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Abstract

When data is of an extraordinarily large size or physically stored in different
locations, the distributed nearest neighbor (NN) classifier is an attractive tool
for classification. We propose a novel distributed adaptive NN classifier for which
the number of nearest neighbors is a tuning parameter stochastically chosen by
a data-driven criterion. An early stopping rule is proposed when searching for
the optimal tuning parameter, which not only speeds up the computation but
also improves the finite sample performance of the proposed algorithm. Conver-
gence rate of excess risk of the distributed adaptive NN classifier is investigated
under various sub-sample size compositions. In particular, we show that when the
sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly
optimal convergence rate. Effectiveness of the proposed approach is demonstrated
through simulation studies as well as an empirical application to a real-world
dataset.

Keywords: Distributed Learning, Adaptive Procedure, Minimax Optimal, Binary
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1 Introduction

Nearest neighbor (NN) classi�er is a simple but powerful tool for various applications
such as text classi�cation (Han et al., 2001, Jiang et al., 2012), query dependent rank-
ing (Geng et al., 2008), and pattern recognition (Kowalski and Bender, 1972, Zheng
et al., 2004, Xu et al., 2013). Consider (Y1 X1) (YN XN ) generated indepen-
dently from an unknown probability distribution P , with Yi 0 1 being the label
and Xi being the corresponding d-dimensional feature vector for i = 1 ��� N . The
NN classi�er predicts the label of a query point x based on labels of its neighboring
observations. It is well-known that NN algorithm is sensitive to the scale of data as
it relies on computing the distances. A popular procedure is to normalize each fea-
ture to [0 1]. Without loss of generality, we assume that the feature space is [0 1]d

and that the Euclidean distance is used. This assumption was also used in Cai and
Wei (2019). Given a new query point x [0 1]d, denote X(i)(x) as the i-th nearest
point to x among X1 XN , and Y(i)(x) as the label associated with X(i)(x). For a
prespeci�ed integer 1 � k � N , the conditional probability �(x) := P(Y = 1 X = x)

can be approximated by the k-NN estimator �NN k(x) =
1
k

k

i=1 Y(i)(x) and the label

associated with x is then predicted as fNN k(x) = I(�NN (x) � 1 2), with I(�) being
the indicator function.

The performance of a binary classi�er f : [0 1]d 0 1 , which is trained using
observed data (Y1 X1) (YN XN ), is commonly evaluated by the regret (or excess
risk) de�ned as

R(f) = P(f(X) = Y) � P(f �(X) = Y)

where (Y X) � P is an independent copy of the training sample, f �(x) = I(�(x) �

1 2) is the well-known Bayesian classi�er, and the probability is with respect to the
joint distribution of (Y1 X1), (YN XN ) and (Y X). A smaller regret indicates

higher classi�cation accuracy for a classi�er f .
Notation: For deterministic positive sequences aN and bN , we denote aN (or ) bN
if aN � (or � ) CbN for some C > 0 and su� ciently large N . If aN bN and aN bN ,
we write aN � bN . For any a > 0, we denote a ( a ) as the smallest (largest) integer
that is not less (greater) than a. We denote � as the Lebesgue measure and PX as the
marginal distribution of X whose support is 
 . For a set A, we use A to denote its
cardinality.

1.1 Related Work

The regret of the k-NN classi�er has been shown to converge to 0 as k and
k N 0 in a general metric space with additional structural assumptions (Cover and
Hart, 1967, C�erou and Guyader, 2006, Hanneke et al., 2021) and in the Euclidean space
(Stone, 1977, Devroye et al., 1994). The convergence rate of the regret depends on
properties of �(x) and PX. Chaudhuri and Dasgupta (2014) established a nonasymp-
totic bound for the convergence rate, which achieves the minimax rate in the sense of
Audibert and Tsybakov (2007) under some mild conditions. Gadat et al. (2016) fur-
ther identi�ed two su� cient and necessary conditions for the uniform consistency of
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the k-NN classi�er without rigid assumptions on the joint distribution of (Y X) and
derived the corresponding optimal convergence rate. Samworth (2012) proposed an
optimally weighted k-NN classi�er based on a new asymptotic expansion of its regret.

When facing an extraordinarily large sample size, the k-NN classi�er can be compu-
tationally intensive, especially when k is large. To address this issue, Qiao et al. (2019)
and Duan et al. (2020) proposed two distributed k-NN classi�ers, extending the work of
Chaudhuri and Dasgupta (2014) and Samworth (2012), respectively. Their algorithms
�rst divide the whole data into m equally-sized sub-samples, and for each sub-sample,
a k-NN classi�er is trained independently. The �nal prediction of a new query point
is made by aggregating the m independently trained k-NN classi�ers. Under suitable
conditions, the regrets of both distributed k-NN classi�ers were shown to achieve the
optimal convergence rate. However, in many applications, the sub-samples may not
have equal sample sizes, and to the best of our knowledge, there has yet been any
existing work on distributed NN classi�ers with unequal sized sub-samples.

Furthermore, the aforementioned theoretical results are based on the key assump-
tion that the choice of k is pre-given and is deterministic. However, it is often desirable
to have a data-driven choice of k for practical applications. There has been limited
work on theoretical properties of the k-NN classi�er with a data-driven choice of k
in existing literature, with two notable exceptions, i.e., Cai and Wei (2019) and Bal-
subramani et al. (2019). They independently proposed two adaptive procedures to
stochastically choose k and established the convergence rates of the resulting adaptive
NN classi�ers under suitable conditions. However, while achieving improved classi�ca-
tion accuracy, searching for an optimal k also signi�cantly increases the computational
burden for the adaptive NN classi�er, making it desirable to consider a distributed
adaptive NN classi�er with favorable statistical properties when the sample size N is
extraordinarily large. For applications where data are stored in di�erent locations, a
distributed adaptive NN classi�er is also a natural and preferable choice.

1.2 Our Contribution

We propose a novel distributed adaptive NN classi�er with a data-driven choice of k,
which can be used to either speed up the computation when the data size is extraor-
dinary large or improve the classi�cation accuracy when data are stored in di�erent
machines. Suppose that the whole data set is separately stored in m di�erent loca-
tions, and each location has a sub-sample of size nj , j = 1 ��� m. The sub-sample
sizes are allowed to be di�erent from each other, in contrast to the existing divide-and-
conquer framework (Qiao et al., 2019, Duan et al., 2020). Without loss of generality,
we assume that n1 � n2 � � nm and denote N = n1 + ���+ nm. Based on the
jth sub-sample, a local kj-NN classi�er is constructed for a given query point x and
an integer kj , j = 1 ��� m. The predicted label for x is then obtained by aggregating
the m sub-sample NN classi�ers with k1 ��� km chosen by a data-driven criterion.
See Section 2 for more details.

The computational e� ciency of the proposed algorithm is achieved in two ways.
(1) Parallel computation. For a given k, the computational complexity of the

standard k-NN classi�er using the whole data is between O(N) to O(N log(N)) (Cor-
men et al., 2009), which needs to be carried out on a single machine. In comparison,
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the computation of the distributed NN classi�er can be easily paralleled, and each
sub-sample only costs between O(n) to O(n log(n)) operations.

(2) Early stopping rule for k. The adaptive NN classi�ers proposed in Cai and
Wei (2019) and Balsubramani et al. (2019) search for an optimal k1 by increasing k

from 1 to N until a stopping rule is triggered. A straightforward extension of their
approaches to the distributed setting is to search for kj from 1 to nj , j = 1 ��� m.
However, we propose an early stopping rule for the choice of k1 (which determines

other kj '), narrowing down the search range for k1 to 1 n1N
�

d
2+d log(N) . As

a result, the proposed algorithm signi�cantly reduces the number of attempts needed
to locate the optimal kj ' for the distributed adaptive NN classi�er.

Our numerical studies show that such an early stopping rule for k1 not only speeds
up the computation but also yields superior �nite sample performance for the proposed
algorithm compared to the naive extension of Cai and Wei (2019) and Balsubramani
et al. (2019). See Section 4.1 for more details.

From a theoretical point of view, our work extends the theory for distributed NN
classi�er with a �xed k (Qiao et al., 2019) to the more realistic distributed adaptive NN
classi�er based on unequal sub-sample sizes, whose kj ' are chosen by a data-driven
procedure. Speci�cally, we derive the convergence rate of the regret of the proposed
classi�er and give su� cient conditions under which the convergence rate is optimal
(up to logarithmic factors). Moreover, the convergence rate of the regret exhibits a
phase transition characterized by sub-sample sizes. Finally, we wish to comment that
the proof of adaptivity in the distributed framework relies on the uniform convergence
in Lemma 5. This requires bounding the total model complexity (see Lemma 1) of all
the local classi�ers, which motivates the choices of kj ' in Algorithm 1.

The rest of this paper is structured as follows. Section 2 introduces the algorithm
for the distributed adaptive NN classi�er and Section 3 investigates its asymptotic
properties. Section 4.1 carries out a set of simulation studies, and a real-world dataset
is analyzed in Section 4.2. All technical proofs are provided in the Appendix.

