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Current digitalized manufacturing systems do not yet achieve the goal of smart manufacturing: precise con-
trol and agility under unexpected disruptions. Push-Pull Digital Thread is a solution concept to enable contex-
tual data and knowledge exchange across operational and functional units in a manufacturing enterprise. The
extraction of decision reasoning and functional information can be facilitated by Large Language Models proc-
essing information obtained from a decision maker at the point of decision. This concept shows a potential to
address critical limitations in previous endeavours for smart manufacturing systems by building a semanti-

cally searchable and sharable knowledgebase in manufacturing systems and beyond.
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1. Introduction

Various concepts of smart manufacturing have been proposed, stud-
ied, and pursued during the past few decades with various catch
phrases from Intelligent Manufacturing Systems (IMS) in 1980’s, Com-
puter Integrated Manufacturing (CIM) in 1990’s, and most recently
Industry 4.0. Significant digitalization in design and manufacturing pro-
cesses and their operational integration with enterprise resource plan-
ning (ERP) have resulted in substantial enhancement in production
quality, machine utilization and overall system productivity. However,
when socio-economic challenges such as the COVID-19 pandemic and
resulting global supply chain disruption occurred, significant vulnerabil-
ities of current manufacturing systems were exposed.

Regarding why digitalized, best practice manufacturing systems
do not yet provide benefits of the smart manufacturing such as pre-
cise control and agility under unexpected disruption, many industry
leaders and researchers state that current manufacturing systems are
“well-digitalized but not digitally transformed.” It is suggested that
true digital transformation goes beyond process level digitalization
and should functionally integrate the entire organization of the
enterprise surrounding manufacturing, especially decision makers. In
the MIT Sloan Management Review [1], Kane defines “Digital Trans-
formation” as continual adaptation to a constantly changing environ-
ment by building a technical and operational foundation and
responding in the best possible way to unpredictable and ever-
changing customer expectations, market conditions and local or
global events. From the business consulting point of view, IBM pro-
motes “Cognitive Manufacturing” to achieve digital transformation of
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manufacturing enterprises by exploiting big data, Al, automation,
hybrid cloud and other digital technologies to make faster and smar-
ter decision-making, and real-time response to market disruption
[2], also explored in [3].

The goals of digital transformation have been studied by the CIRP
community. Monostori et al. [4] suggested smart manufacturing sys-
tems require flat and flexible organizations, prioritizing life-long
learning of both employees and information processing systems.
Abramovici et al. [5] proposed semantic data management for an
interdisciplinary, globally distributed development and continuous
reconfiguration of smart products and manufacturing systems.
Laroche et al. [6] defined the challenge of smart manufacturing sys-
tems as knowledge reuse and proposed a new way for structuring
knowledge and managing contextual information. Kadar et al. [7]
addressed the application of a semantic data model for virtual facto-
ries to support the design and the performance evaluation of
manufacturing systems, while exploiting the interoperability
between various Digital Enterprise Technology tools.

A digitally transformed manufacturing system is an agile system
which responds in the best possible way to any random disturbances.
From the point of engineering systems, this can be achieved by pro-
viding precise feedback control loops to accommodate the effect of
disturbances. Therefore, this paper focuses on major challenges to
address missing links of well-digitalized manufacturing systems in
closing the loop effectively and responding to unpredictable distur-
bances. There are three inherent structural problems for manufactur-
ing systems to be digitally transformed:

1) The culturally one directional decision/data/knowledge flow from
design to manufacturing in most manufacturing systems hinders
fast and agile closed loop control. [8]
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2) Data gathering, exchange and knowledge-sharing across func-
tional units is limited by protectionism (silos), resulting a very
slow feedback control. [9]

3) Most reasoning grounds for decisions are unstructured data,
which cannot be effectively represented in the current ERP sys-
tems, and thereby not being reusable in the future decisions.
When the decision maker leaves the position, most knowledge
will be lost. [10]

This paper discusses the problems above and suggests a new para-
digm for decision data and knowledge extraction, archiving and a bi-
directional communication and exchange platform across the
manufacturing system to enable precise control of manufacturing
systems. A case study using conversational Al to facilitate the extrac-
tion of decision reasoning information demonstrates how such a par-
adigm may be implemented.

