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Abstract

When data is of an extraordinarily large size or physically stored in different
locations, the distributed nearest neighbor (NN) classifier is an attractive tool
for classification. We propose a novel distributed adaptive NN classifier for which
the number of nearest neighbors is a tuning parameter stochastically chosen by
a data-driven criterion. An early stopping rule is proposed when searching for
the optimal tuning parameter, which not only speeds up the computation but
also improves the finite sample performance of the proposed algorithm. Conver-
gence rate of excess risk of the distributed adaptive NN classifier is investigated
under various sub-sample size compositions. In particular, we show that when the
sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly
optimal convergence rate. Effectiveness of the proposed approach is demonstrated
through simulation studies as well as an empirical application to a real-world
dataset.
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1 Introduction

Nearest neighbor (NN) classi er is a simple but powerful tool for various applications
such as text classi cation (Han et al., 2001, Jiang et al., 2012), query dependent rank-
ing (Geng et al., 2008), and pattern recognition (Kowalski and Bender, 1972, Zheng
et al., 2004, Xu et al., 2013). Consider (Y; X;) (YN Xu) generated indepen-
dently from an unknown probability distribution P, with Y; 0 1 being the label
and X; being the corresponding d-dimensional feature vector for i = 1 N. The
NN classi er predicts the label of a query point x based on labels of its neighboring
observations. It is well-known that NN algorithm is sensitive to the scale of data as
it relies on computing the distances. A popular procedure is to normalize each fea-
ture to [0 1]. Without loss of generality, we assume that the feature space is [0 1]¢
and that the Euclidean distance is used. This assumption was also used in Cai and
Wei (2019). Given a new query point x [0 1]¢, denote X(;(x) as the i-th nearest
point to x among X X, and Y(;)(x) as the label associated with X;(x). For a
prespeci ed integer 1 k& N, the conditional probability (x) :=P(Y =1X =x)
can be approximated by the k-NN estimator nyy x(x) = ¢ le Y(5)(x) and the label

associated with x is then predicted as fyny x(x) = I( yn(x) 1 2), with I( ) being
the indicator function.

The performance of a binary classi er f : [0 1]¢ 0 1 , which is trained using
observed data (Y7 Xj) (Yn Xy), is commonly evaluated by the regret (or excess
risk) de ned as

where (Y X) P is an independent copy of the training sample, f (x) = I( (x)

1 2) is the well-known Bayesian classi er, and the probability is with respect to the
joint distribution of (Y7 Xj), (Yn Xy) and (Y X). A smaller regret indicates
higher classi cation accuracy for a classi er f.

Notation: For deterministic positive sequences ay and by, we denote ay ~ (or ) by
ifany (or ) Cby forsome C' > 0andsu ciently large N.Ifay by andan by,
we write ay  by. For any a > 0, we denote a ( a ) as the smallest (largest) integer
that is not less (greater) than a. We denote as the Lebesgue measure and Px as the
marginal distribution of X whose support is . For a set A, we use A to denote its
cardinality.

1.1 Related Work

The regret of the k-NN classi er has been shown to converge to 0 as k and
k N 0 in a general metric space with additional structural assumptions (Cover and
Hart, 1967, Cerou and Guyader, 2006, Hanneke et al., 2021) and in the Euclidean space
(Stone, 1977, Devroye et al., 1994). The convergence rate of the regret depends on
properties of (x) and Px. Chaudhuri and Dasgupta (2014) established a nonasymp-
totic bound for the convergence rate, which achieves the minimax rate in the sense of
Audibert and Tsybakov (2007) under some mild conditions. Gadat et al. (2016) fur-
ther identi ed two su cient and necessary conditions for the uniform consistency of



the k-NN classi er without rigid assumptions on the joint distribution of (Y X) and
derived the corresponding optimal convergence rate. Samworth (2012) proposed an
optimally weighted k-NN classi er based on a new asymptotic expansion of its regret.
When facing an extraordinarily large sample size, the k-NN classi er can be compu-
tationally intensive, especially when k is large. To address this issue, Qiao et al. (2019)
and Duan et al. (2020) proposed two distributed k-NN classi ers, extending the work of
Chaudhuri and Dasgupta (2014) and Samworth (2012), respectively. Their algorithms
rst divide the whole data into m equally-sized sub-samples, and for each sub-sample,
a k-NN classi er is trained independently. The nal prediction of a new query point
is made by aggregating the m independently trained k-NN classi ers. Under suitable
conditions, the regrets of both distributed k-NN classi ers were shown to achieve the
optimal convergence rate. However, in many applications, the sub-samples may not
have equal sample sizes, and to the best of our knowledge, there has yet been any
existing work on distributed NN classi ers with unequal sized sub-samples.
Furthermore, the aforementioned theoretical results are based on the key assump-
tion that the choice of k is pre-given and is deterministic. However, it is often desirable
to have a data-driven choice of k for practical applications. There has been limited
work on theoretical properties of the k-NN classi er with a data-driven choice of k
in existing literature, with two notable exceptions, i.e., Cai and Wei (2019) and Bal-
subramani et al. (2019). They independently proposed two adaptive procedures to
stochastically choose k and established the convergence rates of the resulting adaptive
NN classi ers under suitable conditions. However, while achieving improved classi ca-
tion accuracy, searching for an optimal k also signi cantly increases the computational
burden for the adaptive NN classi er, making it desirable to consider a distributed
adaptive NN classi er with favorable statistical properties when the sample size N is
extraordinarily large. For applications where data are stored in di erent locations, a
distributed adaptive NN classi er is also a natural and preferable choice.

1.2 Our Contribution

We propose a novel distributed adaptive NN classi er with a data-driven choice of k,
which can be used to either speed up the computation when the data size is extraor-
dinary large or improve the classi cation accuracy when data are stored in di erent
machines. Suppose that the whole data set is separately stored in m di erent loca-
tions, and each location has a sub-sample of size n;, j = 1 m. The sub-sample
sizes are allowed to be di erent from each other, in contrast to the existing divide-and-
conquer framework (Qiao et al., 2019, Duan et al., 2020). Without loss of generality,
we assume that n;  no n,, and denote N = ny + + n,,. Based on the
jth sub-sample, a local £;-NN classi er is constructed for a given query point x and
an integer k;, j =1 m. The predicted label for x is then obtained by aggregating
the m sub-sample NN classi ers with k; k., chosen by a data-driven criterion.
See Section 2 for more details.

The computational e ciency of the proposed algorithm is achieved in two ways.

(1) Parallel computation. For a given k, the computational complexity of the
standard k-NN classi er using the whole data is between O(N) to O(N log(NV)) (Cor-
men et al., 2009), which needs to be carried out on a single machine. In comparison,



the computation of the distributed NN classi er can be easily paralleled, and each
sub-sample only costs between O(n) to O(nlog(n)) operations.

(2) Early stopping rule for k. The adaptive NN classi ers proposed in Cai and
Wei (2019) and Balsubramani et al. (2019) search for an optimal k; by increasing k
from 1 to NV until a stopping rule is triggered. A straightforward extension of their
approaches to the distributed setting is to search for k; from 1 to nj, j =1 m.
However, we propose an early stopping rule for the choice of k1 (which determines

other k; s), narrowing down the search range for k1 to 1 m N 7t log(N) . As
a result, the proposed algorithm signi cantly reduces the number of attempts needed
to locate the optimal k; s for the distributed adaptive NN classi er.

Our numerical studies show that such an early stopping rule for k1 not only speeds
up the computation but also yields superior nite sample performance for the proposed
algorithm compared to the naive extension of Cai and Wei (2019) and Balsubramani
et al. (2019). See Section 4.1 for more details.

