Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory

Ruiqi Liu^{1*} , Ganggang Xu^2 and $\operatorname{Zuofeng}$ Shang³

*Corresponding author(s). E-mail(s): ruiqliu@ttu.edu; Contributing authors: gangxu@bus.miami.edu; zshang@njit.edu;

Abstract

When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the number of nearest neighbors is a tuning parameter stochastically chosen by a data-driven criterion. An early stopping rule is proposed when searching for the optimal tuning parameter, which not only speeds up the computation but also improves the finite sample performance of the proposed algorithm. Convergence rate of excess risk of the distributed adaptive NN classifier is investigated under various sub-sample size compositions. In particular, we show that when the sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly optimal convergence rate. Effectiveness of the proposed approach is demonstrated through simulation studies as well as an empirical application to a real-world dataset.

Keywords: Distributed Learning, Adaptive Procedure, Minimax Optimal, Binary Classification

^{1*}Department of Mathematics and Statistics, Texas Tech University, Lubbock, 79409, TX, USA.

²Department of Management Science, University of Miami, Coral Gables, 33146, FL, USA.

³Department of Mathematical Sciences, New Jersey Institute of Technology, City, 07102, NJ, USA.

1 Introduction

Nearest neighbor (NN) classi er is a simple but powerful tool for various applications such as text classication (Han et al., 2001, Jiang et al., 2012), query dependent ranking (Geng et al., 2008), and pattern recognition (Kowalski and Bender, 1972, Zheng et al., 2004, Xu et al., 2013). Consider $(Y_1 \ \mathbf{X}_1)$ $(Y_N \mathbf{X}_N)$ generated independently from an unknown probability distribution P, with Y_i 0 1 being the label and X_i being the corresponding d-dimensional feature vector for i=1NN classi er predicts the label of a query point \mathbf{x} based on labels of its neighboring observations. It is well-known that NN algorithm is sensitive to the scale of data as it relies on computing the distances. A popular procedure is to normalize each feature to $[0 \ 1]$. Without loss of generality, we assume that the feature space is $[0 \ 1]^d$ and that the Euclidean distance is used. This assumption was also used in Cai and Wei (2019). Given a new query point $\mathbf{x} = [0 \ 1]^d$, denote $\mathbf{X}_{(i)}(\mathbf{x})$ as the *i*-th nearest \mathbf{X}_N , and $Y_{(i)}(\mathbf{x})$ as the label associated with $\mathbf{X}_{(i)}(\mathbf{x})$. For a point to \mathbf{x} among \mathbf{X}_1 prespeci ed integer 1 k N, the conditional probability $(\mathbf{x}) := \mathbb{P}(Y = 1 \mathbf{X} = \mathbf{x})$ can be approximated by the k-NN estimator $NN k(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} Y_{(i)}(\mathbf{x})$ and the label associated with \mathbf{x} is then predicted as $f_{NN k}(\mathbf{x}) = \mathbb{I}(NN (\mathbf{x}) - 1 2)$, with $\mathbb{I}(N)$ being the indicator function.

The performance of a binary classi er $f:[0\ 1]^d$ 0 1, which is trained using observed data $(Y_1\ \mathbf{X}_1)$ $(Y_N\ \mathbf{X}_N)$, is commonly evaluated by the regret (or excess risk) de ned as

$$\mathcal{R}(f) = \mathbb{P}(f(\mathbf{X}) = \mathbf{Y}) \quad \mathbb{P}(f(\mathbf{X}) = \mathbf{Y})$$

where $(Y \mathbf{X})$ P is an independent copy of the training sample, $f(\mathbf{x}) = \mathbb{I}((\mathbf{x}) + \mathbf{1})$ is the well-known Bayesian classi er, and the probability is with respect to the joint distribution of $(Y_1 \mathbf{X}_1)$, $(Y_N \mathbf{X}_N)$ and $(Y \mathbf{X})$. A smaller regret indicates higher classification accuracy for a classifier f.

Notation: For deterministic positive sequences a_N and b_N , we denote a_N (or) b_N if a_N (or) Cb_N for some C>0 and su-ciently large N. If a_N-b_N and a_N-b_N , we write a_N-b_N . For any a>0, we denote a-(a) as the smallest (largest) integer that is not less (greater) than a. We denote —as the Lebesgue measure and $P_{\mathbf{X}}$ as the marginal distribution of \mathbf{X} whose support is —. For a set A, we use A to denote its cardinality.

1.1 Related Work

The regret of the k-NN classi er has been shown to converge to 0 as k and k N 0 in a general metric space with additional structural assumptions (Cover and Hart, 1967, Cerou and Guyader, 2006, Hanneke et al., 2021) and in the Euclidean space (Stone, 1977, Devroye et al., 1994). The convergence rate of the regret depends on properties of (\mathbf{x}) and $P_{\mathbf{X}}$. Chaudhuri and Dasgupta (2014) established a nonasymptotic bound for the convergence rate, which achieves the minimax rate in the sense of Audibert and Tsybakov (2007) under some mild conditions. Gadat et al. (2016) further identified two sunctions and necessary conditions for the uniform consistency of

the k-NN classi er without rigid assumptions on the joint distribution of $(Y \mathbf{X})$ and derived the corresponding optimal convergence rate. Samworth (2012) proposed an optimally weighted k-NN classi er based on a new asymptotic expansion of its regret.

When facing an extraordinarily large sample size, the k-NN classi er can be computationally intensive, especially when k is large. To address this issue, Qiao et al. (2019) and Duan et al. (2020) proposed two distributed k-NN classi ers, extending the work of Chaudhuri and Dasgupta (2014) and Samworth (2012), respectively. Their algorithms rst divide the whole data into m equally-sized sub-samples, and for each sub-sample, a k-NN classi er is trained independently. The nal prediction of a new query point is made by aggregating the m independently trained k-NN classi ers. Under suitable conditions, the regrets of both distributed k-NN classi ers were shown to achieve the optimal convergence rate. However, in many applications, the sub-samples may not have equal sample sizes, and to the best of our knowledge, there has yet been any existing work on distributed NN classi ers with unequal sized sub-samples.

Furthermore, the aforementioned theoretical results are based on the key assumption that the choice of k is pre-given and is deterministic. However, it is often desirable to have a data-driven choice of k for practical applications. There has been limited work on theoretical properties of the k-NN classi er with a data-driven choice of k in existing literature, with two notable exceptions, i.e., Cai and Wei (2019) and Balsubramani et al. (2019). They independently proposed two adaptive procedures to stochastically choose k and established the convergence rates of the resulting adaptive NN classi ers under suitable conditions. However, while achieving improved classi cation accuracy, searching for an optimal k also significantly increases the computational burden for the adaptive NN classi er, making it desirable to consider a distributed adaptive NN classi er with favorable statistical properties when the sample size N is extraordinarily large. For applications where data are stored in different locations, a distributed adaptive NN classi er is also a natural and preferable choice.

1.2 Our Contribution

We propose a novel distributed adaptive NN classifer with a data-driven choice of k, which can be used to either speed up the computation when the data size is extraordinary large or improve the classi cation accuracy when data are stored in di erent machines. Suppose that the whole data set is separately stored in m di erent locations, and each location has a sub-sample of size n_i , j=1m. The sub-sample sizes are allowed to be dierent from each other, in contrast to the existing divide-andconquer framework (Qiao et al., 2019, Duan et al., 2020). Without loss of generality, n_m and denote $N = n_1 +$ we assume that n_1 $+ n_m$. Based on the n_2 jth sub-sample, a local k_i -NN classi er is constructed for a given query point \mathbf{x} and m. The predicted label for \mathbf{x} is then obtained by aggregating an integer k_i , j=1the m sub-sample NN classi ers with k_1 k_m chosen by a data-driven criterion. See Section 2 for more details.

The computational e ciency of the proposed algorithm is achieved in two ways.

(1) Parallel computation. For a given k, the computational complexity of the standard k-NN classifier using the whole data is between O(N) to $O(N \log(N))$ (Cormen et al., 2009), which needs to be carried out on a single machine. In comparison,

the computation of the distributed NN classi er can be easily paralleled, and each sub-sample only costs between O(n) to $O(n \log(n))$ operations.

(2) Early stopping rule for k. The adaptive NN classi ers proposed in Cai and Wei (2019) and Balsubramani et al. (2019) search for an optimal k_1 by increasing k from 1 to N until a stopping rule is triggered. A straightforward extension of their approaches to the distributed setting is to search for k_j from 1 to n_j , j=1 m. However, we propose an early stopping rule for the choice of k_1 (which determines other k_j s), narrowing down the search range for k_1 to 1 $n_1N^{-\frac{d}{2+d}}\log(N)$. As a result, the proposed algorithm significantly reduces the number of attempts needed to locate the optimal k_j s for the distributed adaptive NN classi er.

Our numerical studies show that such an early stopping rule for k_1 not only speeds up the computation but also yields superior—nite sample performance for the proposed algorithm compared to the naive extension of Cai and Wei (2019) and Balsubramani et al. (2019). See Section 4.1 for more details.

From a theoretical point of view, our work extends the theory for distributed NN classi er with a xed k (Qiao et al., 2019) to the more realistic distributed adaptive NN classi er based on unequal sub-sample sizes, whose k_j s are chosen by a data-driven procedure. Speci cally, we derive the convergence rate of the regret of the proposed classi er and give su cient conditions under which the convergence rate is optimal (up to logarithmic factors). Moreover, the convergence rate of the regret exhibits a phase transition characterized by sub-sample sizes. Finally, we wish to comment that the proof of adaptivity in the distributed framework relies on the uniform convergence in Lemma 5. This requires bounding the total model complexity (see Lemma 1) of all the local classi ers, which motivates the choices of k_j s in Algorithm 1.

The rest of this paper is structured as follows. Section 2 introduces the algorithm for the distributed adaptive NN classi er and Section 3 investigates its asymptotic properties. Section 4.1 carries out a set of simulation studies, and a real-world dataset is analyzed in Section 4.2. All technical proofs are provided in the Appendix.

2 Distributed Adaptive Nearest Neighbor Classi er

Suppose that the whole dataset, denoted as $\mathcal{Z}=(Y_1\ \mathbf{X}_1)$ $(Y_N\ \mathbf{X}_N)$, are distributed across m machines. Each machine hosts a sub-sample of size n_j , denoted as $\mathcal{Z}_j=(Y_1^j\ \mathbf{X}_1^j)$ $(Y_{n_j}^j\ \mathbf{X}_{n_j}^j)$ for j=1 m. For the jth sub-sample, given an integer k_j 1 n_j , the jth local NN estimator of $(\mathbf{x})=\mathbb{P}(Y=1\ \mathbf{X}=\mathbf{x})$ for a new query point \mathbf{x} $[0\ 1]^d$ is de ned as

$$k_{j\ j}(\mathbf{x}) = \frac{1}{k_{j}} \sum_{i=1}^{k_{j}} Y_{(i)}^{j}(\mathbf{x}) \quad j = 1 \quad m$$

where $Y_{(i)}^{j}(\mathbf{x})$ is the label associated with $\mathbf{X}_{(i)}^{j}(\mathbf{x})$, the *i*-th nearest neighbors of \mathbf{x} among $\mathbf{X}_{n_{i}}^{j}$. The proposed distributed NN classifer is subsequently defined as

$$f_{k_1:k_m}(\mathbf{x}) = \mathbb{I}(\ _{k_1:k_m}(\mathbf{x}) \ 1 \ 2) \quad \text{with} \quad \ _{k_1:k_m}(\mathbf{x}) = \frac{1}{-\frac{m}{j=1}} k_j \sum_{j=1}^m k_{j-j}(\mathbf{x}) \quad (1)$$

where the integer sequence k_1 k_m need to be chosen by some data-driven method. The performance of the classifier (1) depends critically on the choice of k_1 k_m . The following Algorithm 1 is designed in the same spirit of Cai and Wei (2019) and Balsubramani et al. (2019).

```
Algorithm 1: Distributed Adaptive NN Classi er

Input: new query \mathbf{x}, training samples \mathcal{Z}_j, j=1 m;

Initialization: set k_1=0;

while k_1 n_1N^{\frac{d}{2+d}}\log(N) do

update k_1:=k_1+1;

update k_j:=k_1n_j n_1 and calculate k_j j(\mathbf{x}) for j=1 m;

calculate k_1:k_m(\mathbf{x}) and r_{k_1}=\frac{1}{2}\frac{m}{j=1}k_j k_1:k_m(\mathbf{x}) 1 2;

if r_{k_1}>\frac{1}{2}\frac{1}{2}\log(N) or k_1 n_1N^{\frac{d}{2+d}}\log(N) then

set k_1=k_1 and k_j=k_1n_j n_1 for j=2 m;

calculate k_1:k_m(\mathbf{x});

exit loop;

end if

end while

Output: classi er f_{k_1:k_m}(\mathbf{x})=\mathbb{I}(k_1:k_m(\mathbf{x})) 1 2).
```

Algorithm 1 assumes that each k_j is proportional to n_j for j=1 m, and search for the optimal k_1 within the set 1 $n_1 N^{-\frac{d}{2+d}} \log(N)$ such that $k_1:k_m(\mathbf{x})$ 1 2 based on the classifier (1) is strictly greater than $(d+2)\log(N)$ (2 $\frac{m}{j=1}k_j$). If no k_1 meets this criterion, we simply set $k_1 = n_1 N^{-\frac{d}{2+d}} \log(N)$. We comment that a naive extension of Cai and Wei (2019) and Balsubramani et al. (2019) to the distributed data setting would require searching for k_1 from 1 to n_1 . In this sense, the upper bound $n_1 N^{-\frac{d}{2+d}} \log(N)$ in Algorithm 1 serves an early stopping rule for the search of k_1 . Our simulation studies demonstrate that such an early stopping rule yields superior nite sample performance compared to the same algorithm but searches k_1 from 1 to n_1 .