2. Push-pull digital thread: a new knowledge sharing concept

There are at least three levels of closed loop control in
manufacturing systems, some of which are not digitalized and
require manual intervention. At the machine-level, data from sensors
and controllers are mostly structured (numerical or graphical) and
effectively used to control machines and processes. IoT (Internet of
things) and deep learning further enhance the controllability of
machines with minimal human intervention, which is being widely
adopted at the present time and requires no further discussion here.
At the operation level, any abnormal operation or faulty execution of
production can be monitored and alerts an operational decision
maker to make necessary corrections. A decision maker needs to pull
necessary information or related data from the previous operations
and suppliers to complete the manual (non-digitalized) feedback
control. Finally, function-level feedback control is the most complex
level, which often requires intervention from the top to force/allow
cross-functional (or siloed) data exchange and information sharing.
For example, trouble shootings which require design changes usually
take longer time to close the loop and to issue engineering design
change orders (ECOs). Making this long feedback loop to be digitally
transformed is potentially the key to achieving the goal of digitally
transformed manufacturing.

The following factors make this feedback loop difficult to be
closed digitally. Firstly, the current design data flow from design to
manufacturing in most manufacturing systems is unidirectional and
does not carry functional aspects of product designs. Fig. 1 shows
data and information flow in a typical manufacturing enterprise. In
the two-dimensional data communication space of a manufacturing
enterprise, horizontal design data translations do not carry functional
information of products. The current push type data flow with little
sharing of functional decision grounds inevitably results in slow,
non-digitalized, manual case-by-case feedback control. From the
point of a manufacturing enterprise, vertical information flow stems
from the recognition of market demand along socio-economic-scien-
tific challenges, such as pandemic outbreaks or accelerating climate
change, which then translates into more detailed concepts of
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Fig. 1. Unidirectional information and data flow of most enterprises with
manufacturing.

products and their specific product designs. Most top-down decisions
flow without providing enough functional reasoning grounds of deci-
sions, which also require long time to close this loop.

If the pushed data, such as design specifications and geometry
from design to manufacturing, can include underlying functional
requirements and design reasonings, then troubles found during
manufacturing can be rapidly diagnosed and corrected in many cases
before taking a function level feedback loop. Or, if the manufacturing
decision makers can pull necessary functional aspects of the design
on demand, fast track closed loop control may become feasible by
identifying the stake holders correctly. “Push-Pull Digital Thread
(PPDT)” is a solution concept proposed in this paper to enable the
feed-forward (push) and feed-back (pull) exchange of relevant and
necessary contextual data and functional knowledge across the oper-
ational and functional units of a manufacturing enterprise digitally.
While the concept of a digital thread, as shown in Fig. 2, has been
depicted and pursued by many researchers to link design, perfor-
mance, product, and supply chain data for smart decision makings in
manufacturing [11], no concrete implementable form of digital
thread has been reported yet. Further, no concept of push-pull type
(bi-directional) digital thread has ever been prosed, which is poten-
tially the key paradigm shift needed to implement the concept of dig-
ital threads.

Concept Design Manufacturing  Operation Post Life Retirement

Decision Making for New Design

Tools, Data Collection
Fig. 2. Conceptual depiction of digital thread for engineering design, adapted from [11].

The Push-Pull Digital Thread (PPDT) has three functional blocks:

1) Extraction of contextual knowledge and reasoning data of any
decisions (including design) from the decision maker at the instant
of decisions (or close to it before any lapse of memory, position
change or retirement of the decision-making personnel).

2) Representation of functional aspects of decision reasoning basis
(such as “what” “how” and “why”) quantitatively into distributed
feature vectors using statistical language models which can be
semantically searched and pulled when necessary.

3) Building enterprise-wide intranet to share functional representa-
tion of decisions. Proper security protocol should be employed to
enable push-pull data exchange without leaving out any key
stakeholders in the loop, while keeping the know-hows and past
decision reasonings within the enterprise in perpetuity.

3. Decision reasoning knowledge extraction

Authors have recently reported “Design Reading,” a method for
enabling data-driven design by extracting and representing contextual
design reasoning data and functional requirements from past design
documents [12,13]. “Design Reading” applies machine learning-based
Natural Language Processing (NLP) to extract a structured hierarchy of
functional requirements by recursively decomposing functional
requirements and design parameters, top to bottom, along the text
passages. Deep learning-based (NLP) models such as Google’s BERT
were fine-tuned to perform the task of Question-Answering to extract
and structure conceptual design reasoning information from textual-
ized descriptions of existing designs, as shown in Fig. 3. “Design Read-
ing” demonstrated that extracting functional reasoning could be
automated, however, only if past design and decision reasonings could
be well described in textualized design documents. Design documen-
tation in practice, however, is often ill-structured and designers usu-
ally skip the functional and conceptual reasoning in their post-design
documentation. Therefore, “Design Reading” can be successful only if
well described design documentation is available.

