
2575 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL 16, NO. 4, JULY/AUGUST2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

S

Dynamic Software Containers Workload Balancing

via Many-Objective Search
Anwar Ghammame, Thiago FerreiraC, Wajdi Aljedaani, Marouane KessentiniC, and Ali Husain

Abstract-Software containers are becoming the newstate of the
art in the industry as they are extensively used to deploy systems.
Indeed, the use of containers enables better modularity, reusability,
and portability compared to other technologies. As the complexity
of software systems is dramatically increasing, it is critical to
enable optimal usage of the needed resources to execute them
such as memory and CPU. Thus, different scheduling strategies
are proposed to select the most suitable nodes to execute a set
of containers. For instance, the default strategy in the Docker
Swarm kit scheduling framework is based on an equal distribution
of the containers between nodes independent of their sizes and
consumed resources. However, balancing the containers' workload
is a complex problem due to the conflicting objectives of minimizing
the number of selected nodes, minimizing the number ofcontainers
per node, the numbe1·of changes compared to theoriginal schedule,
and the coupling between containers allocated to different nodes.
To deal with those conflicting scheduling objectives, we propose
a scheduler based on a many-objective optimization approach for
scheduling the execution of containers between multiple nodes. The
proposed approach aims at finding the best allocation for
containers in nodes that leads to efficient utilization of resources.
To evaluate our approach, we compared the performance of
multiple many and multi-objective techniques based on NSGA-11,
NSGA-111, and IBEA algorithms using 48 Docker-related systems
and the results show that NSGA-111 outperforms the other
algorithms in quality attributes as well as in CPU, Memory and
Network usage.

bzdex Tem1s-Container scheduling, docker, many-objective
optimization.

I. INTRODUCTION

OFrWARE containers are becoming the newstate of the art

in the industry as they are extensively used to deploy sys­

tems [l]. Indeed, the use of containers enables better modularity,

reusability, and portability compared to other traditional tech­

nologies [2]. For instance, the Docker container is considered

one of the most important pillars for software deployment as it

Manuscript received 21 October 2021; revised 6 December 2022;accepted 31

December 2022. Date of publication 17 February 2023; dateof current version

8 August 2023. Recommended for acceptance by E. Damiani. (Corresponding

author: Marouane Kesse11ti11i.)

Anwar Ghammam and Marouane Kessentini are with the Department of

Computer Science and Engineering, Oakland University, Rochester, MI 48309

USA (e-mail: aghammam@umich.edu; marouane@umich.edu).

Thiago Ferreira is with the College of Innovation and Technology, University

of Michigan-Flint, Flint, MI 48502 USA (e-mail: thiagod@umich.edu).

Wajdi Aljedaani is with the Department of Computer Science and Engineer­

ing, University of North Texas, Denton, TX 76203 USA (e-mail: wajdi.jl@

gmail.com).

Ali Husain is with the Ford MotorCompany, Detroit, MI 48126 USA (e-mail:

ahusain4@ford.com).

Digital Object Identifier 10.1109/fSC.2023.3237755

provides higher performanceand flexibility in comparison with a

traditional hypervisor-basedvirtualisation[l]. Thus, Docker and

the software containerizationtechnology are becoming the main

parts of the cloud strategies of most industry organizations [3].

Despite the benefits and popularity of using Docker containers,

there are several challenges associated with the optimal usage

of the resources consumed by this technology as a large number

of containers may need to be executed and orchestrated due to

the high modularity of Docker architectures [4].

Due to the dramatic increase in the number and size of

containers needed to build systems, there is a critical need for

efficient mechanisms to schedule and orchestrate the execution

of containers among many nodes in the cloud clusters. Thus,

several container scheduling tools are proposed, such as Docker

Swarm developed by Docker [5], Mesos by Apache [6], and

Kubernetes by Google [7]. Generally speaking, despite their

efficiency, these strategies are too simple to handle complex

container execution. It is assumed that Docker Swarm has no

prior knowledge regarding the workload or the container's re­

source requirements. The only available scheduling strategy is

called Spread, which basically schedules a service task based on

spreading the number of containers equally to all Docker hosts,

and all the extra configuration has to be performed manually [8].

Thus, it is important to create more sophisticated,high-level, and

adaptive allocation strategies in order to guarantee a balanced

workload among devices, the service's performance require­

ments, efficient communications between containers, and more

efficient utilization of resources in terms of CPU and memory.

To deal with these challenges, several scheduling techniques

for containers were recently proposed [9], [10), [11), [12]. Most

of them are based on the useof optimization techniques due to the

complexity of the problem in terms of the number of scheduling

alternatives. For instance, Kaewkasi et al. [9] adopted the Ant

Colony Optimization (ACO) algorithm to implement a new con­

tainer scheduler for SwarmKit which spread the containers over

Docker hosts to balance the overall resource usagesand therefore

lead to increased performance of applications. The proposed

approach continuously computes theavailable resources inevery

node every time it schedules a container. Guerrero et al. [10)

proposed a genetic algorithm approach to implement a container

allocation strategy andelasticity management by optimizing the

elasticity of thecurrently deployed applications and maximizing

the reliability of the micro-services by avoiding single points

of failure. However, the proposed strategies are limited to only

two objectives while many conflicting criteria should be taken

into consideration within the container scheduling problem.

1939-1374 © 2023 IEEE. Personal use is perrnitted, but republication/redistribution requires IEEE perrnission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8035-1369
https://orcid.org/0000-0001-7010-8306
https://orcid.org/0000-0002-0053-3443
mailto:marouane@umich.edu
mailto:thiagod@umich.edu
mailto:ahusain4@ford.com
http://www.ieee.org/publications/rights/index.html

2576 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

Indeed, an efficient scheduling approach for containers may

need to consider the available resources in terms of memory and

CPU but also reduce the changes in the current configuration

(e.g., moving containers between nodes), the communications

between containers located in different nodes (e.g., coupling)

and balancing the software load between multiple nodes.

To address the above challenges, we propose a new many­

objective optimization approach for the Docker containers

scheduling problem. The goal is to find the best allocation

of containers that can lead to a better workload balance and

performance. The number of scheduling combinations to assign

containers to nodes is high. Thus, the search space to explore is

combinatorial which requires the use of an intelligent compu­

tational search technique. Furthermore, the different scheduling

criteria are conflicting thus, we adopted a many-objectivesearch

algorithm, based on NSGA-III [13], to find a trade-off between

four conflicting objectives. Our many-objective search-based

software engineering approach aims at finding the rescheduling

solution that: optimizes the structure of thecluster byoptimizing

some metrics such as the number of selected nodes in thecluster,

the average of containers per node, optimizes the communica­

tionsbetween containers byminimizing thecoupling (dependent

containers allocated to different nodes), and finally minimiz­

ing the number of required changes to move from the current

scheduling to the new one (e.g., move container) to guarantee a

fast allocation of containers to the cluster nodes.

To evaluate our approach, we compared the performance of

multiple many and multi-objective techniques based on NSGA-

11, NSGA-ill [14], [15], and IBEA algorithms [16] using 48

Docker-related systems. The results show that NSGA-ill can

generate the best scheduling solutions considering thetraditional

quality indicators for computational searches, such as Hypervol­

ume, IGO, and Contribution metrics, as well as other validation

metrics such as CPU, memory, and network usage. We have

also created an online appendix for a demo of our platform and

related experiments material [17].

The primary contributions of this article can be summarized

as follows:

• We introduced a novel formulation of the containers

scheduling problem as a many-objective problem that

considers several conflicting objectives such as structural

improvement, coupling, and the number of changes. The

definition of the fitness functions was formulated based on

the needs of our industry partner, theFord Motor Company,

to optimize specific objectives related to the usage ofECUs

resources in the car.

• We compared three different many-objective optimization

algorithms as it is the first formulation in the literature of

container scheduling as a many-objective problem.

• We reported the results of an empirical study of our

many-objective technique compared to the docker default

approach.The obtained results provide evidence tosupport

the claim that our proposal is, on average, more efficient

than the existing techniques based on a benchmark of 48

open-source docker projects.

The remaining of this article has been organized as fol­

lows: Section II reviews the Docker Container tool, as well as

TABLE I

OOCKERFILE SETIJP INSTRUCTIONS

Instruction Description

ENV Setting the environment variables

ARG
Defining variables that can be set at build
time

WORKDIR
Setting working directory for all subsequent
instructions

COPY Copying files from host to the Docker image

ADD

Similar to COPY instruction but supports two
additional tricks. It supports the use of a URL
instead of a local file and can recognize the
archive format and extract it directly into the
destination

LABEL Key value pairs, indicating image metadata

I RUN I Executing any command

EXPOSE
Informs Docker that the container is expos-
ing a particular port
Setting a command and/or parameters, that

CMD executes when the container is starting and

I which can be overwritten at build time

Setting executable that will always run when
ENTRYPOINT the container is initiated and cannot be over-

 written.

Listing 1. Dockerfile example

 FROM node:argon
 # Create app directory
 WORKDIR /usr/src/app
 # Install app dependencies
 COPY package*.json /usr/src/app/
 RUN npm install
 # Bundle app source
 COPY . /usr/src/app
 # Expose the app to the outside world

10 EXPOSE 8080

11 CMD ["npm", "start")

the three, used multi-objective optimization algorithms used in

our approach. Section III then discusses the proposed approach,

the population presentation and the objective functions. Section

IV is an empirical study to evaluate the feasibility of our ap­

proach by defining the research questions, quality indicators,

used systems and algorithm configuration. Section V presents

some related works. Finally, Section VI concludes this article.

IL BACKGROUND

A. Docker and Container-Based Projects

Docker [18], is one of the most popular container virtualiza­

tion technologies [3], [19]. It packs the application's code and

dependencies into a lightweight, standalone, and portable exe­

cution environment aiming to deploycontainerized applications

in a quick process.

Dockerfile is a document containing a sequence of instruc­

tions used for creating the computational environment, follow­

ing the notion of Infrastructure-as-Code (laC) [20] and it is used

by Docker to build the container images.

An illustrative example of a Dockerfile is shown in Listing 1.

In this listing, the Dockerfile has seven instructions where the

definition of each one is described in Table I.

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2577

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

Listing 2. Docker-compose example

 version: "3. 7"
 services:
 server:
 build:
 ports:

 - 8080:4040
 environment:
 - DB_ADDRESS=database-mongo
 - DB_PORT=27017

10 - PORT=4040

11 depends_on:

12 - database

13 database:

14 image: mongo:latest

15 volumes:

16 - mydata:/data/db

17 volumes:

18 mydata:

TABLE II

DOCKER-COMPOSE SEnJP ArrRIBITTES

Attritiute Descri tion

BUILD Settin path to the build context

IMAGE
Setting the image to start the container

 from
PORTS

ENVIRONMENT

Expressing dependency between services

Setting volume bindings (host paths or
named volumes)

DEPENDS_ON

VOLUMES

Docker-compose [21] provides a unified setup routine that

deploys several containers using a YAML configuration file,

as known as, Docker-compose.yml (or just Docker­

compose). In the Docker paradigm, each container captures

one particular component of the software (e.g., database). Thus,

when creating a multi-component application using Docker, it

is inevitable to combine multiple software components (con­

tainers) into a workflow. Then, Docker-compose can tackle this

problem by integrating containers and running them properly.

An example of a Docker-compose file is available in Listing

2. The example shows that the Docker-compose file is com­

posed of two components/containers (SERVER and DATABASE).