2 Distributed Adaptive Nearest Neighbor Classi�er

Suppose that the whole dataset, denoted as Z = (Y1 X1) (YN XN ) , are dis-
tributed across m machines. Each machine hosts a sub-sample of size nj , denoted as

Zj = (Y j
1 Xj

1) (Y j
nj

Xj
nj
) for j = 1 ��� m. For the jth sub-sample, given an

integer kj 1 nj , the jth local NN estimator of �(x) = P(Y = 1 X = x) for a
new query point x [0 1]d is de�ned as

�kj j(x) =
1

kj

kj

i=1

Y
j

(i)(x) j = 1 m
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where Y
j

(i)(x) is the label associated with Xj

(i)(x), the i-th nearest neighbors of x

among Xj
1 Xj

nj
. The proposed distributed NN classi�er is subsequently de�ned as

fk1:km
(x) = I(�k1:km

(x) � 1 2) with �k1:km
(x) =

1
m

j=1 kj

m

j=1

kj�kj j(x) (1)

where the integer sequence k1 km need to be chosen by some data-driven method.
The performance of the classi�er (1) depends critically on the choice of k1 km.

The following Algorithm 1 is designed in the same spirit of Cai and Wei (2019) and
Balsubramani et al. (2019).

Algorithm 1: Distributed Adaptive NN Classi�er

Input: new query x, training samples Zj , j = 1 m;
Initialization: set k1 = 0;

while k1 � n1N
�

d
2+d log(N) do

update k1 := k1 + 1;
update kj := k1nj n1 and calculate �kj j(x) for j = 1 m;

calculate �k1:km
(x) and rk1 = 2

m

j=1 kj �k1:km
(x) � 1 2 ;

if rk1 > (d+ 2) log(N) or k1 � n1N
�

d
2+d log(N) then

set k1 = k1 and kj = k1nj n1 for j = 2 m;
calculate �

k1:km
(x);

exit loop;
end if

end while
Output: classi�er f

k1:km
(x) = I(�

k1 :km
(x) � 1 2).

Algorithm 1 assumes that each kj is proportional to nj for j = 1 ��� m, and search

for the optimal k1 within the set 1 n1N
�

d
2+d log(N) such that �k1:km

(x)� 1 2

based on the classi�er (1) is strictly greater than (d+ 2) log(N) (2 m

j=1 kj). If no k1

meets this criterion, we simply set k1 = n1N
�

d
2+d log(N) . We comment that a naive

extension of Cai and Wei (2019) and Balsubramani et al. (2019) to the distributed
data setting would require searching for k1 from 1 to n1. In this sense, the upper bound

n1N
�

d
2+d log(N) in Algorithm 1 serves an early stopping rule for the search of k1.

Our simulation studies demonstrate that such an early stopping rule yields superior
�nite sample performance compared to the same algorithm but searches k1 from 1 to
n1.

An intuitive justi�cation of Algorithm 1 is as follows. Denote X = X1 ��� XN .
Under suitable conditions, one can show that �k1:km

(x)� E(�k1:km
(x) j ) is bounded

by the sequence (d+ 2) log(N) (2
m

j=1 kj) uniformly for all x and k1 km with

a high probability. The stopping rule designed in Algorithm 1 thus ensures that
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�
k1:km

(x) � 1 2 and E(�
k1:km

(x) j ) � 1 2 have the same sign with a high probability.
Under suitable conditions, E(�

k1:km
(x) j ) is a consistent estimator of �(x), which fur-

ther implies that the distributed adaptive NN classi�er f
k1:km

(x) = I(�
k1 :km

(x) � 1 2)
is asymptotically equivalent to the Bayesian classi�er f �(x) = I(�(x) � 1 2).

3 Asymptotic Properties

3.1 Technical Assumptions

To investigate the asymptotic properties of the proposed adaptive distributed NN
classi�er obtained from Algorithm 1, several technical assumptions are needed.
Assumption A1. (Strong Density) For some constants c� r� > 0, it holds that (a)
�[
 B(x r)] � c� �[B(x r)] for all 0 < r < r� and x 
 ; and (b) c� < dPX

d�
(x) < c� 1

�

for all x 
 .
Assumption A2. (Smoothness) There exist constants � (0 1] and C� > 0 such
that �(x1) � �(x2) � C� x1 � x2

� holds for all x1 x2 
 .
Assumption A3. (Marginal Assumption) For some constants � [0 d � ] and C� >

0 and all t (0 1 2], the inequality P( �(X) � 1 2 < t) � C� t
� holds.

Assumption A1 is the so-called strong density assumption (Audibert and Tsybakov,
2007) that imposes two conditions on the distribution of the feature vector X. In
particular, A1(a) requires that the support 
 does not contain any isolate points and
A1(b) assumes the probability density ofX is bounded above and below in its support,
as commonly required in the literature (e.g., Huang, 1998, 2003). Assumption A2 is the
uniform Lipschitz condition imposed on the conditional probability �(x), and similar
conditions were imposed in Cai and Wei (2019), Audibert and Tsybakov (2007), Gadat
et al. (2016). Assumption A3 is a popular condition in classi�cation problems (e.g., see
Audibert and Tsybakov, 2007, Gadat et al., 2016), which characterizes the strength
of the signal �(X) � 1 2 . With a larger � , �(X) is near the decision boundary 1 2
with a lower probability, leading to an easier classi�cation problem.

3.2 Theoretical Results in General Setting

In this section, we �rst present some theoretical results on the distributed adaptive
NN classi�er in a general setting where sub-sample sizes (i.e., nj ') are allow to be
di�erent. The following theorem gives an upper bound of the regret of the proposed
classi�er in Algorithm 1.
Theorem 1. Under Assumptions A1-A3 and min

1� j� m
nj N1� � for some � < 2�

2�+d
.

It follows that

R(f
k1:km

) [N log(N)]
�

� (1+� )
2� +d

The proof is given in the Appendix.
Theorem 1 establishes the convergence rate of the proposed classi�er when sub-

sample sizes are not too small, i.e., minj nj N1� � for some � < 2� (2� + d). We
remark that this convergence rate coincides with the minimax lower bound given in
Audibert and Tsybakov (2007) up to a logarithm factor. The additional log(N) term is
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the price to pay for the adaptive choice of tuning parameters k1 ��� km, as commonly
seen in the literature (e.g., see Lepskii, 1991, Lepski and Spokoiny, 1997).

To shed more lights on this issue, we consider a distributed NN classi�er with a

non-stochastic choice of tuning parameter satisfying kj � njN
�

d
2� +d , j = 1 ��� m,

which is essentially an extension of Qiao et al. (2019) which only considered the case
n1 = ��� = nm. The following theorem gives an upper bound of the regret of the
resulting distributed NN classi�er given in (1).
Theorem 2. (Non-adaptive kj s) Suppose that Assumptions A1-A3 hold and

min
1� j� m

nj N1� � for some � < 2�
2�+d

. Then if kj � njN
�

d
2� +d for j = 1 m, it

follows that

R(fk1:km
) N �

� (1+� )
2� +d

The proof is given in the Appendix.
Theorem 2 asserts that if kj ' are not chosen by a data-driven method, the min-

imax lower bound of the regret (Audibert and Tsybakov, 2007) is achieved by the

distributed NN classi�er provided that kj = Cj(njN
�

d
2� +d ) for some constant Cj > 0,

j = 1 ��� m. Although Theorem 2 is of limited practical interest since it is di� cult to
determine the values of Cj ' and � for a given data set, it indeed motivates us to pro-

pose the early stopping threshold n1N
�

d
2� +d log(N) when searching for the optimal

k1 in Algorithm 1, which resulted in an extra log(N) term in its regret convergence
rate as suggested by Theorem 1.

Even though the convergence rates in Theorems 1 and 2 look similar, their proofs
rely on completely di�erent techniques. Since k1 km are deterministic in Theorem
2, the regret of fk1:km

can be established through calculating its bias and variance.

However, when k1 km are data-driven, the regret of f
k1:km

requires more sophisti-
cated analysis. One major di� culty, for instance, is quantifying the model complexity,
which relies on the following lemma.
Lemma 1. Given observations X1

1 X1
n1

Xm
1 Xm

nm
, for kj 1 nj

with j = 1 m, we de�ne sets

Akj j(x) := Xj

(1)(x) Xj

(kj)
(x)

B := B(k1 km) = Ak1 1(x) � � Akm m(x) : x [0 1]d

Then the cardinality of B is bounded by dNd.
The proof is given in the Appendix.
Lemma 1 counts the number of sets of the form Ak1 1(x) � � Akm m(x) when

x is running over [0 1]d. It shows that this number is upper bounded by dNd. This is
a generalization of Lemma 3 in Jiang (2019) from m = 1 to m > 1. The selection of
k1 km can be viewed as a model selection problem with n1 � � nm candidate
models, and the complexity of each model is measured by �(k1 km) . The proof
of Theorem 1 requires controlling the complexity of all the candidate models. If we do
not specify any constraints on the kj ' and allow for all the combinations of k1 km,
then the complexity of all the candidates models can be evaluated by the following:

nm

km=1
n1

k1=1 B(k1 km) � dNd
� n1 � � nm
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which is relatively large. As a matter of fact, if we impose a restriction that kj =
k1nj n1 for all j = 1 m, then we only need to conduct model selection among
n1 models, and the corresponding complexity can be bounded by

n1

k1=1 k2= k1n2 =1 km= k1nm =1
B(k1 km) � dNd

� n1

This reduced complexity plays an important role in deriving the near optimal rate in
Theorem 1, and it also motivates the choice kj = k1nj n1 in Algorithm 1.