Design reasoning knowledge often remains unstructured, infor-
mal, qualitative, and contextual in nature. Furthermore, contextual
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Fig. 3. Process for extracting functional structure from text document, adapted from [12].

information from decision-makings at all levels of an enterprise are
neither well documented nor required for later retrieval in most
industrial systems. The key finding in this paper is that decision
(including design) reasoning and functional information exist most
clearly at the instant of decision making. The decision maker’s mem-
ory will disappear gradually over time and is lost to the enterprise
when the decision-maker retires or changes positions. By aggregating
them into a searchable database at the instant of decision making (or
not long after), design and manufacturing decision reasoning knowl-
edge can be computationally represented and accessible for the
Push-Pull Digital Thread (PPDT). This knowledge can be pulled by any
future decision makers in the closed loop control of the manufactur-
ing system, used to guide future engineering decision-makings (reus-
able), and pushed to the affected operational units. A function graph
from the extracted knowledge will guide where to push data without
missing any key stake holders, while keeping know-hows and past
decision reasonings within the enterprise.

Fig. 4 shows how to extract decision reasoning and functional
information from a decision maker using a Large Language Model
trained on chat completion. The structure of the information cap-
tured at the point of decision would extract the essential ingredients
of decision reasoning grounds in “what (functional requirements)”,
“how (design parameters), “why (decision basis)”. The next section
will demonstrate how conceptual reasoning knowledge can be cap-
tured directly from the point-of-decision with a case study on Engi-
neering Change Orders (ECOs) of vehicle door weatherstrip design in
an automotive manufacturing enterprise.
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Fig. 4. Information capturing process from a decision maker.

4. A case study on engineering change orders (ECOs) for vehicle
door weatherstrip design

Manufacturing troubleshooting may require design changes
which would take long periods of time to resolve, in weeks if not
months. Digitally transforming this feedback loop will shorten the
feedback control time in the future similar cases. Push-Pull Digital
Thread uses both structured questioning and flexible semantic-based
interaction to map “what, how, why” information from decision-
makers. It initiates this step by introducing an interview stage to
accompany each ECO, conducted by a Large Language Model trained
on chat completion akin to a Virtual Design Assistant (VDA) [14]. In
this case study, an implementation of OpenAl's GPT-3.5 [15] is
assigned the role of VDA to facilitate a conversational decision rea-
soning extraction interaction. GPT-3.5 is a generative language model
based on a Transformer neural network architecture, as is Google’s
BERT implemented in the “Design Reading” system. Prior to the inter-
action, the VDA is provided with an instructional input enumerating
the information to target over the course of the exchange. This ini-
tialization and the resulting interaction between a design engineer
are presented in Table 1.

Consider the case of assembling weather strips on the front door
sides of a generic model car of Hyundai Motor Company. Door side
mounted weatherstrips were designed to be inserted with a dedi-
cated insertion tool, which the workers of the respective final assem-
bly factory rejected due to poor workability. The closure design team

Table 1
Design decision extraction using an Al language model.

The following is the record of an interaction between a Virtual Design Assistant (VDA)
powered by an Al language model GPT-3.5, and a real-world automotive closure
design engineer who decided the ECO presented in this case (Eng).

System Initialization Instructions: You are an assistant and want to understand
the problem, the key design parameters involved, what solutions were possible,
the reason why they chose a certain solution, and any unintended effects on
other systems.

Eng (human): [ just made a change to the design of my product

VDA (Al chatbot): What was the main goal of this design change?

Eng: We wanted to redesign the weatherstrip component so that it would be eas-
ier for assembly workers to insert it manually.

VDA: What were the key design parameters that were considered in making this
change?

Eng: The key design parameter is the peak force required from the worker when
manually inserting the weatherstrip. The peak force must be reduced.

VDA: What were some possible solutions that were considered to address this
design parameter?

Eng: There were three options. We could add a lubricant such as soap. Or, we could
change the weatherstrip’s cross section geometry. Or alternatively we could
change the material of the weatherstrip.

VDA: Which solution did you choose and why?

Eng: We did not add a lubricant because that increases cost and assembly time.

VDA: So, which of the other two options did you choose? Did you change the cross
section geometry of the weatherstrip or its material?

Eng: We changed the material. Changing the cross section geometry would require
a new extrusion die which is expensive. Changing the material hardness just
requires simple validation.

VDA: Did this change in material have any unintended effects on other systems
within the product?

Eng: It's possible that a softer weatherstrip may detach from the door more easily
over the lifetime of repeated use.

VDA: That's a valid concern. Did you conduct any tests or simulations to ensure
that the new material’s performance meets the required performance standards
of the product?

Eng: We did CAE simulations and experimental testing to verify the new hardness
value was optimal for the redesigned weatherstrip.

VDA: That's great to hear! Did you also consider any potential manufacturing
changes that would be required to accommodate this new material?

Eng: We think there should be no manufacturing issues resulting from the change
in material.

VDA: That’s good to know. Do you have any plans to validate the usability of this
redesigned weatherstrip with human factors testing?

Eng: We will introduce the new weatherstrip design to the factory and test if the
assembly workers can easily insert it now.

VDA: Sounds like a good plan. Overall, it seems that you have carefully considered
the key design parameters and evaluated various solutions before making a
change to the weatherstrip component. Additionally, you have taken appropri-
ate steps to validate the new material’s performance and will be testing its
usability in the factory - this demonstrates a good design process.

was requested to make manual insertion of the door weatherstrip
easier (Fig. 5).

The closure design group reviewed three options to reduce inser-
tion force: 1) size reduction of the mushroom shape at the bottom
part of the weather strip; 2) using lubricants for insertion assembly;
3) change of the weatherstrip solid elastomer material to reduce
hardness. The decision maker considered that option 1 was not
acceptable since the weatherstrip design was standardized in the
same car family and could not be customized for a specific factory
and that option 2 could not become a sustainable solution. Option 3
was adopted after various numerical simulations and testing to
ensure easy insertion while not risking easy detachment during the
opening and closing of doors. The implementation without knowl-
edge sharing took 10 weeks for this ECO, which would be shortened
with the PPDT to realize agile manufacturing.

Hardness : 80 Hs(A) —70 Hs(A)

Fig. 5. Door side weatherstrip of Model Z [Courtesy Hyundai Motor].
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Fig. 6. Engineering change order case study: example of point-of decision design reasoning extraction using Large Language Model.

When a design is updated or modified to fix design-related
manufacturing problems, an Engineering Change Order (ECO) is for-
mally issued in a manufacturing enterprise. Typically, an ECO is accom-
panied by a data entry step to the master database, performed by the
decision-maker, but current ERP templates are inflexible to include
unstructured data, and the entered data can be brief or incomplete
with reasoning which is the critical functional information of highest
value. The typical ECO in this problem currently has the following
information: part number and name, short description of the problem
and history of specification changes in bullets, date of application,
which cannot provide contextual feedback to the affected parties of
the enterprise and the reuse of the past reasoning knowledge.

Capturing decision-making reasoning is critical to enable reuse
and sharing for a smart manufacturing enterprise. The extraction of
decision reasoning and functional information from a decision maker
at the point of decision is performed by an interactive “question and
answering” session between the VDA (human interviewer simulating
VDA chatbot in this paper) and the decision maker of the closure
design team. Table 1 shows a summary of knowledge extraction. The
information extracted is then abstracted and semantically embedded
into an enterprise-wide database to be semantically searchable and
cross-referenced on-demand as shown in Fig. 6.

5. Discussion and conclusion

The following points must be addressed soon to implement the
concept of Push-Pull Digital Thread (PPDT) in real manufacturing
systems.

1) At each node of manufacturing system, any decision maker’s rea-
soning information needs to be extracted and archived via user-
friendly interaction with a chatbot. Large parameter language
models such as GPT [15] with conversational capability can be
fine-tuned for the specific manufacturing industry to include the
functional reasoning ontology. Interviewing immediately after
decision making will require minimal time and easy interaction
for interviewees.

2) The decision maker should be able to identify the push destina-
tions of the decision. Although apparent for most decisions, some-
times critical push destinations may be omitted or inconsistent,
resulting in serious operational failures. The PPDT can also assist
the decision maker to push identified functional coupling (push
thread). At the same time, any future decision makers in the entire
enterprise system can semantically search on-demand or cross
reference the current decision reasoning and linked quantitative
data such as simulation, analytics, test results, material specifica-
tions and drawings (pull thread).

3) Access to the database should be controlled and protected by the
data security protocol set by the company.

This paper proposes a concept for how to address important miss-
ing links and ingredients in current efforts toward smart manufactur-
ing systems by building a contextual and semantically searchable
knowledgebase across the manufacturing enterprise. Software archi-
tecture framework has been built to develop an enterprise-level
knowledgebase, compatible with the existing enterprise resources
planning (ERP) tools.

Push-Pull Digital Thread (PPDT) concept has potential to enable
fast and agile closed-loop control of manufacturing systems. This will
also enable the utility of Big Data; all past decision reasonings, suc-
cesses or failures, which will greatly boost the speed and precision of
future manufacturing decisions. A complete digital transformation of
manufacturing will require a holistic socio-technical approach, and
the PPDT concept provides a framework for digitally integrating deci-
sion makers across domains in a system. This concept can be also
applied to integrate decision reasoning at vertical levels of an enter-
prise for sharing coherent strategic decisions. When this concept can
digitally transform current digitalized manufacturing systems, the
manufacturing industry will finally achieve the tangible benefits of
smart manufacturing.
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