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ABSTRACT

A multivariate distribution can be described by a triangular transport map from the target distribution to a
simple reference distribution. We propose Bayesian nonparametric inference on the transport map by
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modeling its components using Gaussian processes. This enables regularization and uncertainty quantifi-

cation of the map estimation, while resulting in a closed-form and invertible posterior map. We then focus
on inferring the distribution of a nonstationary spatial field from a small number of replicates. We develop
specific transport-map priors that are highly flexible and are motivated by the behavior of a large class of
stochastic processes. Our approach is scalable to high-dimensional distributions due to data-dependent
sparsity and parallel computations. We also discuss extensions, including Dirichlet process mixtures for
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flexible marginals. We present numerical results to demonstrate the accuracy, scalability, and usefulness of
our methods, including statistical emulation of non-Gaussian climate-model output. Supplementary

materials for this article are available online.

1. Introduction

Inference on a high-dimensional joint distribution based on
a relatively small number of replicates is important in many
applications. For example, generative modeling of nonstationary
and non-Gaussian spatial distributions is crucial for statistical
climate-model emulation (e.g., Castruccio et al. 2014; Nychka
et al. 2018; Haugen et al. 2019), in ensemble-based data assimi-
lation (e.g., Houtekamer and Zhang 2016; Katzfuss, Stroud, and
Wikle 2016), and design studies for new satellite observing sys-
tems at NASA using observing system simulation experiments
(Errico et al. 2013).

Continuous multivariate distributions can be characterized
via triangular transport maps (see Marzouk et al. 2016, for a
review) that transform the target distribution to a reference
distribution (e.g., standard Gaussian), as illustrated in Figure 1.
For Gaussian target distributions, such a map is linear and given
by the Cholesky factor of the precision matrix; non-Gaussian
distributions can be obtained by allowing nonlinearities in the
map. Given an invertible transport map, it is straightforward to
sample from the target distribution and some of its conditionals,
or to transform the non-Gaussian data to the reference space,
in which simple linear operations such as regression or interpo-
lation can be applied. Typically, the map is estimated based on
training data, often by iteratively expanding a finite-dimensional
parameterization of the transport map (e.g., El Moselhy and
Marzouk 2012; Bigoni, Spantini, and Marzouk 2016; Marzouk
et al. 2016; Parno, Moselhy, and Marzouk 2016; Baptista, Zahm,
and Marzouk 2020); subsequent inference is then carried out
assuming that the map is known.

We propose an approach for Bayesian inference on a trans-
port map that describes a multivariate continuous distribution

and is learned from a limited number of samples from the
distribution. We model the map components using nonparamet-
ric, conjugate Gaussian-process priors, which probabilistically
regularize the map and shrink toward linearity. The resulting
generative model is flexible, naturally quantifies uncertainty, and
adjusts to the amount of complexity that is discernible from the
training data, thus, avoiding both over- and under-fitting. The
conjugacy results in simple, closed-form inference. Instead of
assuming Gaussianity for the multivariate target distribution,
our approach is equivalent to a series of conditional GP regres-
sion problems that together characterize a non-Gaussian target
distribution.

We then focus on learning or emulating structured target
distributions corresponding to spatial fields observed at a finite
but large number of locations, based on a relatively small num-
ber of training replicates. In this setting, our Bayesian trans-
port maps impose sparsity and regularization motivated by the
behavior of diffusion-type processes that are encountered in
many environmental applications. After applying a so-called
maximin ordering of the spatial locations, determining the tri-
angular transport map essentially consists of conditional spatial-
prediction problems on an increasingly fine scale. We discuss
how this scale decay results in conditional near-Gaussianity for a
large class of non-Gaussian stochastic processes associated
with quasilinear partial differential equations. Hence, our prior
distributions are motivated by the behavior of Gaussian fields
with Matérn-type covariance, for which the so-called screen-
ing ef fect leads to a decay of inf luence that motivates sparse
transport maps that only consider nearby observations in the
spatial prediction problems, corresponding to assumptions of
conditional independence. The degree of shrinkage and sparsity
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Figure 1. Top panel: lllustration of a transport map T transforming a (bivariate) non-Gaussian distribution p(y) to a standard Gaussian distribution N (0, 1). Bottom:
Equivalently, T converts a realization (here, a spatial field) y @ p(y) to standard Gaussian coeficientsz = T (y) @ N (0,1). Under maximin ordering (Figure 2), z can be
viewed as scores corresponding to a nonlinear version of principal components, and they decrease in importance and in corresponding spatial scale from left to right. The
spatial field is output from a climate model on a grid of size N = 288 x 192 = 55,296; we want to learn T characterizing the N-dimensional distribution based on an

ensemble of n < 100 training samples (see Section 6).

are determined by hyperparameters that are inferred from data.
The resulting Bayesian methods require little user input, scale
near-linearly in the number of spatial locations, and the main
computations are trivially parallel.

We further increase the flexibility in the (continuous)
marginal distributions by modeling the GP-regression error
terms using Dirichlet process mixtures, which can be fit using
a Gibbs sampler. The resulting method lets the data decide the
degrees of nonlinearity, nonstationarity, and non-Gaussianity,
without manual tuning or model-selection. We also discuss an
extension for settings in which Euclidean distance between
the locations is not meaningful or in which variables are
not identified by spatial locations (e.g., multivariate spatial
processes).

Most existing methods for spatial inference are in principle
applicable in our emulation setting, but they are often geared
toward spatial prediction based on a single training replicate
and assume Gaussian processes (GPs) with simple parametric
covariance functions (e.g., Cressie 1993; Banerjee et al. 2004),
whereas our methodology is not designed for spatial predic-
tion at unobserved locations. Many extensions to nonstationary
(e.g., as reviewed by Risser 2016) or nonparametric covariances
(e.g., Huang, Hsing, and Cressie 2011; Choi, Li, and Wang
2013; Porcu et al. 2021) have been proposed, but these typ-
ically still rely on implicit or explicit assumptions of Gaus-
sianity. This includes locally parametric methods specifically
developed for climate-model emulation (Nychka et al. 2018,
Wiens, Nychka, and Kleiber 2020; Wiens 2021) that locally fit
anisotropic Matérn covariances in small windows and then
combine the local fits into a global model. For non-Gaussian
spatial data, GPs can be transformed or used as latent building
blocks (see, e.g., Gelfand and Schliep 2016; Xu and Genton 2017
and references therein), but relying on a GP’s covariance func-
tion limits the types of dependence that can be captured. Para-
metric non-Gaussian Matérn fields can be constructed using

stochastic partial differential equations driven by non-Gaussian
noise (Wallin and Bolin 2015; Bolin and Wallin 2020). Models
for non-Gaussian spatial data can also be built using copulas;
for example, Griler (2014) proposed vine copulas for spatial
fields with extremal behavior, and the factor copula approach
of Krupskii, Huser, and Genton (2018) assumes all locations in
a homogeneous spatial region to be affected by a common
latent factor. Many existing non-Gaussian spatial methods are
not scalable to large datasets.