From a theoretical point of view, our work extends the theory for distributed NN
classi er witha xed k (Qiao et al., 2019) to the more realistic distributed adaptive NN
classi er based on unequal sub-sample sizes, whose k; s are chosen by a data-driven
procedure. Speci cally, we derive the convergence rate of the regret of the proposed
classi er and give su cient conditions under which the convergence rate is optimal
(up to logarithmic factors). Moreover, the convergence rate of the regret exhibits a
phase transition characterized by sub-sample sizes. Finally, we wish to comment that
the proof of adaptivity in the distributed framework relies on the uniform convergence
in Lemma 5. This requires bounding the total model complexity (see Lemma 1) of all
the local classi ers, which motivates the choices of k; s in Algorithm 1.

The rest of this paper is structured as follows. Section 2 introduces the algorithm
for the distributed adaptive NN classi er and Section 3 investigates its asymptotic
properties. Section 4.1 carries out a set of simulation studies, and a real-world dataset
is analyzed in Section 4.2. All technical proofs are provided in the Appendix.

2 Distributed Adaptive Nearest Neighbor Classi er

Suppose that the whole dataset, denoted as Z = (Y7 Xj) (Yn Xy) , are dis-
tributed across m machines. Each machine hosts a sub-sample of size n;, denoted as
zZ; = (Y7 XI) (Y X3,) forj=1 m. For the jth sub-sample, given an
integer k; 1 n; , the yth local NN estimator of (x) =P(Y =1X =x) for a
new query point x [0 1]¢ is de ned as
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where Y(i)

among X{ X{lj. The proposed distributed NN classi er is subsequently de ned as

(x) is the label associated with X{i) (x), the i-th nearest neighbors of x

. "
Fraiton (%) =L ki, () 1 2) with g, (X) = ——— kj wy5(x) (1)
J=1"7 j=1
where the integer sequence k1 k., need to be chosen by some data-driven method.
The performance of the classi er (1) depends critically on the choice of k; k.

The following Algorithm 1 is designed in the same spirit of Cai and Wei (2019) and
Balsubramani et al. (2019).

Algorithm 1: Distributed Adaptive NN Classi er
Input: new query x, training samples Z;, j =1 m;
Initialization: set k; = 0;
while &y, N 74 log(N) do

update ky := k1 + 1;

update k; :== kin; ni and calculate k; j(x) for j=1 m;
calculate .k, (x) and ry, = 2 L kj gk, (X)) 125
if 7, > (d+2)log(N)or ks mnN 7t log(N) then
set kl = kl and kj = klnj ni for ] =2 m;
calculate | ., (x);
exit loop; '
end if
end while

Output: classi er f, , (x)=1I(, , (x) 12).

Algorithm 1 assumes that each k; is proportional to n; for j =1 m, and search
for the optimal &y within the set 1 mN 7 log(N) suchthat g, .4, (x) 12
based on the classi er (1) is strictly greater than  (d +2)log(N) (2 L, k;). Ifno ks

meets this criterion, we simply set k1 = n1 N ¥ log(N) . We comment that a naive
extension of Cai and Wei (2019) and Balsubramani et al. (2019) to the distributed
data setting would require searching for k; from 1 to ny. In this sense, the upper bound
m N = log(N) in Algorithm 1 serves an early stopping rule for the search of k.
Our simulation studies demonstrate that such an early stopping rule yields superior
nite sample performance compared to the same algorithm but searches k; from 1 to
ni.
An intuitive justi cation of Algorithm 1 is as follows. Denote X = X3 Xy .
Under suitable conditions, one can show that .k, (X) E( k., (x) X) is bounded

by the sequence  (d +2)log(N) (2 L, k;) uniformly for all x and &, Ep, with
a high probability. The stopping rule designed in Algorithm 1 thus ensures that




kyiky, (X)) 1 2and E( ., (x) &) 1 2 have the same sign with a high probability.

Under suitable conditions, I[*f( krik,, (X) &) is a consistent estimator of (x), which fur-

ther implies that the distributed adaptive NN classi er f; ., (x) =1( , , (x) 1 2)
is asymptotically equivalent to the Bayesian classi er f (x) =1( (x) 1 2).

3 Asymptotic Properties

3.1 Technical Assumptions

To investigate the asymptotic properties of the proposed adaptive distributed NN
classi er obtained from Algorithm 1, several technical assumptions are needed.
Assumption Al. (Strong Density) For some constants ¢ = > 0, it holds that (a)

[ Bkxr)] ¢ [B(xr)forall0<r <r andx ;and (b) ¢ < U=X(x) <c !
for all x
Assumption A2. (Smoothness) There exist constants (0 1] and € > 0 such
that (x1) (x2) C x1 x2 holds for all x; x2
Assumption A3. (Marginal Assumption) For some constants 0d ]JandC >

Oand allt (0 1 2], the inequality P( (X) 12 <t) C ¢ holds.

Assumption A1l is the so-called strong density assumption (Audibert and Tsybakov,
2007) that imposes two conditions on the distribution of the feature vector X. In
particular, Al(a) requires that the support does not contain any isolate points and
A1(b) assumes the probability density of X is bounded above and below in its support,
as commonly required in the literature (e.g., Huang, 1998, 2003). Assumption A2 is the
uniform Lipschitz condition imposed on the conditional probability (x), and similar
conditions were imposed in Cai and Wei (2019), Audibert and Tsybakov (2007), Gadat
et al. (2016). Assumption A3 is a popular condition in classi cation problems (e.g., see
Audibert and Tsybakov, 2007, Gadat et al., 2016), which characterizes the strength
of the signal (X) 1 2. With a larger , (X) is near the decision boundary 1 2
with a lower probability, leading to an easier classi cation problem.

3.2 Theoretical Results in General Setting

In this section, we rst present some theoretical results on the distributed adaptive
NN classi er in a general setting where sub-sample sizes (i.e., n; s) are allow to be
di erent. The following theorem gives an upper bound of the regret of the proposed
classi er in Algorithm 1.

Theorem 1. Under Assumptions A1-A3 and 1II}iIlm nj N'  for some <

It follows that

2
2 +d -

1
R(fy ) [N log()] #50

The proof is given in the Appendix.

Theorem 1 establishes the convergence rate of the proposed classi er when sub-
sample sizes are not too small, i.e., minjn; N! for some <2 (2 +d). We
remark that this convergence rate coincides with the minimax lower bound given in
Audibert and Tsybakov (2007) up to a logarithm factor. The additional log(N) term is



the price to pay for the adaptive choice of tuning parameters k; K, as commonly
seen in the literature (e.g., see Lepskii, 1991, Lepski and Spokoiny, 1997).

To shed more lights on this issue, we consider a distributed NN classi er with a
non-stochastic choice of tuning parameter satisfying k;  n; IV 2—d+d, 7 =1 m,
which is essentially an extension of Qiao et al. (2019) which only considered the case
ny = = n,,. The following theorem gives an upper bound of the regret of the
resulting distributed NN classi er given in (1).

Theorem 2. (Non-adaptive k; s) Suppose that Assumptions A1-A3 hold and

d
min n; N for some < 22—+d . Then if k; n;N 2+d forj=1 m, it
J m

follows that
a+)

Rfuw,) N *F0

The proof is given in the Appendix.

Theorem 2 asserts that if k; s are not chosen by a data-driven method, the min-
imax lower bound of the regret (Audibert and Tsybakov, 2007) is achieved by the
distributed NN classi er provided that k; = C;j(n; N ﬁ) for some constant C; > 0,
j=1 m. Although Theorem 2 is of limited practical interest since it is di cult to
determine the values of C; s and for a given data set, it indeed motivates us to pro-

pose the early stopping threshold nqN 5 log(N) when searching for the optimal
k1 in Algorithm 1, which resulted in an extra log(N) term in its regret convergence
rate as suggested by Theorem 1.