The SERVER component is represented by a local image (built

from a Dockerfile, for instance, that one available in Fig.

Listing 1), and the DATABASE component is created from the

"mongo" image, hosted in DockerHub [22] (an online registry

for Docker Images). Docker-compose file also provides a list of

setup attributes which can be listed in Table II.

Any typical Docker project includes the abovefiles alongwith

sourcecodefiles written in typical programming languages,such

as Java, to host the containers and enable their executions and

synchronization with other features of the app that may not be

containerized.

The way that tasks or containers are scheduled on a Swarm

Mode cluster is governed by a scheduling strategy. Cur­

rently, Swarm Mode has a single scheduling strategy, called

"Spread" [8]. The spread strategy attempts to schedule a service

Algorithm 1: Generation t ofNSGA-III. Adapted from [14],

[15]

Input : H structured reference points Zr or supplied
aspiration points Zo. , parent population A

Output:Pt+1

1 St = 0, i =1;
2 Qt = Recombination+Mutation(A);

3 Rt= Pt UQt;

4 (Fi, F2,...) Non-dominated-sort(Rt);

s repeat
6 I St = St U F; and i = i + 1;
7 until IStl 2:: N;
s Fi =F;(Last front to be included);

9 if /St{ = N then
10 I Pt+1 = St , break;
11 else

u Pt+1 =LJ :, Fi;

13 Points to be chosen from Fi : K = N - IA+1I;
14 Normalize objectives and create reference set Zr :

Normalize(fn, St, Zr, z.,Zo.)i
1s Associate each member s of St with a reference point:

[II(s), d(s)] =Associate(St, Z.,.) {II(s): closest reference
point, d: distance betweens and II(s) };

16 Compute niche count of reference point j E

Zr : ,Pj=L,sES,/Ft ((II(s) = j) ?l : O);

17 Choose K members one at a time from Fi to construct
Pt+1 : Niching(K, ,Pj,IT, d, Zr I Fi, A+1) ;

 1s end

task based onan assessment of the resources available on cluster

nodes. In its simplest form, this means that tasks are evenly

spread across the nodes in a cluster. For example, if we create a

service with threereplicas,each replicated task will be scheduled

on a different node.

B. Many-Objective Evolutionary Algorithm: NSGA-III

Non-dominated Sorting Genetic Algorithm ill (NSGA-ill)

is a more recent optimization algorithm proposed by Deb et

al. [14], [15], similar to NSGA-11, but with significant changes

in its selection mechanism aiming to improve the results of

many-objective problems. Unlike in NSGA-11, the diversity

among population members in NSGA-III is aided by supplying

a number of well-spread reference points.

NSGA-III demonstrates its efficacy in solving 2 to 15-

objective optimization problems, and it is also extended easily

to solve constrained optimization problems, and can be used

with small population size (such as a population of size 100 for

a IO-objective optimization problem). The algorithm is shown

in Algorithm 3.

First, same as NSGA-11, the parent population A is randomly

initialized in the specified domain, then the binary tournament

selection, crossover, and mutation operators are applied to create

an offspring population Qt (Line 1-2). Thereafter, both popu­

lations are combined and sorted according to their domination

level and the best Nmembers are selected for the nextgeneration.

Unlike in NSGA-11 (which uses the crowding distance mea­

sure for selecting the best set of points from the last front that

can be partially accepted), in NSGA-ill the supplied reference

points Zr are used to select these remaining members. The

2578 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

&- Docker Compose File. - --

Scheduler Updated Docker

User

1 ---- ----
New

Swarm

State

Compose File

Parser
 Dependency

Graph

Many-objective Algorithm • DockerCLI

LoadBalancin1 Docker Swarm

Fig. I. Proposed approach.

chosen reference points can either be predefined in a structured

manner or supplied preferentially by the user. To accomplish

this, objective values and reference points are first normalized

to have an identical range. Thereafter, the orthogonal distance

between a member in St and each of the reference lines (joining

the ideal point and a reference point) is calculated.

Next, the member is then associated with the reference point

having the smallest orthogonal distance, and the niche counts

<p for each reference point, defined as the number of members

in St!F1 that is associated with the reference point, is computed

for further processing. The reference point having the minimum

niche count is identified and the member in front last front F1

that isassociated with theidentified reference point is included in

the final population. The niche count of the identified reference

point is increased by one and the procedure is repeated to fill up

population Pt+l ·

ill. AMANY-OBJECTNE SCHEDULING APPROACH FOR

SOFTWARE CONTAINERS

We describe, in this section, an overview of the proposed

scheduling approach for assigning software containers to the

nodes, then we explain the different adaptation steps of the

computational algorithm to our problem, including the solution

representation and the fitness functions.

A. Approach Overview

The main goal of the proposed approach is to schedule con­

tainers by considering four conflicting objectives to be opti­

mized. Each solution generated by the evolutionary algorithm

represents a possible container scheduling by assigning the

containers into nodes. Fig. 1 shows an overview of the proposed

approach composed of three maincomponents. The firstcompo­

nent is a parser that automatically extracts from docker cli (e.g.,

command line) theinitialswarm statein thecluster, including the

number of nodes, the total number of containers, their images,

and their distribution per node. The docker-compose file is also

parsed to extract the dependencies between containers using the

parser tool. The second component takes as inputs the different

information collected by the parser, including the extracted

dependency graph and the swarm state, to generate a new swarm

state using a many-objective optimization algorithm to find a

balance between the different objectives. The third component

executes the best solution found by the multi/many-objective

algorithm by updating the docker-compose file to specify a new

placement for every container. Then, the docker-compose file is

deployed again, and the Load Balancing module reallocates the

containers as suggested.

In our approach, the user provides a docker-compose file

as input, and then a Parser tool is used for generating a de­

pendency graph G = (V,E) where V = { v1, v2, v3, ... , Vn}

means the set of containers or services and E is the set of

calls or requests among them. The latter is written as a tuple

{v;, vi},wherev;, vi E V, and they are usually expressed in the

docker-composefile as DEPENDS_ONor LINKS properties. Fig. 2

shows an example of such conversion.

In this example, five services were converted to a graph

G with five nodes and six edges. Aiming to ease the node's

assignment, we assign a unique identifier (id) to every con­

tainer/service and node to be used in the optimization pro­

cess. Thus, let's consider 0, 1, 2, 3, and 4 as the id's

for the following containers, respectively: CBEDB, CBEDBAD­

MIN, CBEMQ, HAPROXY, CBEAPP. Then, the dependency graph

generated for such example is V = {O,1, 2, 3, 4} and E =

{{1,0},{3,1},{3,2},{3,4},{4,0},{4,2}}.

Theselected many-objective algorithm uses this dependency

graph G and a Swarm State p(t) asinput, where the latter means

the current allocation of containers and nodes in Docker Swarm

mode. Then, by taking into account the set of objectives to be

optimized (details in Section III-C), a new Swarm Statep(t+l)

isgenerated, and the docker-compose file is changed aiming to

reflect the new scheduling (see Scheduler in Fig. 1).

Docker Swarm service is based ona declarative model, which

means that once the service runs, we are not allowed to move

or replace containers when some node gets started. Thus, to

bypass such limitations, we generate a new docker-compose file

by changing the CONSTRAINTS property from the file. The Load

Balancing module in our approach is responsible for monitoring

the currentstateof Docker Swarm byconsidering several metrics

such as CPU and Memory usage, network metrics, and so on.

In our approach, we can define some thresholds for each of

them, and once such thresholds are reached, the many-objective

algorithm is automatically run to reschedule the containers.

Finally, if the Swarm State is unavailable (for instance, when

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2579

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Convert docker-compose file.

S= 3 I 3 I 1 I 2 1 -+- Node ID's

0 I1 I2 I 3 4 .+-Container ID's

Fig. 3. Solution representation.

we are running the proposed approach for the first time), all

containers are randomly assigned to nodes to compose this one.

In the following subsections, we describe the different adap­

tation steps of the multi/many-objective algorithms described in

Section II, including mainly the solution representation and the

fitness functions.

B. Population Representation

An individual (or solution) in our population consists of an

integer encoding, where each gene represents the node id, and

the index is the container id. By using this approach, we have the

advantage of the flexibility of having more than one container

per node. Thus, let S = {s1, s2, s3, ... , sn}beanindividual

with n containers. Fig. 3 shows an example of an individual

considering the containers available in Fig. 2.

In this example, the chromosome representation uses five

containers (n = 5) and a total of three nodes. The individual

S represented in figure Fig. 3 assigns containers 2 and 4 to node

l, container 3 to node 2, and containers O and l to node 3. Fig.

4 shows a visual representation considering all containers and

nodes (consider the dependency graph available in Fig. 2).

C. Objective Functions

Even though different proposed scheduling techniques for

containers [9], [10], [11], [12]. The proposed strategies are

limited to at most two objectives, while many conflicting cri­

teria should be taken into consideration within the container

scheduling problem. We believe that our chosen objectives are

extensively constructed based on preliminary research [13], [23]

to obtain the optimal design that considers the most essential

Nodal Node2 Node3

Fig.4. Solution representation converted.

container attributes and scheduling limitations. We expect these

functions to be valuable in future software container manage­

ment efforts.

Consider C = {c1, c2, c3, ... , c.,.} the set of all available con-

tainers, and N = {n1, n2, n3, ... , nm} the set of all available

nodes. The objective functions proposed in this work are de­

scribed as follows:

1) First Objective: Minimizing the Number of Selected Nodes

(1): The first objective corresponds to the number of selected

nodes when rescheduling containers. Software containerization

in many domains, such as smart automobiles [24], connected

vehicles [25], [26], or different other domains [27], becomes

critical, particularly in highly constrained environments For

example, best practices [28] recommend that the load associated

with one docker cluster node be lightweight to minimize con­

gestion problems while running the applications, which explains

the usage of the objective: Minimizing the number of containers

per node. This would avoid exceeding the resource consumption

limits that might affect the behavior of the node that deploys the

software.

This objective is expressed as the ratio of the number of

selected nodes and the number of available ones. It is computed

as follows:

(l)

services:

haproxy:

links:

-cbemq

- cbeapp
- cbedbadmin

cbeapp:
depends_on:

- cbedb

cbedb:· cbemq

image: postgres:latest

cbemq:

image: rabbltmq:3-management-alpine

cbedbadmin:
image: dpage/pgadmin4

links:

- cbedb

2580 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

4

where INI > 0 and distinct(S) returns a distinct set of se­

lected nodes from S. Forexample, if S = {2, 2, 2, 1, 2}, then

distinct(S) ={1, 2}.
2) Second Objective: Minimizing the Average of Containers

Per Node (2): Minimizing the number of containers per node

can avoid exceeding the resource consumption limits. However,

minimizing the resource consumption of each node leads to

activating a large number of nodes and spreading the load

across them, on the other hand, would considerably increase the

cluster's resource utilization, so adding considering minimizing

the average number of containers per node in the cluster as a

conflicting objective to the first is important in our context. For

example, if we have 10 containers and 10 nodes, the worst solu­

tion would be to allocate every container to a single node; thus,

the nodes will consume more resources. An optimal solution

would be to choose a smaller number of nodes to distribute the
containers while respecting the load between them and their

4) Fourth Objective: Minimizing the Number of Changes

(4): Finally, the fourth objective corresponds to the number

of changes required to reschedule the containers. The fourth

objective is considered a very important objective that previous

works on container optimization did not consider. To ensure

on-demand usage of the applications running in the containers,

it is important to use a scheduler that is not only efficient but also

fast to reallocate the containers to different nodes depending on

the objectives without taking too much time that can affect the

performance of the software, Thus a scheduler that does the

minimal needed number of changes to balance the load between

the nodes and respect the resources constraints of each of them

is the one that we worked on in this project.

Tothisend, wecompare theSwarm Statep(t) and the solution

S aiming to count the number of changes required to move a

container to another node. The objective is defined as follows:

resource limits. At the same time, we don't want to allocate all

containers to one node so we can prevent violating the resource

CHG(S=) hamming(S,P)

IPI
(4)

limits of the nodes and try to balance the node between the

different nodes. Thus, minimizing the number of containers per

node is a second objective to optimize despite conflicting with

the first objective.

This objective is related to the average number of containers

per node. The objective is calculated based on the normalized

standard deviation taking into account the number of containers

for each node. The objective is defined as:

where F = {f 1, h, h, ...,fm} is the number of containers for

each nodemdivided byICIand µis the mean of F. Forexample,

if S = {2, 3, 2,1, 2}, then F = {0.2, 0.6, 0.2}.

3) Third Objective: Minimizing the Nodes Coupling (3): The

third objective, "minimizing the coupling between containers

allocated to different nodes", can be considered a security ob­

jective that helps save the data and the good performance of

applications deployed in containers in case one of the nodes has

been shut down for a software upgrade or operational failure:

Containers sharing data or depending from each other are better

to be running in the same physical ecus. (This reduces the risks

of losing data or performance when for example, a container

running in a different node and necessary for the work of another

important container is shut down because of node failure),

and also reduces the network transmission between the nodes.

Although important, this objective conflicts with the objectives

related to minimizing the number of containers per node.

This is expressed as a ratio between the number of inter-edges

(calls or requests) in different nodes and the total number of

edges E. The objective is defined as follows:

where hamming(S, P) isthehamming distance between P and

sand IPI = 1s1.If IPI= 0, then CHG(S) = 0.

Therefore, the goal of our proposed approach is the following:

minimize NON(S), FRQ(S), COP(S),CHG(S) (5)
s

where all objective functions are normalized in the range [0, 1]

where 0 is the best value and 1 the worst one.

To clarify how the objective functions are computed, con­

sider C = {0, 1, 2, 3, 4} as the set of available containers, N =
{1, 2, 3, 4} as theset of available nodes, p(t) ={3,3,3, 1, 2}as

thecurrentSwarmStateand Gas thedependency graph available

in Fig. 2.

Now, consider that a solution S = {3, 3, 1, 2,1} (the same

available in Fig. 3) was generated by an optimization algorithm

to be evaluated, theobjective functions are calculated as follows:

NON(S) = ¾ = 0.75

FRQ(S) = = 0.18

COP(S) =
6

= 0.66

CHG(S) = ¾ = 0.60 (6)

Therefore, the objective values are S (0.75, 0.18, 0.66, 0.6).

D) Intelligent Software Containers Scheduler Framework

Based on the proposed many-objective formulation, We im­

plemented a platform that helps the user to monitor the resource

usage for every node in the cluster (CPU usage, memory usage,

network1/0) andautomatically rescheduled thecontainers using

COP(S=)
OP(S ab)

L..,{a,b}EE , ,

IEI
(3)

our many-objective approach. Fig. 5 shows a screenshot of our

dashboard, which provides an overview of the current live status

of the cluster, the number of activated nodes, the number of

where OP(S,a,b) = 1 if sa -/= sb for sa, sb ES, otherwise,

OP(S,a, b) = 0. If IEI= 0, then COP(S) = 0.

nodes, and the distribution per node. Fig. 5 shows real-time

resource usage and the received and transmitted network per

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2581

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

node. These metrics are extracted from the nodes using Node­

exporter [29] and Cadvisor [30] to monitor the performance of

each working node in the experiment, including CPU, memory

usage, and network UO. The tool also generates warnings when

CPU and memory usage exceed 80%.

The candidate solutions are selected taking into account the

preferences of the user interacting with the scheduler via the

dashboard. Particularly, before running the scheduler, the user is

asked to set the weight of each objective basedon the user's pref­

erences.These weights indicate theimportanceof theconsidered

objective. For example, the user can specify that the container

running the database is a high-priority container containing

very sensitive data and needed for a good performance of the

containers that depend on the database; other containers can

have less priority.

The user can manually choose to reschedule the containers

if needed. Otherwise, the rescheduling is automatically based

on the continuous monitoring of resource consumption metrics.

Our tool periodically collects all the required data to calculate

the objective functions defined by our approach and identifies

the most suitable solution as detailed in Section ill. Once the

rescheduling is performed, the user can view the differences in

termsof resource usage andnetwork transmission after applying

our new approach. Furthermore, the user can select the option

to return to the docker default scheduler if needed.

IV. EMPIRICAL STUDY

To evaluate our approach for software container scheduling

using NSGA-ill, we conducted a set of experiments based on

48 containers. Each experiment is repeated 30 times, and the

obtained results are subsequently statistically analyzed with the

aim of comparing our NSGA-ill proposal with a variety of

existing approaches. In this section, we first present our research

questions and then describe and discuss the obtained results.

Finally, we discuss the various threats to the validity of our

experiments.

A. Research Questions

In our study, we assess the performance of our approach by

finding out whether it could generate meaningful scheduling

solutions for the software containers that improve the usage of

resources. Our study aims at addressing the following research

questions outlined below. We alsoexplain how our experiments

are designed to address these questions. We define in the fol­

lowing the two main research questions that we are addressing:

RQJ. To what extent can the proposed NSGA-111approach

provide efficient scheduling solutions based on differ­

ent multi-objective (NSGA-11) and many-objective al­

gorithms (JBEA)?This question aims to investigate the

efficiency of our many-objective NSGA-III approach

for container scheduling to find trade-offs between

the different conflicting objectives compared to other

multi/many-objective algorithms.

RQ2. To what extent can the proposed NSGA-111 approach

minimize the resources consumption in the cluster and

balance the software workload (i.e., CPU and memory

usage, the network l/O of each node) compared to

the deterministic Docker Swarm's default scheduler?

Since it is not sufficient to validate the outperformance

of our approach compared to other search-based al­

gorithms, this question evaluates the ability of our ap­

proach compared to the deterministic by default sched­

uler of the Docker Swarm in terms of the resources

consumption (i.e., CPU and memory usage).

To answer RQJ, we considered the widely-used quality in­

dicators in multi-objective optimization (described in Section

IV-B) to evaluate the different search algorithms such as Hy­

pervolume (HV), Inverted Generation Distance (IGD), Contri­

butions (IC). These metrics validate the quality, spread, and

diversity of the generated scheduling solutions on the Pareto

front. Thus, we can determine which search algorithm per­

forms better to find the best trade-offs between the conflicting

scheduling objectives. Furthermore, wehave alsoconsidered the

execution time to compare the different algorithms since we are

considering a large number of objectives. We did not compare

our algorithm to random search as it is evident that the space

to explore is too large, requiring an intelligent search. We have

also did not compare with mono-objective search (aggregating

all theobjectives into one fitnessfunction) as it is evident thatthe

different objectives are conflicting: In a cluster where containers

are connected to each other, minimizing the coupling between

them will automatically increase the number of containers per

node; and if we aim to decrease the number of containers per

node we will automatically increase the number of selected

nodes. Thus, we aimed in this research question to focus only

on comparing our NSGA-ill adaption and twoother algorithms:

IBEA and NSGA-11. We selected NSGA-11to evaluate its per­

formance with a larger number of objectives than two, which

may justify the need to use many-objectivealgorithms. We have

also selected IBEA as it is known to be widely used in the

current many-objective optimization literature after NSGA-III.

We used the same adaptation for all three algorithms to enable

a fair comparison.

We believe that the quality metrics results discussed in RQJ

would affect the results regarding resource consumption. The

algorithm giving the best set of solutions will be able to give the

best resource consumption compared to the other algorithms.

Therefore, we only compared the default scheduler with the

NSGA-III algorithm for resource consumption.

As a result, to answer RQ2, we compared the results from the

default Docker Swarm's scheduling algorithm against the best

search algorithm from RQJ, by considering ApacheBench [31]

as a stress testing tool. Using ApacheBench, we set a total of

100000 requests that should be made when running each project

and 100 requests concurrently (simultaneously) at a time, ensur­

ing scalable testing settings. We also used Node-exporter [29]

and Cadvisor [30] to monitor the status and performance of each

working node in the experiment, including CPU and memory

usageand network UO.We used theseevaluation metrics instead

of the objective functions to avoid any bias when comparing

the search-based and deterministic techniques. We have also

created an online appendix for a demo of our platform, and

related experiments material [17].

IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO.4, JULY/AUGUST 2023 2582

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

B. Quality Indicators TABLE ill
00CKER-8ASED PROJECfS STUDIED

Aiming to compare the search-based algorithms, we consid-

erect the following sets of solutions [32]: i) PFappmx: set of

non-dominated solutions obtained by one algorithm execution;

ii) PFknawn: set of non-dominated solutions of an algorithm

obtained by the union of all the P Fapprox from all theexecutions,

removing the non-dominated and repeated solutions; and iii)

PFtrue: formed by all sets PFknown obtained from different

algorithms by removing dominated solutions andrepeated ones.

The analysis was conducted by using the widely used quality

indicators in the computational search field to evaluate both the

quality and spread/diversity of the solutions:

• Hypervolume (HY) [33] measures the volume covered by
members of a Pareto-front in objective space delimited

by a reference point. An important feature of this metric

is its ability to capture the diversity and convergence of

solutions. A higher hypervolume value is desirable.

• Inverted Generational Distance (IGD) [34] is a conver-
gence measure that corresponds to the average euclidean

distance between theapproximate Pareto-front provided by

an algorithm and the reference Pareto-front. Small values

are desirable.

• Contributions (IC) [35] measures the proportion of solu-
tioos that lie on the reference front (RS) [36]. The higher

this proportion, the better the quality of solutions.

(Kb)

CS.tudied Docker Projects

In the experiments, we selected 48 Docker-based projects

available on GitHub. Table ill provides some descriptive statis-

tics about all of them, such as the number of stars, contrib-

utors, services, and containers. We selected these projects for

our validation because they range from medium to large-sized

open-source projects, which were actively developed over the

past 10 years, they are widely used. They are based on several

programming languages. Regarding the number of containers,

the figureshows that thesmallest project has twocontainers(e.g.,

RAMMYGIT/MEWBASE), and thelargestone has eleven containers

to be scheduled (e.g., MARINANIEROD/DOCKER_pRESTASHOP).

Furthermore, the list of projects contains containers coded in

several programming languages such as JavaScript, Python,

Ruby, PHP, etc.

D. Parameter Settings

Parameter setting significantly influences the performance of

a search algorithm on a particular problem. For this reason, for

each multi/many-objective algorithm and for each project, we

perform a set of experiments using several population sizes [37],

[38], [39]. Each algorithm is executed 30 times with each con-

figuration, and then the comparison between the configurations

is done based on IGD using the Wilcoxon test. In order to have

significant results for each couple (algorithm, project), we use

the trial and error method to obtain a good parameter config-

uration. Since we are comparing different search algorithms,

we classify parameters into common parameters and specific

Name Size
Star Contrib.

ro
Serv.

of
Cont.

vegas nanc
prometheus 3133 2.9k 33 5 5

Zappelphilipp/ docker-

2 graylog-kibana-nginx- 23 2 1 5 5

 5 5

 94 3 4

10 5.2k 0 2 6 6

11

400 360 7 3 3

12 FedorSelitsky/ even-
track 1.5k 5 3 5 5

13 43.4k 2 113 3 3

14 28.lk 23 13 11 11

15 77 2 3 6 6

16 133.6k 706 11

4

4

 5.9k 6.6k 167 4 4

 576 5 1 6 6

19
ouse-

.. '.
er

10k 0 1 3

4

3

4

 3

2

3

2

 27 5 5

marinanierod/

79

2

4

11

11

291 30 2 2

1 1 2 2

267 19 3 3

eclectic-

0

2

2

2

36
zebresel-com/

73

179

3

2

2

 648 55 1 2 2

38
rails event store 8.3k 923 58 4 4

39
a positiva pywor -
place 5k 1 2 2 2

40
busino/

exam le

30 0 1 3 3

 359.6k 1.2k 152 3 3

 3 1 4 4

 2 2

 2 2

 3 3

rm-
0 1 9 9

ew ase

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2583

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

TABLE IV

PARAMETER SETTINGS

I

parameters. If the results are similar for a given combination

of parameters, the execution time was considered. As evolu­

tionary operators, we adopted Integer SBX crossover, Integer

Polynomial mutation, and binary tournament for selecting the

individuals [40] because they have been designed to work with

integer solutions. Therefore, the list of selected parameters

used to answer the stated research questions is described in

Table IV.

As we have also measured the execution time, the algorithms

were executed in a machine with an Intel(R), Core(TM) i7-

5930 K, CPU 3.50 GHz with 40 Gb RAM.

E. Statistical Tests

Since meta-heuristic algorithms are stochastic ones, they can

provide different results for the same problem instance from

one run to another. For this reason, our experimental study is

performed based on 30 independent simulation runs for each

problem instance. The obtained results are statistically analyzed

using the Wilcoxon rank-sum test [41] with a 99% confidence

level (a = 1%).The latter verifies the null hypothesis HO that the

obtained results of two algorithms are samples from continuous

distributions withequal medians,against the alternative that they

are not Hl. The p-value of the Wilcoxon test corresponds to

the probability of rejecting the null hypothesis HO while it is

true (type I error). A p-value less than or equal to a(<= 0.01)

means that we accept Hl and reject HO. However, a p-value that

is strictly greater than a (> 0.01) means the opposite. In fact,

for each problem instance, we compute the p-value obtained by

comparing NSGA-II and IBEA search results with NSGA-ill

ones. This way, we determine whether the performance dif­

ference between NSGA-ill and one of the other approaches is

statistically significant or just a random result.

F. Results

1) Results for RQJ: Table V summarizes the results of mean

values and standard deviations for HV, IGO, and IC indicators

over 30 independent simulation run where the bold values rep­

resent the best ones. The results of Table V are based on the

consideration of all 4 objectives for the evolutionary algorithms.

The objectives values were normalized between O and 1 and set

to be minimized; the order of the objectives is not important

and has no impact on the results. The users can select the best

solution based on their preferences (fitness function values) and

programming behavior from the non-dominated (trade-off) set

of solutions. All the results were statistically significant on the

30 independent simulations using the Wilcoxon rank sum test

with a 99% confidence level (a< 1%).

Whencomparing NSGA-III againstNSGA-II andIBEA using

all three performance indicators, it is clear that NSGA-11 has the

weakest performance. On small-scale docker projects including

up to 4 containers (e.g., docker-bro, miso-lims, docker-flow­

letsencrypt, docker-laravel, re-ca-blinds) all algorithms present

similar results for IGO, HV, and IC. For example, for the

re-ca-blinds, both algorithms give the best results in terms of

the three quality metrics (0 for the IGO, 0.065 for the HY,

and 1 for the IC). On medium-scale docker projects with up to

7 containers (e.g., e-petitions, compose-magenta, hcxp/hcxp),

NSGA-ill and IBEA present similar results, and both provide

better results than NSGA-II. For hcxp/hcxp project, NSGA-ill

and IBEA output as results 0, 0.078, and 1 for the IGO, HV, and

IC metrics compared to 0.056, 0.714, and 0.833 for NSGA-11

respectively with the same metrics. Furthermore, the project

compose-magenta shows that both many objectives algorithms

output0 for the IGO, 0.078 for theHV, and 1for the IC compared

to 0.056, 0.071, and 0.833, respectively, when NSGA-II is used.

For large-scale docker projects, NSGA-III is significantly better

than NSGA-II and IBEA on most projects with a large number

of containers (e.g., hanna-agency, Terraform-linode-oextcloud,

docker-prestashop,and stencila/hub). Considering the example

of the project "znly/docker-druid," NSGA-III outperformed both

other algorithms by providing as results 0, 0.146, and 1 for

IGO, HY, and IC compared to 0.004, 0.144, 0.978, and 0.103,

0.135 AND 0.806 respectively for both IBEA, NSGAII. This

outcome is consistent with existing studies in other domains

where NSGA-11 is not able to handle more than 2-3 objectives.

For most of the test results, IBEA evaluation was consis­

tent with the NSGAII algorithm and presented similar results,

whereas, for the other docker projects, NSGA-ill outperformed

both algorithms. This could be explained by the interaction

between (1) Pareto dominance-based selection and (2) refer­

ence point-based selection, which is the distinguishing feature

of NSGA-III compared to other existing many-objective algo­

rithms. For a better comparison between NSGA-III, and IBEA,

sincethey showed similar results in different projects, we studied

the execution time of all many/multi-objective algorithms used

in our experiments. The execution time is critical when using

evolutionary algorithms. This metric is important to compare

the algorithms regarding the spread of identifying scheduling

solutions. It is important to give not only efficient scheduling of

the containers butalsoa fastandsmooth reallocation required for

normal behavior of the applications deployed in the containers

when rescheduling.

Fig. 6 shows the average running times of the different al­

gorithms, over 30 runs, on the different projects used in our

experiments. It is clear from Fig. 6 that NSGA-ill is the fastest,

on average, compared to NSGAII and IBEA.

For hcxp/hcxp project, NSGA-III output ran in 122 seconds

compared to 145 seconds for 145 and 133 respectively, for

I Parameter

Population
Size
Maximum
Number of
Generations
Crossover
Probability
Mutation
Probability

I

I

NSGA-111

200

2500

0.95

0.05

NSGA-11

I
200

2500

I
0.9

o.oi

I

IBEA

100

2500

I 0.9

 o.oi

Crossover
Operator

Mutation Op-
erator

I
 Integer SBX

Integer Polynomial

IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023 2584

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

TABLEV

HV, IGO, AND IC MEAN VAWES WITH NSGA-lll, NSGA-Il, AND IBEA

I Docker Project
NSGAIII JBEA

IGD HV IC
NSGAII

IGD HV IC IGD HV IC

j terratorm-linode-nextcloud
docker-grocery

0.028 :1: 0.013
0.007 :1: 0.000

0.123 :1:0.013 I o.942 :1: 0.013
0.150 :t 0.000 0.987 ± 0.000

o.os1 :1: 0.010 1 0.124 :1: 0.010 1 o.858 :1: 0.010
0.013:t 0.000 0.150 ± 0.000 0.980 ± 0.000

o.089 :1: 0.013 I 0.123 :1:0.013 I o.725:1: 0.013
0.141 :t 0.000 0.150 ± 0.000 0.800 ± 0.000

I cbe-utilities 0.000 :I: 0.000 o.063 :1: 0.000 I 1.000 ± 0.000 0.000 :1: 0.000 I o.063 :1: 0.000 11.000 :1: 0.000 0.118 :1: 0.000 I o.031 :1:0.000 I o.soo :1: 0.000

docker-bro 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000 0.000 :1: 0.000 0.065 :1: 0.000 1.000 :I: 0.000 0.000 :1: 0.000 0.065 :1: 0.000 1.000 ± 0.000

I miso-llins 0.000 :I: 0.000 o.us :1: 0.000 I 1.000 ± 0.000 0.000 :I: 0.000 I O.U5 :I: 0.000 I 1.000 :I: 0.000 0.000 :1: 0.000 I 0.12s :1: 0.000 I 1.000 ± 0.000

screenlv-ose 0.000 :1: 0.000 0.111 :1: 0.000 1.000 ± 0.000 0.008 :1: 0.000 0.111 :1: 0.000 o.987:1: 0.000 0.128 :1: 0000 0.111 :1:0.000 0.793 ± 0.000

I pju
docker-flow-letsencrypt

0.000 :I: 0.000
0.000 :I: 0.000

0.089 :I: 0.000 11.000 :I: 0.000
0.065 ± 0.000 1.000 ± 0.000

0.000 :I: 0.000I 0.089 :I: 0.000I LOOO :I: 0.000
0.000 :I: 0.000 0.065 :I: 0.000 1.000:I: 0.000

o.098 :1: 0.000 1 o.044 :1:0.000 1 o.625:1: 0.000
0.000 :I: 0.000 0.065 :I: 0.000 1.000 ± 0.000

j hanna-agency
stencila/hub

0.000 :I: 0.000
0.023 ± 0.001

0.150 :1: 0.000 1 o.987:1: 0.000
0.144 :I: 0.001 0.644 ± 0.001

0.013 :1: 0.000 I 0.150:1: 0.000 I o.980:1: 0.000
0.021 :1: 0.007 0.138 ± 0.007 0.612 ± 0.007

0.141 :1: 0.000 1 0.150 :1: 0.000 1 o.800 :1: 0.000
0.054 ± 0.020 0.108 ± 0.020 0.355± 0.020

J eventrack
docker-laravel

0.000 :1: 0.000
0.000 :1: 0.000

0.074 :1: 0.000 11.000 ± 0.000
0.065 :1: 0.000 1.000 :1: 0.000

0.002 :1: 0.000 I o.074 :1: 0.000 I o.993 :1: 0.000
0.000 :1: 0.000 0.065 :1: 0.000 1.000 :I: 0.000

o.176 :1: 0.000 I o.074 :1: 0.000 I o.600 :1: 0.000
0.000 :1: 0.000 0.065 :1: 0.000 1.000 :I: 0.000

I rc-ca-D1inas 0.000 :I: 0.000 o.065 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 11.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 I 1.000 :1: 0.000

compose-magento 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :1: 0.000 1.000:I: 0.000 0,056 :1: 0,000 0.714 :1:0.000 0.833 :1: 0,000
I eShopModernizing 0.000 :I: 0.000 0.083 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.083 :1: 0.000 11.000 :1: 0.000 0.228 ± 0.000 I o.005 :1:0.000 I 0.750 :1: 0.000

docker-gitlab 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.056 :1: 0000 0.714 :1:0.000 0.833 ± 0.000

j hcxp/hcxp
froghouse-lightning-talk

0.000 :I: 0.000
0.000 ± 0.000

0.078 :I: 0.000 11.000 :I: 0.000
0.083 :1: 0.000 1.000 :I: 0.000

0.000 :I: 0.000 I 0.078 :I: 0.000 I LOOO :I: 0.000
0.000 :1: 0.000 0.083 :1: 0.000 1.000:I: 0.000

o.056 :1: 0.000 I 0.114 :1:0.000 I o.833 :1: 0.000
0.228 ± 0.000 0.000 ± 0.000 0.750 ± 0.000

j Hygieia/Hygieia
 bartTC/dpaste

j znly/ docker-druid

gogo-garage-opener

0.000 ± 0.000

0.000 ± 0.000
0.000 :I: 0.000
0.000 :1: 0.000

0.083 :1: 0.000 11.000 ± 0.000
0.083 :I: 0.000 1.000 ± 0.000

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 :1: 0.000
0.000 :I: 0.000 0.083 :1: 0.000 1.000:1: 0.000

o.228 :1: 0.000 1 0.000 :1:0.000 1 o.750:1: o ooo
0.228 :1: 0.000 0.000 :1:0.000 0.750 :1: 0.000

0.146 :I: 0.000 11.000 :1: 0.000
0.083 :I: 0.000 1.000 :1: 0.000

o.004 :1: o.004 I 0.144 :1: o.004 I o.978 :1: o.004
0.000 :I: 0.000 0.083 :1: 0.000 1.000:1: 0.000

0.1m :1: 0.024 I 0.135 :1: 0.024 I o.806 :1: 0.024
0.228 ± 0,000 0.000 :1:0.000 0.750 :1: 0,000

I deiain 0.000 :I: 0.000 0.083 :I: 0.000 I 1.000 :I: 0.000 0.000 :I: 0.000 I 0.083 :I: 0.000 I 1.000 :I: 0.000 0.228 :1: 0.000 I 0.005 :1:0.000 I 0.750 ± 0.000

Uiacket/diacket 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.083 :I: 0.000 1.000:I: 0.000 0.228 :1: 0.000 0.000 :1:0.000 0.750:1: 0.000

I p6spy/ p6spy 0.000 :1: 0.000 0.078 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.078 :1: 0.000 11.000 :1: 0.000 0.056 :1: 0.000 I 0.714 :1:0.000 I 0.833 :1: 0.000

memodir/cv 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.083 :I: 0.000 1.000 :I: 0.000 0.228 :1: 0.000 0.005 :1:0.000 0.750 ± 0.000

j docker_prestashop
 artifactorv-<locker

j magento2-apache-dev
double_entry

0.091 :I: 0.000

0.000 :I: 0.000

0.000 :t 0.000
0.000 :t 0.000

0.210 :1: 0.000 1 o.696 :1: 0.000
0.083 :I: 0.000 1.000 :I: 0.000

o.084 :1: 0.000 1 0.210 :1: 0.000 1 o.654:1: 0.000
0.000 :I: 0.000 0.083 :I: 0.000 1.000:I: 0.000

0.108 :1: 0.000 1 0.210 :1: 0.000 1 o.583 :1: 0.000
0 228 :1: 0.000 0.005 :1:0.000 0.750 ± 0.000

0.083 ± 0.000 11.000 ± 0.000
0.083 :I: 0.000 1.000 :I: 0.000

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 :1: 0.000
0.000 ± 0.000 0.083 ± 0.000 1.000 :I: 0.000

0.228 :1: 0.000 1 0.005 :1: 0.000 1 o.750 :1: 0.000
0.228 ± 0.000 0.005 ± 0.000 0.750 ± 0.000

j camd67/ moebot
rhodonea mapper

0.000 :1: 0.000
0.000 :t 0.000

0.083 :I: 0.000 11.000 :1: 0.000
0.083:t 0.000 1.000 :1: 0.000

0.000 :1: 0.000I o.083 :1: 0.000 11.000 :1: 0.000
0.000 :t 0.000 0.083:t 0.000 1.000:1: 0.000

0.228 :1: 0.000 1 0.005 :1: 0.000 I o.750:1: 0.000
0,228 :t 0,000 0.005 :t 0.000 0.750 ± 0.000

j OOCl<erspace
sakuya-blog

0.000 :t 0.000
0.000 :t 0.000

0.065 :t 0.000 11.000 ± 0.000
0.083:t 0.000 1.000 :I: 0.000

0.000 :t 0.000 1 o.065 :t 0.000 11.000 :t 0.000
0.000 :t 0.000 0.083 :1: 0.000 1.000:1: 0.000

0.000 :t 0.000 1 o.065 :t 0.000 11.000 :1: 0.000
0,228 :1: 0,000 0.000 :1:0.000 0.750 ± 0.000

I moni,;odm 0.000 :I: 0.000 o.065 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 11.000 :1: 0.000 0.000 :1: 0.000 I o.065 :1: 0.000 I 1.000 :1: 0.000

i:owcbapi 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000:I: 0.000 0.056 :1: 0.000 0.714 :1:0.000 0.833 ± 0.000

I rails_event_store 0.000 :t 0.000 0.078 :1: 0.000 I 1.000 :1: 0.000 0.000 :1: 0.000 I 0.078 :1: 0.000 I 1.000 :1: 0.000 0.056 :1: 0.000 I 0.714 :1:0.000 I 0.833 :1: 0.000

pyworkplace 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0056 :1: 0.000 0.714 :1:0.000 0.833 :1: 0.000

j azerothcore-wotlk
dj_farm example

0.000 :t 0.000
0.000 :t 0.000

0.000 ± 0.000
0.000 :t 0.000

0.065 ± 0.000 11.000 ± 0.000
0.083 :I: 0.000 1.000 :I: 0.000

0.000 :1: 0.000 1 o.065 :1: 0.000 11.000 :1: 0.000
0.000 :t 0.000 0.083 :I: 0.000 1.000:I: 0.000

0.000 :1: 0.000 1 o.065 :1: 0.000 11.000 :1: 0.000
0.228 ± 0.000 0.000 ± 0.000 0.750:1: 0.000

J rosterbater
laravel-meetup-v.2.0

0.083 :I: 0.000 11.000 :1: 0.000
0.083:t 0.000 1.000 ± 0.000

0.000 :1: 0.000 1 o.083 :1: 0.000 11.000 ± 0.000
0.000 :t 0.000 0.083 ± 0.000 1.000 ± 0.000

0.228 :1: 0.000 1 0.000 :1: 0.000 1 o.750 :1: 0.000
0.228 ± 0.000 0.000 :1:0.000 0.750 ± 0.000

j mastodon
timetracker

0.000 :t 0.000
0.000 :I: 0.000

0.078 :1: 0.000 11.000 ± 0.000
0.083 :I: 0.000 1.000 :I: 0.000

0.000 :1: 0.000 I 0.018 :1: 0.000 11.000 :1: 0.000
0.000 :1: 0.000 0.083 :1: 0.000 1.000:I: 0.000

o.056 :1: 0.000 I 0.114 :1:0.000 I o.833 :1: 0.000
0,228 :1: 0,000 0.000 :1:0.000 0.750 ± 0.000

I graylog-kibana 0.000 :I: 0.000 o.078 :1: 0.000 I 1.000 ± 0.000 0.000 :1: 0.000 I o.078 :t 0.000 11.000 :1: 0.000 0.100 :t 0.000 I 0.078 :1: 0.000 I 0.714 ± 0.000

e-petitions 0.000 :I: 0.000 0.078 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.078 :t 0.000 1.000:t 0.000 0.095 ± 0.000 0.078:t 0.000 0.714 ± 0.000

I vei:asbriancp/rometheus 0.000 :I: 0.000 0.078 :I: 0.000 I 1.000 :I: 0.000 0.000 :I: 0.000 I 0.078 :I: 0.000 I 1.000 :I: 0.000 0.056 :1: 0.000 I 0.714 ± 0.000 I 0.833 ± 0.000

github-metrics 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000 0.000 :I: 0.000 0.065 :I: 0.000 LOOO :I: 0.000 0.000 :I: 0.000 0.065 :I: 0.000 1.000 :I: 0.000

The results were statistically significant on 30 independent simulation runs using the WILCOXON rank sum test with a 99% confidence level (a< I%).

'El ·----
,g !·_.........1 ,ell!l_l"-"""'_I"""'-.

(a) The current state of the cluster.

Fig. S. Our dashboard.

(b) Real-time resource usage per node.

0'

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2585

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

Key findings: NSGA-III outperforms the different search

algorithms based on NSGA-II and IBEA regarding the qual­

ity and spread of identified scheduling solutions in the Pareto

front.

Docker Project

200

180

160

140

120

100

80

60

40

20

0

Fig. 6. Average Computational time values on 30 independent runs. The results were statistically significant on 30 independent runs using the Wilcoxon rank

sum test witha 99% confidence level (a< 1%).

IBEA and NSGA-II. Furthermore, theprojectcompose-magento

shows the out-performance of NSGA-II with 107 seconds com­

pared to 145 seconds for 152 and 143, respectively, for IBEA and

NSGA-II. Also, NSGA-ill is significantly better than NSGA-II

and IBEA on most projects with a large number of contain­

ers (e.g., hanna-agency, Terraform-linode- nextcloud, docker­

prestashop, and stencila/hub). Considering the example of the

project "znly/docker-druid", NSGA-ill outperformed both other

algorithms by providing results92 seconds compared to 126 and

132 seconds, respectively, for both IBEA and NSGAII.

This observation could be explained by the computational

effort required to compute each solution's contribution (IGD)

when using IBEA. Furthermore, NSGA-II may take longer time

to find relevant solutions than many-objective algorithms due

to the limited spread of the solutions in the Pareto front when

using more than 3 objectives. We note that the experiments were

conducted on a single machine (i7 - 2.70 GHz, 8.0 GB - DDR3,

SSD - 520 MB/s); thus, the different algorithms will run faster

on better hardware configurations.

2) Results forRQ2: In thisresearch question, wecompare the

NSGA-ill results against the Docker Swarm's default scheduler

on 30 independent runs.

We used the first three objectives NON, FRQ, and COP. CHG

is not considered in this experiment because CHG corresponds

to the number of changes required to reschedule the containers

from a swarm state P generated by the default scheduler to a new

swarm stategenerated byour tool. We believe that it is important

to consider only the required changes when moving containers

between nodes. Thus, we find the best and fastest solution

that reallocates the containers for better resource usage while

keeping the normal behavior of the applications deployed in

the containers. However, we cannot compare the docker default

scheduler with our new scheduler using this metric since we are

calculating these changes when moving from the default state

presented by the docker.

The default Docker Swarm'sscheduler is basedon a determin­

istic adhoc approach based on filters and strategies. Filters are

used to narrow the domain of nodes for scheduling by taking the

nodeandcontainer properties as inputs, among other parameters.

Strategies are used to decide on which node the next container

runs using three alternatives: random, spread, and binpack.

As described in Table VI, our proposed approach provides

significant improvements in terms of the number of selected

nodes (NON), the average number of containers per node (FRQ),

and the node's coupling values (COP) compared to Docker

Swarm's default scheduler. This is an interesting result confirm­

ing that NSGA-ill can find very good compromises between

the different conflicting objectives and outperform those pro­

duced by the Docker default scheduler. In some cases, applying

NSGA-ill solutions give slightly higher values for the average

number of containers per node (e.g., docker-grocer,cbe-utilities,

I INSGAill

2586 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

TABLE VI

NUMBER OF SELECTED NODES{NON), AVERAGE NUMBER OFCONTAINERS PER NODES (FRQ), NUMBER OF COUPLING (COP)

MEAN VALUES OF NSGA-III OVER 30 INDEPENDENT SIMULKl10N RUNS

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test with a 99%

confidence level (a< I%).

screenly-ose, pju and examples shown in Table VI). This can be

explained by the fact that decreasing the number of depending

containers allocated on different nodes and decreasing the num­

ber of selected nodes will automatically increase the number of

containers per node. Overall, the NSGA-III algorithm was able

to find a good trade-off between all four objectives since most

of them were significantly decreased comparing the initial state

of the cluster before rescheduling.

Since comparing the performance of NSGA-ill with the

default scheduler using similar evaluation metrics to the fit­

ness functions is not sufficient, we considered three evaluation

metrics in terms of CPU usage, memory usage, and network

transmission. For this purpose, we selected ten projects with

different sizes and numbers of containers in a cluster composed

of 3 nodes. The results described in Table VII provide for every

project the % of CPU usage, memory usage (average of the

resources consumption for the three nodes), and the network

usage (received and transmitted values in bytes per second) in

the cluster using NSGA-III versus the default Docker swarm

scheduler. Table VIII describes also in more details the % of

resource consumption per node.

We found interesting results as described in Table VII, in­

cluding a decrease in all resource usage for almost all projects

using our approach compared to the Docker Swarm scheduler.

Considering the example of project "cbe-utilities," the percent­

age of CPU usage for the cluster decreased from 16.89% to

13.90%, and the decrease in the memory usage exceeded 6%

(from 40.3% to 33.90%) after applying our new many-objective

approach. Further details in Table VIII about theresults per node

are described. We notice that the CPU usagefor both node 2 and

node 3 decreased from 14.860% and 15.130% to 11.5% and

5.650%, respectively, with a little increase within node 1 which

can be explained by an increase in the number of containers

in node!. Regarding memory usage, we notice a decrease for

node 3 to half (from 40.5% to 20.210%) while keeping approx­

imately the same memory usage for both other nodes. Also, in

other projects such as docker-flow-letsencrypt, e-petitions, and

docker-laravel, we notice a decrease of approximately 3% in the

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVE SEARCH 2587

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTCfrom IEEE Xplore. Restrictions apply.

TABLEVIl

AVERAGE OF CPU, MEMORY, AND NEIWORK USAGES COMPARING OUR APPROACH AND SPREAD IN THE 0..USTER THE RESUCTS WERE STATISTICALLY

SIGNIFICANT ON 30 INDEPENDENT RUNS USING THE WILCOXON RANK SUM TEST WITH A 99% CONFIDENCE LEVEL {ct < 1 %)

Network Usage (bytes/s)

TABLE VIII

CPU, MEMORY, AND NETWORK USAGES COMPARING OUR APPROACH AND SPREAD FOR EVERY NODE

Docker Project
CPU Usage Memory Usage I Network Usage (bytes/s)

Nodes I I I Received I Transmitted

Our Appr. Spread Our Appr. Spread OurAppr. Spread Our Appr. Spread

graylog-kibana
1
2
3

I

19.700%
5.700%
5.070%

15.140% I
11.930%
4.600%

53.390%
40.850%
35.830%

51.090% I
40.500%
40.500%

1537.520
997.570
959.680

2632.610 I
1228.150
960.120

3366.580
59.120
57.820

14830.660
60.610
65.050

 1 15.890% 11.140% 62.090% 62.390% 1542.520 1752.320 3366.580 3892.660

e-petitions 2 2.700% 11.930% 40.500% 41.850% 997.570 1260.150 59.850 62.420

3 2.070% 4.600% 40.300% 40.830% 658.680 872.120 53.840 65.444

cbe-utilities
1
2
3

I

24.560%
11.500%
5.650%

20.660% I
14.860%
15.130%

41.560%
40.120%
20.210%

40.470% I
40.500%
40.621%

1609.970
966.870
960.290

1832.780 I
1825.150
960.120

3233.000
58.660
60.442

4830.660
91.610

I 61.050
 1 21.520% 17.820% 51.850% 55.230% 1456.520 2242.61 3366.580 4120.66

docker-bro 2 13.140% 15.620% 40.500% 41.850% 1100.570 1628.15 59.120 63.610

3 10.260% 19.520% 40.600% 42.830% 959.680 960.12 62.820 62.650

miso-lims

-

 1
2
3
1

I

 5.454%
0.256%
1.233%
11.500%

2.200%
2.500%

2.450% 1
11.620%
5.820%
5.600%

25.090%
11.500%
9.500%
38.090%

21.390% I
19.850%
20.830%
38.500%

809.720
97.410
658.68

1409.970

1100.320 I
960.150
612.250
1632.520

210.970
35.450
62.200

3830.660

892.660
62.780

I 65.000
4125.650
75.125
88.254

screenly-ose 2
3

 10.700%
1.120%

37.000%
5.300%

36.850%
12.830%

1266.780
620.290

1925.150
960.120

99.800
73.000

pju
1
2

I

 24.820%
20.320%

21.337% I
21.023%

41.120%
25.200%

40.470% I
42.500%

1229.520
1100.570

1856.610 I
1562.150
960.120
1132.610
1228.150
660.120

2563.000
60.120
62.820

2100.100
32.120
27.820

4120.660
89.610

I 62.650
2530.560
40.610
35.050

3 17.200% 20.130% 44.200% 44.620% 450.680
 1 21.520% 17.820% 51.850% 55.230% 537.320

docker-flow-letsencrypt 2 13.140% 15.620% 40.500% 41.850% 937.700
 3 10.260% 19.520% 40.600% 42.830% 459.680

hanna-agency
 1

2
3
1

2
3

I

 5.454%
0.256%
1.233%
26.560%

12.450%
22.780%

2.200% I
2.500%

25.090%
11.500%

21.390% I
19.850%

2001.520
997.570

3500.810 I
1428.150

3366.580
478.120

4730.660
650.610

-

2.450%
25.230%

9.500%
66.360%

20.830%
62.500%

959.680
537.320

1545.120
1132.610

313.487
2100.100

I 546.500
2530.560

docker-Jaravel 24.180% 25.250% 47.000% 937.700 1228.150 32.120 40.610

21.550% 45.300% 48.000% 459.680 660.120 27.820 35.050

The results were statistically significant on 30 independent runs using the WILCOXON rank sum test witha 99% confidence level (a< I%).

CPU usage for the hole cluster when using our approach and a

memory decrease that exceeds 2%, 2%, and 7% respectively.

The results for each node for these projects detailed in Table

VIII are promising. Continuing with the example docker-flow­

letsencrypt, the CPU usage for both nodel and node2 was de­

creased from 15.620% and 19.520% to 13.140% and 10,260%,

respectively, and the memory usage for node 1 was decreased

from55.23%51.850 to55.230%. Also, fore-petition, weobserve

a decrease that exceeded 9% for node 2 in terms of CPU (from

11.930% to 2.7% and from 4.6 to 2.070% for node 3) and

approximately the same average of memory consumption for

both nodes. The balance in our approach between decreasing

the number of nodes and the average of containers per node

succeeded in distributing equally the containers achieving a

balanced load between nodes that leads to reduced resource

usage and more efficient utilization of these resources in the

whole cluster. For a few projects (e.g., graylog-kibana, miso­

lims, hanna-agency), the results show unremarkable differences

between the two approaches in terms of CPU. These results

can be explained by the low number of containers used in such

Docker Project I CPU Usage I
Memory Usage I Received Transmitted

Our
Appr. Spread

Our
Appr. Spread

Our
Appr. Spread

Our
Appr. Spread

graylog-kibana 10.15% 10.60% 43.36% 50.09% 1164.92 1603.96 1161.17 1652.10

je-petitions I 6.88% n2% I 47.63% 48.35% I 846.70 1294.86 1160.09 1340.18

cbe-utilities 13.90% 16.89% 33.90% 40.30% 1179.04 1539.35 1117.37 1661.11

jdocker-bro I 14.97% 17.65% I 44.31% 46.63% I 1112.26 1610.29 1162.84 1415.64

miso-lims 2.34% 2.38% 15.36% 20.60°/o 521.93 940.86 102.54 340.15

screenly-ose I 6.77% 7.68% I 29.39% 29.79% I 1099.01 1505.93 1334.49 1429.68

pju 20.18% 20.78% 36.84% 42.53% 719.01 1459.63 895.31 1424.31

jdocker-flow-letsencrypt I 14.97% 17.65% I 44.31% 46.63% I 664.90 1006.96 720.01 868.74

hanna-agency 2.31% 2.38% 15.36% 20.69% 1319.59 2158.03 1386.06 1975.92

docker-laravel I 20.60% 23.65% I 45.63% 52.soo;. I 664.90 1006.96 720.01 868.74

2588 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

Key findings: Our new many-objectiveapproach outper­

forms the docker default scheduler regarding resource usage:

the CPU, memory, and network transmission in the docker

cluster.

projects. Thus, we obtained a very similar allocation of nodes

for both approaches that do not affect resource usage by keeping

almost the same number of containers per node.

We have noticed a significant decrease in network transmis­

sion for all projects using our approach compared to the Docker

swarm scheduler. For instance, the project "cbe-utilities" bas an

average of received and transmitted network in the cluster that

decreased from 1539.350 and 1661.106 bytes per second while

the docker strategy provided values of 1179.043 and 1117.367

(bytes per second). Table VIII summarizes the results for each

node separately. For the project graylog-k:ibana, for example,

the received network was decreased from 2632.610, 1228.150,

and 960.120 for node 1, node 2, and node 3 using the default

scheduler to 1537.520, 997.570, 959.680 respectively using

our approach. The Transmitted Network was decreased from

4830.660, 60.610, and 65.050 to 4830.660, 60.610, and 65.050

for each node, respectively (node 1, node 2, and node 3). The

decrease in the network 1/0 values is explained by the fact that

we are decreasing the container coupling in different nodes for

better communication between nodes.

G. Threats to Validity

ConclusionValidity.Conclusion validity is concerned with the

statistical relationship between the treatment and the outcome.

We addressed conclusion threats to validity by performing 30

independent simulation runs for each problem instance and

statistically analyzing the obtained results using the Wilcoxon

rank sum test with a 99% confidence level (a< 1%). However,

the parameter tuning of the different optimization algorithms

used in our experiments creates another internal threat that we

need to evaluate in our future work. The parameters' values

used in our experiments are found by trial-and-error, which

is commonly used in the search-based software engineering

community. However, it would be an interesting perspective

to design an adaptive parameter tuning strategy [42] for our

approach so that parameters are updated during the execution in

order to provide the best possible performance.

Construct Validity. Construct validity is concerned with the

relationship between theory and what is observed. To evaluate

the results of our approach, we selected solutions at the knee

point when we compared our approach with fully-automated

scheduling approaches, but the users may select a different

scheduling solution based on their preferences to give different

weights to the objectives when selecting the best solution. To

mitigate this threat, we have to use the quality indicators of the

Pareto fronts when comparing the different search algorithms

and also the average values of the resource usage metrics.

External Validity. We selected such Docker projects because

they are developed considering several programming languages

and have been developed in the past 10 years. However, we

cannot state that this is enough to generalize the results since

the site may not reflect real-world projects. To minimize such

threats, we tried to evaluate docker projects from different do­

mains and sizes. The use of larger docker projects should be

evaluated in a future experiment. Another threat is related to the

generalizability of our findings.

Another threat is that we did not include existing approaches,

including meta-heuristic algorithms and deep learning models,

in the validation because they use assumptions different from

ours. For instance, deep learning models require a very large

dataset that is not available in practice. The other search algo­

rithms use fewer objectives. Thus, they were considered as part

of the multiple formulations that we proposed in our benchmark.

We highlighted thelack of existing tools forcontainer scheduling

beyond Kubernetes and a few other commercial tools. None of

the existing approaches provided their tools for the community,

and they are very hard to replicate.

V. RELATED WORK

We summarize, in this section, the most relevant studies to

our approach, including two main categories of studies related

to 1) software workload balancing and 2) search-based software

engineering.

A. Software Workload Balancing

In this section, we focus on existing container scheduling

strategies In the last few years, Docker containerization bas

gained widespread popularity due to its remarkable features,

such as portability, high performance, agility, modularity, and

scalability, which pave theway for Docker to stepfurther to more

practical usage in the industry. Despite its quick growth, Docker

container scheduling is still a challenging problem, especially

in optimizing the usage of available resources.

There are some container scheduling tools such as Docker

Swarm developed by Docker [5], Mesos by Apache [6], and

Kubernetes by Google [7]. Generally speaking, despite their

efficiency, these strategies are not adequate to handle complex

application scenarios to enable adaptive scheduling strategies.

It is assumed that Docker Swarm has no prior knowledge

regarding the workload or thecontainer's resource requirements.

The onlyavailable scheduling strategy is Spread, which basically

schedules a service task based on spreading the number of

containers equally to all Docker hosts. All theextra configuration

has to be performed manually [8]. Thus, it is crucial to create

moresophisticated, high-level, and adaptive allocation strategies

to guarantee a balanced workload among devices, the service's

performance requirements, efficient communications between

containers, and more efficient utilization of resources in terms

of CPU and memory.

In their paper [43], Feifei Chen et al. propose a container

Scheduling Method in Edge Computing. Based on the Min-Min

algorithm, thisapproach aimsto placea container on the physical

machine with the most minor increase in energy consumption

by the Min-Min to reduce the energy consumption of the cluster.

It is an important approach but that targets only the power

consumption in edge devices. Our work went on a similar path,

but our target is to reduce the different resource consumption of

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2589

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

the cluster, including CPU, memory, and network transmission,

so we handle more complex objectives simultaneously.

Sureshkumar et al. [23] introduced a new scheduling algo­

rithm based on load balancing. Their approach dynamically

controls the load of each container within a certain threshold in

thecluster bykeeping it not too high or too low. If thecontainer's

load is too high, another container is created to balance that load,

and if it is toolow, thecontainer will be closed to saveenergy.The

approach controls the energy consumption of the entire cluster

and the load balancing of the containers but does not consider

the problem of allocating a container after a new node is added

to the cluster. It will lead to the selection of an inappropriate

node.

Our work not only considers conflicting objectives but also

finds the best allocation of the containers depending on the

cluster properties in a dynamic way. It considers the addi­

tion/shutdown of nodes and the regular change in thecontainers'

resource consumption and properties. It dynamically finds the

best allocation of the containers depending on the updated

cluster properties.

Zhang et al. [12] proposed a solution to the scheduling prob­

lem based on a linear programming model. They designed a

container task scheduling algorithm that aims to reduce the con­

sumption of network transmission between server-side container

and client, network consumption of pulling the required images

from the remote repository, andenergy consumption of the node

itself. However, their work only simulates experiments using

MATLAB without validating the container scheduling process

in a notsimulated clusterenvironment. In our work, weevaluated

the approach using real-life docker containers and a cluster

environment for realistic validation.

Kaewkasi et al. [9] focused on applying meta-heuristic algo­

rithms. They adopted the Ant Colony Optimization algorithm

(ACO) to implement a new container scheduler for SwarmKit,

the purpose of which is to balance the use of resourcesso that ap­

plications in the container cluster will have better performance.

A more recent work introduced by Li et al. [11] is also based on

meta-heuristicalgorithms.This paper proposes a ParticleSwarm

Optimization-based container scheduling (PSO) algorithm of

the Docker platform to make the best use of each node's re­

sources, avoid the problem of insufficient resource utilization

and ensure a balanced load in the scheduling algorithm of the

nodes cluster compared to the default Docker Swarm scheduler.

Liu et al. [44] proposed a new container scheduling algorithm

based on multi-objective optimization, namely Multiopt. This

approach aims to optimize the performance of docker containers

using five key factors: the resource usage of every cluster node

(CPU, Memory), the clustering of containers, the association

between nodes and containers, and the time consumption trans­

mitting images on the network.

Guerrero et al. proposed a genetic algorithm approach to

implementing a container allocation strategyand elasticity man­

agement by optimizing the elasticity of the currently deployed

applications and maximizing thereliability of the micro-services

by avoiding single points of failure. However, the proposed

strategy is limited to only twoobjectives, while manyconflicting

criteria should be considered within the container's scheduling

problem. Indeed, our approach considers the available resources

in terms of memory and CPU to balance the software load

between multiplenodes but alsoaims to reduce thechanges in the

current configuration (e.g., moving containers between nodes),

the communications between containers located in different

nodes (e.g., coupling) for network and security purpose.

B. Search-Based Software Engineering

Search-based software engineering (SBSE) is a growing field

about the design and application of computational search algo­

rithms to address software engineering problems [45]. A com­

prehensive survey about existing studies can be found in [46].

Existing studies cover almost the whole software life cycle,

including requirements engineering [47], software design [48],

web application testing [49], software refactoring [50], etc. As

discussed in the previous section, few studies addressed the

problem of software container scheduling using SBSE tech­

niques. Indeed, noneof theexistingstudiesformulated container

scheduling as a many-objective problem considering different

conflicting criteria. In the following, we will summarize some

of the existing studies on the design and application of many­

objective techniques in software engineering.

Different many-objective techniques are proposed in the liter­

ature.The first category is about objective reduction approaches.

These techniques mainly look for the minimal subset of con­

flicting objectives. The objective reduction approach initially

attempts to examine the degree of conflict among objectives to

eliminate objectives that do not construct the Pareto- front [51].

Regardless of the number of objectives, finding objective reduc­

tion opportunities in a problem has a favorable impact on search

efficiency, computational cost, and decision-making. Although

this technique has solved benchmark problems involving up

to 20 objectives, its applicability in real-world settings is not

straightforward, and it remains to be investigated since most

objectives are usually in conflict with each other [52].

With increasing objectives, the Pareto optimal approximation

involves investigating many Pareto-equivalent solutions. Con­

sequently, the numerous variety of solutions makes the choice

of the preferred alternative very bard for the human decision­

maker (DM). More practically, DMs are not usually interested

in the whole Pareto front rather than a portion of it that best

fits their preferences, called the Region of Interest (ROI). The

main idea is to incorporate the DM's preferences in the search

space to distinguish between Pareto equivalent solutions that

can evolve towards the ROI on problems involving more than

3 objectives [53]. Preference-based MOEAs have given many

interesting results when addressing concrete problems in several

engineering fields, including software design, by incorporating

designer preferences [54].

The new preference ordering relations is an alternative ap­

proach that takes into account additional information, suchas the

rank of the particular solution regarding the different objectives

and the related population [55] in order to overcome the inability

to differentiate between solutions with the increased of the

number of objectives; however, these methods do not necessarily

agree with to the DMs preferences. Another category of work

2590 IEEETRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

is the decomposition technique that decomposes the problem

into several sub-problems that can be solved simultaneously by

using evolutionary algorithms' parallel search capability such

as MOEA/D [56].

The closest application of many-objective techniques to soft­

ware engineering is a study related to software modulariza­

tion [13]. In that work, the authors proposed to use coupling,

cohesion, history of changes, and other structural metrics as

fitness functions to guide the search toward finding relevant

code restructuring actions. Although applying many-objective

techniques in software engineering is not new, our study is

the first to formulate the container scheduling problem as a

many-objective one.

VI. CONCLUSION

In this article, we proposed a new dynamic workload balanc­

ing for containers that target more complex objectives than the

typical default scheduler of existing Docker technologies. Our

new approach aimed to achieve a balanced workload between

the cluster's nodes and more efficient utilization of resources.

Therefore, we considered in our approach to minimize the num­

ber of selected nodes to reduce resources consumption, minimize

the average of containers per node for a balanced workload be­

tween them, takingintoconsideration the dependencies between

containers and try to reduce the coupling (dependent containers

allocated to different nodes) to minimize the network transmis­

sion and finally minimize the number of changes between the

current scheduling and our approach (e.g., move container). The

experiments performed on 48 docker projects provides strong

evidence that our approach can significantly reduce resource

consumption (CPU, memory, network VO) compared with the

default scheduler and other existing techniques.

As part of our future work, we plan to generalize our results

with a more significant number of nodes and containers. We

are also planning to consider more complex constraints in the

scheduling based on real-world applications such as connected

vehicles.

Finally, we plan to extend our study and investigate the effi­

ciency of the proposed approach againstother non-optimization­

based algorithms, such as deep learning.

REFERENCES

[1] G. Bhatia, A. Choudhary, and V. Gupta, ''The road to docker: A survey,"

in Proc. Int.J. Adv. Res. Comput. Sci., 2017, pp. 83-87.

[2] D. Merkel et al., "Docker: Lightweight linux containers for consistent

development and deployment," LinuxJ., vol. 2014, p. 2, 2014, Art. no. 239.

[3] Portworx, "2017 annual container adoption survey: Huge growth in con­

tainers," 2020,[Online]. Available: https://portworx.com/2017-container­

adoption-survey/

[4] R. Senington, B. Pataki, and X. V. Wang, "Using docker for factory

systemsoftware management: Experience report," Procedia C/Rp, vol.72,

pp. 659-664, 2018.

[SJ What is docker swarm, 2021. [Online]. Available: htt.ps://docs.docker.

com/engine/swarm/

[6] What is mesos by apache, 2021. [Online]. Available: http://mesos.apache.

org/

[7] What is kubernetes ?, 2021. [Online]. Available: https://kubemetes.io/

docs/concepts/overview/what-is-kubemetes/

[8] Docker scheduling strategy, 2021. https://semaphoreci.com/com

munity/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster,

accessed on 26/04/

[9] K. Kaewkasi and C. Chuenmuneewong, "Improvement of container

scheduling for docker using ant colony optimization," in Proc. 9th Int.

Conf Know/. Smart Technol., 2017, pp. 254-259.

[10] C. Guerrero, I. Lera, and C. Juiz, "Genetic algorithm for multi-objective

optimization of container allocation in cloud architecture," J. Grid Com­

put., vol. 16, pp. 113-135, 2017.

[11] L. Li,J. Chen,andW. Yan,"A particleswarmoptimization-based container

scheduling algorithm of docker platform," in Proc.4th Int. Conj. Commun.

fllf Process., 2018, pp. 12-17.

[12] D. Zhang, B.-H. Yan, Z. Feng, C. Zhang, and Y.-X. Wang, "Container

oriented job scheduling using linear programming model," in Proc. 3rd

Int. Conj. Inf Manage., 2017, pp. 174-180.

[13] W.Mkaoueretal., "Many-objective software remodularization using nsga­

ID," ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp. 1-45, 2015.

[14] K. Deb and H. Jain, "An evolutionary many-objective optimization algo­

rithm using reference-point-based nondominated sorting approach, part

I: Solving problems with box constraints," IEEE Trans. Evol. Comput.,

vol. 18, no. 4, pp. 577-601, Aug. 2014.

[l SJ H. Jain and K. Deb, "An evolutionary many-objective optimization algo­

rithm using reference-point based nondominated sortingapproach, part ii:

Handling constraints and extending to an adaptiveapproach," IEEE Trans.

Evol. Comput., vol. 18, no. 4, pp. 602-622, Aug. 2014.

[16] D. H. Phan and J. Suzuki, "R2-IBEA: R2 indicator based evolutionary

algorithm for multiobjective optimization," in Proc. IEEE Congr. Evol.

Comput., 2013, pp. 1836--1845.

[17] A. Ghammam, T. Ferreira, W. Aljedaani, M. Kessentini, and A. Husain,

2023. https://anwarghammam.github.io/ContainersSchedulingWebSite/

[18] Docker, 2020, [Online]. Available: https://docker.com

[19] J. Cito, G. Schermann, J.E. Wittem, P. Leitner, S. Zumberi, and H. C.

Gall, "An empirical analysisof the dockercontainer ecosystem on github,"

in Proc. IEEE/ACM 14th Int. Conf Mining Softw. Repositories, 2017,

pp. 323-333.

[20] Y. Jiang and B. Adams, "Co volution of infrastructure and source code-

an empirical study," in Proc. 12thWork.Conf.Mining Softw. Repositories,

2015, pp. 45-55.

[21] Docker compose, 2020. [Online]. Available: https://github.com/docker/

compose

[22] DockerHub, 2020. [Online]. Available: https://hub.docker.com

[23] M. Sureshkumar and P. Rajesh, "Optimizing the docker container usage

based on load scheduling," in Proc. 2nd Int. Conf Comput. Commun.

Technol., 2017, pp. 165-168.

[24] S. Meisenbacher, K. Schwenk, J. Galenzowski, S. Waczowicz, R. Mikut,

and V. Hagenmeyer, "A lightweight user interface for smart charging of

electric vehicles: A real-world application," in Proc. 9th Int. Conf Smart

Grid Clean Energy Tee/mo/., 2021, pp. 57-61.

[25] R. Morabito, R. Petrolo, V.Loscrl, N. Mitton, G. Ruggeri,and A. Molinaro,

"Lightweight virtualization as enabling technology for future smart cars,"

in Proc. IEEF/IFIP Symp. lntegr. Netw. Serv. Manage., 2017, pp. 1238-

1245.

[26] S. Dabbene, C. Lehmann, C. Campolo, A. Molinaro, and F. H. P. Fitzek,

"A mec-assisted vehicle platooning control through dockercontainers," in

Proc. IEEE 3rd Connected Automated Veh. Symp., 2020, pp. 1 .

[27] T. Mikkonen, C. Pautasso, K. Systii, and A. Taivalsaari, "Cargo-cult

containerization:Acritical view of containers in modem softwaredevelop­

ment," in Proc. IEEE In!.Conf Serv.-Oriented Syst.Eng.,2022, pp.93-98.

[28] C. Kaewkasi and K. Chuenmuneewong, "Improvement of container

scheduling for docker using ant colony optimization," in Proc. 9th Int.

Conf Know/. Smart Tee/mo/., 2017, pp. 254-259.

[29] B. Brazil, Prometheus: Up & Rumiing: Infrastructure and Application

Pe,fommnce Monitoring. Sebastopol, CA, USA: O'Reilly Media, lnc.,

2018.

[30] cAdvisor, 2020. [Online]. Available: https://github.com/google/cadvisor

[31] ApacheBench, 2020.[Online]. Available: https://httpd.apache.org/docs/2.

4/programs/ab.html

[32] E. Zitzler, M. Laumanns, and S. Bleuler, "A tutorial on evolution­

ary multiobjective optimization," in Proc. Metaheuristics Multiobjective

Optimisation, 2004, pp. 3-37.

[33] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach," IEEE Trans.

Evol. Comput., vol. 3, no. 4, pp. 257-271, Nov. 1999.

[34] D. A. Van Veldhuizen and G. B. Lamont, "Multiobjective evolutionary

algorithm research: A history and analysis," Citeseer, Tech. Rep. TR-98-

03, 1998.

https://portworx.com/2017-container-adoption-survey/
https://portworx.com/2017-container-adoption-survey/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
http://mesos.apache.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://github.com/google/cadvisor
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

GHAMMAM et al.: DYNAMlC SOFTWARE CONTAINERS WORKLOAD BAl.ANCING VIA MANY-OBJECTfVESEARCH 2591

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 15:11:28 UTC from IEEE Xplore. Restrictions apply.

[35] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, "Not going to take this

anymore: Multi-objective overtime planning for software engineering

projects," in Proc. 35th Int. Co11f. Softw. E11g., 2013, pp. 462-471.

[36] H. Meunier, E.-G. Taibi, and P. Reininger, "A multiobjective genetic

algorithm for radio network optimization," in Proc. Congr. Evol. Comput.,

2000,pp.317-324.

[37] R. A. Matnei Filho and S. R. Vergilio, "A mutation and multi-objective

testdatageneration approach for feature testing of software product lines,"

in Proc. 29th Braz. Symp. Softw. Eng., 2015, pp. 21-30.

[38] A. Strickler, J. A. Prado Lima, S. R. Vergilio, and A. Pozo, ''Deriving

products for variability test of feature models with a hyper-heuristic

approach," Appl. Soft Comput., vol. 49, pp. 1232-1242, Dec. 2016.

[39] T. N. Ferreira, J. N. Kuk, A. Pozo, and S. R. Vergilio, "Product selection

based on upper confidence bound MOEA/D-DRA for testing software

product lines," in Proc. IEEECo11gr. Evol. Comput.,2016, pp.4135-4142.

[40] K. Deb, "Multi-objective optimisation using evolutionary algorithms: An

introduction," in Multi-Objective Evolutionary Optimisation for Product

Desig11and Manufacturing.Berlin, Germany: Springer, 2011, pp. 3-34.

[41] B. Rosner, R. J. Glynn, and M.-L. Ting Lee, "Incorporation of clustering

effectsfor the wilcoxon rank sum test: A large-sample approach," Biomet­

rics, vol. 59, no. 4, pp. 1089-1098, 2003.

[42] A. Arcuri and L. Briand, "A practical guide for using statistical tests to

assess randomized algorithms in software engineering;' in Proc. IEEE

33rd Int. Con[. Softw. Eng., 201 I, pp. 1-10.

[43] F. Chen, X. Zhou, and C. Shi, ''The container scheduling method based

on the min-min in edge computing," in Proc. ACM 1111. Con[. Proc. Ser.,

2019, pp. 83-90.

[44] B. Liu, P. Li, W. Lin, N. Shu, Y. Li, and V. Chang, "A new container

scheduling algorithm based on multi-objective optimization,"Soft Com­

put., vol. 22, no. 23, pp. 7741-7752, 2018.

[45] M. Harman and B. F. Jones, "Search-based software engineering," Inf

Softw. Tech11ol., vol. 43, no. 14, pp. 833-839, 2001.

[46] M. Harman, S. A. Mansouri, and Y. Zhang, "Search-based software

engineering: Trends, techniques and applications," ACM Comput. Surv.,

vol. 45, no. I, pp. 1-61, 2012.

[47] Y. Zhang, A. Finkelstein, and M. Harman, "Search based requirements

optimisation: Existing work and challenges;' in Proc. Int. Work. Con[.

Requirements Eng. Fou11d. Softw. Qua[., 2008, pp. 88-94.

[48] M. Harman, P. McMinn, J. T. Desouza, and S. Yoo, "Search based soft­

ware engineering: Techniques, taxonomy, tutorial," in Empirical Software

Engineering and Verification. Berlin, Germany: Springer, 2010, pp. 1-59.

[49] N. Alshahwan and M. Harman, "Automated web application testing using

search based software engineering," in Proc. IEEF/ACM 26th 1111. Con[.

Automated Softw. Eng., 201I, pp. 3-12.

[50] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, "Multi-criteria

code refactoring using search-based software engineering: An industrial

case study," ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1-53,

2016.

[51] H. Wang and X. Yao, "Objective reduction based on nonlinear correlation

information entropy," Soft Comput., vol. 20, no. 6, pp. 2393-2407, 2016.

[52] D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang,"Objective re­

duction in many-objective optimization: Linear and nonlinear algorithms,"

IEEE Trans. Evol. Comput., vol. 17, no. I, pp. 77-99, Feb. 2013.

[53] J. Hom,"Fl. 9 multicriteriondecision making," HandbookEvol. Comput.,

vol. 97, no. I, 1997, pp. 67--S2.

[54] M.Li, S. Yang,and X. Liu,"Diversity comparison of pareto front approx­

imations in many-objective optimization," IEEE Trans. Cybem., vol. 44,

no. 12, pp. 2568-2584, Dec. 2014.

[55] A. Konak, D. W. Coit, and A. E. Smith, "Multi-objective optimization

using genetic algorithms: A tutorial," Rel. Eng. Syst. Saf., vol. 91, no. 9,

pp.992-1007,2006.

[56] D. Jia and J. Vagners, "Parallel evolutionary algorithms for UAV path

planning," in Proc. AlAA 1st lntell. Syst. Tech. Con[., 2004, Art. no. 6230.

Anwar Ghammam is currently working toward the

PhD degree in the intelligent Software Engineering

group with the University of Michigan. Her PhD

project is concerned with the application of intelligent

search and machinelearning in different areassuch as

Software Containers, web services, refactoring, and

mobile app reviews. Her current research interests

are Al, web services, refactoring, data analytics, and

software quality.

Thiago Ferreira received the PhD degree in com­

puter science from the Federal University of Parana,

in 2019. He is an assistant professor in the College of

Innovation & Technology (CIT) with the University

of Michigan-Flint.His research interests focus on the

use of User Preferences, Optimization Algorithms,

and Artificial Intelligence techniques to address sev­

eral Software Engineering problems, such as Soft­

ware Requirements, Software Testing, and Software

Refactoring.

Wajdi Aljedaani received the bachelor's degree in

software engineering from the Athlone institute of

technology, Ireland, in 20 I4 and the master's degree

in software engineering from the Rochester Institute

of Technology, New York. in 20 I6, and the PhD

degree in computer science and engineering from the

University of North Texas. He worked as a teaching

Fellow for two years(2021-2022) with the University

of North Texas then he joined the ISE Lab with

Oakland University as a post-doctoral Researcher. His

research interests are software engineering, mining

software repository, accessibility, machine learning, and NLP.

Marouane Kessentini is a recipient of the presti­

gious 2018 president of Tunisia distinguished re­

search award, the University distinguished teaching

award, the University distinguished digital education

award, the College of Engineering and Computer

Sciencedistinguished research award,four best paper

awards, and his Al-based software refactoring inven­

tion, licensed and deployed by industrial partners,

is selected as one of the Top 8 inventions with the

University of Michigan for 2018 (including the three

campuses), among more than 500 inventions, by the

UM Technology Transfer Office. He is currently a tenured associate professor

and leading a research group on Software Engineering Intelligence at the

University of Michigan.

Ali Husain is a seniorscientist leader in the Research

department, Ford with a passion for Artificial Intelli­

gence and Machine Leaming in Vehicles. As for his

professional experience, he has more than 13 years

of Embedded Software experience in the Automo­

tive Industry. His experience spans across Advanced

Driver Assistance Systems, Al, Machine Learn­

ing, Software Virtualization,Safety-CriticalSoftware

Development, and Software Architecture.