An intuitive justi-cation of Algorithm 1 is as follows. Denote $\mathcal{X} = \mathbf{X}_1 - \mathbf{X}_N$. Under suitable conditions, one can show that $k_1 : k_m(\mathbf{x}) - \mathbb{E}(k_1 : k_m(\mathbf{x}) \times \mathcal{X})$ is bounded by the sequence $(d+2)\log(N)$ $(2-\frac{m}{j=1}k_j)$ uniformly for all \mathbf{x} and $k_1 - k_m$ with a high probability. The stopping rule designed in Algorithm 1 thus ensures that

 $k_1:k_m(\mathbf{x})$ 1 2 and $\mathbb{E}(\ _{k_1:k_m}(\mathbf{x})\ \mathcal{X})$ 1 2 have the same sign with a high probability. Under suitable conditions, $\mathbb{E}(\ _{k_1:k_m}(\mathbf{x})\ \mathcal{X})$ is a consistent estimator of $\ (\mathbf{x})$, which further implies that the distributed adaptive NN classi er $f_{k_1:k_m}(\mathbf{x}) = \mathbb{I}(\ _{k_1:k_m}(\mathbf{x}) - 1 \ 2)$ is asymptotically equivalent to the Bayesian classi er $f\ (\mathbf{x}) = \mathbb{I}(\ _{k_1:k_m}(\mathbf{x}) - 1 \ 2)$.

3 Asymptotic Properties

3.1 Technical Assumptions

To investigate the asymptotic properties of the proposed adaptive distributed NN classi er obtained from Algorithm 1, several technical assumptions are needed.

Assumption A1. (Strong Density) For some constants c r > 0, it holds that (a) $[B(\mathbf{x} \ r)]$ c $[B(\mathbf{x} \ r)]$ for all 0 < r < r and \mathbf{x} ; and (b) c $< \frac{dP_{\mathbf{x}}}{d}(\mathbf{x}) < c^{-1}$ for all \mathbf{x} .

Assumption A2. (Smoothness) There exist constants (0 1] and C > 0 such that (\mathbf{x}_1) (\mathbf{x}_2) C \mathbf{x}_1 \mathbf{x}_2 holds for all \mathbf{x}_1 \mathbf{x}_2 .

Assumption A3. (Marginal Assumption) For some constants $[0\ d\]$ and C>0 and all t $(0\ 1\ 2]$, the inequality $\mathbb{P}(\ (\mathbf{X})\ 1\ 2< t)$ C t holds.

Assumption A1 is the so-called strong density assumption (Audibert and Tsybakov, 2007) that imposes two conditions on the distribution of the feature vector **X**. In particular, A1(a) requires that the support—does not contain any isolate points and A1(b) assumes the probability density of **X** is bounded above and below in its support, as commonly required in the literature (e.g., Huang, 1998, 2003). Assumption A2 is the uniform Lipschitz condition imposed on the conditional probability—(**x**), and similar conditions were imposed in Cai and Wei (2019), Audibert and Tsybakov (2007), Gadat et al. (2016). Assumption A3 is a popular condition in classic cation problems (e.g., see Audibert and Tsybakov, 2007, Gadat et al., 2016), which characterizes the strength of the signal—(**X**)—1 2. With a larger—, (**X**) is near the decision boundary 1 2 with a lower probability, leading to an easier classic cation problem.

3.2 Theoretical Results in General Setting

In this section, we rst present some theoretical results on the distributed adaptive NN classi er in a general setting where sub-sample sizes (i.e., n_j s) are allow to be di erent. The following theorem gives an upper bound of the regret of the proposed classi er in Algorithm 1.

Theorem 1. Under Assumptions A1-A3 and $\min_{j=m} n_j = N^1$ for some $<\frac{2}{2+d}$. It follows that

$$\mathcal{R}(f_{k_1:k_m}) \quad [N \ \log(N)]^{-\frac{(1+\cdot)}{2+d}}$$

The proof is given in the Appendix.

Theorem 1 establishes the convergence rate of the proposed classi er when subsample sizes are not too small, i.e., $\min_j n_j = N^1$ for some < 2 = (2 + d). We remark that this convergence rate coincides with the minimax lower bound given in Audibert and Tsybakov (2007) up to a logarithm factor. The additional $\log(N)$ term is

the price to pay for the adaptive choice of tuning parameters k_1 k_m , as commonly seen in the literature (e.g., see Lepskii, 1991, Lepski and Spokoiny, 1997).

To shed more lights on this issue, we consider a distributed NN classi er with a non-stochastic choice of tuning parameter satisfying k_j $n_j N^{-\frac{d}{2+d}}$, j=1which is essentially an extension of Qiao et al. (2019) which only considered the case $= n_m$. The following theorem gives an upper bound of the regret of the resulting distributed NN classi er given in (1).

Theorem 2. (Non-adaptive k_j s) Suppose that Assumptions A1-A3 hold and $\min_{j=m} n_j$ N^1 for some $<\frac{2}{2+d}$. Then if k_j $n_j N^{-\frac{d}{2+d}}$ for j=1 m, it $\min_{j=m} n_j$ follows that

$$\mathcal{R}(f_{k_1:k_m})$$
 $N^{\frac{(1+)}{2+d}}$

 $\mathcal{R}(f_{k_1:k_m}) \quad N^{-\frac{(1+\)}{2+d}}$ The proof is given in the Appendix. Theorem 2 asserts that if n Theorem 2 asserts that if k_i s are not chosen by a data-driven method, the minimax lower bound of the regret (Audibert and Tsybakov, 2007) is achieved by the distributed NN classi er provided that $k_j = C_j(n_j N^{-\frac{d}{2-d}})$ for some constant $C_j > 0$, j=1 m. Although Theorem 2 is of limited practical interest since it is discult to determine the values of C_j s and for a given data set, it indeed motivates us to propose the early stopping threshold $n_1 N^{-\frac{d}{2+d}} \log(N)$ when searching for the optimal k_1 in Algorithm 1, which resulted in an extra $\log(N)$ term in its regret convergence rate as suggested by Theorem 1.

Even though the convergence rates in Theorems 1 and 2 look similar, their proofs rely on completely di erent techniques. Since k_1 k_m are deterministic in Theorem 2, the regret of $f_{k_1:k_m}$ can be established through calculating its bias and variance. However, when k_1 k_m are data-driven, the regret of $f_{k_1:k_m}$ requires more sophisticated analysis. One major disculty, for instance, is quantifying the model complexity, which relies on the following lemma.

 $\mathbf{X}_1^m \qquad \mathbf{X}_{n_m}^m \ , for \, k_j$ **Lemma 1.** Given observations X_1^1 $\mathbf{X}_{n_1}^1$ with j=1m, we de ne sets

$$\mathcal{A}_{k_j j}(\mathbf{x}) := \mathbf{X}_{(1)}^j(\mathbf{x}) \qquad \mathbf{X}_{(k_j)}^j(\mathbf{x})$$

$$\mathcal{B} := \mathcal{B}(k_1 \qquad k_m) = \mathcal{A}_{k_1 1}(\mathbf{x}) \qquad \mathcal{A}_{k_m m}(\mathbf{x}) : \mathbf{x} \quad [0 \ 1]^d$$

Then the cardinality of \mathcal{B} is bounded by dN^d .

The proof is given in the Appendix.

Lemma 1 counts the number of sets of the form A_{k_1} 1(**x**) $\mathcal{A}_{k_m \ m}(\mathbf{x})$ when **x** is running over $[0 \ 1]^d$. It shows that this number is upper bounded by dN^d . This is a generalization of Lemma 3 in Jiang (2019) from m=1 to m>1. The selection of k_m can be viewed as a model selection problem with n_1 n_m candidate models, and the complexity of each model is measured by $\mathcal{B}(k_1)$ k_m). The proof of Theorem 1 requires controlling the complexity of all the candidate models. If we do not specify any constraints on the k_j s and allow for all the combinations of k_1 then the complexity of all the candidates models can be evaluated by the following:

$$\begin{array}{cccc}
n_m & & n_1 \\
k_m = 1 & & k_1 = 1
\end{array} \mathcal{B}(k_1 & k_m) & dN^d & n_1 & & n_m$$

which is relatively large. As a matter of fact, if we impose a restriction that $k_j = k_1 n_j \ n_1$ for all j = 1 m, then we only need to conduct model selection among n_1 models, and the corresponding complexity can be bounded by

$$k_1 = 1$$
 $k_2 = k_1 n_2 \ n_1$ $k_m = k_1 n_m \ n_1 \ \mathcal{B}(k_1 \ k_m) \ dN^d \ n_1$

This reduced complexity plays an important role in deriving the near optimal rate in Theorem 1, and it also motivates the choice $k_j = k_1 n_j \ n_1$ in Algorithm 1.

3.3 Theoretical Results with $n_1 = n_m$

Theorem 1 is limited to the case when $\min_{\substack{1 \ j \ m}} n_j$ N^1 for some $< 2 \ (2 + d)$, where it asserts that the optimal convergence rate (up to a factor of $\log(N)$) of the regret can be achieved by the proposed classi er. However, theoretical properties of the proposed classi er are unclear when $\min_{\substack{1 \ j \ m}} n_j$ N^1 only holds for some

2 (2 + d). While it is discult to study in general, we manage to provide a partial answer by considering the special case $n_1 = n_m$, which has been widely studied under the so-called divide-and-conquer framework (Qiao et al., 2019, Duan et al., 2020, Zhang et al., 2015, Shang and Cheng, 2017, Xu et al., 2018, Shang et al., 2019, Xu et al., 2019).

Theorem 3. Suppose that Assumptions A1-A3 hold and that $n_1 = n_m = n$ N^1 for some $[0\ 1)$, then it holds that (a) if (a) (a) (a) (a) then $\mathcal{R}(f_{k_1:k_m})$ (a) (b) (a) (b) if (a) (b) (a) (b) (b) (b) (b) (b) (a) (b) (b)

The proof is given in the Appendix.

Theorem 3 characterizes the asymptotic behavior of the proposed classi er in two scenarios. When < 2 (2+d), part (a) is a special case of Theorem 1, where the regret convergence rate is free of and is nearly optimal up to a logarithm factor (Audibert and Tsybakov, 2007). However, when 2 (2+d), each sub-sample has a smaller sample size, and the resulting convergence rate of the regret becomes $[\log(N)]$ $[N \log(N)]$ for some constant > 0, which slows down when increases. In contrast, the convergence rate in part (a) remains the same as changes.

It is unclear whether the convergence rate given in part (b) is optimal since existing literature on distributed NN classi er has mainly focused on the case with $< 2 \quad (2 \quad + d)$ (e.g. Qiao et al., 2019). However, we can show that the convergence rate in part (b) is closely related to that of the distributed 1-NN classi er, as given in the following theorem.

Theorem 4. Suppose that Assumptions A1-A3 hold and that $n_1 = n_m = n$ N^1 for some $[0\ 1)$. Then if $2\ (2\ +d)$ and $xing\ k_1 = k_m = 1$, it holds that $\mathcal{R}(f_{k_1:k_m})$ $[\log(N)]$ $[N\ \log(N)]$ for some > 0 The proof is given in the Appendix.

Theorem 4 shows that the distributed 1-NN classi er can achieve the same convergence rate as the proposed adaptive NN classi er when 2 (2 + d). This makes intuitive sense because when is large, the aggregated classi er (1) averages

over a large number of NN classi ers built on sub-samples (i.e., $m=N\ n\ N$) and the overall variability of the resulting aggregated NN classi er can be signi cantly smaller than its prediction bias , which is of the same magnitude of individual NN classi ers from sub-samples. Consequently, to improve the prediction accuracy of the aggregated NN classi er, it is desirable to use the 1-NN classi er for each sub-sample, which has the smallest prediction bias among NN classi ers for a given sample size.

The similarity between Theorem 3 part (b) and Theorem 4 suggests that when 2 (2 + d), the proposed classi er behave similarly to the distributed 1-NN classi er. This conjecture is supported by our simulation studies in Section 4.1 not only in the case where $n_1 = n_m$ but also in the case where sub-sample sizes are not equal. However, the distributed 1-NN classi er performs much worse than the proposed classi er when is small. One advantage of the proposed classi er is that it can automatically adjust to both scenarios without the knowledge of the true value of

4 Numerical Results

4.1 Simulation Studies

In this section, we evaluate the $\,$ nite sample performance of the proposed algorithm. The following marginal distributions of X will be considered.

- (a) **X** $g_1(\mathbf{x})$: **X** = $(X_1 \ X_2 \ X_3)$ $[0 \ 1]^3$ with $X_1 = R\cos(\ _1)\cos(\ _2)$, $X_1 = R\cos(\ _1)\sin(\ _2)$, and $X_1 = R\sin(\ _1)$. Here $_1 \ _2 \ Unif(0 \ 2)$, and R $Unif(0 \ 1)$ are three independent uniform random variables.
- (b) $\mathbf{X} = g_2(\mathbf{x})$: $\mathbf{X} = (X_1 \ X_2 \ X_3) = [0 \ 1]^3$ is generated by a similar process as (a) except $R = 0.5Beta(5 \ 1) + 0.5Beta(1 \ 6)$ follows a Beta mixture distribution. Given $\mathbf{X} = \mathbf{x}$, the conditional probability function is $(\mathbf{x}) = h(\mathbf{x})$, where

$$h(z) = \begin{array}{cccc} 0.8 & & \text{if } 0 & z & 0.3 \\ & 6z + 2.6 & & \text{if } 0.3 < z & 0.4 \\ & 0.2 & & \text{if } 0.4 < z & 0.7 \\ & 2.6z & 1.62 & & \text{if } 0.7 < z & 0.8 \\ & 0.46 & & & \text{if } 0.8 < z & 1. \end{array}$$

The total sample size is set as N=60000, and the data are randomly divided into m=N, =001 08, sub-samples by the following two approaches:

- **I. Equally Splitting:** The N observations are split into m datasets with (roughly) equal sample size.
- II. Unequal Splitting: The N observations are split into m datasets, and the sample sizes $(n_1 n_m)$ follow a multinomial distribution with probabilities (m s 1 s) for s = (m+1)m 2.