A popular way to achieve scalability for Gaussian spatial fields
with parametric covariances is via the Vecchia approximation
(e.g., Vecchia 1988; Stein, Chi, and Welty 2004; Datta et al. 2016;
Katzfuss and Guinness 2021; Schifer, Katzfuss, and Owhadi
2021), which implicitly uses a linear transport map given by a
sparse inverse Cholesky factor. Kidd and Katzfuss (2022) pro-
posed a Bayesian approach to infer the Cholesky factor nonpara-
metrically. Our (sparse) nonlinear transport maps can be viewed
as a Bayesian, nonparametric, and non-Gaussian generalization
of Vecchia approximations.

A close relative of transport maps in machine learning are
normalizing flows (see Kobyzev, Prince, and Brubaker 2020
for a review), where triangular layers ensure easy evaluation
and inversion of likelihood objectives. Normalizing flows have
been used to model point-process intensity functions over the
sphere (Ng and Zammit-Mangion 2022, 2023) and random
fields in cosmology (Rouhiainen, Giri, and Miinchmeyer 2021).
Variational autoencoders (VAEs) and generative adversarial
networks (GANs) relying on deep neural networks (e.g., Good-
fellow, Bengio, and Courville 2016) can be highly expressive
and have been employed for climate-model emulation (e.g.,
Ayala et al. 2021; Besombes et al. 2021). Kovachki et al.
(2020) designed GANs with triangular generators that allow
conditional sampling. Our approach can be viewed as a Bayesian
shallow autoencoder, with the posterior transport map and
its inverse acting as the encoder and decoder, respectively. In



contrast to our method, deep-learning approaches typically
require massive training data, can be expensive to train, and
are often highly sensitive to tuning-parameter and network-
architecture choices (e.g., Arjovsky and Bottou 2017; Hestness
et al. 2017; Mescheder, Geiger, and Nowozin 2018). Hence, in
many low-data applications such approaches are only useful
when paired with laborious and application-specific techniques,
such as data augmentation, transfer learning, or advances in
physics-informed machine learning (e.g., Kashinath et al. 2021).

The remainder of this article is organized as follows. In
Section 2, we develop Bayesian transport maps. In Section 3,
we consider the special case of high-dimensional spatial distri-
butions. In Section 4, we discuss extensions to non-Gaussian
errors using Dirichlet process mixtures. Sections 5 and 6 provide
comparisons and applications to simulated data and climate-
model output, respectively. Section 7 concludes and discusses
future work. Appendices A—G in the supplementary materials
contain proofs and further details. Fully automated implemen-
tations of our methods, along with code to reproduce all results,
are available at https://github.com/katzfuss-group/BaTraMaSpa.

2. Bayesian Transport Maps
2.1. Transport Maps and Regression

Consider a continuous random vector y = (y1,...,yn)”, for
example describing a spatial field at N locations as in Figure 8.
For simplicity, assume that y has been centered to have mean
ZETo.

For a multivariate Gaussian distribution, y @ N (0, 6) with
6! = L’L,the (lower-triangular) Cholesky factor L represents
a transformation to a standard normal: z = Ly & Ny (0,1n). As
a natural extension, we can characterize any continuous N-
variate distribution p(y) by a potentially nonlinear transport
map T : RY > R (Villani 2009), such that z = T (y)
Ny (0,1n) for y @ p(y). Like L, we can assume without loss of
generality that the transport map T is lower-triangular (Rosen-
blatt 1952; Carlier, Galichon and Santambrogio 2009),

T1(
@Tz(;l »2) ]
T(y) = o (M
I :
TN(1,Y2,---,YN)
where each T;(y1;) with y1; = (y1,...,y)” is an increasing

function of its ith argument to ensure that T is invertible and

implies a proper density p(y). Letting N (x|u,c?) denote a

Gaussian density with parameters x4 and ¢ evaluated at x, we

then have

Yy “aTi(y14) ¢
vl T

i ¢
p(Y) = pz T(y) |det®T |= :
i=1 oyi

2
as the triangular T also implies a triangular BT =

OT;(Y1:
( (yl)),/l

Throughout we assume each T; to be linearly additive in its
ith argument,

Ti(yri) = (vi— fi(yri-1))/d;, i=1,...,N, (3
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for some d; @ R*, f; : R"! > R fori = 2,...,N, and
fi(y1:i-1) = Ofori = 1.Then,0;Ti(y14) = 1/d; > 0, as required.
Using (2), it is easy to show that

p(y) . exp(~ 174% - ) L
i=1 24, di
YN
N (ilfi(yri-1),d%).
i=1
Thus, the transport-map approach has turned the dificult prob-
lem of inferring the N-variate distribution of y into N indepen-

dent regressions of y; on yi:;-1 of the form

yi= filyi-) + %, ZBN@©,d?), i=1,...,N. (5

Sparsity in the map T corresponds to conditional indepen-
dence in the joint distribution p(y) (see Spantini, Bigoni, and
Marzouk 2018). Specifically, if we assume fi(y1:i-1) = fi(yc ) fora
subset c¢; {1,...,i — 1}, then T is sparse in that T; only
depends on y; if j @ ¢; (or if j = i). Making such a sparsity
assumption fori = 2,..., N (and setting Ye = @), we have from
(4) thatp(y) = Qn p(y, |y ), meaning that vi is independent of
{1 j B ci,j < i} dohditional on y,. We will exploit this sparsity
for computational gain for inferring large non-Gaussian spatial
fields in Section 3.

)

2.2. Modeling the Map Functions Using Gaussian
Processes

In the existing transport-map literature (e.g., Marzouk et al.
2016), £ :Ri"!1 > R andd; @R * in (3)—(5) are often assumed to
have parametric form, whose parameters are estimated and
then assumed known. Instead, we here assume a flexible, non-
parametric prior on the map T by specifying independent con-
jugate Gaussian-process-inverse-Gamma priors for the f; and dl.z.
These prior assumptions induce prior distributions on the map
components T; in (3), and thus on the entire map T in (1).
Specifically, for the “noise” variances d?, we assume inverse-

Gamma distributions,

& 816, ),  witha;>1, fi>0, i=1,..,N.
(6)

Conditional on dlz., each function f; is modeled as a Gaussian
process (GP) with inputs yi:-1,

fild; B 6P (0, d, %), i=1,...,N (7
where Ki(-,+) = Ci(-,-)/E(d?),E(d?) = Bi/(ai- 1),
Ci(yri-1,¥$.-1)
> 0 2 . X 0 .
= Y1.i-1Qi¥ii-1 + 67 pi(Y1i-1,¥1:-1); i=1,...,N,
(8

o BR* o» and p; is a positive-definite correlation function such
that p,(y1 .i-1,¥1:i-1) = 1. This prior on f; is motivated by con-
sidering fi|b; GP(b>l(-),62{),-(-, -)) with inputs yi.;-1, where

b; @ N(0,Q;). Integrating out b, wg obtainf; @ GP(0,C;)
with C; as in (8), and hence f; = (di/ E(dl.z))ﬁ as in (7). The
degree of nonlinearity of f; is determined by ¢%; if 6> = 0, then
fi isalinear function ofy1.;-1. The prior distributions (i.e., a;, 5i,
Ci) may depend on hyperparameters 4; see Section 2.4 for more
details.
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2.3. The Posterior Map

Now assume that we have observed » independent training

samples y(V, ...,y from the distribution in Section 2.1 con-
ditional on f = (fi,...,fnv) andd = (di,...,dn), such that
v BpyIf,d) with T(v?) | f,d B Ny (0,Iv),j = 1,...,n. We
combine the samples into an # x N data matrix Y whose jth
row is given by y&’. Then, for the regression in (5), the responses
yi and the covariates Y1:;-1 are given by the ith and the first
i - 1 columns of Y, respectively. Below, let y’ denote a new
observation sampled from the same distribution,y” @ p(y|f,d),
independently of Y.