3.3 Theoretical Results with n1 = ���= nm

Theorem 1 is limited to the case when min
1� j� m

nj N1� � for some � < 2� (2� + d) ,

where it asserts that the optimal convergence rate (up to a factor of log(N)) of the
regret can be achieved by the proposed classi�er. However, theoretical properties of
the proposed classi�er are unclear when min

1� j� m
nj N1� � only holds for some � �

2� (2� + d). While it is di� cult to study in general, we manage to provide a partial
answer by considering the special case n1 = ���= nm, which has been widely studied
under the so-called divide-and-conquer framework (Qiao et al., 2019, Duan et al.,
2020, Zhang et al., 2015, Shang and Cheng, 2017, Xu et al., 2018, Shang et al., 2019,
Xu et al., 2019).
Theorem 3. Suppose that Assumptions A1-A3 hold and that n1 = ��� =
nm = n � N1� � for some � [0 1) , then it holds that (a) if � < 2�

2�+d
,

then R(f
k1:km

) [N log(N)]
�

� (1+� )
2� +d ; (b) if � �

2�
2�+d

, then R(f
k1:km

)

[log(N)]� [N log(N)]�
(1� �)� (1+� )

d for some � > 0.
The proof is given in the Appendix.
Theorem 3 characterizes the asymptotic behavior of the proposed classi�er in two

scenarios. When � < 2� (2� + d), part (a) is a special case of Theorem 1, where the
regret convergence rate is free of � and is nearly optimal up to a logarithm factor
(Audibert and Tsybakov, 2007). However, when � � 2� (2� + d), each sub-sample
has a smaller sample size, and the resulting convergence rate of the regret becomes

[log(N)]� [N log(N)]
�

(1� �)� (1+� )
d for some constant � > 0, which slows down when �

increases. In contrast, the convergence rate in part (a) remains the same as � changes.
It is unclear whether the convergence rate given in part (b) is optimal since

existing literature on distributed NN classi�er has mainly focused on the case with
� < 2� (2� + d) (e.g. Qiao et al., 2019). However, we can show that the convergence
rate in part (b) is closely related to that of the distributed 1-NN classi�er, as given in
the following theorem.
Theorem 4. Suppose that Assumptions A1-A3 hold and that n1 = ���= nm = n �

N1� � for some � [0 1) . Then if � � 2� (2� + d) and �xing k1 = ���= km = 1, it

holds that R(fk1:km
) [log(N)]� [N log(N)]

�
(1� �)� (1+� )

d for some � > 0
The proof is given in the Appendix.
Theorem 4 shows that the distributed 1-NN classi�er can achieve the same con-

vergence rate as the proposed adaptive NN classi�er when � � 2� (2� + d). This
makes intuitive sense because when � is large, the aggregated classi�er (1) averages
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over a large number of NN classi�ers built on sub-samples (i.e., m = N n � N �) and
the overall variability of the resulting aggregated NN classi�er can be signi�cantly
smaller than its prediction bias , which is of the same magnitude of individual NN
classi�ers from sub-samples. Consequently, to improve the prediction accuracy of the
aggregated NN classi�er, it is desirable to use the 1-NN classi�er for each sub-sample,
which has the smallest prediction bias among NN classi�ers for a given sample size.

The similarity between Theorem 3 part (b) and Theorem 4 suggests that when
� � 2� (2� + d), the proposed classi�er behave similarly to the distributed 1-NN
classi�er. This conjecture is supported by our simulation studies in Section 4.1 not
only in the case where n1 = ���= nm but also in the case where sub-sample sizes
are not equal. However, the distributed 1-NN classi�er performs much worse than the
proposed classi�er when � is small. One advantage of the proposed classi�er is that it
can automatically adjust to both scenarios without the knowledge of the true value of
� .

4 Numerical Results

4.1 Simulation Studies

In this section, we evaluate the �nite sample performance of the proposed algorithm.
The following marginal distributions of X will be considered.
(a) X � g1(x): X = (X1 X2 X3) [0 1]3 with X1 = R cos(�1) cos(�2), X1 =

R cos(�1) sin(�2), and X1 = R sin(�1). Here �1 �2 � Unif(0 2�), and R �

Unif(0 1) are three independent uniform random variables.
(b) X � g2(x): X = (X1 X2 X3) [0 1]3 is generated by a similar process as (a)

except R � 0 5Beta(5 1) + 0 5Beta(1 6) follows a Beta mixture distribution.
Given X = x, the conditional probability function is �(x) = h( x ), where

h(z) =

0 8 if 0 � z � 0 3

� 6z + 2 6 if 0 3 < z � 0 4

0 2 if 0 4 < z � 0 7

2 6z � 1 62 if 0 7 < z � 0 8

0 46 if 0 8 < z � 1

The total sample size is set as N = 60000, and the data are randomly divided into
m = N � , �= 0 0 1 0 8, sub-samples by the following two approaches:
I. Equally Splitting: The N observations are split into m datasets with (roughly)
equal sample size.
II. Unequal Splitting: The N observations are split into m datasets, and the sample
sizes (n1 nm) follow a multinomial distribution with probabilities (m s 1 s)
for s = (m+ 1)m 2.

For comparison purpose, we consider the following classi�ers:
DAES: The proposed distributed adaptive NN classi�er in Algorithm 1 with an

early stopping bound n1N
�

d
2+d ;

DA: Modi�ed Algorithm 1, where the early stopping bound is replaced by n1;
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DK The distributed NN classi�er (Qiao et al., 2019) with kj = njN
�

d
2+d , j =

1 m.
D1: The distributed 1-NN classi�er by setting k1 = ���= km = 1 in (1).

For DK in the unequal splitting case, we use kj = njN
�

d
2+d for j = 1 m, as

suggested by our Theorem 2. Such a choice reduces to k = nN �
d

2+d when n1 = ���=
nm = n, which is the choice adopted by Qiao et al. (2019). For each simulation run,
the above four classi�ers are trained using m sub-samples to predict the label of a new
feature x randomly generated from the marginal distribution of X. To evaluate the
classi�cation accuracy, we treat the Bayesian classi�er f �(x) = I(�(x) � 1 2) as the
golden rule and calculate the percentage of times a classi�er gives the same prediction
as the Bayesian classi�er. The average computation times (measured in second and
taking log) of DA and DAES with di�erent � are also recorded. To investigate the
role of the early stopping rule, we also compare the numbers of neighbor (k1) chosen
by DA and DAES. Summary statistics based on 200 simulation runs are reported in
Figures 1-6.

First, Figures 1 and 2 suggest that the proposed DAES classi�er has a better overall
performance than DK. In particular, their classi�cation accuracies are practically the
same for � � 0 5, while the proposed DAES performs signi�cantly better than DK
when � � 0 3 and X � g2(x), which demonstrates the bene�ts of searching for an
optimal k using a data-driven Algorithm 1.

A second observation from Figures 1 and 2 is that the DAES classi�er appears to
be consistently inferior to the DA classi�er. This highlights the importance of imposing

an early stopping bound n1N
�

d
2+d when searching for the optimal k1. This can be

explained by the fact that searching for k1 from 1 to n1 may introduce too much
uncertainty in the choice of k1 (as well as other kj '), which may, in turn, results in
greater variability for the �nal aggregated NN classi�er. This explanation also can be
supported by Figures 3-6. For example, Figure 3 shows that the k1 chosen by DA is
generally larger than that chosen by DAES. When �= 0, DA could choose a k1 larger
than 10000 given N = 60000, which may increase a lot of uncertainty for classi�cation.

Third, Figures Figures 1 and 2 also indicate that the proposed DAES classi�er
performs similarly to the D1 classi�er when � is large, supporting our theoretical
�ndings in Theorems 3-4. However, the D1 classi�er performs much worse than the
DAES classi�er when � is small, demonstrating the advantage of the proposed DAES
classi�er due to its adaptivity in choosing an optimal k1 (as well as other kj ').

Finally, Figures 1 and 2 show that for each di�erent marginal distributions of X,
the DAES classi�er outperforms the DA classi�er in terms of computation time, both
of which are U-shaped functions with respect to � and attain the minimal when �

is around 0 5. For small �, a large proportion of the computation time is spent on
choosing k1 km. However, when � is large, the main computational cost is to
aggregate the sub-samples, resulting in increased run time as � continues to increase.
All numerical studies are conducted via High Performance Computing Center at Texas
Tech University.
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ε ε

ε ε

Fig. 1 Classification accuracy and computation time with X ∼ g1(x).