For comparison purpose, we consider the following classi ers:

DAES: The proposed distributed adaptive NN classi er in Algorithm 1 with an early stopping bound $n_1 N^{\frac{d}{2+d}}$;

DA: Modi ed Algorithm 1, where the early stopping bound is replaced by n_1 ;

DK The distributed NN classi er (Qiao et al., 2019) with $k_j = n_j N^{-\frac{d}{2+d}}$, j = m.

D1: The distributed 1-NN classi er by setting $k_1 = k_m = 1$ in (1).

For DK in the unequal splitting case, we use $k_j = n_j N^{\frac{d}{2+d}}$ for j=1 m, as suggested by our Theorem 2. Such a choice reduces to $k=nN^{\frac{d}{2+d}}$ when $n_1=n_m=n$, which is the choice adopted by Qiao et al. (2019). For each simulation run, the above four classi-ers are trained using m sub-samples to predict the label of a new feature \mathbf{x} randomly generated from the marginal distribution of \mathbf{X} . To evaluate the classi-cation accuracy, we treat the Bayesian classi-er $f(\mathbf{x}) = \mathbb{I}(\mathbf{x})$ 1 2) as the golden rule and calculate the percentage of times a classi-er gives the same prediction as the Bayesian classi-er. The average computation times (measured in second and taking log) of DA and DAES with di-erent—are also recorded. To investigate the role of the early stopping rule, we also compare the numbers of neighbor (k_1) chosen by DA and DAES. Summary statistics based on 200 simulation runs are reported in Figures 1-6.

First, Figures 1 and 2 suggest that the proposed DAES classifier has a better overall performance than DK. In particular, their classification accuracies are practically the same for 0.5, while the proposed DAES performs significantly better than DK when 0.3 and $\mathbf{X} = g_2(\mathbf{x})$, which demonstrates the benefits of searching for an optimal k using a data-driven Algorithm 1.

A second observation from Figures 1 and 2 is that the DAES classi er appears to be consistently inferior to the DA classi er. This highlights the importance of imposing an early stopping bound $n_1 N^{\frac{d}{2+d}}$ when searching for the optimal k_1 . This can be explained by the fact that searching for k_1 from 1 to n_1 may introduce too much uncertainty in the choice of k_1 (as well as other k_j s), which may, in turn, results in greater variability for the nal aggregated NN classi er. This explanation also can be supported by Figures 3-6. For example, Figure 3 shows that the k_1 chosen by DA is generally larger than that chosen by DAES. When = 0, DA could choose a k_1 larger than 10000 given N = 60000, which may increase a lot of uncertainty for classi cation.

Third, Figures Figures 1 and 2 also indicate that the proposed DAES classi er performs similarly to the D1 classi er when is large, supporting our theoretical ndings in Theorems 3-4. However, the D1 classi er performs much worse than the DAES classi er when is small, demonstrating the advantage of the proposed DAES classi er due to its adaptivity in choosing an optimal k_1 (as well as other k_i s).

Finally, Figures 1 and 2 show that for each different marginal distributions of \mathbf{X} , the DAES classifier outperforms the DA classifier in terms of computation time, both of which are U-shaped functions with respect to and attain the minimal when is around 0.5. For smallet, a large proportion of the computation time is spent on choosing k_1 and k_m . However, when is large, the main computational cost is to aggregate the sub-samples, resulting in increased run time as continues to increase. All numerical studies are conducted via High Performance Computing Center at Texas Tech University.

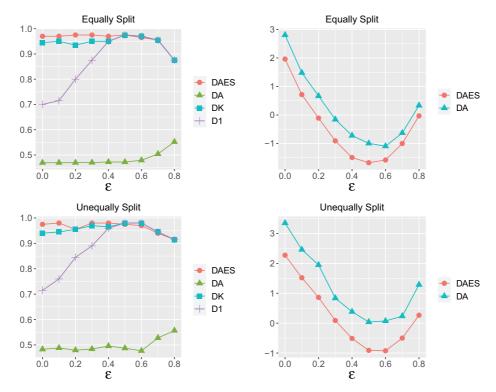


Fig. 1 Classification accuracy and computation time with $\mathbf{X} \sim g_1(\mathbf{x})$.

4.2 A Real Data Analysis

In this section, we apply the four classifiers in Section 4.1 to the adult income dataset from UCI Machine Learning Repository (Dua and Graff, 2017). The goal is predict whether a person makes over 50K a year. After removing missing values, we retain 32561 observations and use age, final weight, education, capital gain, capital loss and weekly working hours as the feature vector. The whole data is divided into a training dataset with 26049 observations (about 80%) and a testing dataset with sample size 6512 (about 20%). We use the same settings in Section 4.1 to evaluate the prediction error of the testing dataset. The results are summarized in Figure 7. Overall, our proposed algorithm DAES has the best performance under various choices of ϵ . Moreover, compared with DA, our estimator DAES significantly speeds up the computation when $\epsilon \leq 0.5$.

5 Conclusion

In this work, we study the binary classification problem in the big data setting, and propose a distributed adaptive NN classifier with the tuning parameter being selected by a data-driven criterion. Under mild conditions, we prove the proposed classifier

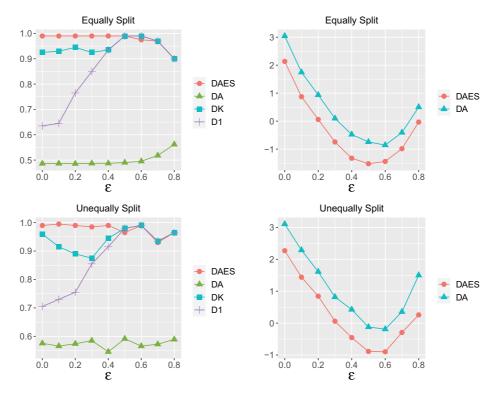
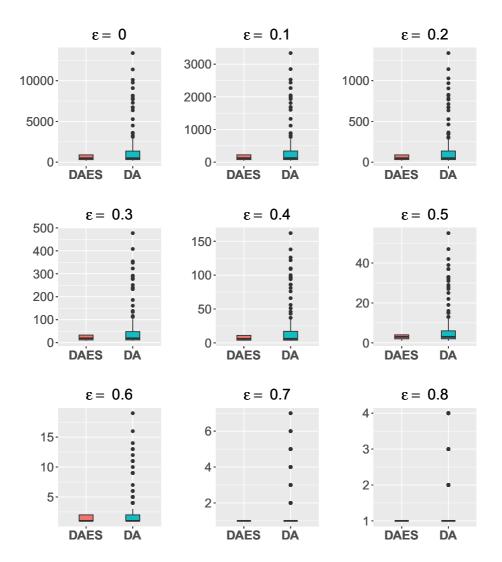
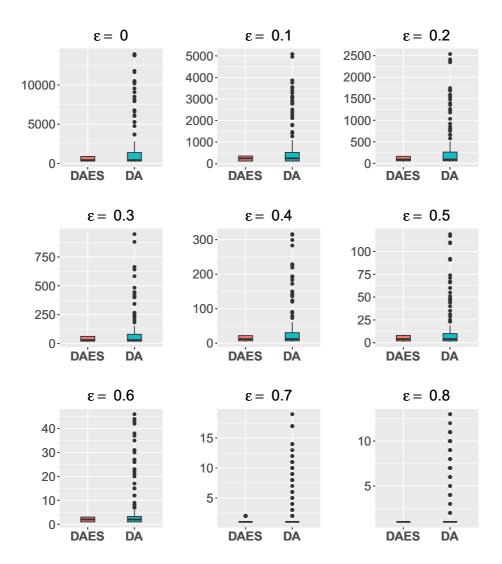
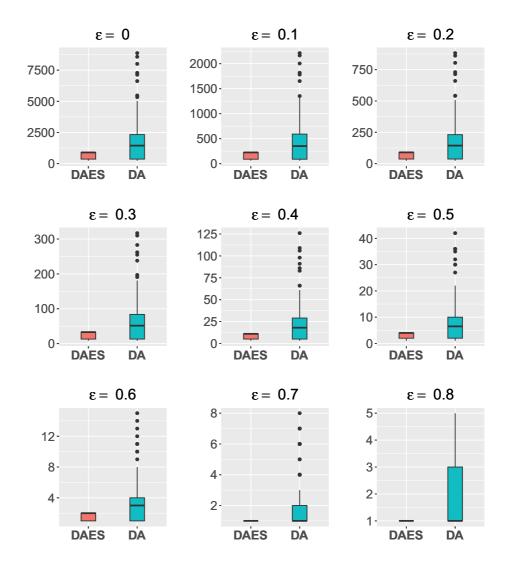
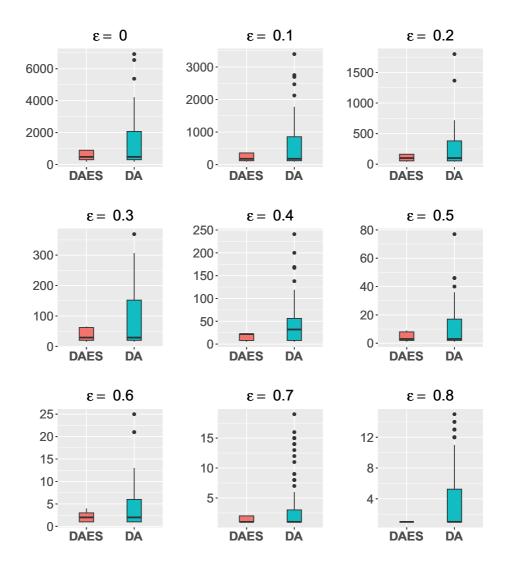



Fig. 2 Classification accuracy and computation time with $\mathbf{X} \sim g_2(\mathbf{x})$.

can achieve the minimax optimal rate of excess risk. Numerical results demonstrate its effectiveness and efficiency.

Fig. 3 Selected k_1 with $\mathbf{X} \sim g_1(\mathbf{x})$ and equally split sub-samples.

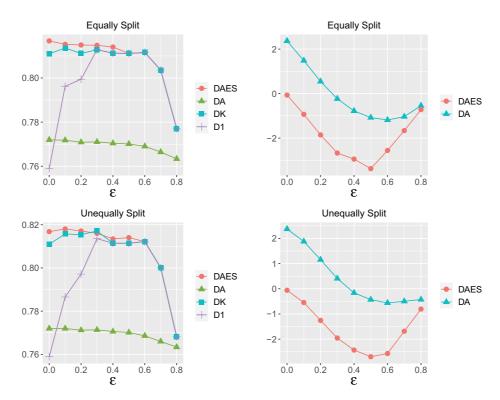

Fig. 4 Selected k_1 with $\mathbf{X} \sim g_1(\mathbf{x})$ and unequally split sub-samples.

Fig. 5 Selected k_1 with $\mathbf{X} \sim g_2(\mathbf{x})$ and equally split sub-samples.

Fig. 6 Selected k_1 with $\mathbf{X} \sim g_2(\mathbf{x})$ and unequally split sub-samples.

 ${\bf Fig.~7}~~{\bf Classification~accuracy~and~computation~time~for~adult~income~dataset}.$

Acknowledgments. The authors would like to express sincere appreciation to Editor Dr. Ricardo Henao and the two anonymous reviewers for their valuable and insightful comments.

Appendix A Mathematical Proofs

In this Appendix, we provide the mathematical proofs of the theorems and relevant lemmas.

We denote $\mathcal{X} = \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_N$ as the collection of all covariates. For $k_j = n_j$ with j = 1 m and 0 a < 1, we define events

$$E_j(k_j \ a) = X_{(k_j)}^j(\mathbf{x}) \quad \mathbf{x} \quad C_D \quad \frac{k_j}{n_j^{1-a}} \quad \text{for all } \mathbf{x}$$

and

$$E_P(k_1:k_m\ a) = \prod_{i=1}^m E_i(k_i\ a)$$

Sometime we may write $E_P(k_1 : k_m \ a)$ as E_P if there is no confusion in the context. By Lemma 2 below, it follows that

$$\mathbb{P}(E_P(k_1:k_m\ a)) \quad 1 \quad C_D = \frac{m}{i=1} \frac{n_j^{1-a}}{k_j} \exp(-n_j^a k_j \ 6)$$
(A1)

A1 Preliminary Lemmas

Lemma 2. There exist $C_D > 0$ such that for all $a = [0 \ 1)$, $k_j = 1$ n_j and j = 1 m, the following holds with probability at least $1 = C_D \frac{n_j^{1-a}}{k_j} e^{-n_j^a k_j - 6}$:

$$X_{(k_j)}^j(\mathbf{x}) \quad \mathbf{x} \quad C_D \quad \frac{k_j}{n_i^{1-a}} \quad \text{for all } \mathbf{x}$$

Moreover, with probability at least 1 $C_D \frac{n_j}{k_j} e^{-k_j-6}$, it also holds that

$$X_{(k_j)}^j(\mathbf{x}) \quad \mathbf{x} \quad \frac{1}{C_D} \quad \frac{k_j}{n_j} \quad \text{for all } \mathbf{x}$$

Proof. The proofs of the upper bound and lower bound are almost the same. In the following, we prove the upper bound. For simplicity, we will omit the index j.