Based on the prior distribution for f and d in Section 2.2,
we can now determine the posterior map ¥ learned from the
training data Y, with f and d integrated out. This map is available
in closed form and invertible:

Proposition 1. The transport map E fromy’ B py|Y)toz’ =
¥ (y’) B Ny (0,1y) is a triangular map with components

Zl,j) = $l(yf,,y:) ot
_ql ia_ ; _ ; .
= 87 P, d ' (vityl o)+ DTVEO] - fiyi))

i=1,...,N, O]

where éi = a;i+ n/2,fi= fi+ yi>G;lyi/2, & = /)Zi/&i, G;=
| i) .
Ki(Yti-1,Y1:i-1) = Ki(ygl;i-l’yﬁ)i—l) R

Ki+ I, K; =
iyl = Kityyio, Y1i-0)G i, (10)
Vi(Yiio1) = Ki(Y5io1s¥iio1)
= Ki(¥iio1 YUi-)G Ki(Y -1, yim), - (1)

fori= 2,... ,N,ﬁ = y; = Ofori = 1,and 8 and F,c denote the
cumulative distribution functions of the standard normal and
the ¢ distribution with x degrees of freedom, respectively. The
inverse map ¥ ~! can be evaluated at a given z” by solving the
nonlinear triangular system  (y’) = z’ for y’; because § is
triangular, the solution can be expressed recursively as

Vi = JilYau-)+F5d,(8(z7)) divi(¥..)+D"?,  i= 1,...,N.
(12)

All proofs are provided in Appendix A, supplementary mate-
rials. We can write the prior map in a similar form, but this is
only useful in the case of highly informative priors.

Determining ¥; requires O(n> + in?) time, mostly for com-
puting and decomposing the #» x »n matrix G;, for each i =
1,...,N.However, note that the N rows or components of ¥ can
be computed completely in parallel, as in the optimization-based
transport-map estimation reviewed in Marzouk et al. (2016).
Each application of the transport map or its inverse then consists
of the GP prediction in (10)—<(11) and only requires O(n?* +
in) time for i = 1,...,N, but the inverse map is evaluated
recursively (i.e., not in parallel).

In contrast to existing transport-map approaches, our
approach is Bayesian and naturally quantifies uncertainty in
the nonlinear transport functions. The GP priors on the f;
automatically adapt to the amount of information available,
only resulting in strongly nonlinear function estimates when
supplied the requisite evidence by the data. If n is increasing,

then @; increases, Fp5, converges to §, and v,'(y?l,i_1 ) typically
converges to zero, and so the map components simplify to

Fi(1, v = iy o))/ and Y] = fiyho )4z

(13)
When employed for finite #, this simplified version of the map
ignores posterior uncertainty in f and d and instead relies on
the point estimates fi(y1:i-1) and d>. If we further assume that
0in (8) forall i = 1,...,N, then all f; and all &
become linear functions; we can think of the resulting linear map
®(y’) = L>y’ as an inverse Cholesky factor, in the sense that
YIYEN(0,37') with3 = LL>.

Transport maps can be used for a variety of purposes. For
example, we can obtain new samples y’ from the posterior
predictive distribution p(y|Y) by sampling z" @ N (0,1,) and
computingy” = & ~1(z”) using (12). The map & in (9) provides
a transformation from a non-Gaussian vector y” to the standard
Gaussian z” = & (y’); we call Z = (4,...,z) the map
coeficients corresponding toy’ (see Figure 1 for an illustration).
Because the nonlinear dependencies have been removed, many
operations are more meaningful on z” than on y’, including lin-
ear regressions, translations using linear shifts, and quantifying
similarity using inner products. We can also detect inadequacies
of the map & for describing the target distribution by examining
the degree of non-Gaussianity and dependence in z”. These uses
of transport maps will be considered further in Section 3.5.

o =

2.4. Hyperparameters

The prior distributions on the f; and d; in Section 2.2 may
depend on unknown hyperparameters §. For example, by mak-
ing inference on hyperparameters in the o; in (8), we can let the
data decide the degree of nonlinearity in the map and thus the
non-Gaussianity in the resulting joint target distribution. We can
write in closed form the integrated likelihood p(Y), where fand d
have been integrated out.

Proposition 2. The integrated likelihood is

vy o ¢
p(V) B |Gi| T2 x (BUB) x 0(G)/0(@r) ,  (14)
i=1
where 0(-) denotes the gamma function, and é&;, fi, G; are
defined in Proposition 1.

Now denote by pg(Y) the integrated likelihood p(Y) com-
puted based on a particular value 6 of the hyperparameters.
There are two main possibilities for inference on 4. First, an
empirical Bayesian approach consists of estimating § by the
value that maximizes logpy(Y), and then regarding 6 as fixed
and known. As logpg(Y) is a sum of N simple terms, it is
straightforward to optimize this function using stochastic gra-
dient ascent based on automatic differentiation. Second, we can
carry out fully Bayesian inference by specifying a prior p(9), and
sampling 6 from its posterior distribution p@|Y) & po(Y)p(8)
using Metropolis-Hastings; subsequent inference then relies on
these posterior draws.

For our numerical results, we employed the empirical
Bayesian approach, because it is faster and preserves the closed-
form map properties in Section 2.3. In exploratory numerical
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experiments, we observed no significant decrease in inferential
accuracy relative to the fully Bayesian approach, likely due to
working with a small number of hyperparameters in 6.

3. Bayesian Transport Maps for Large Spatial Fields

Now assume thaty = (y1,...,yn)” consists of spatial observa-
tions or computer-model output at spatial locations s1,. . ., sy in
a region or domain D @ RY™  We assume Bayesian transport
maps as in Section 2.1, with regressions of the form (5) in (i-1)-
dimensional space for i = 1,...,N. As N is very large in
many relevant applications, we will specify priors distributions
of the form described in Section 2.2 that induce substantial reg-
ularization and sparsity, as a function of hyperparameters 6 =
(05,1,05,2,041,042,0y,04) to be introduced in Sections 3.2-3.4.

3.1. Maximin Ordering and Nearest Neighbors

A triangular map T (y) as in (1) depends on the ordering of
the variables yi,...,yn. We assume a maximum-minimum-
distance (maximin) ordering of the corresponding locations
$1,...,8Nn (see Figure 2), in which we sequentially choose each
location to maximize the minimum distance to all previously
ordered locations. Specifically, the first index #; is chosen arbi-
trarily (e.g.,i1 = 1),and then the subsequent indices are selected
as ij = argmax;p, min;py, ksi - sk forj = 2,...,N,
where /; = {i1,...,ij-1}. For notational simplicity, we assume
throughout that y = (y1,...,yn) follows maximin ordering
(ie,yj = yi). Define ci(k) as the index of the kth near-est
(previously ordered) neighbor of the ith location (and so
Sci(1)s- - - » Se;4) are indicated by x in Figure 2).