Even though the convergence rates in Theorems 1 and 2 look similar, their proofs
rely on completely di erent techniques. Since k; k., are deterministic in Theorem
2, the regret of fi,.x,, can be established through calculating its bias and variance.
However, when k; k., are data-driven, the regret of f,ﬁ: . requires more sophisti-
cated analysis. One major di culty, for instance, is quantifying the model complexity,
which relies on the following lemma.

Lemma 1. Given observations X} X1, X7 X, Jork; 1 n;

with 7 =1 m, we de ne sets

Ary j(x) = X{p(x) X{,(x)
B = B(k1 km) = Ag, 1(%) Ag, m(x):x [0 1]d

Then the cardinality of B is bounded by dN?.

The proof is given in the Appendix.

Lemma 1 counts the number of sets of the form Ayg, 1(x) Ap, m(x) when
x is running over [0 1]%. It shows that this number is upper bounded by dN?. This is
a generalization of Lemma 3 in Jiang (2019) from m = 1 to m > 1. The selection of
k1 k., can be viewed as a model selection problem with n; n,, candidate
models, and the complexity of each model is measured by B(k; km) . The proof
of Theorem 1 requires controlling the complexity of all the candidate models. If we do
not specify any constraints on the k; s and allow for all the combinations of k; K,
then the complexity of all the candidates models can be evaluated by the following:

Z::,:l 211:1 B(kl km) dN* nq N,



which is relatively large. As a matter of fact, if we impose a restriction that k; =
kin; ny forall j =1 m, then we only need to conduct model selection among
n1 models, and the corresponding complexity can be bounded by

n d
k11:1 ko= kinz ni km= kinm,m ni B(kl km) dN ny

This reduced complexity plays an important role in deriving the near optimal rate in
Theorem 1, and it also motivates the choice k; = kin; n; in Algorithm 1.

3.3 Theoretical Results with n; = =N,

Theorem 1 is limited to the case when 1min n; N!' forsome <2 (2 +d),
j m

where it asserts that the optimal convergence rate (up to a factor of log(N)) of the
regret can be achieved by the proposed classi er. However, theoretical properties of

the proposed classi er are unclear when min n; N! only holds for some
Jj m

2 (2 +4d). While it is di cult to study in general, we manage to provide a partial
answer by considering the special case ny = = N, which has been widely studied
under the so-called divide-and-conquer framework (Qiao et al., 2019, Duan et al.,
2020, Zhang et al., 2015, Shang and Cheng, 2017, Xu et al., 2018, Shang et al., 2019,
Xu et al., 2019).

Theorem 3. Suppose that Assumptions AI1-A8 hold and that ny = =

Nym = N N'  for some [0 1), then it holds that (a) if < 22+d,
a+) .
then. R(f,...) [N log(N)] = +7 ; (b) if g then R(f,, 4.
a ) a+)
log(N)] [N log(N)] = @ for some > 0.

The proof is given in the Appendix.

Theorem 3 characterizes the asymptotic behavior of the proposed classi er in two
scenarios. When < 2 (2 4 d), part (a) is a special case of Theorem 1, where the
regret convergence rate is free of and is nearly optimal up to a logarithm factor
(Audibert and Tsybakov, 2007). However, when 2 (2 +d), each sub-sample

has a smaller sample size, and the resulting convergence rate of the regret becomes
a ) a+)
[log(N)] [N log(N)] d for some constant > 0, which slows down when

increases. In contrast, the convergence rate in part (a) remains the same as changes.
It is unclear whether the convergence rate given in part (b) is optimal since
existing literature on distributed NN classi er has mainly focused on the case with
<2 (2 +4d) (e.g. Qiao et al., 2019). However, we can show that the convergence
rate in part (b) is closely related to that of the distributed 1-NN classi er, as given in
the following theorem.

Theorem 4. Suppose that Assumptions A1-A8 hold and that ny = =Ny =n
Nt for some [0 1). Then if 2 (2 4+d)and zingkr = =kpn=1,1
a Ha+
d

holds that R(fi,:x,,) [log(N)] [N log(N)]
The proof is given in the Appendix.
Theorem 4 shows that the distributed 1-NN classi er can achieve the same con-

vergence rate as the proposed adaptive NN classi er when 2 (2 +4d). This

makes intuitive sense because when is large, the aggregated classi er (1) averages

for some >0



over a large number of NN classi ers built on sub-samples (i.e., m =N n N ) and
the overall variability of the resulting aggregated NN classi er can be signi cantly
smaller than its prediction bias , which is of the same magnitude of individual NN
classi ers from sub-samples. Consequently, to improve the prediction accuracy of the
aggregated NN classi er, it is desirable to use the 1-NN classi er for each sub-sample,
which has the smallest prediction bias among NN classi ers for a given sample size.
The similarity between Theorem 3 part (b) and Theorem 4 suggests that when

2 (2 +d), the proposed classi er behave similarly to the distributed 1-NN
classi er. This conjecture is supported by our simulation studies in Section 4.1 not
only in the case where ny; = = n,, but also in the case where sub-sample sizes
are not equal. However, the distributed 1-NN classi er performs much worse than the
proposed classi er when is small. One advantage of the proposed classi er is that it
can automatically adjust to both scenarios without the knowledge of the true value of

4 Numerical Results

4.1 Simulation Studies

In this section, we evaluate the nite sample performance of the proposed algorithm.
The following marginal distributions of X will be considered.

(a) X gl(X): X = (Xl XQ Xg) [0 1]3 with Xl = RCOS( 1)COS( 2), Xl =
Recos( 1)sin( 2), and X3 = Rsin( 1). Here 1 2 Unif(0 2 ), and R
Unif(0 1) are three independent uniform random variables.

(b) X go(x): X = (X7 X2 X3) [0 1]3 is generated by a similar process as (a)
except R 05Beta(5 1) + 0 5Beta(l 6) follows a Beta mixture distribution.

Given X = x, the conditional probability function is (x) = h( x ), where

08 if0 2z 03
62+26 if03<z 04
h(z)= 02 if0d<z 07
26z 162 if07<z 08
0 46 if08<z 1

The total sample size is set as N = 60000, and the data are randomly divided into
m= N , =001 0 8, sub-samples by the following two approaches:
I. Equally Splitting: The N observations are split into m datasets with (roughly)
equal sample size.
I1. Unequal Splitting: The N observations are split into m datasets, and the sample
sizes (nq N follow a multinomial distribution with probabilities (m s 1)
for s = (m+1)m 2.
For comparison purpose, we consider the following classi ers:

DAES: The proposed distributed adaptive NN classi er in Algorithm 1 with an
early stopping bound n; N ta ;

DA: Modi ed Algorithm 1, where the early stopping bound is replaced by ni;



DK The distributed NN classi er (Qiao et al., 2019) with k; = n;N 4 ,j =

1 m.
D1: The distributed 1-NN classi er by setting k1 = =k,,, =1 in (1).
For DK in the unequal splitting case, we use k; = n;N T for j=1 m, as

suggested by our Theorem 2. Such a choice reduces to k = nN 77 when ny = =
nm = n, which is the choice adopted by Qiao et al. (2019). For each simulation run,
the above four classi ers are trained using m sub-samples to predict the label of a new
feature x randomly generated from the marginal distribution of X. To evaluate the
classi cation accuracy, we treat the Bayesian classi er f (x) =I( (x) 1 2) as the
golden rule and calculate the percentage of times a classi er gives the same prediction
as the Bayesian classi er. The average computation times (measured in second and
taking log) of DA and DAES with di erent are also recorded. To investigate the
role of the early stopping rule, we also compare the numbers of neighbor (k1) chosen
by DA and DAES. Summary statistics based on 200 simulation runs are reported in
Figures 1-6.