Let $B(\mathbf{x} \ r)$ be the ball centered at \mathbf{x} with radius r. By Assumption A1, therefore we have

$$\mathbb{P}(\mathbf{X} \quad B(\mathbf{x} \ r)) = \frac{dP_{\mathbf{X}}(\mathbf{x})}{d}(\mathbf{x})d\mathbf{x} \quad c \quad (B(\mathbf{x} \ r))$$

$$c^2 (B(\mathbf{x} \ r)) = c^2 (B(0 \ 1))r^d$$

For simplicity, we denote $c=c^2$ $(B(0\ 1))$, so $\mathbb{P}(\mathbf{X}\ B(\mathbf{x}\ r))$ cr^d . Let $r=c_r(k\ n^1\ a)^{\frac{1}{d}}$ for some 0 a 1 and $c_r=(2\ c)^{\frac{1}{d}}$. Moreover, we de ne $S(\mathbf{x})=\sum_{i=1}^n \mathbb{I}(\mathbf{X}_i^j\ B(\mathbf{x}\ r))$ and W $Binomial(n\ cr^d)$. Hence, Bernstein's inequality implies that

$$\mathbb{P}(S(\mathbf{x}) < k) \quad \mathbb{P}(W < k) = \mathbb{P}(W \quad \mathbb{E}(W) \quad k \quad \mathbb{E}(W))$$

$$= \mathbb{P}(W \quad \mathbb{E}(W) < k \quad cnr^d)$$

$$= \mathbb{P}(W \quad \mathbb{E}(W) < k \quad cc_r^d n^a k)$$

$$= \mathbb{P} \quad W \quad \mathbb{E}(W) < k \quad 2n^a k$$

$$\mathbb{P} \quad W \quad \mathbb{E}(W) < \quad n^a k$$

$$\exp \quad \frac{3n^a k}{14} \quad \exp(\quad n^a k \quad 6)$$

where we use the fact that a=0. Let $\mathcal{B}=$ be a nite set such that $\mathbf{x}=\mathcal{B}(\mathbf{x}=r)$, and we can verify $\mathcal{B}=Cr^{-d}$ for some C>0. As a consequence, we have

$$\mathbb{P}(\mathbf{x} \quad \mathcal{B} \ S(\mathbf{x}) < k) \quad Cr^{-d} \exp(-n^a k \ 6) \quad Cc_r^{-d} \frac{n^{1-a}}{k} \exp(-n^a k \ 6)$$

For any \mathbf{x} , there is a \mathbf{x} \mathcal{B} such that \mathbf{x} \mathbf{x} 2r. Under the event $E_2 = \mathbf{x}$ \mathcal{B} $S(\mathbf{x})$ k, there are at least k covariates among \mathbf{X}_1^j \mathbf{X}_n^j in the ball $B(\mathbf{x} \ r)$, and thus there are at least k covariates among \mathbf{X}_1^j \mathbf{X}_n^j in the ball $B(\mathbf{x} \ 2r)$. Hence, we have

$$\mathbb{P}(\mathbf{x} \qquad \mathbf{X}_{(k)}^{j}(\mathbf{x}) \quad \mathbf{x} \quad 2r) \quad \mathbb{P}(E_{2}) \quad 1 \quad Cc_{r}^{d} \frac{n^{1-a}}{k} \exp(-n^{a}k + 6)$$

Lemma 3. Fixing $k_1 = 1$ n_1 and setting $k_j = k_1 n_j$ n_1 with j = 1 m, there exist c_b $C_b > 0$ free of k_j such that

$$\mathbb{E}(\begin{array}{ccc} \mathbb{E}(\begin{array}{ccc} k_{j} \ j(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & if \ f \ (\mathbf{x}) = 1 \\ \mathbb{E}(\begin{array}{ccc} k_{j} \ j(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & if \ f \ (\mathbf{x}) = 0 \end{array}$$

holds for all \mathbf{x} with (\mathbf{x}) $C_b \mathbf{X}_{(k_j)}^j(\mathbf{x}) \mathbf{x}$. Moreover, if $k_1 n_j$ n_1 for all j=1 m, then the following statements hold on event $E_P(k_1:k_m\ 0)$:

$$\mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b}(\mathbf{x}) & if \ f(\mathbf{x}) = 1 \\ \mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b}(\mathbf{x}) & if \ f(\mathbf{x}) = 0; \end{array}$$

for all \mathbf{x} with (\mathbf{x}) $C_b(k_1 \ n_1)^{\frac{1}{d}}$. In addition, if $k_1 = k_m = k$ and $k_1 = k_m = k$ and $k_2 = k_m = k$ and $k_3 = k_m = k$ and $k_4 = k_4$ and k_4

$$\mathbb{E}(\begin{array}{ccc} \mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & \textit{if } f \ (\mathbf{x}) = 1 \\ \mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & \textit{if } f \ (\mathbf{x}) = 0; \end{array}$$

for all \mathbf{x} with (\mathbf{x}) $C_b(k \ n^{1-a})^{\overline{a}}$.

Proof. Since $\mathbb{E}(Y_{(i)}^j(\mathbf{x}) \mathcal{X}) = (\mathbf{X}_{(i)}^j(\mathbf{x}))$, by Assumption A2, we show that

$$\mathbb{E}(k_{j}, j(\mathbf{x}), \mathcal{X}) \qquad (\mathbf{x}) = \frac{1}{k_{j}} \sum_{i=1}^{k_{j}} \left[\mathbb{E}(Y_{(i)}^{j}(\mathbf{x}), \mathcal{X}) - (\mathbf{x}) \right]$$

$$= \frac{1}{k_{j}} \sum_{i=1}^{k_{j}} \left[\mathbf{X}_{(i)}^{j}(\mathbf{x}) - (\mathbf{x}) \right]$$

$$= \frac{C}{k_{j}} \sum_{i=1}^{k_{j}} \mathbf{X}_{(i)}^{j}(\mathbf{x}) - \mathbf{x}$$

$$= \frac{C}{k_{j}} \mathbf{X}_{(k_{j})}^{j}(\mathbf{x}) - \mathbf{x}$$

Therefore, choosing C_b 2C and if (\mathbf{x}) C_b $\mathbf{X}^j_{(k_j)}(\mathbf{x})$ $\mathbf{x} = 2C$ $\mathbf{X}^j_{(k_j)}(\mathbf{x})$ \mathbf{x} and $f(\mathbf{x}) = 1$, then we have

$$\mathbb{E}(\begin{array}{cccc} \mathbf{E}(\begin{array}{cccc} k_{j} \ j(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} \end{array} & (\mathbf{x}) & \frac{1}{2} & \mathbb{E}(\begin{array}{cccc} k_{j} \ j(\mathbf{x}) \ \mathcal{X}) & (\mathbf{x}) \end{array}$$

$$(\mathbf{x}) & C & (\mathbf{X}_{(k_{j})}^{j}(\mathbf{x}) \ \mathbf{x} & \frac{1}{2} \ (\mathbf{x}) \end{array}$$

So the statement will hold for c_b 1 2 and C_b 2C . Similarly, we can prove the case when (\mathbf{x}) C_b $(\mathbf{X}^j_{(k_j)}(\mathbf{x})$ \mathbf{x} and $f(\mathbf{x})=0$. Consequently, on event $E_P(k_1:k_m\ 0)$, we have

$$\mathbb{E}(k_{1}:k_{m}(\mathbf{x})|\mathcal{X}) \qquad (\mathbf{x}) = \frac{1}{\frac{m}{j=1}k_{j}} \sum_{j=1}^{m} \sum_{i=1}^{k_{j}} \left[\mathbb{E}(Y_{(i)}^{j}(\mathbf{x})|\mathcal{X}) - (\mathbf{x}) \right]$$

$$= \frac{1}{\frac{m}{j=1}k_{j}} \sum_{j=1}^{m} \sum_{i=1}^{k_{j}} \left[(\mathbf{X}_{(i)}^{j}(\mathbf{x})) - (\mathbf{x}) \right]$$

$$= \frac{C}{\frac{m}{j=1}k_{j}} \sum_{j=1}^{m} \sum_{i=1}^{k_{j}} (\mathbf{X}_{(i)}^{j}(\mathbf{x}) - \mathbf{x}$$

$$= \frac{C}{\frac{m}{j=1}k_{j}} \sum_{j=1}^{m} k_{j} (\mathbf{X}_{(k_{j})}^{j}(\mathbf{x}) - \mathbf{x}$$

$$\frac{C C_D}{\sum_{j=1}^{m} k_j} \sum_{j=1}^{m} k_j \frac{k_j}{n_j}^{\overline{a}}$$

$$\frac{C C_D}{\sum_{j=1}^{m} k_j} \sum_{j=1}^{m} k_j \frac{2k_1}{n_1}^{\overline{a}} 2^{\overline{a}} C C_D \frac{k_1}{n_1}^{\overline{a}}$$

where the condition $k_j = k_1 n_j \ n_1 = 2k_1 n_j \ n_1$ is used. For $C_b = 2^{1+\frac{1}{a}}C \ C_D$ and \mathbf{x} such that $(\mathbf{x}) = C_b(k_1 \ n_1)^{\frac{1}{a}}, f(\mathbf{x}) = 1$, it holds that

Finally, choosing $c_b = C_b$ 2, we complete the proof of the second statement. Similarly, we can prove the case when $(\mathbf{x}) = C_b(k_1 \ n_1)^{\frac{1}{d}}$ and $f(\mathbf{x}) = 0$.

The proof of the third statement is similar to the second one. Hence, we omit it. \Box

Lemma 4. Let c_b and C_b be the constants in Lemma 3. Fixing $k_1 = 1$ n_1 and setting $k_j = k_1 n_j$ n_1 with j = 1 m, if $k_1 n_j$ n_1 for all j = 1 m, then the following holds on event $E_P(k_1 : k_m \ 0)$:

$$\mathbb{P}(f_{k_1:k_m}(\mathbf{x}) = f(\mathbf{x}) \mathcal{X}) \quad \exp \quad 2c_b^2 \int_{j=1}^m k_j^2(\mathbf{x})$$

for all \mathbf{x} with (\mathbf{x}) $C_b(k_1 \ n_1)^{\overline{a}}$. In addition, if $k_1 = k_m = k$ and $k_1 = k_m = k$ and $k_2 = k_m = k$ and $k_3 = k_m = k$ and $k_4 = k_4 = k_4$ and $k_4 =$

$$\mathbb{P}(f_{k_1:k_m}(\mathbf{x}) = f(\mathbf{x}) \mathcal{X}) \quad \exp \quad 2c_b^2 m k^{-2}(\mathbf{x})$$

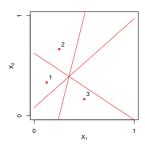
for all \mathbf{x} with (\mathbf{x}) $C_b(k \ n^{1-a})^{\frac{1}{d}}$.

Proof. Suppose $f(\mathbf{x}) = 1$ and (\mathbf{x}) $C_b(k_1 \ n_1)^{\frac{1}{d}}$. By Lemma 3, under event $E_P(k_1 : k_m \ 0)$, we have

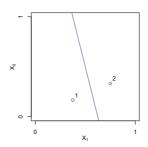
$$\mathbb{E} \quad _{k_1:k_m}(\mathbf{x}) \quad \frac{1}{2} \, \mathcal{X} \qquad c_b \, (\mathbf{x}) \tag{A1}$$

Furthermore, we observe the that

$$k_{1:k_{m}}(\mathbf{x}) = \frac{1}{\sum_{j=1}^{m} k_{j}} \sum_{j=1}^{m} \sum_{i=1}^{k_{j}} Y_{(i)}^{j}(\mathbf{x})$$


and $Y_{(1)}^1(\mathbf{x}) = Y_{(k_1)}^1(\mathbf{x}) = Y_{(1)}^m(\mathbf{x}) = Y_{(k_m)}^m(\mathbf{x})$ are independent conditional on \mathcal{X} . Hence, it follows form Hoe ding s inequality and (A1) that

$$\mathbb{P}(f_{k_1:k_m}(\mathbf{x}) = f_{-}(\mathbf{x}) \mathcal{X}) \\
= \mathbb{P}(f_{k_1:k_m}(\mathbf{x}) = 0 \mathcal{X}) \\
= \mathbb{P}_{-k_1:k_m}(\mathbf{x}) \quad \frac{1}{2} < 0 \mathcal{X} \\
= \mathbb{P}_{-k_1:k_m}(\mathbf{x}) \quad \mathbb{E}(_{-k_1:k_m}(\mathbf{x}) \mathcal{X}) < \mathbb{E}_{-k_1:k_m}(\mathbf{x}) \quad \frac{1}{2} \mathcal{X} \quad \mathcal{X} \\
\mathbb{P}_{-k_1:k_m}(\mathbf{x}) \quad \mathbb{E}(_{-k_1:k_m}(\mathbf{x}) \mathcal{X}) < c_b_{-}(\mathbf{x}) \mathcal{X} \\
\exp \quad 2c_b^2 \quad k_j^{-2}(\mathbf{x}) \\
= c_b \quad c$$


Using similar argument, we can prove the case when (\mathbf{x}) $C_b(k_1 \ n_1)^{\frac{1}{d}}$ and $f(\mathbf{x}) = 0$.