The maximin ordering can be interpreted as a multireso-
lution decomposition into coarse scales early in the ordering
and fine scales later in the ordering. In particular, the minimal
pairwise distance *; = ks; - s 1)k among the first / locations of
the ordering decays roughly as *; @ i~1/4i™ where dim here is
the dimension of the spatial domain (see Figure 2(d)). As aresult
of the maximin ordering, the ith regression in (5) can be viewed
as a spatial prediction at location s; based on data at locations
S1,...,8;-1 that lie roughly on a regular grid with distance (i.e.,
scale) ;.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 5

When the variables y1,. . ., yn are not associated with spatial
locations or when Euclidean distance between the locations is
not meaningful (e.g., nonstationary, multivariate, spatio-
temporal, or functional data), the maximin and neighbor
ordering can be carried out based on other distance metrics,
such as (1 - |correlation | )1/2 based on some guess or estimate

of the correlation between variables (Kang and Katzfuss 2023,
Kidd and Katzfuss 2022).

3.2. Priors on the Conditional Non-Gaussianity al.z

In (8), al.z determines the degree of nonlinearity in f;; hence,
0’1.2,. .. ,a]%, together determine the conditional non-Gaussianity
in the distribution of y;n given yi:;-1. A priori, we assume
that the degree of nonlinearity decays polynomially with length
scale ‘;, namely o° = o1 ‘f"'z, which allows the conditional
distributions of y;:y given y1:;-1 to be increasingly Gaussian as i
increases, as a function of hyperparameters 5.1, 65 2.

This prior assumption is motivated by the behavior of
stochastic processes with quasiquadratic loglikelihoods. A
quasiquadratic loglikelihood of order r is the sum of a quadratic
leading-order term that depends on the rth derivatives of the
process, and a nonquadratic term that may only depend on
derivatives up to order » - 1. Gaussian smoothness priors
(with quadratic loglikelihoods) such as the Matérn model
(Whittle 1954, 1963) are closely related to linear elliptic PDEs.
They can formally be thought of as having log-densities
—hu, Aui/2 - hu, bi that are maximized by solutions of the linear
equation Au = b. Similarly, the maximizers of quasiquadratic
log-densities —hu, L(D"u)/2i = V(D" 'u,...u) are solutions
of quasilinear PDEs L(D'u) = - %V(Dr'lu,. ..u). A wide
range of physical phenomena is governed by quasilinear PDEs.
For instance, the Cahn-Hilliard (Cahn and Hilliard 1958) and
Allen-Cahn (Allen and Cahn 1972) equations describe phase
separation in multi-component systems, the Navier-Stokes
equation describes the dynamics of fluids, and the Foppl-von
Kérman equations describe the large deformations of thin elastic
plates. If the order of a data-generating quasilinear PDE is
known, a Matérn model with matching regularity is a sensible
choice to model the leading-order behavior. However, most of
the time, the observations will not arise from a known PDE
model, and so the above arguments primarily motivate us to
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Figure 2. Maximin ordering (Section 3.1) for locations on a grid (small gray points) of size N = 60 x 60 = 3600 on a unit square, [0, 1]9™ with dim = 2. (a)—(c): The ith
ordered location (+), the previous i - 1 locations (°), including the nearest m = 4 neighbors (x) and the distance ; to the nearest neighbor (—). (d): Fori= 1,...,N, the

length scales (i.e., minimum distances) decay as ; = j~1/dim,
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Figure 3. Samples from the non-Gaussian process in (21) in Appendix B, supplementary materials feature regions of negative (dark) and positive (light) values (first panel).
The distribution at a given location is a mixture of these two possibilities and thus non-Gaussian (second panel). By contrast, after conditioning on averages over regions of

size * = 271 (third panel) or * =

273 (fourth panel), the conditional distribution is close to Gaussian, as these averages determine with high probability whether the

location is in a positive or negative region. (See Appendix B, supplementary materials for details.)

expect screening and power laws, without quantifying their
effects.

In its simplest form, the mechanism relating local condition-
ing and approximate Gaussianity is captured by the classical
Pointcaré inequality (Adams and Fournier 2003).

Lemma 1 (Poincaré inequality). Let A @ R? be a Lipschitz-
bounded domain with diameter °, let' Lkal’ld its first derivative
be square-integrable, and let u4 = IJI i u(x)dx be the
mean
of u over 4. Then, we have

ku - wik2oq) < KBukp2ip). (15)
The Poincar¢ inequality directly implies the following corol-
lary.

Corollary 1. Let A be a Lipschitz-bounded domain. Let 7 be a
partition of 4 into Lipschitz-bounded subdomains with diam-
eter upper-bounded by °, and assume that %, v and their first
derivatives are square-integrable and satisfy  (u - v)dx = 0
forall # @ 7. Then,

(16)

This means that after conditioning a stochastic process on
averages of diameter * ¢ 1, even a minor perturbation in u
results in a large change of Bu. For a quasiquadratic likelihood of
orderr = 1 with lower-bounded curvature of the quadratic part,
a perturbation that effects even a minor change in the nonlinear
part, depending only on u, must effect a major change in the
leading-order, quadratic term, assuming the curvature of the
latter is bounded from below. Under suitable growth conditions
on the nonlinear term, this means that the conditional density of
a quasiquadratic likelihood of order » = 1 is dominated by the
leading-order quadratic term as * approaches zero. As a result,
the conditional stochastic process is approximately Gaussian.
This is illustrated in a numerical example in Figure 3. Additional
details are provided in Appendix B, supplementary materials.
Using generalizations of the Poincaré inequality to » > | and
point-wise measurements (e.g., Schéfer, Sullivan, and Owhadi
2021, thm. 5.9(2)), the above argument can be extended to the
setting of » > 1 and conditioning on point sets with distance °
(instead of local averages).

ku - vkr2eqy) < kBu - Bvkpa ).

3.3. Priors on the Conditional Variances d,.2

As we have argued in Section 3.2, even non-Gaussian stochastic
processes with quasiquadratic loglikelihoods exhibit conditional
near-Gaussianity on fine scales. Thus, we will now describe prior
assumptions for the d? and f; in (5) that are motivated by the
behavior of a transport map T for a Gaussian target distribution
with Matérn covariance (see Figure 4), which is a highly popular
assumption in spatial statistics. The Matérn covariance function
is also the Green’s function of an elliptic PDE (Whittle 1954,
1963).

Schéfer, Sullivan, and Owhadi (2021, thm. 2.3) show that
Gaussian processes with covariance functions given by the
Green’s function of elliptic PDEs of order » have conditional
variance of order ‘%’ when conditioned on the first i elements of
the maximin ordering (see Figure 4(b)).

Hence, for the noise or conditional variances dzi 1G(ai, Bi)
as in Section 2.2, we set E@d?) = Bi/(ai - 1) = e ‘?"’2.
Assuming the prior standard deviation of dl.2 to be equal to g
times the mean, we obtain a; = 2 + 1/g2 and f3; = el ‘1.0“”2 (1+
1/g2). For our numerical experiments, we chose g = 4to obtain a
relatively vague prior for the d, .2

3.4. Priors on the Regression Functions f;

The regression functions f; : Ri=! = R in (5) were specified
to be GPs in (i - 1)-dimensional space in Section 2.2. For the
covariance function in (8), we assume that pi(y1:i-1,y,5_) = p
h(Y1:i-1,¥,.007 ‘here h; 31:6-1,¥.8) = (Yiu-1 =y

(13-1'—1)> Qi(y1:i-1 - ytli.i_l), y = exp(Y,) is a range parameter,
and p is an isotropic correlation function, taken to be Matérn
with smoothness 1.5 for our numerical experiments.