4.2 A Real Data Analysis

In this section, we apply the four classifiers in Section 4.1 to the adult income dataset
from UCI Machine Learning Repository (Dua and Graff, 2017). The goal is predict
whether a person makes over 50K a year. After removing missing values, we retain
32561 observations and use age, final weight, education, capital gain, capital loss and
weekly working hours as the feature vector. The whole data is divided into a training
dataset with 26049 observations (about 80%) and a testing dataset with sample size
6512 (about 20%). We use the same settings in Section 4.1 to evaluate the predic-
tion error of the testing dataset. The results are summarized in Figure 7. Overall, our
proposed algorithm DAES has the best performance under various choices of ε. More-
over, compared with DA, our estimator DAES significantly speeds up the computation
when ε ≤ 0.5.

5 Conclusion

In this work, we study the binary classification problem in the big data setting, and
propose a distributed adaptive NN classifier with the tuning parameter being selected
by a data-driven criterion. Under mild conditions, we prove the proposed classifier

11
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Fig. 2 Classification accuracy and computation time with X ∼ g2(x).

can achieve the minimax optimal rate of excess risk. Numerical results demonstrate

its effectiveness and efficiency.
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Fig. 3 Selected k1 with X ∼ g1(x) and equally split sub-samples.
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Fig. 4 Selected k1 with X ∼ g1(x) and unequally split sub-samples.
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Fig. 5 Selected k1 with X ∼ g2(x) and equally split sub-samples.
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Fig. 6 Selected k1 with X ∼ g2(x) and unequally split sub-samples.
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Fig. 7 Classification accuracy and computation time for adult income dataset.
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Appendix A Mathematical Proofs

In this Appendix, we provide the mathematical proofs of the theorems and relevant
lemmas.

We denote X = X1 X2 XN as the collection of all covariates. For kj =
1 nj with j = 1 m and 0 � a < 1, we de�ne events

Ej(kj a) =

�

X
j

(kj)
(x) � x � CD

�
kj

n1� a
j

� 1
d

for all x 


�

and

EP (k1 : km a) = m
j=1Ej(kj a)

Sometime we may write EP (k1 : km a) as EP if there is no confusion in the context.
By Lemma 2 below, it follows that

P(EP (k1 : km a)) � 1 � CD

m

j=1

n1� a
j

kj
exp(� na

jkj 6) (A1)

A1 Preliminary Lemmas

Lemma 2. There exist CD > 0 such that for all a [0 1), kj 1 nj and

j 1 m , the following holds with probability at least 1 � CD
n
1� a
j

kj
e� na

j kj 6:

X
j

(kj)
(x) � x � CD

�
kj

n1� a
j

� 1
d

for all x 


Moreover, with probability at least 1 � CD
nj

kj
e� kj 6, it also holds that

X
j

(kj)
(x) � x �

1

CD

�
kj

nj

� 1
d

for all x 


Proof. The proofs of the upper bound and lower bound are almost the same. In the
following, we prove the upper bound. For simplicity, we will omit the index j.

Let B(x r) be the ball centered at x with radius r. By Assumption A1, therefore
we have

P(X B(x r)) =
B(x r) 


dPX(x)

d�
(x)dx � c� �(B(x r) 
 )
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� c2� �(B(x r)) = c2� �(B(0 1))rd

For simplicity, we denote c = c2� �(B(0 1)), so P(X B(x r)) � crd. Let r =

cr(k n1� a)
1
d for some 0 � a � 1 and cr = (2 c)

1
d . Moreover, we de�ne S(x) =

n

i=1 I(X
j
i B(x r)) and W � Binomial(n crd). Hence, Bernstein ' inequality

implies that

P(S(x) < k) � P(W < k) = P(W � E(W ) � k � E(W ))

= P(W � E(W ) < k � cnrd)

= P(W � E(W ) < k � ccdrn
ak)

= P

�

W � E(W ) < k � 2nak

�

� P

�

W � E(W ) < � nak

�

� exp

�

�
3nak

14

�

� exp(� nak 6)

where we use the fact that a � 0. Let B � 
 be a �nite set such that 
 �
x B

B(x r),
and we can verify � � Cr� d for some C > 0. As a consequence, we have

P( x B S(x) < k) � Cr� d exp(� nak 6) � Cc� d
r

n1� a

k
exp(� nak 6)

For any x 
 , there is a x B such that x � x � 2r. Under the event E2 = x
B S(x) � k , there are at least k covariates among Xj

1 Xj
n in the ball B(x r),

and thus there are at least k covariates among Xj
1 Xj

n in the ball B(x 2r). Hence,
we have

P( x 
 Xj

(k)(x) � x � 2r) � P(E2) � 1 � Cc� d
r

n1� a

k
exp(� nak 6)

Lemma 3. Fixing k1 = 1 n1 and setting kj = k1nj n1 with j = 1 m, there
exist cb Cb > 0 free of kj such that

E(�kj j(x) j ) � 1
2 � cb�(x) if f �(x) = 1

E(�kj j(x) j ) � 1
2 � � cb�(x) if f �(x) = 0

holds for all x with �(x) � Cb Xj

(kj)
(x) � x � . Moreover, if k1nj � n1 for all j =

1 m, then the following statements hold on event EP (k1 : km 0):

E(�k1:km
(x) j ) � 1

2 � cb�(x) if f �(x) = 1

E(�k1:km
(x) j ) � 1

2 � � cb�(x) if f �(x) = 0;
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for all x with �(x) � Cb(k1 n1)
�

d . In addition, if k1 = = km = k and n1 = =
nm = n, then for any a [0 1], the following statements hold on event EP (k1 : km a):

E(�k1:km
(x) j ) � 1

2 � cb�(x) if f �(x) = 1

E(�k1:km
(x) j ) � 1

2 � � cb�(x) if f �(x) = 0;

for all x with �(x) � Cb(k n1� a)
�

d .

Proof. Since E(Y j

(i)(x) j ) = �(Xj

(i)(x)), by Assumption A2, we show that

E(�kj j(x) j ) � �(x) =

�
�
�
�
1

kj

kj

i=1

[E(Y j

(i)(x) j ) � �(x)]

�
�
�
�

=

�
�
�
�
1

kj

kj

i=1

[�(Xj

(i)(x)) � �(x)]

�
�
�
�

�
C�

kj

kj

i=1

(Xj

(i)(x) � x �

� C� (Xj

(kj)
(x) � x �

Therefore, choosing Cb � 2C� and if �(x) � Cb Xj

(kj)
(x)� x � = 2C� Xj

(kj)
(x)� x �

and f �(x) = 1, then we have

E(�kj j(x) j ) �
1

2
� �(x) �

1

2
� E(�kj j(x) j ) � �(x)

� �(x) � C� (Xj

(kj)
(x) � x �

�
1

2
�(x)

So the statement will hold for cb � 1 2 and Cb � 2C� . Similarly, we can prove

the case when �(x) � Cb (Xj

(kj)
(x) � x � and f �(x) = 0. Consequently, on event

EP (k1 : km 0), we have

E(�k1:km
(x) j ) � �(x) =

�
�
�
�

1
m

j=1 kj

m

j=1

kj

i=1

[E(Y j

(i)(x) j ) � �(x)]

�
�
�
�

=

�
�
�
�

1
m

j=1 kj

m

j=1

kj

i=1

[�(Xj

(i)(x)) � �(x)]

�
�
�
�

�
C�
m

j=1 kj

m

j=1

kj

i=1

(Xj

(i)(x) � x �

�
C�
m

j=1 kj

m

j=1

kj (Xj

(kj)
(x) � x �
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�
C�C

�
D

m

j=1 kj

m

j=1

kj

�
kj

nj

� �

d

�
C�C

�
D

m

j=1 kj

m

j=1

kj

�
2k1
n1

� �

d

� 2
�

d C�C
�
D

�
k1

n1

� �

d

where the condition kj = k1nj n1 � 2k1nj n1 is used. For Cb � 21+
�

d C�C
�
D and x

such that �(x) � Cb(k1 n1)
�

d , f �(x) = 1, it holds that

E(�k1:km
(x) j ) �

1

2
� �(x) �

1

2
� E(�k1:km

(x) j ) � �(x)

� �(x) � 2
�
d C�C

�
D

�
k1

n1

� �
d

� Cb

�
k1

n1

� �

d

�
Cb

2

�
k1

n1

� �

d

�
Cb

2

�
k1

n1

� �

d

Finally, choosing cb � Cb 2, we complete the proof of the second statement. Similarly,

we can prove the case when �(x) � Cb(k1 n1)
�

d and f �(x) = 0.
The proof of the third statement is similar to the second one. Hence, we omit it.

Lemma 4. Let cb and Cb be the constants in Lemma 3. Fixing k1 = 1 n1 and
setting kj = k1nj n1 with j = 1 m, if k1nj � n1 for all j = 1 m, then the
following holds on event EP (k1 : km 0):

P(fk1:km
(x) = f �(x) j ) � exp

�

� 2c2b

m

j=1

kj�
2(x)

�

for all x with �(x) � Cb(k1 n1)
�

d . In addition, if k1 = = km = k and n1 = =
nm = n, then for any a [0 1], the following statements hold on event EP (k1 : km a):

P(fk1:km
(x) = f �(x) j ) � exp

�

� 2c2bmk�2(x)

�

for all x with �(x) � Cb(k n1� a)
�

d .