A2 Proof of Lemma 1

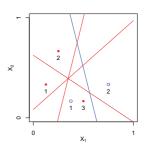

Let \mathcal{H} be the partition of $[0\ 1]^d$ induced by m_2^n hyperplanes defined as the perpendicular bisectors of each pair of points $(\mathbf{X}_s^j\ \mathbf{X}_p^j)$ for $1\ s < p$ n and j=1 m (see Figure 3 for the case with m=2 $k_1=3$ $k_2=2$). If \mathbf{x} and \mathbf{x} are in the same partition, then $A_{k_j\ j}(\mathbf{x})=A_{k_j\ j}(\mathbf{x})$ for all j=1 m (see Figures 1 and 2). As a consequence, the cardinality \mathcal{B} \mathcal{H} . Now consider \mathcal{H} to be the partition of $[0\ 1]^d$ induced by $\frac{N}{2}$ hyperplanes defined as the perpendicular bisectors of each pair of points $(\mathbf{X}\ \mathbf{X})$ with $\mathbf{X}=\mathbf{X}$. Then \mathcal{H} is a refined partition of \mathcal{H} , thus \mathcal{H} \mathcal{H} . Now by Lemma 3 in Jiang (2019), we have \mathcal{H} dN^d .

Fig. 1 The partition determining the possible sets of $A_{3,1}(\mathbf{x})$ for three points.

Fig. 2 The partition determining the possible sets of $A_{2,2}(\mathbf{x})$ for two points.

Fig. 3 The partition determining the possible sets of $A_{3,1}(\mathbf{x}) \times A_{2,2}(\mathbf{x})$.

A3 Proof of Theorem 1

In this Section, let us define set

$$\Gamma_m = \{(k_1, \dots, k_m) : k_j = \lceil k_1 n_j / n_1 \rceil, k_1 = 1, \dots, n_1, j = 1, \dots, m\}.$$

and quantity

$$\delta = C_{\delta}[N/\log(N)]^{-\frac{\beta}{2\beta+d}}$$

for some large enough constant C_{δ} . For $j=1,\ldots,m$, we denote the following random quantities:

$$k_j^{\text{opt}}(\mathbf{x}) = \max \left\{ k : \|\mathbf{X}_{(k)}^j(\mathbf{x}) - \mathbf{x}\| \le (C_b^{-1}\delta)^{\frac{1}{\beta}} \right\}.$$

For simplicity, we may write k_j^{opt} as $k_j^{\text{opt}}(\mathbf{x})$ during the proof, if there is no confusion in the context. Define event E_A that (A3) holds for all $\mathbf{x} \in [0,1]^d$ and all $(k_1,\ldots,k_m) \in \Gamma_m$. Then by Lemma 5, we have

$$\mathbb{P}(E_A) \ge 1 - dN^{-1} \tag{A2}$$

Lemma 5. For any $\epsilon > 0$, with probability at least $1 - \tau$, the following holds:

$$\left|\widehat{\eta}_{k_1:k_m}(\mathbf{x}) - \mathbb{E}(\widehat{\eta}_{k_1:k_m}(\mathbf{x})|\mathcal{X})\right| \leq \sqrt{\frac{(d+1)\log(N) - \log(\tau/d)}{2\sum_{j=1}^m k_j}},$$

for all $\mathbf{x} \in [0,1]^d$ and all $(k_1,\ldots,k_m) \in \Gamma_m$. As a consequence, choosing $\tau = dN^{-1}$, the following holds with probability at least $1 - dN^{-1}$:

$$\left|\widehat{\eta}_{k_1:k_m}(\mathbf{x}) - \mathbb{E}(\widehat{\eta}_{k_1:k_m}(\mathbf{x})|\mathcal{X})\right| \le \sqrt{\frac{(d+2)\log(N)}{2\sum_{j=1}^m k_m}},\tag{A3}$$

for all $\mathbf{x} \in [0,1]^d$ and all $(k_1,\ldots,k_m) \in \Gamma_m$.

Proof. Notice that $k_1:k_m(\mathbf{x}) = \frac{1}{\frac{m}{j=1}k_j} \sum_{j=1}^m k_j Y_{(i)}^j(\mathbf{x})$, and $Y_{(1)}^1(\mathbf{x}) Y_{(k_1)}^1(\mathbf{x})$ $Y_{(k_m)}^m(\mathbf{x})$ are independent conditional on \mathcal{X} . Therefore, Hoe ding s inequality implies that

$$\mathbb{P} \quad _{k_1:k_m}(\mathbf{x}) \quad \mathbb{E}(_{k_1:k_m}(\mathbf{x}) \ \mathcal{X}) > t \ \mathcal{X} \qquad \exp(_{i=1}^{m} k)$$

Conditioning on \mathcal{X} , for xed $(k_1 \quad k_m) \quad ?_m$, when **x** is running over $[0 \ 1]^d$, then by Lemma 1, there are at most dN^d di erent choices of $Y^1_{(1)}(\mathbf{x}) \qquad Y^1_{(k_1)}(\mathbf{x})$ $Y^m_{(1)}(\mathbf{x}) \qquad Y^m_{(k_m)}(\mathbf{x})$. Therefore, it follows that

$$\mathbb{P}$$
 x $[0\ 1]^d$ such that $k_1:k_m(\mathbf{x})$ $\mathbb{E}(k_1:k_m(\mathbf{x}) \mathcal{X}) > t \mathcal{X}$ $dN^d \exp 2t^2 k_{j=1}$

which further implies that

$$\mathbb{P} (k_1 \quad k_m) ?_m \mathbf{x} [0 \ 1]^d \text{ such that } k_1 : k_m(\mathbf{x}) \mathbb{E}(k_1 : k_m(\mathbf{x}) \mathcal{X}) > t \mathcal{X}$$

$$dn_1 N^d \exp 2t^2 k_j \quad d \exp 2t^2 k_j + (d+1)\log(N)$$

Plug in $t=\frac{\overline{(d+1)\log(N)\log(-d)}}{2^{\frac{m}{j-1}k_j}}$ into above inequality and take expectation, we complete the proof.

Lemma 6. If (\mathbf{x}) and $k = k_j^{opt}(\mathbf{x})$, then it holds that

$$\begin{array}{lll} \mathbb{E}(\ _{k\ j}(\mathbf{x})\ \mathcal{X}) & \frac{1}{2} & c_{b}\ (\mathbf{x}) & \textit{if}\ f\ (\mathbf{x}) = 1 \\ \mathbb{E}(\ _{k\ j}(\mathbf{x})\ \mathcal{X}) & \frac{1}{2} & c_{b}\ (\mathbf{x}) & \textit{if}\ f\ (\mathbf{x}) = 0 \end{array}$$

As a consequence, if (\mathbf{x}) and k_j $k_j^{opt}(\mathbf{x})$ for all j=1 m, then the following holds:

$$\mathbb{E}(\begin{array}{ccc} \mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & \textit{if } f \ (\mathbf{x}) = 1 \\ \mathbb{E}(\begin{array}{ccc} k_{1}:k_{m}(\mathbf{x}) \ \mathcal{X}) & \frac{1}{2} & c_{b} \ (\mathbf{x}) & \textit{if } f \ (\mathbf{x}) = 0 \end{array}$$

Proof. For $k = k^{\text{opt}}$, we have

$$X_{(k)}^{j}(\mathbf{x}) \quad \mathbf{x} \qquad X_{(k_{j}^{\mathrm{opt}})}^{j}(\mathbf{x}) \quad \mathbf{x} \qquad (C_{b}^{-1}_{})^{\frac{1}{2}}$$

which further implies that (\mathbf{x}) $C_b \mathbf{X}^j_{(k)}(\mathbf{x}) \mathbf{x}$. Applying Lemma 3, we complete the proof of $\$ rst statement. The second statement follows from the de $\$ nition that $\ _{k_1:k_m}(\mathbf{x}) = \ _{j=1}^m k_j \ _{k_j}(\mathbf{x}) \ (\ _{j=1}^m k_j).$

Lemma 7. Under event E_A , if (\mathbf{x}) and $k_j(\mathbf{x})$ $k_j^{opt}(\mathbf{x})$ for all j=1 m, then $f_{k:k_m}(\mathbf{x}) = f(\mathbf{x})$.

Proof. By de nition of k_1 k_m , we have

$$_{k_1:k_m}(\mathbf{x}) \quad 1 \ 2 > \quad \frac{\overline{(d+2)\log(N)}}{2 \ \ \frac{m}{j=1} k_j}$$

On event E_A , it follows that

$$_{k_1:k_m}(\mathbf{x}) \quad \mathbb{E}(_{k_1:k_m}(\mathbf{x}) \ \mathcal{X}) \qquad \overline{\frac{(d+2)\log(N)}{2 \quad \prod\limits_{j=1}^{m} k_j}}$$

Combining above, we conclude that

$$_{k_1:k_m}(\mathbf{x})$$
 1 2 > $_{k_1:k_m}(\mathbf{x})$ 1 2 $\mathbb{E}(_{k_1:k_m}(\mathbf{x}) \mathcal{X})$ 1 2

which further implies that

$$sign_{k_1:k_m}(\mathbf{x})$$
 1 2 = $sign \mathbb{E}(_{k_1:k_m}(\mathbf{x}) \mathcal{X})$ 1 2

for all \mathbf{x} with (\mathbf{x}) on event E_A . Finally, by Lemma 6 and above equation, on event E_A , if (\mathbf{x}) and $k_j(\mathbf{x})$ $k_j^{\text{opt}}(\mathbf{x})$ for all j=1 m, then

$$sign_{k_1:k_m}(\mathbf{x})$$
 1 2 = 1 if $f(\mathbf{x}) = 1$
1 if $f(\mathbf{x}) = 0$

which completes the proof by noticing that $f_{k_1:k_m} = \mathbb{I}(\ _{k_1:k_m}(\mathbf{x}) \ 1 \ 2).$

We are ready to prove Theorem 1. Let us de ne the deterministic integers

$$k_j = \ \frac{1}{2} n_j C_D{}^d C_b{}^{\frac{d}{d}} \quad k \ = \ n_j C_D^d C_b{}^{\frac{d}{d}}$$

and events

$$E = \mathbf{X}_{(k_j)}^j(\mathbf{x}) \quad \mathbf{x} \quad C_D \quad \frac{k_j}{n_j} \quad \text{for all } \mathbf{x} \quad \text{and } j = 1 \quad m$$

and

$$E = \mathbf{X}_{(k_j)}^j(\mathbf{x}) \quad \mathbf{x} \quad \frac{1}{C_D} \frac{k_j}{n_j} \stackrel{\frac{1}{d}}{} \text{ for all } \mathbf{x} \quad \text{and } j = 1 \quad m$$

Since $1 > \frac{d}{2+d}$, so $n_j \stackrel{d}{=} C^{\frac{d}{n_j}N^{-\frac{d}{2+d}}}[\log(N)]^{\frac{d}{2+d}}$ $C^{\frac{d}{N}1} = C^{\frac{d}{2+d}}[\log(N)]^{\frac{d}{2+d}}$ is diverging. Without loss of generality, we may assume $k_j = 1$ and $k_j = 1$. On event E, it follows from the definition of k_j^{opt} that

$$\mathbf{X}_{(k_j)}^{j}(\mathbf{x}) \quad \mathbf{x} \quad C_D \quad \frac{k_j}{n_j} \quad C_D \quad \frac{n_j C_D{}^d C_b{}^{\frac{d}{d} - \frac{d}{d}}}{n_j}$$

$$(C_b{}^1)^{\frac{1}{d}} < X_{(k_i^{\text{opt}} + 1)}^{j}(\mathbf{x}) \quad \mathbf{x}$$

which further implies that

$$k_j^{\text{opt}}(\mathbf{x}) \quad k_j \quad \frac{1}{2} n_j C_D^{d} C_b^{d} \quad \text{for all } \mathbf{x} \quad \text{and } j = 1 \quad m$$
 (A4)

Moreover, on event E , it also holds that

$$\begin{split} \mathbf{X}_{(k_j)}^j \quad \mathbf{x} \quad & \frac{1}{C_D} \quad \frac{k_j}{n_j} \quad \frac{\frac{1}{d}}{C_D} \quad \frac{n_j C_D^d C_b^{\frac{d}{d} - \frac{d}{d}}}{n_j} \quad \frac{\frac{1}{d}}{\mathbf{x}} \\ & = \left(C_b^{-1} \ \right)^{\frac{1}{d}} \quad & \mathbf{X}_{(k_i^{\mathrm{opt}})}^j \quad \mathbf{x} \end{split}$$

where the last equation follows from the de nition of k_j^{opt} . Above inequality implies that

$$k_j^{\text{opt}}(\mathbf{x}) \quad k_j \quad n_j C_D^d C_b^{\frac{d}{d}}$$
 (A5)

for all ${\bf x}$ and j=1 m Combining (A4) and (A5), we conclude that on event E E , the following holds:

$$\frac{1}{2}n_j C_D{}^d C_b{}^{\underline{d}\underline{d}\underline{d}} \qquad k_j^{\text{opt}}(\mathbf{x}) \qquad n_j C_D^{\underline{d}} C_b{}^{\underline{d}\underline{d}\underline{d}} \tag{A6}$$

for all \mathbf{x} and j=1 m If we de ne $k_1^{\min}=\min k_1^{\text{opt}} k_2^{\text{opt}} n_1 \ n_2$ $k_m^{\text{opt}} n_1 \ n_m$ and $k_j^{\min}=k_1^{\min} n_j \ n_1$, then we can show that

$$k_j^{\min} = \frac{k_1^{\text{opt}} n_j}{n_1} \frac{k_j^{\text{opt}} n_1 n_j}{n_j n_1} = k_j^{\text{opt}} = k_j^{\text{opt}}$$
 (A7)