To make this potentially high-dimensional regression
feasible, we again use the example of a spatial GP with Matérn
covariance to motivate regularization and sparsity via the
relevance matrix Q; = diag(q? e ,q? ._1)- We assume that the
relevance of the kth neighbor (see Section 3.1) decays exponen-
tially as a function of k, such that g; ., x) decays as exp(0yk). This
type of behavior, often referred to as the screening effect (e.g.,
Stein 2011), is illustrated in Figure 4(c), and it has been exploited
for covariance estimation of a Gaussian spatial field by Kidd
and Katzfuss (2022). Recently, Schéfer, Sullivan, and Owhadi
(2021) proved exponential rates of screening for Gaussian
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Figure 4. For a Gaussian process with exponential covariance on the grid and with the orderlng from Figure 2, expressing the joint distribution p(y) using a transport map

asin (1)—(3) resultsin a series of regressions as in (5) with linear predictors, fi(y1.— 1) =

k 1 Ve (k)bik, where c; (k) indicates the kth nearest (previously ordered) neighbor

of the ith location. (For non-Gaussian p(y), the functions f are nonlinear.) (a): For n = 100 simulations, the values of y and its first and fifth nearest neighbor (NN) lie on a low-
dimensional manifold; the regression plane (assuming all other variables to be fixed) indicates a stronger influence of the first NN (see the slope of the intersection of the

regression plane with the front of the box) than of the fifth NN. (b): The conditional standard deviations decay as a function of the length scale *

squared regression coeficients decay rapidly as a function of neighbor number k.

processes derived from elliptic boundary-value problems;
following the discussion in Section 3.2, we expect similar
conditional-independence phenomena to hold on the fine scales
of processes with quasiquadratic loglikelihoods. As shown in
Figure 9(b), we also observed this behavior for climate data.

Given this exponential decay as a function of the neighbor
number £, the relevance will be essentially zero for suf iciently
large k, and so we achieve sparsity by setting

*exp(0.k), k< m,
Gici(k) = 0’ 1 k> m, (17)
where the sparsity parameter m = max{k : exp(d;k) 2
is determined by the data through the hyperparameter 6,. We
used ¢ = 0.01 for our numerical examples, which produced
highly accurate inference and usually resulted in m < 10.
Assumption (17) induces a sparse transport map, in that f; (and
thus T;) depend on y; ;-1 only through the m nearest neighbors
Yei()s - - - »Vei(m)» Where pj is isotropic as a function of the scaled
INputs ye,x)/qic;k). Sparsity in the transport map is equivalent
to an assumption of ordered conditional independence. Similar
ordered-conditional-independence assumptions are also popu-
lar for Vecchia approximations of Gaussian fields with paramet-
ric covariance functions.

Identifying the regression functions f; in m-dimensional
space is further aided by the data approximately concentrating
on a lower-dimensional manifold due to the strong dependence
between most y.x) and y.q for small £,/ < m (e.g., see
Figure 4(a)).

3.5. Inference

Based on the prior distributions in Sections 3.2-3.4, we can
carry out inference and compute the transport map as in Sec-
tion 2.3. The prior distributions depend on a vector of hyper-
parameters, 0 = (05,1,052,041,042,0y,0;). When making
inference on 6 as described in Section 2.4, we ef fectively let the
training data Y decide the degree of sparsity (through 6, via
m) and the degree of nonlinearity (through 651,052 via o).
Algorithm 1 summarizes the inference procedure. Figure 5 illus-
trates estimation of transport-map components in a simulated
example.

(sep Figure 2(d)). (c) The

Algorithm 1: Inference for the spatial transport map

1: Order yi,...,yn in maximin ordering and compute
scales '; and nearest-neighbor indices ci(1),. . ., ¢i(ma,)
(e.g., mmax = 30) foreachi= 1,...,N (see Section 3.1)

2: Compute f = argmax, logp(Y) via stochastic gradient
ascent, ere

p(Y)B N1Gil 12 (ﬁ“’/ﬁ“’)x 0(az)/0(az)
with 6 = (6o, 9,,2 0.1, 042,0,0,), 6i = ai+ n/2,

pPi= Pi+ y,>G yi/2, ai= 2+ 1/g2,
,B,-- ar %21’y 1/g2), g = 4,
= (CYD,yV)) 1 /(@01 02) 4 1,
Cf(y(f% )= " 3,
O'I‘ZPIHD lﬁl(yhi/i(k) ff)(k))z)l/z/y ’yc(k) yg)(k)eeqk,
m = max{k: e’k 2 001}, g2 = eloF2 y = o,

p(x)= (1+ x3)exp(-x 3)
3: Use fitted map as desired. For example, generate a new
sample y’ = E@"I (z”) using (12) based on

z Nn(0,1n).

Due to the sparsity assumption in (17), the computational
complexity is lower than in Section 2.3; specifically, determining
¥ now only requires O(n> +mn?) time, again in parallel for each
i = 1,...,N.Eachapplication of the transport map or its inverse
then requires O(N(n”> + mn)) time. The maximin ordering and
nearest neighbors can also be computed in quasilinear time in N
(Schifer, Katzfuss, and Owhadi 2021, Alg. 7).

In Section 2.3, we discussed using & in (9) to transform the
non-Gaussian y’ to standard Gaussian map coeficients z” = T
&’). This concept, which is illustrated in Figure 6, is especially
interesting in our spatial setting. Due to the maximin ordering
(Figure 2), the scales ; are arranged in decreasing order, and in
our prior the dl.2 also follow a decreasing stochastic order with
E(d?) = ¢V ‘?‘*2 (see, e.g., Figure 4(b)). Thus, we can view the
map components as a form of nonlinear principal components
(NPCs), with the map coeficients as the corresponding compo-
nent scores. For Gaussian processes with covariance functions
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Tqy’) (see Sections 2.3 and 3.5) for the simulated NR90O data using T ifferred from n = 100 training data. (a)—(b): The N =

900 map coeficients corresponding to one test sample are roughly iid Gaussian. (c): For 1000 test samples,y  versugfirst and second NNs (see Figure 5). (d) When averaging
pairs of two map-coeficient vectors in reference space and transforming back to the original space using (12), the sinusoidal relationship between y2 and éss NNs is
preserved in the resulting 500 averages. (€) When averaging test samples directly in original space, the nonlinear structure is lost.

given by the Green’s function of elliptic PDEs, similar to the
Matérn family, it can be shown that these principal compo-
nents based on the maximin ordering are approximately optimal
(Schifer, Sullivan, and Owhadi 2021). For example, as illustrated
in Appendix F, supplementary materials, these NPCs can be used
for dimension reduction by only storing or modeling the first £,
say, map coeficients z{,, = (217,. ..,Z)”. Note that if we set

z = 0,weassumey’ = fi(y’ ) fori > k, which over-
k+1:N i 1:-1 . R
estimates dependence and underestimates variability; hence, it
is preferable to draw z+1‘ N BN (0,1). In addition to reducing
storage, we can also use this approach for conditional simulation
(Marzouk et al. 2016, Lemma 1), in which we fix the large-scale
features of an observed field by fixing the first £ map coeficients
(see Figure 12 for an illustration). To model a time series of
spatial fields, we could assume a linear vector autoregressive
model for the NPCs, such that the map coeficients at time ¢+ 1,

say zf_:) , linearly depend on z(lt) . When it is of interest to regress
some Tesponse on a spatial fielﬁ, one could also use the first &
map coeficients of the field as the covariates, similar to the use

of function principal component scores in regression.

4. Non-Gaussian Errors

So far, we have focused on nonlinear, non-Gaussian dependence
structures. The model described in Sections 2 and 3 assumes
Gaussian errors in the regressions (5), which implies a marginal
Gaussian distribution for yi, the first variable in the maximin

ordering. If this does not hold at least approximately, extensions
based on additional marginal (i.e., pointwise) transformations,
especially of the f irst few variables in the ordering, are straight-
forward. For example, assume that the model from Sections 2
and 3 holds for y, but that we actually observe §¥ = G(y) such
that p; = gi(yi). If the g; are one-to-one differentiable functions,
the resulting posterior map is a simple extension of that in
Proposition 1. The g; can be pre-determined (see Section 6 for
an example with a log transform) or may depend on € and thus
be inferred based on a minor modification of the integrated
likelihood in Proposition 2.

To increase flexibility of the marginal distributions, the GP
20)

errors °;” can be modeled using Bayesian nonparametrics for

alli = 1,...,N. More precisely, we will use Dirichlet pro-
cess mixtures (DPMs). In (5), we now assume that fi(*)

GP(0,C;), and the 2?) are distributed according to a DPM for
j=L....m

W@ ))IF e F,

1

D49 a7 an @, @”)?),

1

Fi BDP(NIG(Si,ni, ai, Bi), Ci), (18)
where {; is the concentration parameter, and the base mea-
sure NIG (&, ni,ai, fi) is a normal-inverse-Gamma distribu-
tion with density p(x,y) = n!2Q2xy) 2% /0(a;)y %!
exp(-(2B: + ni(x - &)2)/(2y)),' where we assume & = 0. The
degree of non-Gaussianity allowed for the 2 q) is determined by
ni and ;. A small value of (; concentrates the Dirichlet process
near the NIG base measure, for which a large value of #; shrinks
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the ,uf,j) toward zero. Thus, in the limitas § - 0 and ; - oo,
we obtain a model similar to that in Section 2.2 (except that here

the dl.(’) do not appear in the variance of the GP f;). Conversely,

for large ¢; (or large n), the posterior of 21.0) will be a Gaussian
mixture that may differ substantially from the posterior implied
by the model in Section 2.2.

For the spatial setting with maximin ordering of Section 3,
we can again find a sparse parameterization in terms of hyperpa-
rameters 0 = (05.1,05.2,041,042,0y,04,00,1,0:2,04,1,0,2). We
parameterize the o;, £, C; in terms of the first six hyperparame-
ters as in Sections 3.2-3.4. For the concentration parameter {; =
el ‘?(’2, we allow increasing shrinkage toward Gaussianity for
increasing i. We similarly set7; = efn! ‘1_9’7 ? . For this DPM model,
we take a fully Bayesian perspective and assume an improper
uniform prior for § over R,

The resulting model is fully nonparametric with the excep-
tion of the additivity assumption in (3). Specifically, due to the
nonparametric nature of the DPM, the universal approximation
property of GPs (Micchelli, Xu, and Zhang 2006), and nonzero
prior probability for the dense (non-sparse) transport map, the
posterior distribution obtained using this model contracts (for n
- oo and fixed N) to the Kullback-Leibler (KL) projection of
the actual distribution of y onto the space of distributions
that can be described by a transport map whose components are
additive in the ith argument as in (3), due to the KL optimality
of the Knothe-Rosenblatt map (Marzouk et al. 2016, sec. 4.1). In
other words, as the number of replicates increases, the learned
distribution gets as close as possible to the truth under the
additivity restriction.

Inference for our DPM model cannot be carried out in closed
form anymore and instead relies on a Metropolis-within-Gibbs
Markov chain Monte Carlo (MCMC) sampler. We can also com-
pute and draw samples from the posterior predictive distribution

v
PO 1Y) = pOiIy1t Y), i=1

for which each p(yilyi .i-1» Y) is approximated as a Gaussian
mixture based on the MCMC output. Details for the MCMC
procedure and the posterior predictive distribution are given in
Appendix C, supplementary materials.

In the spatial setting with sparsity parameter m, each MCMC
iteration still has time complexity O(N(n> + n?m)) and the
computations within each iteration are highly parallel; however,
the actual computational cost for this sampler is much higher
(typically, roughly two orders of magnitude higher) than for the
empirical Bayes approach in Section 2.4 due to the large number
of MCMC iterations required. Because of this larger computa-
tional expense and the loss of a closed-form transport map for
the DPM model, we recommend the empirical Bayes approach
(potentially after a pre-transformation G as described above) as
the first option in most large-scale applications; the DPM model
is most useful for settings in which its computational expense
is not crucial, the training size » is suficiently large to discern
non-Gaussian error structure, and only posterior sampling (as
opposed to other functions that transport maps can provide) is
of interest.
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5. Simulation Study
We compared the following methods:

nonlin: Our method with Bayesian uncertainty quantifica-
tion described in Section 3.

S-nonlin: Simplified version of nonlin ignoring uncer-
tainty in the f; and d;, as in (13).

linear:Sameasnonlin,butforcingf51 = —<oo and hence
linear f;.

S-linear: Simplified version of linear ignoring uncer-
tainty in the f; and d; as in (13), which results in a joint
Gaussian posterior predictive distribution and is similar to
the approach proposed and used in numerical comparisons
in Kidd and Katzfuss (2022).

DPM: The model with Dirichlet process mixture residuals
described in Section 4.

MatCov: Gaussian with zero mean and isotropic Matérn
covariance, whose three hyperparameters are inferred via
maximum likelihood estimation.

tapSamp: Gaussian with a covariance matrix given by the
sample covariance tapered (i.e., element-wise multiplied) by
an exponential correlation matrix with range equal to the
maximum pairwise distance among the locations.

autoFRK: resolution-adaptive automatic fixed rank kriging
(Tzeng,pand Huang 2018; Tzeng et al. 2021) with approxi-
mately N basis functions.

local: a locally parametric method for climate data (Wiens
2021) that fits anisotropic Matérn covariances in local win-
dows and combines the local fits into a global model.

We also compared to a VAE (Kingma and Welling 2014) and a
GAN designed for climate-model output (Besombes et al. 2021),
but these deep-learning methods were not competitive in our
simulation settings or for the climate data in Section 6 (see
Appendix G, supplementary materials).

We considered four simulation scenarios, for which samples
are illustrated in the top row of Figure 7, consisting of a Gaussian
distribution with an exponential covariance and three non-
Gaussian extensions thereof. All scenarios can be characterized
via transport maps as in Section 2.1, with d; as given by a
Gaussian with exponential covariance in the form (3):

LR900: Linear map (i.%, a Gaussian distribution) with compo-
nents fiL (Yii-1) = ;:1 bijye;k), where the by are based
on an exponential covariance with unit variance and range
parameter 0.3 on a Regular grid of size N = 30 x 30 = 900
on the unit square.

NR900: Nonlinear extension of LR900 by a sine function of a
weighted sum of the nearest two neighbors: fN-(y1.-1) =
fl,L(yl;,'_l) + 2 Sin(4ﬂ%,1yc,.(1) + bi,2yc,-(2))) (see Figure 5(a))

NI3600: Same as NR90O, but at N = 3600 Irregularly spaced
locations sampled uniformly at random

NR900B: Same as NR900, but with a Bimodal distribution for
the % in (5): %|wi,di @ N (ui, d2i) with x; sampled from
{-3.5d;,3.5d;} with equal probability

For computational simplicity, each (true) f; was assumed to only
depend on the nearest 30 previously ordered neighbors, but this
gives a highly accurate approximation of a “full” exponential
covariance in the LR900 case, as the true fields exhibit strong
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Figure 7. Top row: Simulated spatial fields for four simulation scenarios described in Section 5. Bottom row: Corresponding comparisons of KL divergence as a function of
ensemble size n (on a log scale) for different methods. The KL divergences for tapSamp in (a)—(d) and for S—-nonlin in (b)—(c) were too high and are not visible. DPM is
only included in (d), while 1ocal is omitted from (c) because it was created for regular grids.

screening due to being based on the same maximin ordering as
our methods. A further ordering-invariant simulation scenario
is considered in Appendix D, supplementary materials.

We compared the accuracy of the methods via the Kullback-
Leibler (KL) divergence,

E(logpo(y)) = E(logp(y|Y)), (19)
between the true distribution po(y) and the inferred distribution
p(ylY) implied by the posterior map (see (18) in Appendix A,
supplementary materials), where the expectations are taken with
respect to the true distribution. We approximated the expecta-
tions by averaging over 50 simulated test fields y’, and so the
resulting KL divergence is the difference of the log-scores (e.g.,
Gneiting and Katzfuss 2014) of the true and inferred distribu-
tions.

The results are shown in Figure 7. Whenever nonlinear
structure was not discernible from the data (because the true
map was linear or because the ensemble size n was too small),
nonlin performed similarly to 1inear and hence did not
suffer due to its over-flexibility. For larger ensemble size and
nonlinear truths, nonlin at times far outperformed linear.
S-linear and S-nonlin were generally less accurate than
their counterparts with uncertainty quantification; in the linear
LR900 setting, this was only an issue for small ensemble
size, but S-nonlin performed extremely poorly when the
nonlinear structure was clearly apparent in the data, likely due
to overfitting without accounting for uncertainty. tapSamp
and autoFRK performed uniformly worst. As MatCov (with
smoothness 0.5) is the true model for LR900, it was almost exact
in that scenario. The other three scenarios are extensions of a
Matérn GP, and so MatCov also performed well for n < 20 or
so. The 1ocal Matérn method was less accurate than MatCov
for LR900 and NR900 but performed well for NR90OB. For
simulation scenarios that deviate more strongly from a Matérn

GP, nonlin was uniformly more accurate than MatCov and
local (see Appendix D, Supplementary Materials).

Estimating 6 via stochastic gradient ascent with three epochs
and fitting the map based on n = 20 samples took less than 7
sec for the scenarios with N = 900 and less than 44 sec for the
larger NI3600 scenario fornonlin,linear,S-1linear,and
S-nonlin on a single core on a laptop (2.5 GHz Intel Core i7
with 16GB RAM); DPM required a total of around 16 min for 500
MCMC iterations for NR9OOB.

6. Climate-Data Application

An important application of our methods is the analysis and
emulation of output from climate models. Climate models are
essentially large sets of computer code describing the behavior
of the Earth system (e.g., the atmosphere) via systems of differ-
ential equations. Much time and resources have been spent on
developing these models, and enormous computational power is
required to produce ensembles (i.e., solve the differential equa-
tions for different starting conditions) on fine latitude-longitude
grids for various scenarios of greenhouse-gas emissions. Of the
large amount of data and output that have been generated,
only a small fraction has been fully explored or analyzed (e.g.,
Benestad et al. 2017). Stochastic weather generators infer the
distribution of one or more variables, so that relevant summaries
or additional samples can be computed more cheaply than via
more runs of the computer model.

We considered log-transformed total precipitation rate (in
m/s) on a roughly 1° longitude-latitude global grid of size N =
288 x 192 = 55,296 in the middle of the Northern summer
(July 1) in 98 consecutive years (the number of years con-
tained in one NetCDF data file), starting in the year 402, from
the Community Earth System Model (CESM) Large Ensemble
Project (Kay et al. 2015). We obtained precipitation anomalies
by standardizing the data at each grid location to mean zero
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Figure 8. Two members of an ensemble of log-transformed precipitation anomalies produced by a climate model, on a global grid of size N = 288 x 192 = 55,296. We
want to infer the underlying N-dimensional distribution based on an ensemble of n < 100 training samples.
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Figure 9. The precipitation anomalies (in the Americas subregion) have similar properties as the Gaussian distribution with exponential covariance in Figure 4: (a) Our
approach can be viewed as N_regressions as in (5) of each y; on ordered nearest neighbors (NNs), with the regression data on low-dimensional manifolds. (b) For linear

regressions with fi(y1: j-1) = ;(_:11 Ye; (k) i fitted via Lasso, the squared (estimated) regression coeficients decay rapidly as a function of neighbor number k.

and variance one, shown in Figure 8. For our methods, we used
chordal distance to compute the maximin ordering and nearest
neighbors.

For ease of comparison and illustration, we first considered
a smaller grid of size N = 37 x 74 = 2738 in a subregion
containing large parts of the Americas (45°S to 45°N and 130°W
to 30°W) containing ocean, land, and mountains. As shown in
Figure 9, the precipitation anomalies exhibited similar features
as our simulated data in Figure 4, with regression data concen-
trating on lower-dimensional manifolds and weights decaying
rapidly as a function of neighbor number.

For comparing the methods from Section 5 on the precip-
itation anomalies, computing the KL divergence as in (19) was
not possible, as the true distribution po(y) was unknown. Hence,
we compared the methods using various training data sizes » in
terms of log-scores, which approximate the KL divergence up
to an additive constant; specifically, these log-scores consist of
the second part of (19), -E(logp(y|Y)), with the expectation
approximated by averaging over 18 test replicates and over five
random training/test splits.

The comparison for the Americas subregion is shown in
Figure 10(a). (A prediction comparison for partially observed
test data provided in Appendix E, supplementary materials
produced similar results.) nonlin outperformed linear,
and DPM was even more accurate than nonlin for large n,
indicating that the precipitation anomalies exhibit joint and
marginal non-Gaussian features. As in Section 5, S-1inear
and S-nonlin performed poorly due to ignoring uncertainty
in the estimated map. Local performed similarly to 1inear
but was less accurate than nonlin and DPM for all n. VAE,

MatCov, tapSamp, and autoFRK were not competitive for
this dataset.

We also considered the map coeficients z’ = & (y’) dis-
cussed in Sections 2.3 and 3.5, using the map obtained by fitting
nonlinear to the first n = 97 replicates as training data. In
Figure 11(a), the map coeficients for a held-out test field
appeared roughly iid standard Gaussian, with sample autocorre-
lations near zero (not shown). Figure 11 illustrates that the map
coeficients offer similar properties for non-Gaussian fields as
principal-component scores do for Gaussian settings. For exam-
ple, the medians of the posterior distributions of the d; (see (17)
in Appendix A, supplementary materials) decreased rapidly as a
function of i, which means that the map coeficients early in the
maximin ordering captured much more (nonlinear) variation
than later-ordered coeficients (see, e.g., (12) and (13)). Further,
we computed the map coeficients for all 98 replicates for July
2-30 (still based on the posterior map trained on July 1 data),
and the lag-1 autocorrelation over time between map coeficients
also decreased with i. Specifically, while most of the first 100 were
greater than 0.2, many later autocorrelations were negligible; this
indicates that a spatio-temporal analysis could proceed by fitting
a simple (linear) autoregressive model over time to only the first
k, say, map coeficients, while treating the remaining N - &
coeficients as independent over time. As shown in Appendix
F, supplementary materials, the nonlinear map coeficients
strongly outperformed standard linear principal components in
terms of dimension reduction and reconstruction of the Amer-
icas climate fields.

To demonstrate scalability to large datasets, we compared
linear and nonlinear on the entire global precipitation
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Figure 10. For precipitation anomalies, comparison of log-score (LS; equal to KL divergence up to an additive constant) for estimated joint distribution as a function of
ensemble size n: (a) Americas subregion; S-nonlin, tapSamp, and autoFRK are not shown because their LS were too high. (b) LS for 1inear and nonlin for

precipitation anomalies on the global grid.

0.6

lag—1 autocorrelation
0.4

0.2

0.0

.
o - |0
]
0
S-e
x o el
Xy <
K] S o
u:> 8 o
S o B
3 .
S <]
i 5 °
g 2
Q
o
< e °
1
o
o B 5 o_|
T T T T T T ° T T
0 500 1000 1500 2000 2500 0 500

index in lon/lat ordering

(a) Test map coefficients z*

T T T T T
1000 1500 2000 2500 0 500
maximin index

(b) Posterior median of d;

T T T T
1000 1500 2000 2500
coefficient index

(c) Lag-1 autocorrelation

Figure 11. Properties of the map coeficients 2’ = ¥ (y’) for the precipitation anomalies on the grid of size N = 2738 in the Americas subregion. (a): The map coeficients
corresponding to the test field in Figure 12(a) in the original data ordering (first by longitude, then latitude) appeared roughly iid standard Gaussian, aside from slightly
heavy tails. (b): The posterior medians of the d; decreased rapidly as a function of i, meaning that the first few map coeficients captured much more variation than later-
ordered coeficients. (c): The autocorrelation between consecutive days also decreased with i; while most were greater than 0.2 for i < 100, many autocorrelations for i >

100 were negligible.

anomaly fields of size N = 288 x 192 = 55,296. As shown
in Figure 10(b), nonlin outperformed linear even more
decisively than for the Americas subregion. Even in the largest
and most accurate setting (n = 80), the estimated § fornonlin
implied m = 9, meaning that the corresponding transport maps
were extremely sparse and hence computationally eficient; esti-
mating 6 (4 epochs) and fitting the map for non1in took only
around 6 min on a single core on a laptop (2.5 GHz Intel Core i7
with 16GB RAM) for n = 10. In contrast, MatCov and local
(which already took about two hours for the much smaller
Americas region) were too computationally demanding for the
global data. A Vecchia approximation of MatCov resulted in a
log-score above +77,000 and was thus not competitive. Also, for
nonlinallbut 113 of the N = 55,296 posterior medians of the
d; were more than 20 times smaller than the largest posterior
median (i.e., that of d1), indicating that our approach could be
used for massive dimension reduction without losing too much
information.

Finally, the fitted map (or rather, its inverse ¥ ~!') can
also be viewed as a stochastic emulator of the climate model.
Specifically, we can produce a new precipitation-anomaly
sample by drawing zZ° @ N x0,1 ») and then computing y? =
B-1(22). One such sampl e (for the full global grid) is shown

in Figure 12(d) and appears qualitatively similar to the
model

output in Figure 8, while producing the latter requires a
supercomputer, the former can be generated in a few seconds
on a laptop. Further, our approach can also be used to draw
conditional samples, in which we fix the first i, say, map
coeficients, for example at the values corresponding to a given
spatial field. Such draws, which maintain the large-scale features
in the held-out (98th) test f ield but allow for newly sampled
fine-scale features, are shown in Figure 12. This is related to the
supervised conditional sampling ideas in Kovachki et al. (2020),
with their inputs given by our first i ordered test observations.

7. Conclusions

We have developed a Bayesian approach to inferring a non-
Gaussian target distribution via a transport map from the
target to a standard normal distribution. The components
of the map are modeled using Gaussian processes. For the
distribution of spatial fields, we have developed specific prior
assumptions that result in sparse maps and thus scalability to
high dimensions. Instead of manually or iteratively expanding a
finite-dimensional parameterization of the transport map, our
Bayesian approach probabilistically regularizes the map; the
resulting approach is flexible and nonparametric, but guards
against overfitting and quantifies uncertainty in the estimation
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(d) Unconditional (i = 0)

Figure 12. For the global climate data (N = 55,296), we fitted a stochastic emulator using non1in based on n = 97 training replicates. Given a held-out test field y® in (a),
we show conditional simulations based on fixing the first i map coeficientsinz = ¢y ).4b): Only differs in some fine-scale features from (a). (c): Some large-scale features

from (a) are preserved. (d): Unconditional simulation (i.e., independent from (a)).

of the map. Because our method can be f itted rapidly, is
fully automated, and was highly accurate in our numerical
comparisons, we recommend it for most spatial emulation tasks,
except for applications in which very few replicates are available
or for which exploratory analyses have shown that a (Gaussian)
parametric approach can provide a good fit. In addition, due to
conjugate priors and the resulting closed-form expressions for
the posterior map and its inverse, our approach also allows us to
convert non-Gaussian data into iid Gaussian map coeficients,
which can be thought of as a nonlinear extension of principal
components.

As our approach essentially turns estimation of a high-
dimensional joint distribution into a series of GP regressions, it
is straightforward to include additional covariates and examine
their nonlinear, non-Gaussian effect on the distribution. Shrink-
age toward a joint Gaussian distribution with a parametric
covariance function could be achieved by assuming the mean
for the GP regressions to be the one implied by a Vecchia
approximation of that covariance function (Kidd and Katzfuss
2022); this could enable meaningful predictions at unobserved
spatial locations (see Appendix E, supplementary materials).
Extensions to more complicated input domains (e.g., space-
time) could be obtained using correlation-based ordering
(Section 3.1). Another major avenue of future work would be to
use the inferred distribution as the prior of a latent field, which
we then update to obtain a posterior given noisy observations;
among numerous other applications, this would enable the use
of our technique to infer the forecast distribution and account
for uncertainty in ensemble-based data assimilation (Boyles and
Katzfuss 2021), leading to nonlinear updates for non-Gaussian
applications. We are currently pursuing multiple extensions
and applications of our methods to climate science, includ-
ing climate-change detection and attribution, climate-model
calibration, and climate-model emulation and interpolation in
covariate space (e.g., as a function of CO2 emissions).

Supplementary Materials

Appendices A—G contain proofs, a discussion of conditional near-
Gaussianity for quasiquadratic loglikelihoods, details on the Gibbs sampler
for Dirichlet process mixture model, and additional numerical results and
comparisons.
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