Proof. Suppose f �(x) = 1 and �(x) � Cb(k1 n1)
�

d . By Lemma 3, under event EP (k1 :
km 0), we have

E

�

�k1:km
(x) �

1

2

�
�
�
�X

�

� cb�(x) (A1)
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Furthermore, we observe the that

�k1:km
(x) =

1
m

j=1 kj

m

j=1

kj

i=1

Y
j

(i)(x)

and Y 1
(1)(x) Y 1

(k1)
(x) Y m

(1)(x) Y m
(km)(x) are independent conditional on X .

Hence, it follows form Hoe�ding ' inequality and (A1) that

P(fk1:km
(x) = f �(x) j )

= P(fk1:km
(x) = 0 j )

= P

�

�k1:km
(x) �

1

2
< 0

�
�
�
�X

�

= P

�

�k1:km
(x) � E(�k1:km

(x) j ) < � E

�

�k1:km
(x) �

1

2

�
�
�
�X

� �
�
�
�X

�

� P

�

�k1:km
(x) � E(�k1:km

(x) j ) < � cb�(x)

�
�
�
�X

�

� exp

�

� 2c2b

m

j=1

kj�
2(x)

�

Using similar argument, we can prove the case when �(x) � Cb(k1 n1)
�
d and f �(x) =

0.

A2 Proof of Lemma 1

Let H be the partition of [0 1]d induced by m
�
n
2

�
hyperplanes de�ned as the perpen-

dicular bisectors of each pair of points (Xj
s Xj

p) for 1 � s < p � n and j = 1 m

(see Figure 3 for the case with m = 2 k1 = 3 k2 = 2). If x and x are in the same
partition, then Akj j(x) = Akj j(x ) for all j = 1 m (see Figures 1 and 2). As a

consequence, the cardinality � � � . Now consider H to be the partition of [0 1]d

induced by
�
N
2

�
hyperplanes de�ned as the perpendicular bisectors of each pair of

points (X X) with X = X. Then H is a re�ned partition of H, thus � � H . Now

by Lemma 3 in Jiang (2019), we have H � dNd.
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Fig. 1 The partition deter-
mining the possible sets of
A3,1(x) for three points.

Fig. 2 The partition deter-
mining the possible sets of
A2,2(x) for two points.

Fig. 3 The partition deter-
mining the possible sets of
A3,1(x)× A2,2(x).

A3 Proof of Theorem 1

In this Section, let us define set

Γm = {(k1, . . . , km) : kj = 	k1nj/n1
, k1 = 1, . . . , n1, j = 1, . . . ,m}.

and quantity

δ = Cδ[N/ log(N)]−
β

2β+d

for some large enough constant Cδ. For j = 1, . . . ,m, we denote the following random
quantities:

koptj (x) = max

{
k : ‖Xj

(k)(x) − x‖ ≤ (C−1
b δ)

1
β

}
.

For simplicity, we may write koptj as koptj (x) during the proof, if there is no confusion in

the context. Define event EA that (A3) holds for all x ∈ [0, 1]d and all (k1, . . . , km) ∈
Γm. Then by Lemma 5, we have

P(EA) ≥ 1− dN−1 (A2)

Lemma 5. For any ε > 0, with probability at least 1− τ , the following holds:

∣∣η̂k1:km
(x)− E(η̂k1:km

(x)|X )
∣∣ ≤

√
(d+ 1) log(N)− log(τ/d)

2
∑m

j=1 kj
,

for all x ∈ [0, 1]d and all (k1, . . . , km) ∈ Γm. As a consequence, choosing τ = dN−1,

the following holds with probability at least 1− dN−1:

∣∣η̂k1:km
(x) − E(η̂k1:km

(x)|X )
∣∣ ≤

√
(d+ 2) log(N)

2
∑m

j=1 km
, (A3)

for all x ∈ [0, 1]d and all (k1, . . . , km) ∈ Γm.
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Proof. Notice that �k1:km
(x) = 1

m
j=1 kj

m

j=1
k

i=1 Y
j

(i)(x), and Y 1
(1)(x) Y 1

(k1)
(x)

Y m
(1)(x) Y m

(km)(x) are independent conditional on X . Therefore, Hoe�ding '
inequality implies that

P

�
�
��k1:km

(x) � E(�k1:km
(x) j )

�
�> t

�
�
�
�X

�

� exp(� 2t2
m

j=1

k)

Conditioning on X , for �xed (k1 km) �m, when x is running over [0 1]d, then
by Lemma 1, there are at most dNd di�erent choices of Y 1

(1)(x) Y 1
(k1)

(x)

Y m
(1)(x) Y m

(km)(x). Therefore, it follows that

P

�

x [0 1]d such that
�
��k1:km

(x) � E(�k1:km
(x) j )

�
�> t

�
�
�
�X

�

� dNd exp

�

� 2t2
m

j=1

k

�

which further implies that

P

�

(k1 km) �m x [0 1]d such that
�
��k1:km

(x) � E(�k1:km
(x) j )

�
�> t

�
�
�
�X

�

� dn1N
d exp

�

� 2t2
m

j=1

kj

�

� d exp

�

� 2t2
m

j=1

kj + (d+ 1) log(N)

�

Plug in t = (d+1) log(N)� log(� �)
2 m

j=1 kj
into above inequality and take expectation, we

complete the proof.

Lemma 6. If �(x) � � and k � k
opt

j (x), then it holds that

E(�k j(x) j ) � 1
2 � cb�(x) if f �(x) = 1

E(�k j(x) j ) � 1
2 � � cb�(x) if f �(x) = 0

As a consequence, if �(x) � � and kj � k
opt

j (x) for all j = 1 m, then the following
holds:

E(�k1:km
(x) j ) � 1

2 � cb�(x) if f �(x) = 1

E(�k1:km
(x) j ) � 1

2 � � cb�(x) if f �(x) = 0

Proof. For k � kopt, we have

X
j

(k)(x) � x � X
j

(kopt
j

)
(x) � x � (C� 1

b �)
1
�
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which further implies that �(x) � � � Cb Xj

(k)(x) � x � . Applying Lemma 3, we

complete the proof of �rst statement. The second statement follows from the de�nition
that �k1:km

(x) =
m

j=1 kj�k j(x) (
m

j=1 kj).

Lemma 7. Under event EA, if �(x) � � and kj(x) � k
opt

j (x) for all j = 1 m,

then f
k:km

(x) = f �(x).

Proof. By de�nition of k1 km, we have

�
k1:km

(x) � 1 2 >
(d+ 2) log(N)

2
m

j=1 kj

On event EA, it follows that

�
k1:km

(x) � E(�
k1:km

(x) j ) �
(d+ 2) log(N)

2
m

j=1 kj

Combining above, we conclude that

�
k1:km

(x) � 1 2 >

�
�
�
�

�

�
k1:km

(x) � 1 2

�

�

�

E(�
k1:km

(x) j ) � 1 2

� �
�
�
�

which further implies that

sign
�
�
k1:km

(x) � 1 2
�
= sign

�
E(�

k1:km
(x) j ) � 1 2

�

for all x with �(x) � � on event EA. Finally, by Lemma 6 and above equation, on

event EA, if �(x) � � and kj(x) � k
opt
j (x) for all j = 1 m, then

sign
�
�
k1:km

(x) � 1 2
�
=

1 if f �(x) = 1

� 1 if f �(x) = 0

which completes the proof by noticing that f
k1:km

= I(�
k1:km

(x) � 1 2).

We are ready to prove Theorem 1. Let us de�ne the deterministic integers

k�j =
1

2
njC

� d
D C

�
d
�

b �
d
� k = njC

d
DC

�
d
�

b �
d
�

and events

E� =

�

Xj

(k�
j
)(x) � x � CD

�
k�j

nj

� 1
d

for all x 
 and j = 1 m

�
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and

E =

�

Xj

(k
j
)
(x) � x �

1

CD

�
kj

nj

� 1
d

for all x 
 and j = 1 m

�

Since 1 � � > d
2�+d

, so nj�
d
� = C

d
�

� njN
�

d
2� +d [log(N)]

d
2� +d �

C
d
�

� N1� �� d
2� +d [log(N)]

d
2� +d is diverging. Without loss of generality, we may assume

k�j � 1 and kj � 1. On event E� , it follows from the de�nition of koptj that

Xj

(k�
j
)(x) � x � CD

�
k�j

nj

� 1
d

� CD

�
njC

� d
D C

�
d
�

b �
d
�

nj

� 1
d

� (C� 1
b �)

1
� < X

j

(kopt
j

+1)
(x) � x

which further implies that

k
opt
j (x) � k�j �

1

2
njC

� d
D C

�
d
�

b �
d
� for all x 
 and j = 1 m (A4)

Moreover, on event E , it also holds that

Xj

(k
j
)
� x �

1

CD

�
kj

nj

� 1
d

�
1

CD

�
njC

d
DC

�
d
�

b �
d
�

nj

� 1
d

= (C� 1
b �)