Hence, by (A6), it holds on event E = E that

$$\frac{1}{4} n_j C_D^{\ d} C_b^{\ d} = k_j^{\min}(\mathbf{x}) = 2 n_j C_D^{\ d} C_b^{\ d} = \frac{d}{a}$$
(A8)

for all \mathbf{x} and j=1 m By denition, it follows that $k_j^{\min}(\mathbf{x})$ k_j^{opt} . So under event E (a) E, for all \mathbf{x} with (\mathbf{x}) and f $(\mathbf{x})=1$, Lemma 6 and (A8) together imply that

where the last inequality follows if we choose C large. By above inequality, on event E_A E E, for all \mathbf{x} with (\mathbf{x}) and f $(\mathbf{x}) = 1$, it follows that

$$\frac{m}{k_{j}^{\min}} \mathbb{E}\left(k_{1}^{\min}:k_{1}^{\min}(\mathbf{x}) \mathcal{X}\right) = \frac{1}{2}$$

$$\frac{m}{m}$$

$$k_{j}^{\min} \mathbb{E}\left(k_{1}^{\min}:k_{m}^{\min}(\mathbf{x}) \mathcal{X}\right) = \frac{1}{2}$$

$$\frac{m}{m}$$

$$k_{j}^{\min} k_{1}^{\min}:k_{m}^{\min}(\mathbf{x}) \mathbb{E}\left(k_{1}^{\min}:k_{m}^{\min}(\mathbf{x}) \mathcal{X}\right)$$

$$\frac{m}{j=1}$$

$$\frac{m}{m}$$

$$k_{j}^{\min} k_{1}^{\min}:k_{m}^{\min}(\mathbf{x}) \mathbb{E}\left(k_{1}^{\min}:k_{m}^{\min}(\mathbf{x}) \mathcal{X}\right)$$

$$\frac{m}{m}$$

Similarly, on event E_A E E , for all \mathbf{x} with (\mathbf{x}) and f $(\mathbf{x}) = 0$, we can show that

$$k_j^{\min} k_j^{\min} \mathbb{E}(k_1^{\min}:k_1^{\min}(\mathbf{x}) \mathcal{X}) \frac{1}{2} < \frac{(d+2)\log(N)}{2}$$

Therefore, we prove that on event $E_A - E - E$, the following holds:

$$\begin{array}{ccc}
 & & \\
 & k_j^{\min} & k_1^{\min} : k_m^{\min} (\mathbf{x}) & \frac{1}{2} > & \frac{(d+2)\log(N)}{2} \\
 & & & & & & & & \\
\end{array} \tag{A9}$$

for all \mathbf{x} with (\mathbf{x}) Now by (A8), on event E_A E E, we have

for all ${\bf x}$ with $({\bf x})$ and su ciently large N. In the following, we will calculate the probability of E_A E E . Since d, it follows that

$$\frac{(1+)}{2+d} = \frac{+}{2+d} \quad \frac{+d}{2+d} < 1$$

Using the inequality above and (A2), it follows that

$$\mathbb{P}(E_A)$$
 1 dN^{-1} 1 dC^{1+} $N^{-\frac{(1+)}{2+d}}[\log(N)]^{\frac{(1+)}{2+d}} = 1$ d^{-1+}

for su ciently large N. Moreover, by Lemma 2, (A4) and (A5), it follows that

$$\mathbb{P}(E) = 1 - C_D \frac{n_j}{k_j} \exp(-k_j - 6)$$

$$1 - C_D N \exp - \frac{n_j}{12C_D^d C_b^d}$$

$$1 - C_D N \exp - \frac{1}{12C_D^d C_b^d} N^1 - N \log(N)$$

$$= 1 - C_D N \exp - \frac{1}{12C_D^d C_b^d} N^1 - \frac{d}{2+d} [\log(N)]^{\frac{d}{2+d}}$$

where we use the fact that $1 > d \ (2 + d)$. Similarly, we can show that $\mathbb{P}(E)$ 1 1 + d. Combining above, we show that

$$\mathbb{P}(E_A \quad E \quad E \quad) \quad 1 \quad \mathbb{P}(E_A) \quad \mathbb{P}(E \quad) \quad \mathbb{P}(E \quad) \quad 1 \quad ^{1+} \tag{A11}$$

By (A7), (A9) and the de nition of $k_1(\mathbf{x})$ $k_m(\mathbf{x})$, the following holds on event E_A E E:

$$k_j(\mathbf{x}) \quad k_j^{\min}(\mathbf{x}) \quad k_j^{opt}(\mathbf{x})$$
 (A12)

for all \mathbf{x} with (\mathbf{x}) and j=1 m By (A10), (A12) and Lemma 7, we can see, it holds on event E_A E E that:

$$f_{k_1:k_m}(\mathbf{x}) = f(\mathbf{x}) \quad \text{and} \quad k_1(\mathbf{x}) \quad n_1 N^{\frac{d}{2+d}} \log(N)$$
 (A13)

for all ${\bf x}$ with ${\bf (x)}$ By (A13), on event E_A E E, $f_{k_1:k_m}({\bf X})=f$ (${\bf X}$) implies (x)<. As a consequence of (A11) and Assumption A3, we have

$$\begin{split} &\mathcal{R}(f_{k_1:k_m})\\ &= \mathbb{E}(\ (\mathbf{X})\mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f\ (\mathbf{X})))\\ &\mathbb{E}(\ (\mathbf{X})\mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f\ (\mathbf{X})\ E_A \quad E \quad E\)) + \mathbb{P}((E_A \quad E \quad E\)^c)\\ &= \mathbb{E}(\ (\mathbf{X})\mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f\ (\mathbf{X})\ E_A \quad E \quad E\ (\mathbf{X}) <\)) + \mathbb{P}((E_A \quad E \quad E\)^c)\\ &\mathbb{P}(\ (\mathbf{X}) <\) + \ ^{1+}\\ &^{1+} \end{split} \tag{A14}$$

A4 Proof of Theorem 2

By the conditions given, we have k_1 $n_1N^{\frac{d}{2+d}}$ $N^1^{\frac{d}{2+d}}=N^{\frac{2}{2+d}}$ and k_1n_j n_1 $n_jN^{\frac{d}{2+d}}$ $N^1^{\frac{d}{2+d}}=N^{\frac{2}{2+d}}$. Without loss of generality, we assume k_1n_j n_1 1 for all j=1 m. Let C large enough constant such that =C $(k_1$ $n_1)^{\frac{d}{d}}$ $C_b(k_1$ $n_1)^{\frac{d}{d}}$. We further de ne sets $A_0=\mathbf{x}:(\mathbf{x})$ 1 2 and $A_j=\mathbf{x}:2^{j-1}<(\mathbf{x})$ 1 2 2^j for j 1. For simplicity, let us write $E_P(k_1:k_m\ 0)$ as E_P and $\sum_{j=1}^m k_j$ m as k. If j=0, then Assumption A3 shows that

$$\mathbb{E}$$
 2 (**X**) 1 $\mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f(\mathbf{X}))\mathbb{I}(\mathbf{X} A_0 E_P)$ 2 $\mathbb{P}(\mathbf{X} A_0)$

2C ¹⁺

If i=1, Assumption A3 and Lemma 4 imply that

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E_P)$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \mathbb{P}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X}) \, \mathbf{X} \quad \mathcal{X})$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad 2c_b^2 m k^{-2}(\mathbf{x})$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad 2c_b^2 m k 4^{j-1-2}$$

By conditions given, it follows that

$$mk = \sum_{j=1}^{m} k_j$$
 $\sum_{j=1}^{m} \frac{k_1 n_j}{n_1}$ $\sum_{j=1}^{m} n_j N^{-\frac{d}{2+d}} = N^{\frac{2}{2+d}}$

and $= C (k_1 \ n_1)^{\overline{d}} C N^{\overline{2+d}}$. Therefore, it follows that

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E_P)$$

$$2^{j+1} \, \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad \frac{1}{2} c_b^2 C^2 4^j N^{\frac{2}{2} + d} N^{-\frac{2}{2} + d}$$

$$2^{j+1} \, \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad \frac{1}{2} c_b^2 C^2 4^j$$

$$2^{j+1} \, \mathbb{P}(\mathbf{X} \quad A_j) \exp \qquad \frac{1}{2} c_b^2 C^2 4^j$$

$$2^{j+1} \, C \quad (2^j) \, \exp \qquad \frac{1}{2} c_b^2 C^2 4^j$$

$$2^{j+1} C (2^{j}) \exp \frac{1}{2} c_b^2 C^2 4^{j}$$

 $2C^{-1+} 2^{j(1+)} \exp \frac{1}{2} c_b^2 C^2 4^{j}$

Taking summation ans using the fact that j=1 $b^j \exp(-c4^j) < -c$ for all b c > 0, we have

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E_P)$$

$$2C \quad {}^{1+} \quad 2^{j(1+)} \exp \quad \frac{1}{2} c_b^2 C^2 4^j \quad {}^{1+}$$

Combining the bounds above, it follows that

$$\mathcal{R}(f_{k_1:k_m}) = \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X}))$$

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X}) \, E_P^c)$$

$$+ \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X}) \, \mathbf{X} \quad A_0 \, E_P)$$

$$+ \quad \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_{k_1:k_m}(\mathbf{X}) = f \quad (\mathbf{X}) \, \mathbf{X} \quad A_j \, E_P)$$

$$\stackrel{j=1}{\mathbb{P}(E_P^c)} + \stackrel{1+}{\mathbb{P}(E_P^c)} + N \quad \stackrel{(1+)}{\mathbb{P}(E_P^c)} + N \quad$$

By (A1) and the fact that $k_j = k_1 n_j \ n_1 = n_j N^{-\frac{d}{2+d}} = N^1 = N^{\frac{d}{2+d}} = N^{\frac{2}{2+d}}$, it yields that

$$\mathbb{P}(E_P^c) \quad C_D = \frac{n_j}{k_j} \exp(-k_j - 6) \quad N = \frac{(1+-1)^{-1}}{d}$$

Combining the above two inequalities, we complete the proof.

A5 Proof of Theorem 3

In this section, we consider the equal-size sub-samples. For simplicity, let us assume $n_1==n_m=n=N^1$ and m=N n=N. Notice that $k_1==k_m$ in this setting, so we rewrite $k_1:k_m$ as k and $k_1:k_m$ as k and $k_1:k_m$ as k and k if k if

$$v := v (a) = \frac{(1)(1)(1)}{d}$$
 if $\frac{2}{2+d} < a < 1$

and

$$= C [N \log(N)]^{v}$$

$$k_j^{\text{opt}}(\mathbf{x}) = \max \ k: \ \mathbf{X}_{(k)}^j(\mathbf{x}) \ \mathbf{x} \ (C_b^{-1})^{\frac{1}{2}}$$

For simplicity, we may write v as v (a) and k_j^{opt} as $k_j^{\text{opt}}(\mathbf{x})$ during the proof, if there is no confusion in the context. Clearly, Lemmas 6 and 7 are still valid under the new and $k_j^{\text{opt}}(\mathbf{x})$.

new and $k_j^{\text{opt}}(\mathbf{x})$. **Lemma 8.** Suppose $\frac{2}{2+d}$ $\frac{2}{2+d}$, then there exists a constant c>0 such that the following holds

$$\mathcal{R}(f_k) \qquad N \, \log(N) \qquad \frac{\frac{(1 \quad)}{d}}{[\log(N)]}$$

for some > 0 depending on d

Proof. For xed(a), we de ne the deterministic integers

$$k \ = \ \frac{1}{2} n^1 \ ^a C_D{}^d C_b{}^{\frac{d}{-d}} \qquad k \ = \ n C_D^d C_b{}^{\frac{d}{-d}}$$

and events

$$E(a) = \mathbf{X}_{(k)}^{j}(\mathbf{x}) \quad \mathbf{x} \quad C_{D} \quad \frac{k}{n^{1-a}} \quad \text{for all } \mathbf{x} \quad \text{and } j = 1 \quad m$$

and

$$E = \mathbf{X}_{(k)}^{j}(\mathbf{x}) \quad \mathbf{x} \quad \frac{1}{C_D} \frac{k}{n}$$
 for all \mathbf{x} and $j = 1$ m

By the de nition of v, for any (a), we can verify that $(1)(1 \ a) \ v \ d$ and $n^{1-a-\frac{d}{a}} = C^{\frac{d}{a}} n^{1-a} N^{-\frac{v-d}{a}} [\log(N)]^{\frac{v-d}{a}} = C^{\frac{d}{a}} N^{(1-)(1-a)-\frac{v-d}{a}} [\log(N)]^{\frac{v-d}{a}}$ is diverging. Consequently, we may assume k-1 and k-1. On event E (a), it follows from the de nition of k_i^{opt} that

$$\mathbf{X}_{(k_{-})}^{j}(\mathbf{x}) \quad \mathbf{x} \qquad C_{D} \quad \frac{k}{n^{1-a}} \quad \frac{\frac{1}{d}}{} \qquad C_{D} \quad \frac{n^{1-a}C_{D}^{d}C_{b}^{d} - \frac{1}{d}}{n^{1-a}} \quad (C_{b}^{-1})^{\frac{1}{2}} < X_{(k_{j}^{\mathrm{opt}}+1)}^{j}(\mathbf{x}) \quad \mathbf{x}$$

which further implies that

$$k_j^{\text{opt}}(\mathbf{x}) \quad k \quad \frac{1}{2} n^1 \, {}^a C_D^{d} C_b^{d}$$
 (A15)

for all ${f x}$ and j=1 m Moreover, on event E , it also holds that

$$\mathbf{X}_{(k_j)}^j \quad \mathbf{x} \qquad \frac{1}{C_D} \quad \frac{k}{n} \qquad \left(C_b^{-1}\right)^{\underline{1}} \qquad X_{(k_j^{\mathrm{opt}})}^j \quad \mathbf{x}$$

where the last equation follows from the de nition of k_j^{opt} . Above inequality implies that

$$k_j^{\text{opt}}(\mathbf{x}) \quad k \quad nC_D^d C_b^{\frac{d}{d} - \frac{d}{d}}$$
 (A16)

for all \mathbf{x} and j=1 m Combining (A15) and (A16), we conclude that on event E (a) E, the following holds:

$$\frac{1}{2}n^{1-a}C_D{}^dC_b \stackrel{d-d}{=} k_j^{\text{opt}}(\mathbf{x}) \quad nC_D^dC_b \stackrel{d-d}{=} \text{ for all } \mathbf{x} \qquad \text{and } j = 1 \qquad m$$
(A17)