First, Figures 1 and 2 suggest that the proposed DAES classi er has a better overall
performance than DK. In particular, their classi cation accuracies are practically the
same for 0 5, while the proposed DAES performs signi cantly better than DK
when 03 and X  g¢a2(x), which demonstrates the bene ts of searching for an
optimal k using a data-driven Algorithm 1.

A second observation from Figures 1 and 2 is that the DAES classi er appears to
be consistently inferior to the DA classi er. This highlights the importance of imposing
an early stopping bound ni N 7% when searching for the optimal k7. This can be
explained by the fact that searching for k; from 1 to n; may introduce too much
uncertainty in the choice of k1 (as well as other k; s), which may, in turn, results in
greater variability for the nal aggregated NN classi er. This explanation also can be
supported by Figures 3-6. For example, Figure 3 shows that the k; chosen by DA is
generally larger than that chosen by DAES. When = 0, DA could choose a k; larger
than 10000 given N = 60000, which may increase a lot of uncertainty for classi cation.

Third, Figures Figures 1 and 2 also indicate that the proposed DAES classi er
performs similarly to the D1 classi er when is large, supporting our theoretical

ndings in Theorems 3-4. However, the D1 classi er performs much worse than the
DAES classi er when is small, demonstrating the advantage of the proposed DAES
classi er due to its adaptivity in choosing an optimal k1 (as well as other k; s).

Finally, Figures 1 and 2 show that for each di erent marginal distributions of X,
the DAES classi er outperforms the DA classi er in terms of computation time, both
of which are U-shaped functions with respect to and attain the minimal when
is around 0 5. For small , a large proportion of the computation time is spent on
choosing k; k. However, when is large, the main computational cost is to
aggregate the sub-samples, resulting in increased run time as continues to increase.
All numerical studies are conducted via High Performance Computing Center at Texas
Tech University.
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Fig. 1 Classification accuracy and computation time with X ~ gi(x).

4.2 A Real Data Analysis

In this section, we apply the four classifiers in Section 4.1 to the adult income dataset
from UCI Machine Learning Repository (Dua and Graff, 2017). The goal is predict
whether a person makes over 50K a year. After removing missing values, we retain
32561 observations and use age, final weight, education, capital gain, capital loss and
weekly working hours as the feature vector. The whole data is divided into a training
dataset with 26049 observations (about 80%) and a testing dataset with sample size
6512 (about 20%). We use the same settings in Section 4.1 to evaluate the predic-
tion error of the testing dataset. The results are summarized in Figure 7. Overall, our
proposed algorithm DAES has the best performance under various choices of €. More-
over, compared with DA our estimator DAES significantly speeds up the computation
when € < 0.5.

5 Conclusion

In this work, we study the binary classification problem in the big data setting, and
propose a distributed adaptive NN classifier with the tuning parameter being selected
by a data-driven criterion. Under mild conditions, we prove the proposed classifier

11



Equally Split Equally Split

1.0- 3-
0.9- 2-
0.8~ DAES
DA 1- o DAES
0.7- DK A DA
D1 0-
0.6-

—1-
0.5-

L X

00 02 04 06 08 00 02 04 06 08
€ €
Unequally Split Unequally Split

L

1.0- 3-
0.9-
2.
DAES
087 DA N o DAES
DK 4 DA
07- D1
0.

Oﬁ'A%W

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.
€ €

@

Fig. 2 Classification accuracy and computation time with X ~ ga(x).

can achieve the minimax optimal rate of excess risk. Numerical results demonstrate
its effectiveness and efficiency.

12



(o]
I
o

e= 0.1 e= 0.2

t 3000- | t
10000- s 3 1000- S
: 2000- ' t
H H 4
5000- : 1000- . 500- :
O_ = L 0_ == L 0_ == L
DAES DA DAES DA DAES DA
e= 0.3 e=04 e= 05
500- . " "
150-

400- . . .
; ‘ 40- i

300- . 100- '
200- L ! ‘
100- ; 50" l o !
s = I
DAES DA DAES DA DAES DA
e= 0.6 e= 0.7 e=0.8
° ° 4- °

15- + 61 |
s ° 3- °

10- : 4; 1
: ° 2- °

5' : 2. °
= * - - 1- - -
DAES DA DAES DA DAES DA

Fig. 3 Selected k1 with X ~ g1(x) and equally split sub-samples.

13



10000-

5000-

750-
500-

250-

40-
30-
20-
10-

Fig. 4 Selected k1 with X ~ g1(x) and unequally split sub-samples.

A O

5000-
4000-
3000-
2000-
1000-

300-

200-

100-

15-

10-

2500-
2000-
1500-
1000-

500-

100-
75-
50-
25-

10-

DAES DA
e= 05

.

[ ]

!

i

= =
DAES DA
e= 0.8

DAES DA



7500-
5000-

2500-

300-

200-

100-

12-

Fig. 5 Selected k1 with X ~ g2(x) and equally split sub-samples.

H
X
{ ]
a2
DAES DA
e= 03
]
:
[ ]
=
DAES DA
e= 0.6
=
DAES DA

2000-
1500-
1000-

500-

125-
100-
75-
50-
25-

e= 0.1
]
L ]

2

DAES DA

e=04
H

|

DAES DA

e= 07

DAES DA

15

750-

500-

250-

40-
30-
20-
10-

N W B~ O

e=0.2
 §
L ]

£

DAES DA

e= 05
[

=

DAES DA

e= 0.8

DAES DA



6000-
4000-

2000-

300-
200-

100-

25-
20-
15-
10-

Fig. 6 Selected k1 with X ~ g2(x) and unequally split sub-samples.

=
DAES DA
e= 0.3
=
DAES DA
e= 0.6
=
DAES DA

3000-

2000-

1000-

250-
200-
150-
100-

50-

15-

10-

e= 0.1
L ]
=
DAES DA
e=04
2
DAES DA
e= 0.7

=
DAES DA

_II___

16

1500-

1000-

500-

80-

60-

40-

20-

12-

e= 0.2
= i
DAES DA

e= 0.5
=
DAES DA
e= 0.8
DAES DA



Equally Split

0.80-

0.78-

0.76-

00 02 04 06 08
€

Unequally Split
0.82-

0.80-

0.78-

L )

L )

DAES
DA
DK
D1

DAES
DA
DK
D1

Equally Split

00 02 04 06 08
€
Unequally Split

0.0 0.2 0.4 0.6 0.8
€

Fig. 7 Classification accuracy and computation time for adult income dataset.

-o- DAES
A DA

-o- DAES
4 DA



Acknowledgments. The authors would like to express sincere appreciation to Edi-
tor Dr. Ricardo Henao and the two anonymous reviewers for their valuable and
insightful comments.

Appendix A Mathematical Proofs

In this Appendix, we provide the mathematical proofs of the theorems and relevant
lemmas.

We denote X = X; Xo Xy as the collection of all covariates. For k; =
1 nj with j =1 mand 0 a <1, we de ne events

, [
E;(k; a) = X(ka)(x) x Cp / for all x

1 a
nj

and
Ep(kl : km a) = }n:lEj(kj a’)

Sometime we may write Ep(ky : ky, a) as Ep if there is no confusion in the context.
By Lemma 2 below, it follows that

P(Ep(k/’l ZI{/’m a)) 1 CD

A1l Preliminary Lemmas

Lemma 2. There exist Cp > 0 such that for all a [0 1), k; 1 n; and

j 1 m , the following holds with probability at least 1 Cp%e njki 6.
| L3
X7 (x) x Cp J for all x
(k5) njl a

Moreover, with probability at least 1 C’D%e ki 6 it also holds that
J

X(jkv)(x) X R for all x
7 CD n;

Proof. The proofs of the upper bound and lower bound are almost the same. In the
following, we prove the upper bound. For simplicity, we will omit the index j.