1
� � X

j

(kopt
j

)
� x

where the last equation follows from the de�nition of koptj . Above inequality implies
that

k
opt
j (x) � kj � njC

d
DC

�
d
�

b �
d
� (A5)

for all x 
 and j = 1 m Combining (A4) and (A5), we conclude that on event
E� E , the following holds:

1

2
njC

� d
D C

�
d
�

b �
d
� � k

opt
j (x) � njC

d
DC

�
d
�

b �
d
� (A6)

for all x 
 and j = 1 m If we de�ne kmin
1 =�

min k
opt
1 k

opt
2 n1 n2 koptm n1 nm

�
and kmin

j = kmin
1 nj n1 , then we can show

that

kmin
j =

k
opt
1 nj

n1
�

k
opt
j n1nj

njn1
= k

opt
j = k

opt
j (A7)

26



Hence, by (A6), it holds on event E� E that

1

4
njC

� d
D C

�
d
�

b �
d
� � kmin

j (x) � 2njC
d
DC

�
d
�

b �
d
� (A8)

for all x 
 and j = 1 m By de�nition, it follows that kmin
j (x) � k

opt
j . So under

event E�(a) E , for all x with �(x) � � and f �(x) = 1, Lemma 6 and (A8) together
imply that

m

j=1

kmin
j

�

E(�kmin
1 :kmin

1
(x) j ) �

1

2

�

�
1

4

m

j=1

njC
� d
D C

�
d
�

b �
d
� cb�(x)

�
1

4
c2bC

� d
D C

�
d
�

b N�
d
�
+2

=
1

4
c2bC

� d
D C

�
d
�

b C
2� +d

�

� N

�

N log(N)

� � 1

� 3
(d+ 2) log(N)

2

where the last inequality follows if we choose C� large. By above inequality, on event
EA E� E , for all x with �(x) � � and f �(x) = 1, it follows that

m

j=1

kmin
j

�

E(�kmin
1 :kmin

1
(x) j ) �

1

2

�

�

m

j=1

kmin
j

�

E(�kmin
1 :kmin

m
(x) j ) �

1

2

�

�

m

j=1

kmin
j

�
�
�
��kmin

1 :kmin
m

(x) � E(�kmin
1 :kmin

m
(x) j )

�
�
�
�

� 3
(d+ 2) log(N)

2
�

(d+ 2) log(N)

2

>
(d+ 2) log(N)

2
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Similarly, on event EA E� E , for all x with �(x) � � and f �(x) = 0, we can show
that

m

j=1

kmin
j

�

E(�kmin
1 :kmin

1
(x) j ) �

1

2

�

< �
(d+ 2) log(N)

2

Therefore, we prove that on event EA E� E , the following holds:

m

j=1

kmin
j

�
�
�
��kmin

1 :kmin
m

(x) �
1

2

�
�
�
�>

(d+ 2) log(N)

2
(A9)

for all x with �(x) � � Now by (A8), on event EA E� E , we have

kmin
1 (x) � n1C

d
DC

�
d
�

b �
d
�

= Cd
DC

�
d
�

b C
d
�

� n1

�

N log(N)

� �
d

2� +d

= Cd
DC

�
d
�

b C
d
�

� n1N
�

d
2� +d [log(N)]

d
2� +d

� n1N
�

d
2+d log(N) (A10)

for all x with �(x) � � and su� ciently large N . In the following, we will calculate the
probability of EA E� E . Since �� � d, it follows that

�(1 + � )

2� + d
=

� + ��

2� + d
�

� + d

2� + d
< 1

Using the inequality above and (A2), it follows that

P(EA) � 1 � dN � 1
� 1 � dC1+�

� N �
� (1+� )
2� +d [log(N)]

� (1+� )
2� +d = 1 � d�1+�

for su� ciently large N . Moreover, by Lemma 2, (A4) and (A5), it follows that

P(E� ) � 1 � CD

m

j=1

nj

k�j
exp(� k�j 6)

� 1 � CDN exp

�

�
nj�

d
�

12Cd
DC

d
�

b

�

� 1 � CDN exp

�

�
1

12Cd
DC

d
�

b

N1� �

�

N log(N)

� �
d

2� +d
�

= 1 � CDN exp

�

�
1

12Cd
DC

d
�

b

N1� �� d
2� +d [log(N)]

d
2� +d

�
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1 � �1+�

where we use the fact that 1 � � > d (2� + d). Similarly, we can show that P(E )
1 � �1+� . Combining above, we show that

P(EA E� E ) � 1 � P(EA) � P(E� ) � P(E ) 1 � �1+� (A11)

By (A7), (A9) and the de�nition of k1(x) km(x), the following holds on event
EA E� E :

kj(x) � kmin
j (x) � k

opt
j (x) (A12)

for all x with �(x) � � and j = 1 m By (A10), (A12) and Lemma 7, we can see,
it holds on event EA E� E that:

f
k1:km

(x) = f �(x) and k1(x) � n1N
�

d
2+d log(N) (A13)

for all x with �(x) � � By (A13), on event EA E� E , f
k1:km

(X) = f �(X) implies
�(x) < �. As a consequence of (A11) and Assumption A3, we have

R(f
k1:km

)

= E(�(X)I(f
k1 :km

(X) = f �(X)))

� E(�(X)I(f
k1 :km

(X) = f �(X) EA E� E )) + P((EA E� E )c)

= E(�(X)I(f
k1 :km

(X) = f �(X) EA E� E �(X) < �)) + P((EA E� E )c)

�P(�(X) < �) + �1+�

�1+� (A14)
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A4 Proof of Theorem 2

By the conditions given, we have k1 � n1N
�

d
2� +d � N1� �� d

2� +d = N
2�

2� +d
� �

and k1nj n1 � njN
�

d
2� +d � N1� �� d

2� +d = N
2�

2� +d
� � . Without loss of generality,

we assume k1nj n1 � 1 for all j = 1 m. Let C� large enough constant such that

� = C� (k1 n1)
�

d � Cb(k1 n1)
�

d . We further de�ne sets A0 = x : �(x) � 1 2 � �

and Aj = x : 2j� 1� < �(x) � 1 2 � 2j� for j � 1. For simplicity, let us write
EP (k1 : km 0) as EP and

m

j=1 kj m as �k.
If j = 0, then Assumption A3 shows that

E

�

2�(X) � 1 I(fk1:km
(X) = f �(X))I(X A0 EP )

�

� 2�P(X A0)

� 2C� �
1+�

If j � 1, Assumption A3 and Lemma 4 imply that

E

�

2�(X) � 1 I(fk1:km
(X) = f �(X))I(X Aj EP )

�

� 2j+1�E

�

I(X Aj EP )P(fk1:km
(X) = f �(X) X X )

�

� 2j+1�E

�

I(X Aj EP ) exp

�

� 2c2bm
�k�2(x)

� �

� 2j+1�E

�

I(X Aj EP ) exp

�

� 2c2bm
�k4j� 1�2

� �

By conditions given, it follows that

m�k =

m

j=1

kj �

m

j=1

k1nj

n1
�

m

j=1

njN
�

d
2� +d = N

2�
2� +d

and � = C� (k1 n1)
�

d � C�N
�

�

2� +d . Therefore, it follows that

E

�

2�(X) � 1 I(fk1:km
(X) = f �(X))I(X Aj EP )

�

� 2j+1�E

�

I(X Aj EP ) exp

�

�
1

2
c2bC

2
� 4

jN
2�

2� +dN �
2�

2� +d

� �

� 2j+1�E

�

I(X Aj EP ) exp

�

�
1

2
c2bC

2
� 4

j

� �

� 2j+1�P(X Aj) exp

�

�
1

2
c2bC

2
� 4

j

�

� 2j+1�C� (2
j�)� exp

�

�
1

2
c2bC

2
� 4

j

�
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� 2j+1�C� (2
j�)� exp

�

�
1

2
c2bC

2
� 4

j

�

� 2C� �
1+� 2j(1+� ) exp

�

�
1

2
c2bC

2
� 4

j

�

Taking summation ans using the fact that j=1 b
j exp(� c4j) < for all b c > 0, we

have

j=1

E

�

2�(X) � 1 I(fk1:km
(X) = f �(X))I(X Aj EP )

�

� 2C� �
1+�

j=1

2j(1+� ) exp

�

�
1

2
c2bC

2
� 4

j

�

�1+�

Combining the bounds above, it follows that

R(fk1:km
) = E

�
2�(X) � 1 I(fk1:km

(X) = f �(X))
�

� E
�
2�(X) � 1 I(fk1:km

(X) = f �(X) Ec
P )

�

+E
�
2�(X) � 1 I(fk1:km

(X) = f �(X) X A0 EP )
�

+
j=1

E
�
2�(X) � 1 I(fk1:km

(X) = f �(X) X Aj EP )
�

P(Ec
P ) + �1+�

P(Ec
P ) +N �

� (1+� )
2� +d

By (A1) and the fact that kj � k1nj n1 � njN
�

d
2� +d � N1� �� d

2� +d = N
2�

2� +d
� �, it

yields that

P(Ec
P ) � CD

m

j=1

nj

kj
exp(� kj 6) N �


 � (1+� )
d

Combining the above two inequalities, we complete the proof.

A5 Proof of Theorem 3

In this section, we consider the equal-size sub-samples. For simplicity, let us assume
n1 = = nm = n = N1� � and m = N n = N �. Notice that k1 = = km in this

setting, so we rewrite �k1:km
as �k and fk1:km

as fk if k1 = = km = k. Moreover, we

also de�ne k = k1 = = km to be the data-driven quantities in Algorithm 1. Since
Theorem 1 studies the case with � < 2�

2�+d
, we will focus on the case with � � 2�

2�+d
.

Abusing notation, let us de�ne quantities

v� := v�(a �) =
(1 � �)(1 � a)�

d
if � �

2�

2� + d
0 < a < 1
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and
� = C� [N log(N)]� v�

for some large enough constant C� . For j = 1 m, we denote the following random
quantities:

k
opt
j (x) = max

�

k : Xj

(k)(x) � x � (C� 1
b �)

1
�

�

For simplicity, we may write v� as v�(a �) and k
opt
j as k

opt
j (x) during the proof, if

there is no confusion in the context. Clearly, Lemmas 6 and 7 are still valid under the
new � and k

opt
j (x).

Lemma 8. Suppose 2�
2�+d

� � � 2
2+d

, then there exists a constant c > 0 such that the
following holds

R(f
k
)

�

N log(N)

� �
(1� �)�

d

[log(N)]�

for some � > 0 depending on � � d.

Proof. For �xed (a �), we de�ne the deterministic integers

k� =
1

2
n1� aC� d

D C
�

d
�

b �
d
� k = nCd

DC
�

d
�

b �
d
�

and events

E�(a) =

�

Xj

(k� )(x) � x � CD

�
k�

n1� a

� 1
d

for all x 
 and j = 1 m

�

and

E =

�

Xj

(k )
(x) � x �

1

CD

�
k

n

� 1
d

for all x 
 and j = 1 m

�

By the de�nition of v� , for any (a �), we can verify that (1 � �)(1 � a) � v�d � and

n1� a�
d
� = C

d
�

� n1� aN �
v� d
� [log(N)]

v� d
� = C

d
�

� N (1� �)(1� a)� v� d
� [log(N)]

v� d
� is diverging.

Consequently, we may assume k� � 1 and k � 1. On event E�(a), it follows from the
de�nition of koptj that

Xj

(k� )(x) � x � CD

�
k�

n1� a

� 1
d

� CD

�
n1� aC� d

D C
�

d
�

b �
d
�

n1� a

� 1
d

� (C� 1
b �)

1
� < X

j

(kopt
j

+1)
(x) � x
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which further implies that

k
opt
j (x) � k� �

1

2
n1� aC� d

D C
�

d
�

b �
d
� (A15)

for all x 
 and j = 1 m Moreover, on event E , it also holds that

Xj

(k
j
)
� x �

1

CD

�
k

n

� 1
d

� (C� 1
b �)

1
� � X

j

(kopt
j

)
� x

where the last equation follows from the de�nition of koptj . Above inequality implies
that

k
opt
j (x) � k � nCd

DC
�

d
�

b �
d
� (A16)

for all x 
 and j = 1 m Combining (A15) and (A16), we conclude that on
event E�(a) E , the following holds:

1

2
n1� aC� d

D C
�

d
�

b �
d
� � k

opt
j (x) � nCd

DC
�

d
�

b �
d
� for all x 
 and j = 1 m

(A17)

De�ne kmin = min k
opt
1 k

opt
2 koptm . Hence, by (A17), it holds on event E�(a)

E that

1

2
n1� aC� d

D C
�

d
�

b �
d
� � kmin(x) � nCd

DC
�

d
�

b �
d
� for all x 
 (A18)

Since kmin(x) � k
opt
j , so under event E� (a) E , for all x with �(x) � � and f �(x) = 1,

Lemma 6 and (A18) together imply that

mkmin

�

E(�kmin(x) j ) �
1

2

�

�
1

2
mn1� aC� d

D C
�

d
�

b �
d
� cb�(x)

�
1

2
c2bC

� d
D C

�
d
�

b maN1� a�
d
�
+2

=
1

2
c2bC

� d
D C

�
d
�

b C
2� +d

�

� N �aN1� a

�

N log(N)

� �
v� (2� +d)

�

Since by de�nition, v� = (1 � �)(1 � a)� d if � � 2� (2� + d) 0 < a < 1, it holds that

v� (2� + d)

�
=

(1 � �)(1 � a)(2� + d)

d
� 1 � a
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Combining the above two inequalities, we have

mkmin

�

E(�kmin(x) j ) �
1

2

�

�

1
2c

2
bC

� d
D C

�
d
�

b C
2� +d

�

� N

�

N log(N)

� � 1

if �< 2�
2�+d

a = 1

1
2c

2
bC

� d
D C

�
d
�

b C
2� +d

�

� N �aN1� a

�

N log(N)

� � (1� a)

if � � 2�
2�+d

a > 0

� 3
(d+ 2) log(N)

2

where the last inequality follows if we choose C� large. By above inequality, on event
EA E�(a) E , for all x with �(x) � � and f �(x) = 1, it follows that

mkmin

�

�kmin(x) �
1

2

�

� mkmin

�

E(�kmin(x) j ) �
1

2

�

� mkmin

�
�
�
��kmin(x) � E(�kmin(x) j )

�
�
�
�

� 3
(d+ 2) log(N)

2
�

(d+ 2) log(N)

2

>
(d+ 2) log(N)

2

Similarly, on event EA E�(a) E , for all x with �(x) � � and f �(x) = 0, we can
show that

mkmin

�

�kmin(x) �
1

2

�

< �
(d+ 2) log(N)

2

Therefore, we prove that on event EA E�(a) E , the following holds:

mkmin

�
�
�
��kmin(x) �

1

2

�
�
�
�>

(d+ 2) log(N)

2
for all x with �(x) � � (A19)

Now by (A18) and the de�nition of v� , on event EA E� (a) E , we have

kmin(x) � nCd
DC

�
d
�

b �
d
�

= Cd
DC

�
d
�

b C
d
�

� n

�

N log(N)

� �
v� d
�

� C� d
D C

�
d
�

b C
d
�

� nN � (1� �)(1� a) log(N) if � �
2�

2� + d
0 < a < 1
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(A20)

for all x with �(x) � �. In the following, we will calculate the probability of EA

E�(a) E . Since �� � d by Assumption A3, it follows that

v�(1 + � ) =
(1 � �)(1 � a)�(1 + � )

d
�

(1 � a)�(1 + � )

2� + d
�

�(1 + � )

2� + d

=
� + ��

2� + d
�

� + d

2� + d
< 1

Using the inequality above and (A2), it follows that

P(EA) � 1 � dN � 1
� 1 � dC1+�

� N � v� (1+� )[log(N)]v
� (1+� ) = 1 � d�1+�

for su� ciently large N . Moreover, by Lemma 2 and the de�nition of E�(a) E , it
follows that

P(E�(a)) � 1 � CD

mn1� a

k�
exp(� nak� 6)

� 1 � CDN exp

�

�
n�

d
�

12Cd
DC

d
�

b

�

= 1 � CDN exp

�

�
1

12Cd
DC

d
�

b

N1� �

�

N log(N)

� �
v� d
�
�

= 1 � CDN exp

�

�
1

12Cd
DC

d
�

b

N (1� �)a[log(N)](1� �)(1� a)

�

and

P(E ) = 1 � CD

mn

k
exp(� k 6)

� 1 � CDN exp

�

�
1

12C� d
D C

d
�

b

n�
d
�

�

� 1 � CDN exp

�

�
1

12C� d
D C

d
�

b

N (1� �)a[log(N)](1� �)(1� a)

�

Combining the above three inequalities, we show that

P(EA E�(a) E ) � 1 � P(EA) � P(E� (a)) � P(E )

� 1 � d�1+�
� CN exp

�

�
1

C
N (1� �)a[log(N)](1� �)(1� a)

�

� 1 � d�1+�
� CN exp

�

�
1

C
N (1� �)a

�
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where C is some constant greater than CD + 12Cd
DC

d
�

b + 12C� d
D C

d
�

b . Without loss of

generality, we assume C > 6. if we choose a = log(2C log(N))
(1� �) log(N) , then we have

Na = [2C log(N)]
1

1� �

� = C�

�

N log(N)

� �
(1� �)(1� a)�

d

� C�

�

N log(N)

� �
(1� �)�

d

[2C log(N)]
�
d

(A21)

and the probability can be bounded by

P(EA E�(a) E ) � 1 � �1+�
� CN � 1

� 1 � (C + 1)�1+� (A22)

First, let us consider the case �< 2
2+d

. By (A19), (A20) and the de�nition of k(x),

since 2�
2�+d

� �< 2
2+d

and 0 < a = log(2C log(N))
(1� �) log(N) � 1 � d

(2+d)(1� �) for large N , we have

k(x) � kmin(x) � nN �
d

2+d log(N) and k(x) � kmin(x) � k
opt
j (x)

holds for all j = 1 m and all x with �(x) � � on event EA E�(a) E . Now,
applying Lemma 7, we can see, it holds on event EA E�(a) E that:

f
k
(x) = f �(x) for all x with �(x) � �

By (A22), (A21) and the above equation, we can complete the proof using the same
argument as (A14).

Second, let us assume � = 2
2+d

�
2�

2�+d
. By (A20) and the de�nition of k(x), the

following holds on event EA E�(a) E :

k(x) � kmin(x) � C� d
D C

�
d
�

b C
d
�

� nN � (1� �)(1� a) log(N) = C� d
D C

�
d
�

b C
d
�

� N (1� �)a log(N) := vN

for all x with �(x) � �, which further leads to

CbN
�

(1� �)(1� a)�
d � Cb[k(x) N (1� �)(1� a)]

�

d � Cbv
�

d

NN �
(1� �)(1� a)�

d (A23)

Let us de�ne classi�er

f(x) =
f �(x) if fk(x) = f �(x) for all 1 � k � vN ;

1 � f �(x) elsewhere

By the de�nition of f(x), it follows that

P(f(x) = f �(x) j ) � P( 1 � k � vN such that fk(x) = f �(x) j )
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�

vN

k=1

P(fk(x) = f �(x) j )

By the above inequality, (A23) and Lemma 4, we conclude the following hold on event
vN

k=1 EP (k : k a) EA E�(a) E :

P(f
k
(x) = f �(x) j ) = P(f

k
(x) = f �(x) j ) � P(f(x) = f �(x) j )

� vN exp

�

� 2c2bm�2(x)

�

(A24)

for all x with �(x) � max � Cbv
�

d

NN �
(1� �)(1� a)�

d . For simplicity, let us denote � =

max � Cbv
�

d

NN �
(1� �)(1� a)�

d , E =
vN

k=1 EP (k : k a) EA E�(a) E , A0 = x :

�(x) � 1 2 � � , and Aj = x : 2j� 1 < �(x) � 1 2 � 2j� .
If j = 0, then Assumption A3 shows that

E

�

2�(X) � 1 I(f
k
(X) = f �(X))I(X A0 E)

�

� 2�P (X A0) � 2C� �
1+�

If j � 1, (A24) implies that

E

�

2�(X) � 1 I(f
k
(X) = f �(X))I(X Aj E)

�

� 2j+1�E

�

I(X Aj E)P(f
k
(X) = f �(X) X X )

�

� 2j+1�vNE

�

I(X Aj E) exp

�

� 2c2bm�2(x)

� �

� 2j+1�vNE

�

I(X Aj E) exp

�

� 2c2bm4j� 1�2
� �

Since � = max � Cbv
�

d

NN �
(1� �)(1� a)�

d = Cd
DC

d+�

�

b C
d
�

� N
(d+� )a� �

2+d log(N) and m =

N � = N
2

2+d , so m�2 � 1 for all a > 0. As a consequence of Assumption A3, it follows
that

j=1

E

�

2�(X) � 1 I(f
k
(X) = f �(X))I(X Aj E)

�

� �vN
j=1

2j+1 exp

�

� 2c2b4
j� 1

�

P(Aj)

� 2�1+� vN
j=1

2j(1+� ) exp

�

�
1

2
c2b4

j

�

� C�1+� vN
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where we use the fact that j=1 b
j exp(� c4j) < for all b c > 0, and C > 0 is a

constant free of N . Combining the bounds above with (A1) and (A22), it follows that

R(f
k
) = E

�
2�(X) � 1 I(f

k
(X) = f �(X))

�

� E
�
2�(X) � 1 I(f

k
(X) = f �(X) Ec)

�

+E
�
2�(X) � 1 I(f

k
(X) = f �(X) X A0 EP )

�

+
j=1

E
�
2�(X) � 1 I(f

k
(X) = f �(X) X Aj E)

�

� P(Ec) + C�1+� vN

�

vN

k=1

P(Ec
P (k a)) + P((Ec

A E�(a) E )c) + C�1+� vN

� CDvNN exp(� na 6) + (1 + C)�1+� + C�1+� vN

Notice that a = log(2C log(N))
(1� �) log(N) with C > 6, we have

vN = C� d
D C

�
d
�

b C
d
�

� N (1� �)a log(N) = 2CC� d
D C

�
d
�

b C
d
�

� [log(N)]2

� � � = Cbv
�

d

NN �
(1� �)(1� a)�

d N �
(1� �)�

d [log(N)]
3�
d

exp(� na 6) = exp(� [2C log(N)] 6) � N � 2

Since �= 2
2+d

, we conclude that

R(f
k
)

�

N log(N)

� �
(1� �)� (1+� )

d

[log(N)]� for some � > 0

Lemma 9. Under Assumptions A1-A3, if � � 2� (2� + d) and k = 1, then

R(fk) N �
(1� �)� (1+� )

d [log(N)]�

for some � > 0 depending on � � d and �.

Proof. Let us de�ne � = Cb[k N (1� �)(1� a)]
�

d , where Cb is the constant in Lemma 3,

and we allow a is depending on N . We further de�ne sets A0 = x : �(x) � 1 2 � �

and Aj = x : 2j� 1� < �(x) � 1 2 � 2j� for j � 1. For simplicity, we write EP (k1 :
km a) = EP and in the equal sub-sample size setting, we have k1 = = km = k = 1.

If j = 0, then Assumption A3 shows that

E

�

2�(X) � 1 I(fk(X) = f �(X))I(X A0 EP )

�

� 2�P(X A0) � 2C� �
1+�
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If j � 1, Assumption A3 and Lemma 4 imply that

E

�

2�(X) � 1 I(fk(X) = f �(X))I(X Aj EP )

�

� 2j+1�E

�

I(X Aj EP )P(fk(X) = f �(X) X X )

�

� 2j+1�E

�

I(X Aj EP ) exp

�

� 2c2bmk�2(x)

� �

� 2j+1�E

�

I(X Aj EP ) exp

�

� 2c2bm4j� 1�2
� �

(A25)

Since � = Cb[k N (1� �)(1� a)]
�

d and � � 2� (2� + d), any a (0 1) satis�es 1 � a �
d log(m)

2� (1� �) log(N) = d�
2� (1� �) . Therefore, we can pick any a (0 1) and it follows that

m � N
2� (1� �)(1� a)

d . By the choice with k = 1, we have � = CbN
�

� (1� �)(1� a)
d and

(A25) � 2j+1�E

�

I(X Aj EP ) exp

�

�
1

2
c2bC

2
b 4

jm[N � (1� �)(1� a)]
2�
d

� �

� 2j+1�E

�

I(X Aj EP ) exp

�

�
1

2
c2bC

2
b 4

j

� �

= 2C� �
1+� 2j(1+� ) exp

�

�
1

2
c2bC

2
b 4

j

�

Taking summation ans using the fact that j=1 b
j exp(� c4j) < for all b c > 0, we

have

j=1

E

�

2�(X) � 1 I(fk(X) = f �(X))I(X Aj EP )

�

� C�1+�

where C is some constant free of N and a. Combining the bounds above, it follows that

R(fk) = E
�
2�(X) � 1 I(fk(X) = f �(X))

�

� E
�
2�(X) � 1 I(fk(X) = f �(X) Ec

P )
�

+E
�
2�(X) � 1 I(fk(X) = f �(X) X A0 EP )

�

+
j=1

E
�
2�(X) � 1 I(fk(X) = f �(X) X Aj EP )

�

� P(Ec
P ) + C�1+�

= P(Ec
P ) + CC1+�

b N �
(1� �)(1� a)(1+� )�

d
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Let a = s log(log(N))
log(N) for some s > 0 and notice that N

s log(log(N))
log(N) = es log(log(N)) =

[log(N)]s. As a consequence, it follows that

N �
(1� �)(1� a)(1+� )�

d = N �
(1� �)(1+� )�

d [log(N)]
s(1� �)(1+� )�

d

By (A1), since � � 2� (2� + d) and k = 1, if we choose s such that 2s(1� �) = 48, then

P(Ec
P ) � CDmn1� a exp(� na 6)

� CDN exp(� na 6)

= CDN exp(� N (1� �)a 6)

= CDN exp

�

� [log(N)]s(1� �) 6

�

= CDN exp

�

� log(N)[log(N)]s(1� �)� 1 6

�

� CDN exp

�

� log(N)2s(1� �)� 1 6

�

� CDN exp

�

� 4 log(N)

�

� CDN � 3

Combining the above three inequalities and noticing that (1� �)(1+� )�
d

�
(1+� )�

d
=

1+� �
d

�
1+d
d

� 2 by Assumption A3, we complete the proof with � = s(1� �)(1+� )�
d

and s = log(48)
(1� �) log(2) .

Based on the above lemmas, we are ready to prove Theorem 3.
If �< 2�

2�+d
, it follows from Theorem 1.

If � > 2
2+d

, then � �
2�

2�+d
for any � (0 1]. As a consequence, we have

nN �
d

2+d log(N) = N1� �� d
2+d log(N) < 1 and k = 1. The desired result follows from

Lemma 9.
If 2�

2�+d
� � � 2

2+d
, the convergence rate follows from Lemma 8.

A6 Proof of Theorem 4

Theorem 4 follows directly from Lemma 9.
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