De ne $k^{\min}=\min~k_1^{\text{opt}}~k_2^{\text{opt}}~k_m^{\text{opt}}$. Hence, by (A17), it holds on event E~(a) E~ that

Since $k_j^{\min}(\mathbf{x}) = k_j^{\text{opt}}$, so under event E (a) E, for all \mathbf{x} with $\mathbf{(x)}$ and f (\mathbf{x}) = 1, Lemma 6 and (A18) together imply that

$$\overline{mk^{\min}} \quad \mathbb{E}(\ _{k^{\min}}(\mathbf{x}) \ \mathcal{X}) \quad \frac{1}{2}$$

$$\overline{\frac{1}{2}mn^{1}} \quad {}^{a}C_{D}^{\ d}C_{b}^{\ d} \quad \overline{m^{a}N^{1}} \quad {}^{a} \stackrel{\underline{d}}{=} ^{+2}$$

$$= \quad \overline{\frac{1}{2}c_{b}^{2}C_{D}^{\ d}C_{b}^{\ d} \quad C^{\frac{2}{2} + d}} \quad N \quad aN^{1} \quad a \quad N \log(N)$$

$$\frac{v(2+d)}{d} = \frac{(1)(1-a)(2+d)}{d}$$
 1 a

Combining the above two inequalities, we have

$$\overline{mk^{\min}} \ \mathbb{E}(\ _{k^{\min}}(\mathbf{x}) \ \mathcal{X}) \ \frac{1}{2}$$

$$\overline{\frac{1}{2}c_b^2C_D{}^dC_b}^{\frac{d}{2}} C^{\frac{2+d}{2}} } \ \overline{N \ N \log(N)} \ \text{if} \ < \frac{2}{2+d} \ a = 1$$

$$\overline{\frac{1}{2}c_b^2C_D{}^dC_b}^{\frac{d}{2}} C^{\frac{2+d}{2}} \ \overline{N \ ^aN^1 \ ^a \ N \log(N)} \ \text{if} \ \frac{2}{2+d} \ a > 0$$

$$3 \ \overline{\frac{(d+2)\log(N)}{2}}$$

where the last inequality follows if we choose C large. By above inequality, on event E_A E (a) E, for all \mathbf{x} with (\mathbf{x}) and f $(\mathbf{x}) = 1$, it follows that

$$\overline{mk^{\min}} \quad {}_{k^{\min}}(\mathbf{x}) \quad \frac{1}{2}$$

$$\overline{mk^{\min}} \quad \mathbb{E}({}_{k^{\min}}(\mathbf{x}) \, \mathcal{X}) \quad \frac{1}{2} \quad \overline{mk^{\min}} \quad {}_{k^{\min}}(\mathbf{x}) \quad \mathbb{E}({}_{k^{\min}}(\mathbf{x}) \, \mathcal{X})$$

$$3 \quad \overline{\frac{(d+2)\log(N)}{2}}$$

$$> \quad \overline{\frac{(d+2)\log(N)}{2}}$$

Similarly, on event E_A E (a) E , for all \mathbf{x} with (\mathbf{x}) and f $(\mathbf{x}) = 0$, we can show that

$$\overline{mk^{\min}} \quad \ _{k^{\min}}(\mathbf{x}) \quad \frac{1}{2} \quad < \qquad \overline{\frac{(d+2)\log(N)}{2}}$$

Therefore, we prove that on event $E_A - E$ (a) E, the following holds:

$$\overline{mk^{\min}}_{k^{\min}}(\mathbf{x}) = \frac{1}{2} > \frac{\overline{(d+2)\log(N)}}{2} \text{ for all } \mathbf{x} \text{ with } (\mathbf{x})$$
 (A19)

Now by (A18) and the de nition of v, on event $E_A - E$ (a) E, we have

$$\begin{split} k^{\min}(\mathbf{x}) &\quad nC_D^d C_b \overset{d}{=} \overset{d}{=} \\ &= C_D^d C_b \overset{d}{=} C \overset{d}{=} n \quad N \ \log(N) \\ &\quad C_D^{d} C_b \overset{d}{=} C \overset{d}{=} n N \overset{(1-)(1-a)}{=} \log(N) \quad \text{if} \qquad \frac{2}{2+d} \ 0 < a < 1 \end{split}$$

(A20)

for all \mathbf{x} with (\mathbf{x}) . In the following, we will calculate the probability of E_A E (a) E . Since d by Assumption A3, it follows that

$$v (1 +) = \frac{(1)(1 a) (1 +)}{d} \frac{(1 a) (1 +)}{2 + d} \frac{(1 +)}{2 + d} = \frac{+}{2 + d} \frac{+d}{2 + d} < 1$$

Using the inequality above and (A2), it follows that

$$\mathbb{P}(E_A)$$
 1 dN^{-1} 1 $dC^{1+} N^{-v-(1+-)}[\log(N)]^{v-(1+-)} = 1$ d^{-1+}

for su $% \left(1\right) =0$ ciently large N. Moreover, by Lemma 2 and the de nition of E $\left(a\right)$ E , it follows that

$$\mathbb{P}(E\ (a)) \qquad 1 \qquad C_D \frac{mn^{1-a}}{k} \exp(-n^a k - 6)$$

$$1 \qquad C_D N \exp \qquad \frac{n^{-\frac{d}{a}}}{12C_D^d C_b^{-\frac{d}{a}}}$$

$$= 1 \qquad C_D N \exp \qquad \frac{1}{12C_D^d C_b^{-\frac{d}{a}}} N^1 \qquad N \log(N)$$

$$= 1 \qquad C_D N \exp \qquad \frac{1}{12C_D^d C_b^{-\frac{d}{a}}} N^{(1-)a} [\log(N)]^{(1-)(1-a)}$$

and

$$\begin{split} \mathbb{P}(E \) &= 1 \quad C_D \frac{mn}{k} \exp(-k - 6) \\ & 1 \quad C_D N \exp \qquad \frac{1}{12 C_D{}^d C_b^{\frac{d}{b}}} n^{-\frac{d}{a}} \\ & 1 \quad C_D N \exp \qquad \frac{1}{12 C_D{}^d C_b^{\frac{d}{b}}} N^{(1-)a} [\log(N)]^{(1-)(1-a)} \end{split}$$

Combining the above three inequalities, we show that

$$\mathbb{P}(E_A \quad E \ (a) \quad E \) \qquad 1 \quad \mathbb{P}(E_A) \quad \mathbb{P}(E \ (a)) \quad \mathbb{P}(E \)$$

$$1 \quad d^{-1+} \quad CN \exp \qquad \frac{1}{C} N^{(1-)a} [\log(N)]^{(1-)(1-a)}$$

$$1 \quad d^{-1+} \quad CN \exp \qquad \frac{1}{C} N^{(1-)a}$$

where C is some constant greater than $C_D + 12C_D^d C_b^{\frac{d}{d}} + 12C_D^d C_b^{\frac{d}{d}}$. Without loss of generality, we assume C > 6. if we choose $a = \frac{\log(2C\log(N))}{(1-)\log(N)}$, then we have

$$N^{a} = [2C \log(N)]^{\frac{1}{1}}$$

$$= C \quad N \log(N) \qquad C \quad N \log(N) \qquad [2C \log(N)]^{\frac{d}{d}}$$
(A21)

and the probability can be bounded by

$$\mathbb{P}(E_A \quad E \ (a) \quad E \) \quad 1 \quad ^{1+} \quad CN^{-1} \quad 1 \quad (C+1)^{-1+}$$
 (A22)

First, let us consider the case $<\frac{2}{2+d}$. By (A19), (A20) and the denition of $k(\mathbf{x})$, since $\frac{2}{2+d}$ $<\frac{2}{2+d}$ and $0 < a = \frac{\log(2C\log(N))}{(1)\log(N)}$ 1 $\frac{d}{(2+d)(1)}$ for large N, we have

$$k(\mathbf{x}) = k^{\min}(\mathbf{x}) = nN^{-\frac{d}{2+d}}\log(N) \quad \text{ and } \quad k(\mathbf{x}) = k^{\min}_j(\mathbf{x}) = k^{opt}_j(\mathbf{x})$$

holds for all j=1 m and all ${\bf x}$ with $({\bf x})$ on event E_A E (a) E. Now, applying Lemma 7, we can see, it holds on event E_A E (a) E that:

$$f_k(\mathbf{x}) = f(\mathbf{x})$$
 for all \mathbf{x} with (\mathbf{x})

By (A22), (A21) and the above equation, we can complete the proof using the same argument as (A14).

$$k(\mathbf{x}) = k^{\min}(\mathbf{x}) = C_D^{d}C_b^{d}C_b^{d}(N^{-(1-)(1-a)}\log(N)) = C_D^{d}C_b^{d}C_b^{d}(N^{-(1-)a}\log(N)) := v_N^{d}(N^{-(1-a)}\log(N)) = v_N^{d}(N^{-(1-a)$$

for all \mathbf{x} with (\mathbf{x}) , which further leads to

$$C_b N^{\frac{(1-)(1-a)}{d}} C_b [k(\mathbf{x}) \ N^{(1-)(1-a)}]^{\overline{d}} C_b v_N^{\overline{d}} N^{\frac{(1-)(1-a)}{d}}$$
 (A23)

Let us de ne classi er

$$f(\mathbf{x}) = \begin{pmatrix} f(\mathbf{x}) & \text{if } f_k(\mathbf{x}) = f(\mathbf{x}) \text{ for all } 1 & k & v_N; \\ 1 & f(\mathbf{x}) & \text{elsewhere} \end{pmatrix}$$

By the de nition of $f(\mathbf{x})$, it follows that

$$\mathbb{P}(f(\mathbf{x}) = f(\mathbf{x}) \mathcal{X}) \quad \mathbb{P}(1 \quad k \quad v_N \text{ such that } f_k(\mathbf{x}) = f(\mathbf{x}) \mathcal{X})$$

$$\mathbb{P}(f_k(\mathbf{x}) = f(\mathbf{x}) \mathcal{X})$$

By the above inequality, (A23) and Lemma 4, we conclude the following hold on event k=1 $E_P(k:k\;a)$ E_A E (a) E:

$$\mathbb{P}(f_k(\mathbf{x}) = f_-(\mathbf{x}) | \mathcal{X}) = \mathbb{P}(f_k(\mathbf{x}) = f_-(\mathbf{x}) | \mathcal{X}) \qquad \mathbb{P}(f(\mathbf{x}) = f_-(\mathbf{x}) | \mathcal{X})$$

$$v_N \exp \qquad 2c_b^2 m^{-2}(\mathbf{x})$$
(A24)

for all $\mathbf x$ with $(\mathbf x)$ max $C_b v_N^{\frac{1}{d}} N^{\frac{(1-)(1-a)}{d}}$. For simplicity, let us denote = max $C_b v_N^{\frac{1}{d}} N^{\frac{(1-)(1-a)}{d}}$, $E = \sum_{k=1}^{v_N} E_P(k:k:a)$ $E_A E(a) E, A_0 = \mathbf x$: $(\mathbf x) = 1 = 2$, and $A_j = \mathbf x : 2^{j-1} < (\mathbf x) = 1 = 2$. If j=0, then Assumption A3 shows that

$$\mathbb{E}$$
 2 (**X**) 1 $\mathbb{I}(f_k(\mathbf{X}) = f(\mathbf{X}))\mathbb{I}(\mathbf{X} A_0 E)$ 2 $P(\mathbf{X} A_0)$ 2 C^{-1+}

If j = 1, (A24) implies that

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \quad \mathbb{I}(f_k(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E)$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E) \mathbb{P}(f_k(\mathbf{X}) = f \quad (\mathbf{X}) \quad \mathbf{X} \quad \mathcal{X})$$

$$2^{j+1} \quad v_N \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E) \exp \qquad 2c_b^2 m^{-2}(\mathbf{x})$$

$$2^{j+1} \quad v_N \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E) \exp \qquad 2c_b^2 m 4^{j-1-2}$$