Let B(x r) be the ball centered at x with radius r. By Assumption Al, therefore
we have

dPX (X)
B(xr) d

P(X B(xr))= (x)dx ¢ (B(xr) )
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¢ (B(x ) =¢c* (B(0 1))

For simplicity, we denote ¢ = ¢? (B(0 1)), so P(X  B(x 7)) crd Let r =
cr(k nt “ﬁ for some 0 a 1 and ¢, = (2 ¢)a. Moreover, we de ne S(x) =

0. B(x r)) and W Binomial(n cr?). Hence, Bernstein s inequality
implies that

P(S(x) <k) PW<k)=PW EW) k EW))
=P(W EW)<k cnr?)
=PW EW)<k ccnk)
=P W EW)<k 2n%%

P W EW)< n%

3nk
exp 7;4 exp( n%k 6)
where we use the fact that a 0. Let B be a nite set such that <« gBxT),

and we can verify B Cr ¢ for some C' > 0. As a consequence, we have

1 a

P( x B Skx)<k) Cr exp( n% 6) Ccrdn exp( n%k 6)
For any x ,thereisax  Bsuchthat x x 2r. Under the event F> = x
B S(x) K , there are at least k covariates among X X7 in the ball B(x 7),
and thus there are at least k covariates among X7 XJ in the ball B(x 2r). Hence,
we have
X nl a
P( x ng)(x) x 2r) P(E,) 1 Cec ¢ k exp( n%k 6)
O
Lemma 3. Fizing k1 =1 ny and setting k; = kin; ny withj =1 m, there
exist ¢, Cp > 0 free of k; such that
E( & 5(x) &) o (x) i f(x)=1

NN

o (x) iff (x)=0

holds for all x with (x) Cy X{kj)(x) x . Moreover, if kin;  ny for all j =
1 m, then the following statements hold on event Ep(ky : kmy 0):

E( &k, (X) X)
E( &k () X)

a (x)  iff (x)=1
c (x) if f(x)=0;

N[ N[
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for all x with (x) Cy(ky n1)a. In addition, if ky = =kn,=kandny = =
nm = n, then for any a [0 1], the following statements hold on event Ep(ky : ky a):

a (x)  iff (x)=1
e (x) if f (x)=0;

NN

for all x with (x) Cp(k nt @)a.

Proof. Since E(Y(JZ) (x) X) = (ng) (x)), by Assumption A2, we show that

k;
E( 1, 5(x) X) @)%_W%@M)(ﬂ
1 '; :
- (e e
gé

Therefore, choosing C, 2C andif (x) G ngj)(x) x =20 X{kj)(x) X
and f (x) =1, then we have

(x) E(x () &) (%)

(x)

E( 1500 %) 3

Q ol

(K () x

So the statement will hold for ¢ 1 2 and Gy 2C' . Similarly, we can prove
the case when (x) (ng,)(x) x and f (x) = 0. Consequently, on event

Ep(ky : kp 0), we have

m kj
1
E( ko () X) (%) =~ BV X) ()]
J=17 j=14=1
o
= —m [ X)) (x)]
J=17 =1 4=1
m kj
C .
J=1 =1 =1
c " :
L k; (szj)(x) X
j=1"j



2l

cc, ™ k;

- ko 9
j=1 k] j=1 ! g
cc, " 2% 1 ky 2
—L k; il 29C Cp ~
=1 kj =1 ny ny
where the condition k; = kin; ny 2kin; nq is used. For C, 2'7aC Cp and x
such that (x) Cyp(k1 n1)<e, f (x) =1, it holds that
1 1
EQ ik ) X) 5 (0 5 El kwa(x) X)) (x)
ki @
2¢C C,, —
(x) a D
ki 2 Cy ki @ Cy, ki @
C, — - — - —
ni1 2 i1 2 i1

Finally, choosing ¢, Cp 2, we complete the proof of the second statement. Similarly,
we can prove the case when (x) Cy(k; n1)7 and f (x) =0.
The proof of the third statement is similar to the second one. Hence, we omit it. O

Lemma 4. Let ¢, and Cy be the constants in Lemma 3. Fizing k1 = 1 ny and
setting k; = kiny nqy with j =1 m, if kin;  ng forallj=1 m, then the
following holds on event Ep(ky : ky, 0):

P(fryih,, (X) = f (x) X)  exp 26 ky *(x)

for all x with (x) Cy(ky n1)a. In addition, if ki = =knp=kandny = =
nm = n, then for any a [0 1], the following statements hold on event Ep(ky : ky, a):

P(fey:k, (x) = f (x) X) exp 2cimk %(x)
for all x with (x) Cy(k n' *)7.
Proof. Suppose f (x) =1and (x) Cy(ky n1)d. By Lemma 3, under event Ep(k; :

km 0), we have

X e (x) (A1)

N~

E gk, (%)
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Furthermore, we observe the that

™
kak,, (X) = —7—— Yy (x)
J=1"7 j=14i=1

and Y(ll) (x) Y(}Cl)(x) Y (x) Yy (x) are independent conditional on X.
Hence, it follows form Hoe ding s inequality and (A1) that

X)
1
=P kl;km(x) 5 <0X
1
=P ko, (X)) E( kb, X)) X) < E gk, (%) ;X X

exp 2 kj (x)

Using similar argument, we can prove the case when (x) Cy(k; n1)? and f (x)
0.

ol

A2 Proof of Lemma 1

Let H be the partition of [0 1]¢ induced by m 5 hyperplanes de ned as the perpen-
dicular bisectors of each pair of points (XJ XJ) for 1 s<p mnandj=1 m
(see Figure 3 for the case with m = 2 ky = 3 k2 = 2). If x and x are in the same
partition, then Ay, j(x) = Ay, j(x ) for all j =1 m (see Figures 1 and 2). As a
consequence, the cardinality B H . Now consider H to be the partition of [0 1]¢
induced by ]g hyperplanes de ned as the perpendicular bisectors of each pair of
points (X X) with X = X. Then # is a re ned partition of H, thus H ‘H . Now
by Lemma 3 in Jiang (2019), we have H  dN¢.
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Xz
Xz
Xz

Xy

Fig. 1 The partition deter- Fig. 2 The partition deter- Fig. 3 The partition deter-
mining the possible sets of mining the possible sets of mining the possible sets of
As3,1(x) for three points. Az 2(x) for two points. Az 1(x) X Az 2(x).

A3 Proof of Theorem 1
In this Section, let us define set
Fm = {(kl,,km) . kj = [klnj/nﬂ,kl = ].,...,TLl,j = 1,...,m}.

and quantity

6 = C5[N/log(N)| "7
for some large enough constant Cs. For j = 1,...,m, we denote the following random
quantities:

k;Pt(X) = max {/{3 : ||X€k)(x) - XH < (Cb_lé)F }

For simplicity, we may write k:;-’pt as k:;-’pt (x) during the proof, if there is no confusion in
the context. Define event E4 that (A3) holds for all x € [0,1]? and all (ky,..., k) €
I'yn. Then by Lemma 5, we have

P(Es)>1—dN! (A2)

Lemma 5. For any € > 0, with probability at least 1 — T, the following holds:

(d+1)log(N) — log(r/d)
22;'”:1 k; ’

s ik (%) = BTy ik, (%) | X)] < \/

for all x € [0,1]% and all (ky,...,kn) € Ty As a consequence, choosing T = dN 1,
the following holds with probability at least 1 — dN1:

(d+ 2)log(N)

T , A3

[Tyt (%) = By, () X) | <
for all x € [0,1]% and all (ky,... k) € Tpy.
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Proof. Notice that g, .k, (X) = ﬁ i ¥ Y(]Z) (x), and Y3, (x) Vi (%)

Y (x) Y y(x) are independent conditional on X. Therefore, Hoe ding s
inequality implies that

P kl:km(x) E( kl;km(x) X) >t X exp( 2t2 k)
j=1

Conditioning on X, for xed (k1 km) m, when x is running over [0 1], then
by Lemma 1, there are at most dN? di erent choices of Y (x) Y,y (%)

Y (x) Y 1 (x). Therefore, it follows that

P x [0 1]%such that ., (X) E( gy, (x) X) >t X

dN%exp 2t2 k

P (k Em)  m x [0 1]%such that g5, (X) B( gk, (X) X) >t X

dniNtexp 26> k;  dexp 2t kj+(d+1)log(N)
j=1 j=1

(@ Dlog(N) log(_d)
2 ;n:l J

complete the proof. O
Lemma 6. If (x) and k k;pt(x), then it holds that

Plug in ¢t = into above inequality and take expectation, we

E( vij(x)X) 3 o (x) iff(x)=1
E( »,;(x)X) 2 e (x) iff (x)=0
As a consequence, if (X) and k; k;pt(x) forallj =1 m, then the following
holds:
E( k1 km(X X) % Cp (X) fo (X) =1
E( gy, (x) X) 3 a (x) iff (x)=0

Proof. For k  k°P', we have

. . 1
X(Jk) (X) X X(Jk;)m) (X) X (Cb ! )
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which further implies that (x) Cy X{k) (x) x . Applying Lemma 3, we
complete the proof of rst statement. The second statement follows from the de nition

that gy, (X) = Tl ks k(%) (L k). O
Lemma 7. Under event Eyu, if (x) and kj(x) k:;pt(x) for all j =1 m,

then fk:km(x) =f (x).

Proof. By de nition of kq kpm, we have

d+ 2)log(N
pa () 12> (d+ znog( )
2 j=1 k;
On event Ej4, it follows that
(d+2)log(N)
kit () EC g, (%) &) m
2 j=1 k;
Combining above, we conclude that
kl:km(x) 12> kl:km(x) 12 E( kl:km(x) X) 12

which further implies that
sign g (X)) 12 =sign E(, . (x)&X) 12
for all x with (x) on event F 4. Finally, by Lemma 6 and above equation, on

event Fy, if (x) and k;(x) kz;pt (x) forall j =1 m, then

1 i f (x)=1
1 iff(x)=0

which completes the proof by noticing that f, ., =1( , , (x) 1 2). O
We are ready to prove Theorem 1. Let us de ne the deterministic integers

d

1 d 4 a d = d
j: injCD Cb k = njCDCb

and events

=

k.
E = ka‘)(x) x Cp —J for all x and j =1 m
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and

. 1 k. a
E = szj)(x) X o n—j for all x and j =1 m
. d 4 4 d d
Since 1 > g5y so ny = C n;N Z+i[log(N)]z +2

d
C N' T [log(N )]ﬁ is diverging. Without loss of generality, we may assume
k; landk; 1.Onevent E , it follows from the de nition of k;’pt that

) k. @ n.C-4C 4 4 F
szj)(x) X Ch n_]] Ch %
(€' )" < X)) x
which further implies that
1 4 4
EP'(x) K 5njoDﬂle © for all x and j =1 m (A4)

Moreover, on event E , it also holds that

1 4 4
X x Lokt omope, *
(kj) CD Us CD Us
1\ j
:(Cb ) X‘(]k]o.pt) X

where the last equation follows from the de nition of k:;)pt. Above inequality implies
that

d

KM%k nCho, (A5)

J

for all x and j =1 m Combining (A4) and (A5), we conclude that on event
E  E | the following holds:

1 dq~ Lo opt Ao 4
§njCD C, K% (x)  n;CpC, (A6)
for all x and j = 1 m If we de ne kpin =
min &P k5P ng koPtng ny, and K™ = kf*™n; np , then we can show

that
t opt .

fomin B2 Rimng_pont _ popt (A7)

j - niny j J

j
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Hence, by (A6), it holds on event E =~ E that

1 d 4 a min d 4 a
anCD c, k" (x)  2n;CpC, (A8)
for all x and j =1 m By de nition, it follows that k}“i“ (x) kz;pt. So under

event £ (a) E , forall x with (x) and f (x) =1, Lemma 6 and (A8) together
imply that

m

. 1
B E( g () X) 5
j=1
m 4 4y
TLjCD Cb Cp (X)
j=1
1 d L3 da
ZCgCD Cb N +2
1, g, & 2% 1
= ZCbCD c, C N N log(N)
(d+ 2)log(N)

? 2

where the last inequality follows if we choose C' large. By above inequality, on event
Eys E F ,forall x with (x) and f (x) =1, it follows that

m

) 1
k}nm E( k,ln;n:kllnm (X) X) 5
j=1
" min 1
ki E( fpmin; gmin (x) &) 5
J=1
knin pmin min (X) B min gomin (x) X)
J=1
5 (d+2)log(N) (d + 2)log(N)
2 2
1 2l
2
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Similarly, on event 4 E E |, for all x with (x) and f (x) = 0, we can show
that

BB g (9 X) 5 < (208

j=1
Therefore, we prove that on event £4 E  E , the following holds:

m

KF - pmin gomin (X) 3> T (A9)
j=1
for all x with (x) Now by (A8),onevent E4 E E , we have
. C
K (x)  mCRe,
g T
= CHC, C ny N log(N)
4 4 d d
= C0hC, C nmN 7 7a[log(N)]z 72
nm N 7% log(N) (A10)
for all x with (x) and su ciently large N. In the following, we will calculate the
probability of E4 E  E . Since d, it follows that
1 d
1+ ) + td

2 +d 2 +d 2 +d
Using the inequality above and (A2), it follows that
P(Es) 1 dN ' 1 dC N = [og(N) > =1 d*

for su ciently large N. Moreover, by Lemma 2, (A4) and (A5), it follows that

P(E) 1 Cp %exp( k; 6)
j=1"17
d
1 CpNexp Lﬁ
12040,
) i
1 CpNexp ———N' N log(N)
12C4.C,
1 1 —d —d
=1 CpNexp — N 2+ [log(N)|z +4
12C4.C,

28



1 1+

where we use the fact that 1 >d (2 +d). Similarly, we can show that P(E )
1 % . Combining above, we show that

P(E4+ E E) 1 PEs PE) PE) 1 'f (A11)

By (A7), (A9) and the de nition of ky(x) km(x), the following holds on event
Eyn E E:

kj;(x) k;“i“(x) k:;’pt (x) (A12)

for all x with (x) and j =1 m By (A10), (A12) and Lemma 7, we can see,
it holds on event £4 E  E that:

S, ®)=F (%) and  ki(x)  mN =47 log(NV) (A13)

for all x with (x) By (Al3),onevent E4 E E, f, ., (X)=f (X) implies
(r) < . As a consequence of (A11) and Assumption A3, we have

k
( (X)
E( (X)(fy, 4, X)=f (X) Ea E  E))+P(Ea E E))
( Sy, X)=f (X) Ea B E (X)< )+P((Esa E E))

I+ (A14)
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A4 Proof of Theorem 2

2
By the conditions given, we have k; nN 2 T Nt ™ = N7+
2
and kin; n1 n;N 2 % N' % =Nz . Without loss of generality,
we assume kin; ny  lforall j=1 m. Let C' large enough constant such that

=C (k1 n1)@  Cy(ky n1)a. We further de ne sets 4g = x: (x) 12
and A; = x:20 1 < (x) 12 29 forj 1. For simplicity, let us write

Ep(ky : km 0) as Ep and ;-n:l k; m as k.

If 7 =0, then Assumption A3 shows that

E 2 (X) 1I(fe k. (X)=f X)X Ao Ep) 2 P(X  Ao)
90 1+

If j 1, Assumption A3 and Lemma 4 imply that
E 2 X)) 1I(fem,(X)=f X)UX  A; Ep)
2 E X Ay Ep)P(frymn(X) = f (X)X X)
21 B I(X  A; Ep)exp  2cimk 2(x)
2771 E I(X A; Ep)exp 2cimk4’l 1 2

By conditions given, it follows that

m m m

k i d 2
Ty an 2 +d = N2 +4
. . ni .

Jj=1 Jj=1 Jj=1

and =C (ky n1)@ C N 2 +4. Therefore, it follows that
E 2 (X) 1I(fo,(X)=f X)X A; Ep)

. 1 .
21 E (X A; Ep)exp 5cﬁc%wvf—wv >

. 1 .
2071 B (X A; Ep)exp 5(;5024]
) 1 .
201 P(X Aj)exp 50?024]

20T C (27 ) exp 5052,0243
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_ . 1 _
201 ¢ (27 ) exp 505024]
2¢ M 2104 ) exp %c?CQéﬁ

Taking summation ans using the fact that ,_, b/ exp( ¢4/) <  forallb ¢ >0, we
have

E 2 X)) 1L(ftm,(X)=f XPUX  A; Ep)

20 2704 ) exp %c§024j 1
j=1

Combining the bounds above, it follows that

R(frrikn) = E 2 (X)  1TI(fr ek, (X) (
E 2 (X) 1I(fr:h,,(X)=f (
+E 2 (X)  1I(fryk, (X) = f (X) X Ao Ep)

OB 2(X) 1N(fr,(X)= [ (X)X A; Ep)

By (Al) and the fact that k;  kin; n1  n;N ™ N! TR = Nz ; 1t
yields that
P(E) Cp lexp( k; 6) N -
J

j=1
Combining the above two inequalities, we complete the proof.

A5 Proof of Theorem 3

In this section, we consider the equal-size sub-samples. For simplicity, let us assume

ny = =n, =n=N!' and m =N n= N . Notice that k; = = k,,, in this
setting, so we rewrite .k, as r and fi,.,, as fr if k1 = = k., = k. Moreover, we
alsode ne k =k = = k;, to be the data-driven quantities in Algorithm 1. Since

Theorem 1 studies the case with < 22—+d,

Abusing notation, let us de ne quantities

2
2 +d°

we will focus on the case with

i 0 1
d TSI
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and

=C [N log(N)] *
for some large enough constant C . For j =1 m, we denote the following random
quantities:

k;’pt(x) =max k: X{k)(X) X (C, M)

For simplicity, we may write v as v (a ) and k:;-’pt as k:;-’pt(x) during the proof, if
there is no confusion in the context. Clearly, Lemmas 6 and 7 are still valid under the
new and k5" (x).

Lemma 8. Suppose 22— 2_ then there exists a constant ¢ > 0 such that the

+d 2+d’
following holds

R(f,) Nlog(N)  [log(N)]

for some > 0 depending on d.

Proof. For xed (a ), we de ne the deterministic integers

Ly A ¢ 4 At 4
k= 5" “CpeC, kE = nChC,

and events
. koo .
E (a) = X%k x x  Cp ' for all x and j =1 m
and
; 1k _
E = X(k )(x) X o for all x and j =1 m

By the de nition of v , for any (¢ ), we can verify that (1  )(1 a) v d and
d v d v d

d v d

nl @ =C pl oy ** log(N)]— =¢c Nt DO @ [log(N)] ~ is diverging.
Consequently, we may assume k 1 and k 1. On event F (a), it follows from the
de nition of kz;pt that

v

al=
al=

k

nla

1 d 4 a

u d

n *CpC,
nl a

1 .
(Cb ! ) < X(Jk?pt+1)(x) X

Cp

ng )(x) x Cp
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which further implies that

1 d
KM ko gnt tCpTG, < (A15)
for all x and j =1 m Moreover, on event E , it also holds that
1 ki
J v 1yt J
Xy X T m (G )" Xy X

where the last equation follows from the de nition of k:?pt. Above inequality implies
that

d

EP'(x) k  nCHo, (A16)
for all x and j = 1 m Combining (A15) and (A16), we conclude that on
event E (a) E , the following holds:

Liec do ®t povix) pedo, ©f forall dj=1
5" C, ; nCHC, or all x and j = m
(A17)

De ne k™" = min kP* k9P koPt . Hence, by (A17), it holds on event E (a)
E that

d

1 d . d
sn' “Cp'C, CEmNx) nChC, forall x (A18)

Since k™% (x) k:;’pt, sounder event E (a) E | for all x with (x) and f (x) =1,
Lemma 6 and (A18) together imply that

—_— 1
MER E( (%) X) 5

1 A~ 2 4
§mn1 aCpC, e (X)

L Ao * 442
5612701? c, meNt @

v (2 +d)
2 +d —

1 4
= —ac,le, ¢ N aN1 a N log(N
2 b~ D b

Since by de nition, v = (1  )(1 a) dif 2 (2 +d) 0<a<1,itholds that

v (2 +d):(1 )1 a)2 +4d) | 4
d
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Combining the above two inequalities, we have

— 1
mkmin B( o (x) X) 5
T 2z id 1
iecylc, © N N log(N) if <57 a=1
4 2 1d (1 a)
ieoyic, © N aN1 a N log(N) if 2 a>0

(d+2)log(N)

3
2

where the last inequality follows if we choose C' large. By above inequality, on event
Es FE (a) E ,forall xwith (x) and f (x) =1, it follows that

- 1
fmin min —_
m fomin (X) 9
- 1 -
mk™ir E( pmin(x) X) 3 mE™r e (X)) E( pmin(x) X)
3 (d+2)log(N) (d+2)log(N)
2 2
(d+2)log(N)
2
Similarly, on event E4 FE (a) FE , for all x with (x) and f (x) = 0, we can
show that

. 1 d+ 2)log(N
mkmin Jpmin (X) - < M
2 2
Therefore, we prove that on event E4 E (a) FE , the following holds:

(d+ 2)log(N)
2

- 1
mk™n i (X) 5 > for all x with (x) (A19)
Now by (A18) and the de nition of v ,on event E4 E (a) E , we have

. 4 g4
Emin(x)  nCHC,

d d
= ChC, C n N log(N)

d d
cpic, ¢ aN )M Dlog(N) if 0<a<l

2 +d
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(A20)

for all x with (x) . In the following, we will calculate the probability of F4
E (a) FE . Since d by Assumption A3, it follows that
@ )@ e 3+ ) @ a A+ ) 1+ )
1 =
v+ ) d 2 +d 2 +d
+ +d

1

<
2 +d 2 +d

Using the inequality above and (A2), it follows that

P(E4) 1 dN ' 1 dc't N v OF log(N)» O+ ) =1 4 'F
for su ciently large N. Moreover, by Lemma 2 and the de nition of E (a) F , it
follows that

mnl a

P(E (a)) 1 Cbp p exp( n% 6)
d
1 CpNexp nig
12C4.C,
1 v d
=1 CpNexp —_— N' N log(N)
12C4C,
1
=1 CpNexp ﬁN(l )a[log(N)](l )1 a)
12C4C,

and

P(E) =1 Cp%exp( k 6)

1 d

1 CpNexp n

T4
120,%C,
1

QN(l )“[1og(N)](1 )1 a)
12C0,%C,

1 CpNexp

Combining the above three inequalities, we show that

P(Ex E () E) 1 PE. PE (a) PE)
1 d ONew  GNU log(v))t 0@

1
1 d'r CN exp EN(l Ja
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d d
where C is some constant greater than Cp + 120%Cb + 120DdCb . Without loss of
log(2C log(

. . o N))
generality, we assume C > 6. if we choose a = T Jlos(N) then we have

N® = [2Clog(N)]T~

a Ha a) a )
d

= C N log(N) C N log(N) [2Clog(N)]?
(A21)
and the probability can be bounded by
P(Ex E( E) 1 'Y oN*' 1 (C+1)' (A22)

First, let us consider the case < ﬁ. By (A19), (A20) and the de nition of k(x),

log(2C log(N)) 1

since < QJ%d and 0 < a = T ) Tog(N) for large N, we have

2 __da
2 +d 2+d)(1 )

k(x) K"M(x) nN Tilog(N) and  k(x) K™(x)  k9(x)

holds for all j =1 m and all x with (x) onevent E4 FE (a) FE . Now,
applying Lemma 7, we can see, it holds on event E4 E (a) E that:

fi.(x) = f (x) forall x with (x)

By (A22), (A21) and the above equation, we can complete the proof using the same
argument as (A14).

Second, let us assume = %. By (A20) and the de nition of k(x), the

2
24d 2
following holds on event E4 E (a) FE :

. d d d 4
k(x) EY(x)  Cplc, € aN )0 Dleg(N)=Cplc, ¢ N log(N) = vy

for all x with (x) , which further leads to
O,N T Gylk(x) N0 @9)a N (A23)
Let us de ne classi er
f (%) if fu(x)=f (x)foralll k wp;

Je) = 1 f (x) elsewhere

By the de nition of f(x), it follows that

P(f(x)=f (x)X) P(1 k oy suchthat fr(x)=f (x) X)
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UN

P(fr(x) = f (x) X)

k=1

By the above inequality, (A23) and Lemma 4, we conclude the following hold on event
N Ep(k:ka) Ex E (a) E:

P(f,(x) =f () X) =P(f,(x) = f ) X)  P(f(x) =/ (%) X)

UN €XP 2c2m %(x)

(A24)
for all x with (x) max CygN == For simplicity, let us denote =
max CwiN "~ E= " Eplk:ka) Exi E(a) E,A = x:

(x) 12 yand A; = x:27 < (x) 12 2

If j = 0, then Assumption A3 shows that
E 2 (X) 1I(f,(X)=f (X)X A4 E) 2 P(X A4) 20 '*
If 5 1, (A24) implies that

E 2 (X) 11(f,(X) =/ (X)X A4 E)

2R IX Ay E)P(f(X) = f (X)X X)

20 yyE I(X  A; E)exp  2cim %(x)

20t yyE I(X  A; E)exp 2cim4? 2

1 1 a a+  d a
e o cic, C N log(N) and m =

N =N Hid, som 2 1forall a > 0. As a consequence of Assumption A3, it follows
that

Since = max CypiN
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where we use the fact that ;b exp( c47) < forallbc>0,and C > 0is a
constant free of N. Combining the bounds above with (A1) and (A22), it follows that

R(fk) =E 2 (X) 1 ]I(fk(X) = f (X))
E 2 (X) 1I(f,(X)=[f (X) E)
TE 2 (X) 1I(f(X) =/ (X)X Ay Ep)

+ E2(X) 1(fX)=f (X)X 4 E)
IP(JL;) +C ooy

v P(ES(k a)) +P((ES E (a) E))4+C ' oy
(k;leNNeXp( n® 6)+(1+0) 't +C ' ooy

Notice that a = % with C' > 6, we have

d 4 d d
oy = Cptc, ¢ N Delog(N) =20C,%C, C [log(N))?

= CwEN N ST llog(N)) T

exp( n* 6) = exp( [2Clog(N)] 6) N 2

Since = 2_%1, we conclude that
a0+ )
R(f}) N log(N) [log(N)] for some >0

([l

Lemma 9. Under Assumptions AI1-A3, if 2 (2 +d) and k=1, then

R(fi) N 77 [log(W)]
for some > 0 depending on d and .
Proof. Let us de ne = Cy[k N )T @)])a where Cy is the constant in Lemma 3,

and we allow a is depending on N. We further de nesets Ag = x: (x) 12

and 4; = x:22 ' < (x) 12 27 forj 1.For simplicity, we write Ep(k; :

km a) = Ep and in the equal sub-sample size setting, we have k1 = =k,=k=1.
If j =0, then Assumption A3 shows that

E 2 X) 11(#X)=f X)X A4y Ep) 2PX A4y 20 't
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If 5 1, Assumption A3 and Lemma 4 imply that
E 2 (X) LI(fi(X)=f X)X 4, Ep)
2TE X Ay Ep)P(fi(X) = f (X)X X)
2L E (X A; Ep)exp  2cimk 2(x)

27t1E (X A; Ep)exp  2cpmd? 2 (A25)

Since = Cy[k NI )1 a)]a and 2 (2 +d),anya (0 1)satisesl a

_ (il log)(g%(lN))(lz . (d1 5- Therefore, we can pick any a (01) in(%(lit )follows that

m N By the choice with £k =1, we have =C,N — @  and

(A25) 20T' E I(X A; Ep)exp —chb4J v @A e
27t1 E (X  A; Ep)exp —ch’b4J
=20 1 270+ Jexp —chb4J

Taking summation ans using the fact that ,_, bexp( c4l) <  forallb c>0, we
have

E 2 (X) 1I(fiX)=f (X)X A Ep) C

j=1

where C' is some constant free of NV and a. Combining the bounds above, it follows that

R(fr) = E 2 (X) (X) = )
2 (X) 1I(fu(X) = f (X) Ep)

X) = f (
7
FE 2 (X) 1I(f(X)=f (X)X Ao Ep)

11(f X

L OE2(X) LIAX) =f (X)X A Ep)

P(ES) +C M
=P(Ef)+CCT N

a Ha «@a+ )
d
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Let a = %@g\f(;\[)) for some s > 0 and notice that N~ stV = eslos(loa(N)) —
[log(N)]®. As a consequence, it follows that

N Gt war) o0 0s) [1og(N)]S(1 IEE!
By (A1), since 2 (2 +d)and k = 1, if we choose s such that 25! ) = 48, then

P(E$)  Cpmn' “exp( n® 6)
CpNexp( n® 6)
= CpNexp( N1 ) g)

= CpNexp  [log(N)]** ) 6
= CpNexp  log(N)[log(N)** ) 16
CpN exp log(N)2: ) 16

CpNexp  4log(N) CpN ?

Combining the above three inequalities and noticing that a )(dl"’ ) (1+d) =

1+T %ld ( )2 by Assumption A3, we complete the proof with = %
_ og(48

and s = T ) loe® O

Based on the above lemmas, we are ready to prove Theorem 3.
If < 22W7 it follows from Theorem 1.

It > ﬁ, then

nN 2% log(N) = N! 2t log(N) < 1 and k = 1. The desired result follows from
Lemma 9.

22—+d for any (0 1]. As a consequence, we have

If 221 ﬁ, the convergence rate follows from Lemma 8.

A6 Proof of Theorem 4

Theorem 4 follows directly from Lemma 9.
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