00000
[ stencila/hub [ 0.66666 | 0.09999 | 0.40000 1.00000 [ 0.09428 [ 0.60000
COmpose-magento 1.00000 0.04285 | 0. ] ] ;
[ eShopModernizing [ 066666 [ 0.07142 | D.00000 [ 1.00000 [ 0.06734 [ 0.00000
docker-gitlab 033333 000000 | 0.00000 100000 0.I1785  1.00000
[hexp//hexp [ 033333 [ 0.00000 [ 0.00000 [ T.00000 | 011785 [ 1.00000
froghouse-lighning-talk T.00000 08856 | 0.00000 1.00000  0.09428 0.50000
[ Hygieia/Hygieia [ 033333 | 0.00000 0.00000 | 1.00000 [ 011785 [ T1.00000
bartTC/dpaste 033333 0.00000 [ 0.00000 1.00000 011785  1.00000
[ znly /docker-druid [ 033333 [ 0.00000 [ 0.00000 [ 1.00000 [ 0.II785 [ I1.000O0
arage-Opener 0.66666  0.00000 | 0.00000  T.00000  0.00000 0.00000
elain [ 0.33333 | 0.00000 | 0.00000 | 1.00000 [ O.T1785 [ 1.00000 |
Djacket/djacket 0.66666 000000 | 0.00000 100000 OIT i
[ péspy/péspy [ 033333 | 000000 | 000000 | 100000 | O.11785 | 0.00000
memodir/cv 1.00000  0.09428 | 0.00000 1.00000  0.09428  0.00000
| docker_prestashop [ T.00000 | O.11785 | 0.00000 | 1.00000 [ 0.117 ]
artifactory-docker 1.00000 0.08570 0.10000 1.00000 0.04285 0.30000
| magento2-apache-dev [ 033333 | 0.00000 | 0.00000 | 1.00000 | O.T178: i
double_entry 0.66666 0.00000 0.00000 1.00000 0.11785 0.00000
[ camd67 /moebot [ 066666 | 0.00000 | 0.00000 [ 1.00000 ] 011;%:%:
rhodonea_mapper 066666 025000 | 0.00000 100000 O.IT p
[ dockerspace [ 066666 | 0.00000 | 0.00000 | 1.00000 [ O.T1785 [ 0.00000 |
sakuya-blog 066666 025000 | 0.00000 100000 O.I1 ;
mon%odm [ 066666 | 0.00000 | 0.00000 | T.00000 | O.II785 | 0.00000 |
gowebapi 066666 025000 | 0.00000  1.00000 OIT !
| rails_event_store [ 066666 | 0.Z5000 0.00000 | 1.00000 | 011785 | 0.50000
pyworkplace 0.33333  0.00000 0.00000 .66666 0.00000  0.00000
[ azerothcore-wotlk [ 066666 | 0.00000 | 0.66666 | 1.00000 [ 0.11785 [ 0.66666 |
dj_farm_example 066666 025000 | 000000 T1.00000 O.117 :
| rosterbater [ 066666 | 0.04545 | 000000 [ 1.00000 [ 0.04285 [ 0.00000
laravel-meetup-v.2.0 066666 025000 | 0.00000 100000 011785  0.50000
| mastodon [ 066666 | 0.00000 0.00000 T 1.00000 | 011785 | 0.00000
timetracker 1.00000 0.11785 0.00000 1.00000 0.11785 1.00000
[ graylog-kibana [ 033333 | 0.00000 0.00000 | 1.00000 | 0.09428 [ 1.00000
e-petitions 033333 000000 | 000000  T.0D000  0.09428 T1.00000
| vegasbrianc/prometheus [ 0.66666 | 025000 | 0.00000 | 1.00000 [ 0.I11785 | 0.50000
github-metrics 1.00000  0.00000 | 033333 1.00000  0.00000  0.50000

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test with a 99%

confidence level (a< 1%).

screenly-ose, pju and examples shown in Table VI). This can be
explained by the fact that decreasing the number of depending
containers allocated on different nodes and decreasing the num-
ber of selected nodes will automatically increase the number of
containers per node. Overall, the NSGA-III algorithm was able
to find a good trade-off between all four objectives since most
of them were significantly decreased comparing the initial state
of the cluster before rescheduling.

Since comparing the performance of NSGA-ill with the
default scheduler using similar evaluation metrics to the fit-
ness functions is not sufficient, we considered three evaluation
metrics in terms of CPU usage, memory usage, and network
transmission. For this purpose, we selected ten projects with
different sizes and numbers of containers in a cluster composed
of 3 nodes. The results described in Table VII provide for every
project the % of CPU usage, memory usage (average of the
resources consumption for the three nodes), and the network
usage (received and transmitted values in bytes per second) in
the cluster using NSGA-III versus the default Docker swarm

scheduler. Table VIII describes also in more details the % of
resource consumption per node.

We found interesting results as described in Table VII, in-
cluding a decrease in all resource usage for almost all projects
using our approach compared to the Docker Swarm scheduler.
Considering the example of project "cbe-utilities," the percent-
age of CPU usage for the cluster decreased from 16.89% to
13.90%, and the decrease in the memory usage exceeded 6%
(from 40.3% to 33.90%) after applying our new many-objective
approach. Further details in Table VIII about theresults per node
are described. We notice that the CPU usagefor both node 2 and
node 3 decreased from 14.860% and 15.130% to 11.5% and
5.650%, respectively, with a little increase within node 1 which
can be explained by an increase in the number of containers
in node!. Regarding memory usage, we notice a decrease for
node 3 to half (from 40.5% to 20.210%) while keeping approx-
imately the same memory usage for both other nodes. Also, in
other projects such as docker-flow-letsencrypt, e-petitions, and
docker-laravel, we notice a decrease of approximately 3% in the
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TABLEVIL
AVERAGE OF CPU, MEMORY, AND NEIWORK USAGES COMPARING OUR APPROACH AND SPREADIN THE 0. USTER THE RESUCTS WERE STATISTICALLY
SIGNIFICANT ON 30 INDEPENDENT RUNS USING THE WILCOXON RANK SUM TEST WITH A 99% CONFIDENCE LEVEL {ct < 1%)
Network Usage (bytes/s)
Docker Project | CPUUsage | Memory Usage | Received Transmitted
Our Our Our Our
Appr. Spread Appr. Spread Appr. Spread Appr. Spread
graylog-kibana 10.15% | 10.60%  43.36% | 50.09% 1164.92 | 1603.96] 1161.17 | 1652.10
je-petitions | 688% | n2% | 47.63% |[4835% | 84670 | 1294.86] 1160.09 | 1340.18
cbe-utilities 13.90% | 16.89%  33.90% | 40.30% 1179.04 | 1539.35| 1117.37 | 1661.11
jdocker-bro | 1497% | 17.65% | 4431% | 46.63% | 1112.26 | 1610.29] 1162.84 | 1415.64
miso-lims 2.34% | 238%  15.36% | 20.60°%% 521.93 | 940.86| 102.54 | 340.15
[ screenly-ose | 677% | 7.68% | 29.39% [ 29.79% 1 1099.01 | 1505.93] 1334.49 | 1429.68
pju 20.18% | 20.78%  36.84% | 42.53%  719.01 | 1459.63| 89531 | 1424.31
jdocker-flow-letsencrypt | 14.97% [ 17.65% | 4431% | 46.63% | 664.90 [ 1006.96 720.01 | 868.74
hanna-agency 2.31% 2.38%  15.36% | 20.69% 1319.59 | 2158.03| 1386.06 | 1975.92
[ docker-laravel | 20.60% | 23.65% | 45.63% | 52.s00;. 1 664.90 | 1006.96[ 720.01 | 868.74
TABLE VIII
CPU, MEMORY, AND NETWORK USAGES COMPARING OUR APPROACH AND SPREAD FOR EVERY NODE
Network Usage (bytes/s)
Docker Project Nodes | CPU Usage | Memory Usage I| Received | Transmitted
Our Appr. Spread Our Appr. Spread OurAppr. Spread Our Appr. Spread
1 19.700% 15.140% | 53.390% 51.090% | 1537.520 | 2632.610 |  3366.580 14830.660
graylog-kibana 2 5.700% 11.930% 40.850% 40.500% 997.570 1228.150 59.120 60.610
3 | 5.070% 4.600% 35.830% 40.500% 959.680 960.120 57.820 65.050
1 15.890% 11.140% 62.090% 62.390% 1542.520 1752.320 3366.580 3892.660
e-petitions 2 2.700% 11.930%  40.500% | 41.850% 997.570 1260.150 59.850 62.420
3 2.070% 4.600% 40.300% 40.830% 658.680 872.120 53.840 65.444
1 24.560% | 20.660% |  41.560% 40.470% | 1609.970 1832780 | 3233.000  4830.660
cbe-utilities 2 11.500% | 14.860%  40.120% | 40.500% 966.870 1825.150 58.660 91.610
3 | 5.650% 15.130% 20.210% 40.621% 960.290 960.120 60.442 61.050
1 21.520% 17.820% 51.850% 55.230% 1456.520 2242.61 3366.580 4120.66
docker-bro 2 13.140% 15.620% 40.500% 41.850% 1100.570 1628.15 59.120 63.610
3 10.260% 19.520% 40.600% 42.830% 959.680 960.12 62.820 62.650
1 5.454% 2.200% 25.090% 21.390% | 809.720 1100.320 | 210.970 892.660
miso-lims 2 0.256% 2.500% 11.500% 19.850% 97.410 960.150 35.450 62.780
3 1.233% 2.450% 1 9.500% 20.830% 658.68 612.250 62.200 65.000
1 11.500% | 11.620% 38.090% | 38.500%  1409.970 | 1632.520  3830.660  4125.650
screenly-ose 2 10.700% 5.820% 37.000% 36.850% 1266.780 1925.150 99.800 75.125
3 1.120% 5.600% 5.300% 12.830% 620.290 960.120 73.000 88.254
1 24.820% 21.337% | 41.120% 40.470% | 1229.520 1856.610 | 2563.000 4120.660
piu 2 20.320% | 21.023% 25200% | 42.500%  1100.570 | 1562.150 60.120 89.610
3 17200% | 20.130%  44200% | 44.620% 450.680 960.120 62.820 62.650
1 21.520% | 17.820%  51.850% | 55.230% 537.320 1132.610  2100.100  2530.560
docker-flow-letsencrypt 2 13.140% 15.620% 40.500% 41.850% 937.700 1228.150 32.120 40.610
3 10.260% 19.520% 40.600% 42.830% 459.680 660.120 27.820 35.050
1 5.454% 2200% 1 25.090% | 21.390% ] 2001.520 | 3500.810 | 3366.580  4730.660
hanna-agency 2 0.256% 2.500% 11.500% 19.850% 997.570 1428.150 478.120 650.610
3 1.233% 2.450% 9.500% 20.830% 959.680 1545.120 313.487 546.500
1 26.560% 25.230% 66.360% 62.500% 537.320 1132.610 2100.100 2530.560
docker-Jaravel 2 12.450% 24.180% 25.250% 47.000% 937.700 1228.150 32.120 40.610
3 22.780% 21.550% 45.300% 48.000% 459.680 660.120 27.820 35.050

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test witha 99% confidence level (a< 1%).

CPU usage for the hole cluster when using our approach and a
memory decrease that exceeds 2%, 2%, and 7% respectively.
The results for each node for these projects detailed in Table
VIII are promising. Continuing with the example docker-flow-
letsencrypt, the CPU usage for both nodel and node2 was de-
creased from 15.620% and 19.520% to 13.140% and 10,260%,
respectively, and the memory usage for node 1 was decreased
from55.23%51.850 t055.230%. Also, fore-petition, weobserve
a decrease that exceeded 9% for node 2 in terms of CPU (from
11.930% to 2.7% and from 4.6 to 2.070% for node 3) and

approximately the same average of memory consumption for
both nodes. The balance in our approach between decreasing
the number of nodes and the average of containers per node
succeeded in distributing equally the containers achieving a
balanced load between nodes that leads to reduced resource
usage and more efficient utilization of these resources in the
whole cluster. For a few projects (e.g., graylog-kibana, miso-
lims, hanna-agency), the results show unremarkable differences
between the two approaches in terms of CPU. These results
can be explained by the low number of containers used in such
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projects. Thus, we obtained a very similar allocation of nodes
for both approaches that do not affect resource usage by keeping
almost the same number of containers per node.

We have noticed a significant decrease in network transmis-
sion for all projects using our approach compared to the Docker
swarm scheduler. For instance, the project "cbe-utilities" bas an
average of received and transmitted network in the cluster that
decreased from 1539.350 and 1661.106 bytes per second while
the docker strategy provided values of 1179.043 and 1117.367
(bytes per second). Table VIII summarizes the results for each
node separately. For the project graylog-k:ibana, for example,
the received network was decreased from 2632.610, 1228.150,
and 960.120 for node 1, node 2, and node 3 using the default
scheduler to 1537.520, 997.570, 959.680 respectively using
our approach. The Transmitted Network was decreased from
4830.660, 60.610, and 65.050 to 4830.660, 60.610, and 65.050
for each node, respectively (node 1, node 2, and node 3). The
decrease in the network 1/0 values is explained by the fact that
we are decreasing the container coupling in different nodes for
better communication between nodes.

Key findings: Our new many-objectiveapproach outper-
forms the docker default scheduler regarding resource usage:
the CPU, memory, and network transmission in the docker
cluster.

G. Threats to Validity

ConclusionValidity.Conclusion validity is concerned with the
statistical relationship between the treatment and the outcome.
We addressed conclusion threats to validity by performing 30
independent simulation runs for each problem instance and
statistically analyzing the obtained results using the Wilcoxon
rank sum test with a 99% confidence level (a< 1%). However,
the parameter tuning of the different optimization algorithms
used in our experiments creates another internal threat that we
need to evaluate in our future work. The parameters' values
used in our experiments are found by trial-and-error, which
is commonly used in the search-based software engineering
community. However, it would be an interesting perspective
to design an adaptive parameter tuning strategy [42] for our
approach so that parameters are updated during the execution in
order to provide the best possible performance.

Construct Validity. Construct validity is concerned with the
relationship between theory and what is observed. To evaluate
the results of our approach, we selected solutions at the knee
point when we compared our approach with fully-automated
scheduling approaches, but the users may select a different
scheduling solution based on their preferences to give different
weights to the objectives when selecting the best solution. To
mitigate this threat, we have to use the quality indicators of the
Pareto fronts when comparing the different search algorithms
and also the average values of the resource usage metrics.

External Validity. We selected such Docker projects because
they are developed considering several programming languages
and have been developed in the past 10 years. However, we
cannot state that this is enough to generalize the results since
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the site may not reflect real-world projects. To minimize such
threats, we tried to evaluate docker projects from different do-
mains and sizes. The use of larger docker projects should be
evaluated in a future experiment. Another threat is related to the
generalizability of our findings.

Another threat is that we did not include existing approaches,
including meta-heuristic algorithms and deep learning models,
in the validation because they use assumptions different from
ours. For instance, deep learning models require a very large
dataset that is not available in practice. The other search algo-
rithms use fewer objectives. Thus, they were considered as part
of the multiple formulations that we proposed in our benchmark.
We highlighted thelack of existing tools forcontainer scheduling
beyond Kubernetes and a few other commercial tools. None of
the existing approaches provided their tools for the community,
and they are very hard to replicate.

V. RELATED WORK

We summarize, in this section, the most relevant studies to
our approach, including two main categories of studies related
to 1) software workload balancing and 2) search-based software
engineering.

A. Software Workload Balancing

In this section, we focus on existing container scheduling
strategies In the last few years, Docker containerization bas
gained widespread popularity due to its remarkable features,
such as portability, high performance, agility, modularity, and
scalability, which pave theway for Docker to stepfurther to more
practical usage in the industry. Despite its quick growth, Docker
container scheduling is still a challenging problem, especially
in optimizing the usage of available resources.

There are some container scheduling tools such as Docker
Swarm developed by Docker [5], Mesos by Apache [6], and
Kubernetes by Google [7]. Generally speaking, despite their
efficiency, these strategies are not adequate to handle complex
application scenarios to enable adaptive scheduling strategies.

It is assumed that Docker Swarm has no prior knowledge
regarding the workload or thecontainer's resource requirements.
The onlyavailable scheduling strategy is Spread, which basically
schedules a service task based on spreading the number of
containers equally to all Docker hosts. All theextra configuration
has to be performed manually [8]. Thus, it is crucial to create
moresophisticated, high-level, and adaptive allocation strategies
to guarantee a balanced workload among devices, the service's
performance requirements, efficient communications between
containers, and more efficient utilization of resources in terms
of CPU and memory.

In their paper [43], Feifei Chen et al. propose a container
Scheduling Method in Edge Computing. Based on the Min-Min
algorithm, thisapproach aimsto placea container on the physical
machine with the most minor increase in energy consumption
by the Min-Min to reduce the energy consumption of the cluster.
It is an important approach but that targets only the power
consumption in edge devices. Our work went on a similar path,
but our target is to reduce the different resource consumption of
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the cluster, including CPU, memory, and network transmission,
so we handle more complex objectives simultaneously.

Sureshkumar et al. [23] introduced a new scheduling algo-
rithm based on load balancing. Their approach dynamically
controls the load of each container within a certain threshold in
thecluster bykeeping it not too high or too low. If thecontainer's
load is too high, another container is created to balance that load,
and if it is toolow, thecontainer will be closed to saveenergy.The
approach controls the energy consumption of the entire cluster
and the load balancing of the containers but does not consider
the problem of allocating a container after a new node is added
to the cluster. It will lead to the selection of an inappropriate
node.

Our work not only considers conflicting objectives but also
finds the best allocation of the containers depending on the
cluster properties in a dynamic way. It considers the addi-
tion/shutdown of nodes and the regular change in thecontainers'
resource consumption and properties. It dynamically finds the
best allocation of the containers depending on the updated
cluster properties.

Zhang et al. [12] proposed a solution to the scheduling prob-
lem based on a linear programming model. They designed a
container task scheduling algorithm that aims to reduce the con-
sumption of network transmission between server-side container
and client, network consumption of pulling the required images
from the remote repository, andenergy consumption of the node
itself. However, their work only simulates experiments using
MATLAB without validating the container scheduling process
in a notsimulated clusterenvironment. In our work, weevaluated
the approach using real-life docker containers and a cluster
environment for realistic validation.

Kaewkasi et al. [9] focused on applying meta-heuristic algo-
rithms. They adopted the Ant Colony Optimization algorithm
(ACO) to implement a new container scheduler for SwarmKit,
the purpose of which is to balance the use of resourcesso thatap-
plications in the container cluster will have better performance.
A more recent work introduced by Liet al. [11] is also based on
meta-heuristicalgorithms. This paper proposes a ParticleSwarm

Optimization-based container scheduling (PSO) algorithm of

the Docker platform to make the best use of each node's re-

sources, avoid the problem of insufficient resource utilization
and ensure a balanced load in the scheduling algorithm of the
nodes cluster compared to the default Docker Swarm scheduler.
Liu et al. [44] proposed a new container scheduling algorithm
based on multi-objective optimization, namely Multiopt. This
approach aims to optimize the performance of docker containers
using five key factors: the resource usage of every cluster node
(CPU, Memory), the clustering of containers, the association
between nodes and containers, and the time consumption trans-
mitting images on the network.

Guerrero et al. proposed a genetic algorithm approach to
implementing a container allocation strategyand elasticity man-
agement by optimizing the elasticity of the currently deployed
applications and maximizing thereliability of the micro-services
by avoiding single points of failure. However, the proposed
strategy is limited to only twoobjectives, while manyconflicting
criteria should be considered within the container's scheduling
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problem. Indeed, our approach considers the available resources
in terms of memory and CPU to balance the software load
between multiplenodes but alsoaims to reduce thechanges in the
current configuration (e.g., moving containers between nodes),
the communications between containers located in different
nodes (e.g., coupling) for network and security purpose.

B. Search-Based Software Engineering

Search-based software engineering (SBSE) is a growing field
about the design and application of computational search algo-
rithms to address software engineering problems [45]. A com-
prehensive survey about existing studies can be found in [46].
Existing studies cover almost the whole software life cycle,
including requirements engineering [47], software design [48],
web application testing [49], software refactoring [50], etc. As
discussed in the previous section, few studies addressed the
problem of software container scheduling using SBSE tech-
niques. Indeed, noneof theexistingstudiesformulated container
scheduling as a many-objective problem considering different
conflicting criteria. In the following, we will summarize some
of the existing studies on the design and application of many-
objective techniques in software engineering.

Different many-objective techniques are proposed in the liter-
ature.The first category is about objective reduction approaches.
These techniques mainly look for the minimal subset of con-
flicting objectives. The objective reduction approach initially
attempts to examine the degree of conflict among objectives to
eliminate objectives that do not construct the Pareto- front [51].
Regardless of the number of objectives, finding objective reduc-
tion opportunities in a problem has a favorable impact on search
efficiency, computational cost, and decision-making. Although
this technique has solved benchmark problems involving up
to 20 objectives, its applicability in real-world settings is not
straightforward, and it remains to be investigated since most
objectives are usually in conflict with each other [52].

With increasing objectives, the Pareto optimal approximation
involves investigating many Pareto-equivalent solutions. Con-
sequently, the numerous variety of solutions makes the choice
of the preferred alternative very bard for the human decision-
maker (DM). More practically, DMs are not usually interested
in the whole Pareto front rather than a portion of it that best
fits their preferences, called the Region of Interest (ROI). The
main idea is to incorporate the DM's preferences in the search
space to distinguish between Pareto equivalent solutions that
can evolve towards the ROI on problems involving more than
3 objectives [53]. Preference-based MOEAs have given many
interesting results when addressing concrete problems in several
engineering fields, including software design, by incorporating
designer preferences [54].

The new preference ordering relations is an alternative ap-
proach that takes into account additional information, suchas the
rank of the particular solution regarding the different objectives
and the related population [55] in order to overcome the inability
to differentiate between solutions with the increased of the
number of objectives; however, these methods do not necessarily
agree with to the DMs preferences. Another category of work
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is the decomposition technique that decomposes the problem
into several sub-problems that can be solved simultaneously by
using evolutionary algorithms' parallel search capability such
as MOEA/D [56].

The closest application of many-objective techniques to soft-
ware engineering is a study related to software modulariza-
tion [13]. In that work, the authors proposed to use coupling,
cohesion, history of changes, and other structural metrics as
fitness functions to guide the search toward finding relevant
code restructuring actions. Although applying many-objective
techniques in software engineering is not new, our study is
the first to formulate the container scheduling problem as a
many-objective one.

VI. CONCLUSION

In this article, we proposed a new dynamic workload balanc-
ing for containers that target more complex objectives than the
typical default scheduler of existing Docker technologies. Our
new approach aimed to achieve a balanced workload between
the cluster's nodes and more efficient utilization of resources.
Therefore, we considered in our approach to minimize the num-
ber of selected nodes to reduce resources consumption, minimize
the average of containers per node for a balanced workload be-
tween them, takingintoconsideration the dependencies between
containers and try to reduce the coupling (dependent containers
allocated to different nodes) to minimize the network transmis-
sion and finally minimize the number of changes between the
current scheduling and our approach (e.g., move container). The
experiments performed on 48 docker projects provides strong
evidence that our approach can significantly reduce resource
consumption (CPU, memory, network VO) compared with the
default scheduler and other existing techniques.

As part of our future work, we plan to generalize our results
with a more significant number of nodes and containers. We
are also planning to consider more complex constraints in the
scheduling based on real-world applications such as connected
vehicles.

Finally, we plan to extend our study and investigate the effi-
ciency of the proposed approach againstother non-optimization-
based algorithms, such as deep learning.
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