Since $= \max$ $C_b v_N^{\frac{1}{d}} N^{\frac{(1-)(1-a)}{d}} = C_D^d C_b^{\frac{d+}{d}} C^{\frac{d+}{2+d}} \log(N)$ and $m = N = N^{\frac{2}{2+d}}$, so m^2 1 for all a > 0. As a consequence of Assumption A3, it follows that

$$\begin{split} & \mathbb{E} \quad 2 \ (\mathbf{X}) \quad 1 \ \mathbb{I}(f_k(\mathbf{X}) = f \ (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \ E) \\ & v_N \quad 2^{j+1} \exp \quad 2c_b^2 4^{j-1} \ \mathbb{P}(A_j) \\ & \quad 2^{-1+} \ v_N \quad 2^{j(1+-)} \exp \quad \frac{1}{2} c_b^2 4^j \quad C^{-1+} \ v_N \end{split}$$

where we use the fact that $_{j=1}b^{j}\exp(-c4^{j})<$ for all b c>0, and C>0 is a constant free of N. Combining the bounds above with (A1) and (A22), it follows that

$$\begin{split} \mathcal{R}(f_k) &= \mathbb{E} \ \ 2 \ \ (\mathbf{X}) \quad 1 \ \mathbb{I}(f_k(\mathbf{X}) = f \ \ (\mathbf{X})) \\ &= \mathbb{E} \ \ 2 \ \ (\mathbf{X}) \quad 1 \ \mathbb{I}(f_k(\mathbf{X}) = f \ \ (\mathbf{X}) \ E^c) \\ &+ \mathbb{E} \ \ 2 \ \ (\mathbf{X}) \quad 1 \ \mathbb{I}(f_k(\mathbf{X}) = f \ \ (\mathbf{X}) \ \mathbf{X} \quad A_0 \ E_P) \\ &+ \quad \mathbb{E} \ \ 2 \ \ (\mathbf{X}) \quad 1 \ \mathbb{I}(f_k(\mathbf{X}) = f \ \ (\mathbf{X}) \ \mathbf{X} \quad A_j \ E) \\ &= \int_{j=1}^{j=1} \mathbb{P}(E^c) + C^{-1+} \ v_N \\ & \ \ \ ^{v_N} \\ &= \mathbb{P}(E_P^c(k \ a)) + \mathbb{P}((E_A^c \ E \ (a) \ E \)^c) + C^{-1+} \ v_N \\ &= 1 \\ &= C_D v_N N \exp(-n^a \ 6) + (1+C)^{-1+} \ + C^{-1+} \ v_N \end{split}$$

Notice that $a = \frac{\log(2C \log(N))}{(1) \log(N)}$ with C > 6, we have

$$\begin{split} v_N &= C_D{}^d C_b^{-\frac{d}{2}} C^{\frac{d}{2}} N^{(1-)a} \log(N) = 2C C_D{}^d C_b^{-\frac{d}{2}} C^{\frac{d}{2}} [\log(N)]^2 \\ &= C_b v_N^{\frac{d}{2}} N^{-\frac{(1-)(1-a)}{d}} - N^{-\frac{(1-)}{d}} [\log(N)]^{\frac{3}{d}} \\ \exp(-n^a - 6) &= \exp(-[2C \log(N)] - 6) - N^{-2} \end{split}$$

Since $=\frac{2}{2+d}$, we conclude that

$$\mathcal{R}(f_k) \qquad N \, \log(N) \qquad \frac{\frac{(1 \quad) \quad (1+ \)}{d}}{\left[\log(N)\right]} \quad \text{for some} \quad > 0$$

Lemma 9. Under Assumptions A1-A3, if 2(2+d) and k=1, then

$$\mathcal{R}(f_k)$$
 $N^{\frac{(1-)(1+)}{d}}[\log(N)]$

 $\label{eq:for some problem} \textit{for some} \quad > 0 \ \textit{depending on} \qquad \textit{d and} \quad .$

Proof. Let us de ne $= C_b[k\ N^{(1)}]^{-1}$, where C_b is the constant in Lemma 3, and we allow a is depending on N. We further de ne sets $A_0 = \mathbf{x}$: $(\mathbf{x}) = 1 - 2$ and $A_j = \mathbf{x} : 2^{j-1} < (\mathbf{x}) = 1 - 2^{j}$ for j = 1. For simplicity, we write $E_P(k_1 : k_m \ a) = E_P$ and in the equal sub-sample size setting, we have $k_1 = -k_m = k = 1$. If j = 0, then Assumption A3 shows that

$$\mathbb{E}$$
 2 (X) $1 \mathbb{I}(f_k(\mathbf{X}) = f(\mathbf{X}))\mathbb{I}(\mathbf{X} \quad A_0 E_P)$ $2 \mathbb{P}(\mathbf{X} \quad A_0)$ $2C^{-1+}$

If j = 1, Assumption A3 and Lemma 4 imply that

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \quad \mathbb{I}(f_k(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E_P)$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \mathbb{P}(f_k(\mathbf{X}) = f \quad (\mathbf{X}) \quad \mathbf{X} \quad \mathcal{X})$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad 2c_b^2 m k^{-2}(\mathbf{x})$$

$$2^{j+1} \quad \mathbb{E} \quad \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \exp \qquad 2c_b^2 m 4^{j-1-2} \tag{A25}$$

Since $=C_b[k\ N^{(1)(1-a)}]^{\frac{1}{d}}$ and $2\ (2+d)$, any $a\ (0\ 1)$ satisfies $1\ a$ $\frac{d\log(m)}{2\ (1\)\log(N)}=\frac{d}{2\ (1\)}$. Therefore, we can pick any $a\ (0\ 1)$ and it follows that $m\ N^{\frac{2\ (1\)(1-a)}{d}}$. By the choice with k=1, we have $=C_bN^{\frac{(1\)(1-a)}{d}}$ and

$$(A25) 2^{j+1} \mathbb{E} \mathbb{I}(\mathbf{X} A_j E_P) \exp \frac{1}{2} c_b^2 C_b^2 4^j m [N^{-(1--)(1-a)}]^{\frac{2}{d}}$$
$$2^{j+1} \mathbb{E} \mathbb{I}(\mathbf{X} A_j E_P) \exp \frac{1}{2} c_b^2 C_b^2 4^j$$
$$= 2C^{-1+-2^{j(1+-)}} \exp \frac{1}{2} c_b^2 C_b^2 4^j$$

Taking summation ans using the fact that j=1 $b^j \exp(-c4^j) < -c$ for all b c > 0, we have

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \quad \mathbb{I}(f_k(\mathbf{X}) = f \quad (\mathbf{X})) \mathbb{I}(\mathbf{X} \quad A_j \quad E_P) \qquad C^{-1+j}$$

where C is some constant free of N and a. Combining the bounds above, it follows that

$$\mathcal{R}(f_k) = \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_k(\mathbf{X}) = f \mid (\mathbf{X}))$$

$$\mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_k(\mathbf{X}) = f \mid (\mathbf{X}) \mid E_P^c)$$

$$+ \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_k(\mathbf{X}) = f \mid (\mathbf{X}) \mid \mathbf{X} \quad A_0 \mid E_P)$$

$$+ \quad \mathbb{E} \quad 2 \quad (\mathbf{X}) \quad 1 \, \mathbb{I}(f_k(\mathbf{X}) = f \mid (\mathbf{X}) \mid \mathbf{X} \quad A_j \mid E_P)$$

$$\mathbb{P}(E_P^c) + C \quad ^{1+}$$

$$= \mathbb{P}(E_P^c) + CC_b^{1+} \quad N \quad ^{\frac{(1-)(1-a)(1+)}{d}}$$

Let $a = \frac{s \log(\log(N))}{\log(N)}$ for some s > 0 and notice that $N^{\frac{s \log(\log(N))}{\log(N)}} = e^{s \log(\log(N))} = e^{s \log(\log(N))}$ $[\log(N)]^s$. As a consequence, it follows that

$$N^{\frac{(1-)(1-a)(1+-)}{d}} = N^{\frac{(1-)(1+-)}{d}} [\log(N)]^{\frac{s(1-)(1+-)}{d}}$$

2 (2 + d) and k = 1, if we choose s such that $2^{s(1)} = 48$, then By (A1), since

$$\mathbb{P}(E_P^c) \quad C_D m n^{1-a} \exp(-n^a - 6)
\quad C_D N \exp(-n^a - 6)
= C_D N \exp(-N^{(1--)a} - 6)
= C_D N \exp(-[\log(N)]^{s(1--)} - 6
= C_D N \exp(-[\log(N)]^{s(1--)} - 6
\quad C_D N \exp(-[\log(N)]^{s(1--)} - 6
\quad C_D N \exp(-[\log(N)]^{s(1--)} - 6
\quad C_D N \exp(-[\log(N)]^{s(1--)} - 6$$

Combining the above three inequalities and noticing that $\frac{(1-)(1+-)}{d} = \frac{(1+-)}{d} = \frac{1+-d}{d} = \frac{1+d}{d} = \frac{1+d}{d}$

Based on the above lemmas, we are ready to prove Theorem 3.

If $<\frac{2}{2+d}$, it follows from Theorem 1. If $>\frac{2}{2+d}$, then $\frac{2}{2+d}$ for any (0 1]. As a consequence, we have $nN^{-\frac{d}{2+d}}\log(N)=N^1$ $\frac{d}{2+d}\log(N)<1$ and k=1. The desired result follows from

 $\frac{2}{2+d}$, the convergence rate follows from Lemma 8.

Proof of Theorem 4

Theorem 4 follows directly from Lemma 9.

References

- Han, E.-H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted knearest neighbor classication. In: Pacic-asia Conference on Knowledge Discovery and Data Mining, pp. 53–65 (2001). Springer
- Jiang, S., Pang, G., Wu, M., Kuang, L.: An improved k-nearest-neighbor algorithm for text categorization. Expert Systems with Applications **39**(1), 1503–1509 (2012)
- Geng, X., Liu, T.-Y., Qin, T., Arnold, A., Li, H., Shum, H.-Y.: Query dependent ranking using k-nearest neighbor. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–122 (2008)
- Kowalski, B.R., Bender, C.: k-nearest neighbor classication rule (pattern recognition) applied to nuclear magnetic resonance spectral interpretation. Analytical Chemistry 44(8), 1405–1411 (1972)
- Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classi ers for pattern classi cation. Pattern recognition **37**(6), 1307–1309 (2004)
- Xu, Y., Zhu, Q., Chen, Y., Pan, J.-S.: An improvement to the nearest neighbor classi er and face recognition experiments. Int. J. Innov. Comput. Inf. Control 9(2), 543–554 (2013)
- Cai, T.T., Wei, H.: Transfer learning for nonparametric classication: Minimax rate and adaptive classicar. Annals of Statistics (2019). To appear
- Cover, T., Hart, P.: Nearest neighbor pattern classi cation. IEEE transactions on information theory 13(1), 21–27 (1967)
- Cerou, F., Guyader, A.: Nearest neighbor classication in in nite dimension. ESAIM: Probability and Statistics 10, 340–355 (2006) https://doi.org/10.1051/ps:2006014
- Hanneke, S., Kontorovich, A., Sabato, S., Weiss, R.: Universal Bayes consistency in metric spaces. The Annals of Statistics **49**(4), 2129–2150 (2021) https://doi.org/10.1214/20-AOS2029
- Stone, C.J.: Consistent nonparametric regression. Annals of Statistics **5**(4), 595–620 (1977)
- Devroye, L., Gyor, L., Krzyzak, A., Lugosi, G.: On the strong universal consistency of nearest neighbor regression function estimates. Annals of Statistics **22**(3), 1371–1385 (1994)
- Chaudhuri, K., Dasgupta, S.: Rates of convergence for nearest neighbor classication. In: Advances in Neural Information Processing Systems, pp. 3437–3445 (2014)

- Audibert, J.-Y., Tsybakov, A.B.: Fast learning rates for plug-in classi ers. Annals of Statistics **35**(2), 608–633 (2007)
- Gadat, S., Klein, T., Marteau, C.: Classi cation in general nite dimensional spaces with the k-nearest neighbor rule. Annals of Statistics 44(3), 982 1009 (2016) https://doi.org/10.1214/15-AOS1395
- Samworth, R.J.: Optimal weighted nearest neighbour classi ers. Annals of Statistics 40(5), 2733–2763 (2012) https://doi.org/10.1214/12-AOS1049
- Qiao, X., Duan, J., Cheng, G.: Rates of convergence for large-scale nearest neighbor classi cation. In: Advances in Neural Information Processing Systems, pp. 10769 10780 (2019)
- Duan, J., Qiao, X., Cheng, G.: Statistical guarantees of distributed nearest neighbor classi cation. Advances in Neural Information Processing Systems 33 (2020)
- Balsubramani, A., Dasgupta, S., Moran, S.: An adaptive nearest neighbor rule for classi cation. In: Advances in Neural Information Processing Systems, pp. 7579 7588 (2019)
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press, ??? (2009)
- Huang, J.: Projection estimation in multiple regression with application to functional anova models. Annals of Statistics **26**(1), 242–272 (1998)
- Huang, J.: Local asymptotics for polynomial spline regression. Annals of Statistics **31**(5), 1600–1635 (2003)
- Lepskii, O.: On a problem of adaptive estimation in gaussian white noise. Theory of Probability & Its Applications **35**(3), 454 466 (1991)
- Lepski, O.V., Spokoiny, V.G.: Optimal pointwise adaptive methods in nonparametric estimation. Annals of Statistics, 2512–2546 (1997)
- Jiang, H.: Non-asymptotic uniform rates of consistency for k-nn regression. In: AAAI Conference on Arti cial Intelligence, vol. 33, pp. 3999 4006 (2019)
- Zhang, Y., Duchi, J., Wainwright, M.: Divide and conquer kernel ridge regression: A distributed algorithm with minimax optimal rates. Journal of Machine Learning Research 16(1), 3299–3340 (2015)
- Shang, Z., Cheng, G.: Computational limits of a distributed algorithm for smoothing spline. Journal of Machine Learning Research 18(1), 3809–3845 (2017)
- Xu, G., Shang, Z., Cheng, G.: Optimal tuning for divide-and-conquer kernel ridge regression with massive data. In: International Conference on Machine Learning,

- pp. 5483 5491 (2018). PMLR
- Shang, Z., Hao, B., Cheng, G.: Nonparametric bayesian aggregation for massive data. Journal of Machine Learning Research **20**(140), 1–81 (2019)
- Xu, G., Shang, Z., Cheng, G.: Distributed generalized cross-validation for divide-and-conquer kernel ridge regression and its asymptotic optimality. Journal of Computational and Graphical Statistics 28(4), 891–908 (2019) https://doi.org/10.1080/10618600.2019.1586714 https://doi.org/10.1080/10618600.2019.1586714
- Dua, D., Gra , C.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml