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Recent coarse-grained (CG) models have often supplemented conventional pair poten-

tials with potentials that depend upon the local density around each particle. In this

work we investigate the temperature-dependence of these local density (LD) poten-

tials. Specifically, we employ the multiscale coarse-graining (MS-CG) force-matching

variational principle to parameterize pair and LD potentials for one-site CG models of

molecular liquids at ambient pressure. The accuracy of these MS-CG LD potentials

depends quite sensitively upon the length-scale, rc, that is employed to define the

local density. When the local density is defined by the optimal length-scale, r∗c , the

MS-CG potential often accurately describes the reference state point and can provide

reasonable transferability across a rather wide range of temperatures. At ambient

pressure, the optimal LD length-scale varies linearly with temperature over a very

wide range of temperatures. Moreover, if one adopts this temperature-dependent

LD length-scale, then the MS-CG LD potential appears independent of temperature,

while the MS-CG pair potential varies linearly across this temperature range. This

provides a simple means for predicting pair and LD potentials that accurately model

new state points without performing additional atomistic simulations. Surprisingly,

at certain state points, the predicted potentials provide greater accuracy than MS-CG

potentials that were optimized for the state point.
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I. INTRODUCTION

By representing systems in reduced detail, coarse-grained (CG) models provide much

greater computational efficiency than conventional all-atom (AA) models.1–8 Unfortunately,

this reduced representation also introduces new challenges. Because they result from averag-

ing over atomic interactions, the effective interaction potentials that govern CG models will

generally depend upon the thermodynamic conditions for which they were parameterized.9

Consequently, a potential that has been optimized to accurately describe a particular ther-

modynamic state point may provide a relatively poor description at other state points.

Thus, one expects that CG potentials may demonstrate relatively limited transferability.

Moreover, coarse-graining also complicates the treatment of thermodynamic properties be-

cause the atomic details that give rise to energetic and entropic contributions are no longer

explicitly present in the model.9–15

While one expects that these general considerations are relevant for all CG models, they

are particularly transparent and often quite severe in bottom-up approaches that attempt

to formally integrate out AA degrees of freedom.5,16–18 In these bottom-up approaches, a

(usually) linear mapping, M, represents each AA configuration, r, for n atoms with a CG

configuration, R, for N(< n) sites. The “exact” bottom-up potential is the many-body

potential of mean force (PMF),19–23 W (R), which may be defined by the total Boltzmann

weight of AA configurations, r, that map to the CG configuration, R,

exp [−βW (R;V, T )] = V −(n−N)

∫︂
V n

dr exp[−βu(r)]δ(M(r)−R). (1)

If the PMF is known as a function of both configuration and also thermodynamic state

point, then a CG model can perfectly reproduce the mapped configuration distribution

(i.e., the distribution that is determined by the atomic model and the CG mapping) at

every state point. Clearly, achieving this perfect transferability requires accounting for

how the PMF varies as a function of, e.g., temperature and density. Moreover, while

the exact PMF can perfectly reproduce all thermodynamic properties of the AA model,

calculations of thermodynamic properties must account for this state-point-dependence.24

For instance, one must account for the density-dependence of the PMF in order to repro-

duce the internal pressure of the AA model.20,25–29 Similarly, because Eq. (1) defines the
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PMF as the excess Helmholtz potential for the CG coordinates, the PMF incorporates

both energetic and entropic contributions.10,21,30 Specifically, W (R) = EW (R) − TSW (R),

where EW (R) ≡ ⟨u(r)⟩R is the conditioned average of the AA potential evaluated over the

subensemble of AA configurations that map to R, while SW (R) corresponds to the config-

urational entropy associated with this subensemble.18,31 Consequently, W cannot be used

to directly calculate energetic properties. Indeed, Louis warned that these “representabil-

ity” issues will generally arise when computing thermodynamic properties with effective

potentials, such as the PMF, that depend upon thermodynamic conditions.32,33

In practice, bottom-up CG models usually approximate the exact PMF, W , with a rela-

tively simple potential, U , that, e.g., describes intermolecular interactions with central pair

potentials.2,7,23 In some cases a single approximate potential, U(R), can provide good trans-

ferability and a reasonable description of thermodynamic properties over a relatively wide

range of conditions.34–39 More generally, though, one expects that the “optimal” approximate

potential, U(R;V, T ) ≈ W (R;V, T ), will vary with thermodynamic state point. Moreover,

this state-point-dependence may be important for accurately reproducing thermodynamic

properties and for improving the transferability of bottom-up CG models.18,24,29,31–33,40,41

Consequently, many prior studies have investigated the influence of temperature-, density-

, and composition-dependence of bottom-up pair potentials.42–61 In particular, many studies

suggest that bottom-up pair potentials vary linearly with temperature and density over a

rather wide range of thermodynamic conditions.30,33,59,62–64 This linearity motivated a simple

“dual” approach for predictively treating the temperature-dependence of bottom-up pair po-

tentials based upon simulations at a single state point.65–67 This dual approach employs con-

ventional bottom-up approaches, e.g., iterative Boltzmann inversion68 or force-matching,69,70

to determine an effective potential, U , that accurately approximates the configuration-

dependence of the PMF. The dual approach repurposes an energy-matching variational

principle71 to determine an operator, E(R), that approximates the energetic component

of the PMF, EW (R). While simulations with the bottom-up effective potential, U , accu-

rately reproduce the mapped ensemble, atomic energetics can be estimated by evaluating

the energetic operator, E, for the sampled configurations. Moreover, the dual approach ap-

proximates the entropic component of the PMF by S(R) ≡ (E(R)− U(R)) /T ≈ SW (R),

which provides a predictive estimate for the temperature-dependence of the approximate

potential, i.e., ∂U(R)/∂T ≈ ∂W (R)/∂T = −SW (R) ≈ −S(R). Despite its simplicity,
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initial studies suggest that this dual approach is surprisingly accurate and predictive for

several molecular liquids, including water, methanol, and ortho-terphenyl (OTP).65,67 More

recently, Pretti and Shell have introduced a complementary approach for addressing the

temperature-dependence of the PMF by approximating a microcanonical partition function,

Ω(R, E), for CG coordinates.72

While these prior studies have focused on pair-additive potentials, a growing number of

CG models have adopted local density (LD) potentials, Uρ, that depend upon the density, ρI ,

around each CG site. By defining the local density, ρI , with pair-additive contributions from

neighboring molecules within a given radius, rc, LD potentials generate pair-additive forces

and, thus, provide the same computational scaling as conventional pair-additive potentials.73

These LD potentials were first introduced by Pagonabarraga and Frenkel to describe non-

ideal thermodynamic properties with relatively simple top-down dissipative particle dy-

namics (DPD) models.73 Independently, Papoian et al. employed LD potentials to describe

water-mediated interactions in CG models for protein structure prediction.74 In particu-

lar, the many-body DPD method of Pagonabarraga and Frenkel employs LD potentials

to associate a temperature-dependent, local free energy with each particle.73,75 Similarly,

several related DPD variations assign a temperature to each particle and employ thermo-

dynamic models to describe this local free energy or the transfer of internal energy between

particles.76–82

More recently, bottom-up CG models have employed LD potentials to model many-body

solvent effects,57,83–85 liquid/liquid phase separation,86 liquid-vapor interfaces,55,87–90 poly-

meric systems,60,91–93 and even shock-waves in explosive materials.94 These LD potentials

can improve the description of many-body structural correlations and also provide a much

improved description of the internal pressure. Moreover, they provide remarkable transfer-

ability between bulk and interfacial environments, which has proven quite challenging with

pair-additive potentials.95,96

One expects that bottom-up LD potentials should also vary with temperature in order to

model the temperature-dependence of the exact PMF. However, few studies have carefully

investigated this. To our knowledge, the work of Shahidi et al. provides the most thor-

ough prior investigation of temperature-dependent bottom-up LD potentials.60 Shahidi et

al. employed the Inverse Monte Carlo method97,98 to parameterize pair and LD potentials

for polyisoprene melts at three different temperatures. Interestingly, they defined the local
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density based upon nearest-neighbors. In particular, they employed the solid-angle based

nearest-neighbor algorithm of van Meel et al.99 to determine the length-scale and weighting

function for the local density at each temperature. The resulting models quite accurately

reproduced conformational and thermodynamic properties of the underlying united atom

model for polyisoprene.

In this work, we investigate the temperature-dependence of bottom-up LD potentials for

1-site CG models of molecular liquids, such as methanol and OTP. We first investigate the

influence of the local density radius, rc, upon the potentials obtained via the multiscale

coarse-graining (MS-CG) force-matching (FM) variational principle69,70,100,101 at a given ref-

erence state point. When rc is properly chosen, the MS-CG model quite accurately describes

the AA pair structure and pressure-density equation of state near this reference state point.

These MS-CG potentials also provide relatively good transferability across a rather wide

temperature range. However, if one fixes the LD length scale, rc, and recalculates the MS-

CG potentials for other temperatures, the resulting MS-CG models perform quite poorly.

Interestingly, though, if one varies the LD length scale with temperature, then a single

LD potential accurately describes the liquid pair structure and pressure-density equation

of state with nearly quantitative accuracy over this temperature range. Furthermore, this

temperature-dependent length scale, rc(T ), and the corresponding pair potentials, U2(T ),

can be accurately predicted via simple linear interpolation between two reference state

points. Surprisingly, we find that these predicted potentials describe certain state points

more accurately than MS-CG potentials that were specifically parameterized for the state

points.

The remainder of this work is organized as follows. Section II summarizes the relevant

properties of LD potentials. Sections III and IV describe our computational methods and

the results of our numerical studies, respectively. Section V summarizes our findings, while

Sec. VI provides closing comments. The Supplementary Material (SM) provides additional

computational details and analysis.
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II. LOCAL DENSITY POTENTIALS

In this work we consider CG models for one-component molecular liquids and represent

each molecule with a single site. We adopt CG potentials of the following form:

U(R) = Upair(R) + ULD(R), (2)

where Upair is a sum of central pair potentials, U2, that depend upon the distance, RIJ ,

between each pair of molecules,

Upair(R) =
∑︂
(I,J)

U2(RIJ), (3)

and ULD is a sum of local density (LD) potentials, Uρ, that depend upon the local density,

ρI , around each molecule,

ULD(R) =
N∑︂
I=1

Uρ(ρI). (4)

We have recently introduced potentials that also depend upon the square gradient, |∇IρI |2,

of the local density.90 However, we do not consider these square gradient potentials in this

work.

The local density around molecule I is defined by a sum of distance-dependent contribu-

tions from its neighbors:

ρI(R) =
∑︂
J( ̸=I)

w(RIJ), (5)

where w is a scaled weighting function. While prior studies have considered various weighting

functions,55,73,74,83,88,91 we find the Lucy function to be particularly convenient. The Lucy

function is defined

w(r) = (1− r/rc)
3(1 + 3r/rc)Θ (1− r/rc) , (6)

where Θ(x) denotes the Heaviside function. The Lucy function, w(r) = w(r; rc), depends

on a single parameter, rc, that determines the length-scale defining the local density. As

illustrated in Fig. 1, the Lucy function equals 1 when r = 0, monotonically decays to 0 over

the interval 0 < r < rc, and vanishes for r ≥ rc. The scaled weighting function in Eq. (5) is
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defined

w(r) = w(r)/[w], (7)

where [w] =
∫︁
dr 4πr2w(r) = 16πr3c/105.
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FIG. 1. Plot of the Lucy function, w(r), (solid curve) and its (scaled) derivative, −rcw
′(r), (dashed

curve) as a function of r/rc.

In contrast to our previous studies,87–89 this definition of the local density excludes the

“self-term,” i.e., the J = I term in Eq. (5). This self-term simply shifts the definition of

local density and has no physical significance. However, we find that excluding the self-

term simplifies our analysis of the LD length scale, rc. Moreover, Eq. (5) has the appealing

property that ρI → 0 in the gas phase.

Because the local density, ρI , is defined by pair-additive contributions that depend upon

pair distances, RIJ , Eq. (2) generates pair additive forces

FI(R) ≡ −∇IU(R) =
∑︂
J (̸=I)

FIJ(R)ˆ︁RIJ , (8)

where ˆ︁RIJ = (RI−RJ)/RIJ is the unit vector pointing from site J to site I. The magnitude

of the total pair force is

FIJ(R) ≡ F2(RIJ) + [Fρ(ρI) + Fρ(ρJ)]w
′(RIJ), (9)

where F2(R) = −dU2(R)/dR is the pair force and Fρ(ρI) = −dUρ(ρI)/dρI is the correspond-

ing LD force.

Equation (9) indicates that LD forces between a given pair (I, J) of particles is pro-

portional to w′(RIJ), which is plotted in Fig. 1. If one treats Fρ(ρI) and Fρ(ρJ) as fixed,

then the LD force between the pair is largest when the two are separated by a distance
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RIJ = rc/3. Moreover, note that the scaled Lucy weighting function, w, is proportional to

r−3
c . Therefore, one expects that the magnitude of the LD force between pairs will generally

decrease as rc increases and the LD forces are distributed over a larger length scale. (This

assumes that Fρ(ρI) and Fρ(ρJ) vary relatively slowly with rc.)

Equations (8) and (9) imply that the LD potential generates pair additive contributions

to the internal pressure,

PLD(R, V ) ≡ −
(︃
∂ULD

∂V

)︃
R̂,T

=
1

3V

N∑︂
I=1

Fρ(ρI)
∑︂
J (̸=I)

w′(RIJ)RIJ . (10)

Here the partial derivative is performed with respect to volume, while holding fixed the

scaled coordinates, R̂I = V −1/3RI . Note that Eq. (10) assumes that rc is independent of V

and is consistent with the temperature-dependent length-scale, rc = rc(T ), that we introduce

in Sec. IVA3.

Equations (8) and (9) also imply the existence of a non-trivial one-parameter family of

pair and LD potentials that are equivalent.88 Specifically, consider a given potential of the

form given by Eqs. (2)-(4) with both pair and LD terms, U = {U2, Uρ}. For any constant,

c, the force transformation

F2(R) → F̃ 2(R; c) = F2(R) + cw′(R) (11)

Fρ(ρ) → F̃ ρ(ρ; c) = Fρ(ρ)− c/2 (12)

defines new pair and LD potentials, Ũ(c) = {Ũ2(c), Ũρ(c)}, that leave Eqs. (8) and (9)

unchanged.88 In particular, by employing Eqs. (11) and (12) to simultaneously vary both

Ũ2(c) and Uρ̃(c), one can choose c to make the LD potential either purely repulsive or purely

attractive without altering the equilibrium configuration distribution. Consequently, al-

though they correspond to very different pair, Ũ2(c), and LD, Uρ̃(c), potentials, all members

of this one-parameter family give rise to identical structural and thermodynamic properties.

This invariance explains prior observations that pair and LD potentials can compensate for

each other.60,86,88

The LD potential, Uρ, often appears parabolic with a single minima at a charac-

teristic local density, ρ0. In this case, Fρ(ρI) > 0 drives the system to higher local

densities when ρI < ρ0. Because w′(RIJ) ≤ 0, this leads to attractive pair forces,
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Fρ(ρI)w
′(RIJ)ˆ︁RIJ = −|Fρ(ρI)w

′(RIJ)|ˆ︁RIJ , and negative contributions to the internal pres-

sure, 1
3V

Fρ(ρI)
∑︁

J (̸=I) w
′(RIJ)RIJ < 0. Conversely, when ρI > ρ0, Fρ(ρI) < 0 drives the

system to lower local densities via repulsive pair forces and positive contributions to the

internal pressure.

In the following, we determine the optimal CG potential, U = {U2, Uρ}, by minimizing

the MS-CG force-matching (FM) functional:69,70,100,101

χ2[U ] =
1

3N

⟨︄
N∑︂
I=1

|FI(M(r))− fI(r)|2
⟩︄
, (13)

where fI(r) is the net force on CG site I in the atomic configuration r.100,102 The MS-CG

variational principle simultaneously determines both U2 and Uρ such that U = {U2, Uρ} op-

timally approximates the configuration-dependence of the exact PMF.23,100,101 As discussed

above, the local density, ρI , depends upon the length scale, rc, that defines the Lucy weight-

ing function, w(r; rc). Consequently, the calculated MS-CG pair and LD potentials will both

depend upon this length-scale, i.e., U = U(rc) = {U2(rc), Uρ(rc)}.

III. COMPUTATIONAL METHODS

A. Atomistic Models

In the following we report constant NPT simulations of AA models for liquid methanol

and liquid OTP. We described both systems with the OPLS/AA force field.103 We truncated

all non-bonded interactions at 1.3 nm, while switching the corresponding forces to zero

between 1.0 nm and 1.3 nm. We modeled electrostatic interactions with the particle-mesh

Ewald method,104 while employing a short-range cut-off of 1.3 nm and a grid spacing of 0.08

nm. We did not employ dispersion corrections for modeling the internal energy or pressure

of methanol, but did employ these dispersion corrections in the reported simulations of OTP.

The SM demonstrates that these dispersions corrections had relatively little impact upon the

simulated AA models or the parameterized CG models. In particular, the SM demonstrates

that the treatment of these dispersion corrections does not impact the accuracy of the

optimized or predicted CG models that are reported in Section IVB.

We performed all AA simulations with the GROMACS 2019.6 simulation package,105,106
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while employing three-dimensional periodic boundary conditions. These simulations prop-

agated the equations of motion with a leap-frog integrator, while employing a 1 fs time

step and updating the neighbor list every 10 time steps. The reported AA simulations

employed the velocity-re-scaling thermostat107 with a relaxation time of 0.5 ps and an

isotropic Parrinello-Rahman barostat108 with a relaxation time of 5 ps and a compressibility

of 4.5× 10−5 bar−1 to control energy and volume fluctuations, respectively.

TABLE I. Temperature, T , and equilibrium bulk density, ρb, of simulated state points in units of

K and nm−3, respectively.

Methanol OTP

T ρb T ρb
220 16.24 400 2.70

240 15.84 500 2.49

260 15.44 575 2.32

280 15.04 650 2.14

300 14.62

We report AA constant NPT simulations of 4407 methanol molecules at 1 bar external

pressure and the five temperatures indicated in Table I. We generated an initial condition

for each state point by employing the GROMACS insert-molecules function to randomly

place molecules inside a box with dimensions of 5 nm × 5 nm × 10 nm. Following energy

minimization, we performed constant volume simulations of the system for 2 ns at the

corresponding target temperature. We used the final configuration from this constant NVT

simulation as the initial configuration for a subsequent 2 ns simulation at 1 bar external

pressure, while employing the Berendsen thermostat109 to control the volume fluctuations.

We employed the resulting configuration as the initial configuration for a 32 ns production

simulation in the constant NPT ensemble at 1 bar external pressure. After discarding the

first 2 ns as additional equilibration, we sampled the remainder of the simulation every 1 ps

in order to obtain 30,000 independent samples.

We also report AA constant NPT simulations of 800 OTP molecules at 1 bar external

pressure and the four temperatures indicated in Table I. We generated an equilibrated initial

condition for OTP using a similar protocol, but employed longer equilibration times, as

reported in our previous work.64 After equilibrating the AA OTP model at each temperature,

we performed an 80 ns production simulation in the constant NPT ensemble. We sampled

this production simulation every 1 ps to obtain 80,000 independent samples.
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For each state point, we calculated the pressure-density equation of state and the isother-

mal compressibility, κT , from the set, {(V, Pint)}, of volumes and internal pressures sampled

from the corresponding constant NPT production simulation. We calculated the equation of

state by histogramming the sampled densities and determining the mean internal pressure

for the configurations assigned to each bin. We calculated the compressibility, κT , by employ-

ing linear regression to determine (∂Pint(V )/∂V )T from the sampled volumes and internal

pressures. This procedure for calculating κT appeared very robust and agreed well with

the fluctuation formula, κT = σ2
V /V kBT .

110 Conversely, estimating (∂Pint(V )/∂V )T from

the calculated equation of state appeared much more sensitive to statistical uncertainty in

estimating the internal pressure at each density.

B. CG Model Parameterization

We parameterized CG models for liquid methanol and liquid OTP at each state point

indicated in Table I. In both cases, the CG model represented each molecule by a single site

with coordinates corresponding to its molecular mass center. We employed the Bottom-up

Open-source Coarse-graining Software (BOCS) package111 to map each AA trajectory to

the CG representation and to determine the MS-CG potential that minimized the force-

matching functional, χ2[U ], in Eq. (13). The MS-CG potential, U = {U2, Uρ}, was defined

by a pair potential, U2, and a LD potential, Uρ. We represented the pair force, F2(R), with

cubic spline functions on a uniform grid with spacing ∆R = 0.01 nm that was truncated at

2.0 nm. We represented the LD force, Fρ(ρ), with cubic spline functions on a uniform grid

with spacing ∆ρ = 0.01 nm−3 and 0.001 nm−3 for methanol and OTP, respectively.

We determined the optimal coefficients for these cubic spline basis functions by match-

ing the AA forces in a least squares sense via singular value decomposition (SVD), while

employing a numerical threshold, ϵ = 10−8, to distinguish meaningful singular values from

statistical noise. The calculated MS-CG force functions were essentially independent of the

SVD threshold over the range 10−7 ≥ ϵ ≥ 10−10.

The BOCS code employs a default parameter, γ = 10−8, to eliminate basis functions that

are not adequately sampled. The calculated force functions appeared to depend upon this

γ parameter. However, the force functions, {F2(γ), Fρ(γ)}, obtained for different values of γ

corresponded to different members of the one-parameter family described by Eqs. (11) and
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(12). Consequently, the calculated MS-CG potentials appear quite robust with respect to

the parameters, γ and ϵ, employed in numerically minimizing χ2.

In this work, we parameterized and simulated hundreds of CG potentials. In order to

perform stable simulations with the calculated MS-CG potentials, it is necessary to sensibly

extrapolate these potentials into regions that were not sampled by the AA simulations. In

particular, one expects that F2(r) > 0 and, moreover, dF2(r)/dr < 0 in the “hard-core”

region as r → 0. Similarly, one expects that Fρ(ρ) > 0 and dFρ(ρ)/dρ < 0 in the low-

density regime, ρ → 0. Conversely, one expects that Fρ(ρ) < 0 and dFρ(ρ)/dρ > 0 in the

high-density regime, ρ → ∞.

It is standard and relatively straight-forward to extrapolate calculated pair potentials

into the hard-core region. However, it is somewhat less straight-forward to extrapolate the

calculated LD potentials, Fρ(ρ), for ρ → 0 and ρ → ∞. Consequently, we developed a

systematic high-throughput method for automatically extrapolating calculated LD forces.

Briefly, we first fit the AA LD distribution to a Gaussian distribution in order to determine

a “confidence region” for which the calculated LD force does not suffer from poor statistics.

We extrapolated the LD forces into poorly sampled regimes with a quadratic polynomial

that we determined by fitting the calculated LD forces near the boundaries of the confidence

region. This procedure proved very successful for methanol. However, this procedure failed

to treat the ρ → 0 limit for OTP. Consequently, we set the LD force for OTP to a constant in

the regime where ρ → 0 and determined this constant from the boundary of the confidence

region. The SM describes our numerical procedure for extrapolating the LD forces in greater

detail.

C. CG Simulations

We simulated all CG models with a version of LAMMPS112,113 that we previously modified

to support LD potentials.88 These simulations controlled energy fluctuations with a Nosé-

Hoover thermostat,114,115 while employing a damping parameter of 100 fs and the default

chain length (n = 3).116 The simulations controlled volume fluctuations with the Martyna-

Tuckerman-Tobias-Klein barostat,117,118 while employing a damping parameter of 1 ps. The

initial condition for each CG simulation was obtained by mapping to the CG resolution the

final configuration of the corresponding AA simulation. This configuration was equilibrated
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for 1 ns and then simulated for 20 ns in the constant NPT ensemble at 1 bar external pressure

and the corresponding temperature, while employing a 1 fs timestep. We calculated the

pressure-density equation of state and compressibility of the CG model via the procedure

described above for the AA model.

IV. RESULTS

A. Methanol

1. Local Density Definition

We first consider an AA constant NPT simulation of 4407 methanol molecules in the

liquid phase at the reference temperature, Tref = 260 K, and an external pressure of 1 bar.

The equilibrium bulk density of this AA simulation, ρb;AA = 15.44 nm−3 (821.8 kg m−3),

agrees quantitatively with experimental measurements, ρb;exp = 15.46 nm−3 (822.7 kg m−3),

for the density of liquid methanol in this state point. Figure 2 characterizes the mapped

ensemble that is obtained by representing each molecule by its mass center.

Figure 2a presents the resulting mapped radial distribution function (RDF). The RDF

vanishes at distances less than r0 ≈ 0.28 nm. The first peak of the RDF at rHB ≈ 0.34 nm

corresponds to molecules that are forming hydrogen bonds. The second peak at rVDW ≈

0.45 nm corresponds to molecules that are forming van der Waals contacts. We consider

the second minimum near r2 ≈ 0.62 nm to indicate the end of the first solvation shell. For

comparison, we also employed the solid-angle based nearest-neighbor (SANN) algorithm

of van Meel et al.99 to determine the radius, RNN, of the nearest-neighbor shell. The SM

presents this analysis and determines that the nearest-neighbor radius is RNN ≈ 0.60 nm,

which is very close to the second minimum of the mapped RDF.

Figure 2b presents the Lucy function, w(r) = w(r; rc), that is used to define the local

density, ρI , around each molecule for several different values of the LD length-scale, rc.

Figure 2c presents the corresponding distributions of local densities, P (ρLD) = P (ρLD; rc),

for molecules in the mapped ensemble. As might be expected, the LD distributions are quite

Gaussian.

As rc increases and the local density is defined over longer length-scales, individual

molecules generally contribute less to the local density. Moreover, since Eq. (5) defines
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FIG. 2. Analysis of the reference mapped ensemble obtained from an AA constant NPT simulation

of methanol at the reference temperature, Tref = 260 K, and external pressure, Pext = 1 bar.

Panel (a) presents the mapped RDF, as well as the mapped representation of each methanol

molecule. In panel (a), the dashed vertical line indicates the optimal LD length-scale, r∗c , while

the dashed grey curve presents the corresponding Lucy function, w(r; r∗c ). Panel (b) presents the

Lucy function, w(r) = w(r; rc), for several different values of the LD length-scale, rc. Panel (c)

presents the corresponding LD distributions, P (ρLD) = P (ρLD; rc), calculated from the reference

mapped ensemble for the various LD length-scales. In panels (b) and (c), the blue and orange

curves indicate relatively short and long LD length-scales, respectively, while the intensity of the

color increases as rc increases. The solid grey curve in panel (c) presents the distribution of bulk

densities, ρb, sampled by the constant NPT simulation.

the local density, ρI , around site I without a “self-contribution” from molecule I, the lo-

cal density generally increases as rc increases. For sufficiently large rc, the local density

eventually converges upon the global density, ρb.

The solid, dashed, and dotted blue curves of increasing intensity consider local densities

over increasing length-scales rc = 0.50 nm, 0.54 nm, and 0.58 nm, respectively. For these rel-

atively short length-scales, the local density is determined by only the nearest 8-12 molecules.

As rc increases from 0.50 nm to 0.58 nm, molecules sense significantly larger local densi-
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ties. Moreover, the distribution of local densities also slightly broadens as molecules sense

a broader range of environments. The LD distribution, P (ρLD; rc), continues to broaden as

rc increases until rc ≈ 0.7 nm, which is slightly greater than the radius of the first solvation

shell, r2 ≈ 0.62 nm.

The solid, dashed, and dotted orange curves of increasing intensity consider local densities

over increasing length-scales rc = 1.10 nm, 1.30 nm, and 1.50 nm, respectively. For these

relatively long length-scales, the local density is determined by approximately 81, 141, and

216 molecules, respectively. As rc increases from 1.10 nm to 1.50 nm, the distribution of local

densities in the mapped ensemble slightly shifts to larger local densities. Moreover, as rc

increases in this regime, the distribution of local densities sharpens and eventually converges

upon the distribution of bulk densities, which is indicated by the solid grey distribution in

Fig. 2c.
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FIG. 3. The impact of the LD length-scale, rc, upon the MS-CG potential, U(rc) =

{U2(rc), Uρ(rc)}, calculated for the one-site methanol model from the reference mapped ensemble at

Tref = 260 K and Pext = 1 bar. Panel (a) presents the scaled FM error, χ̄2(rc) = χ2[U(rc)]/χ
2[Uϕ],

where Uϕ = {U2ϕ} indicates the pair-additive MS-CG potential obtained by performing the FM

variational calculation without a LD potential. The dashed horizontal line in panel (a) indicates

the limit in which the LD potential does not reduce the FM error, i.e., χ̄2 = 1. Panel (b) presents

the equilibrium bulk density, ρb(rc), for the MS-CG potential, U(rc), which was determined by

simulating U(rc) in the constant NPT ensemble at the reference state point, Tref = 260 K and

Pext = 1 bar. The dashed horizontal line in panel (b) indicates the equilibrium bulk density, ρb;AA,

of the AA model at this reference state point.

We employed the FM variational principle to determine the MS-CG potential, U(rc) =

{U2(rc), Uρ(rc)}, for each LD length-scale, rc. Figure 3a presents the FM error for the
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MS-CG potential, U(rc), as a function of rc. Specifically, we report the scaled FM error,

χ2(rc) = χ2[U(rc)]/χ
2[U2ϕ], where U2ϕ is the pair potential obtained from the FM variational

calculation when the MS-CG potential only treats pair-additive interactions. Equation (9)

demonstrates that the LD potential generates pair-additive forces that are proportional to

w′(r), which vanishes for r ≥ rc. Consequently, for rc ≤ r0 ≈ 0.28 nm, the LD potential has

no impact upon the CG model. As rc increases past r0, χ
2 rapidly decreases because the LD

potential generates forces on a growing number of molecules. Consequently, χ2(rc) attains a

minimum at rc ≈ 0.515 nm. However, even at this minimum, the LD potential reduces χ2 by

less than 1.5%. As rc increases further, the LD forces generally grow weaker and contribute

progressively less to χ2. Figure 3b presents the equilibrium bulk density, ρb(rc), for each

MS-CG potential, U(rc), which was determined by a constant NPT simulation with U(rc)

at the reference temperature, Tref = 260 K, and an external pressure of 1 bar. The dashed

horizontal line in Fig. 3b indicates the equilibrium bulk density, ρb;AA, of the AA model at

this state point.

Figure 4 presents the MS-CG pair (left column) and LD (right column) potentials calcu-

lated for the LD length-scales, rc, that are indicated in Fig. 2. As previously observed,59,70

the MS-CG pair potential for the 1-site methanol model demonstrates a narrow minimum

near the hydrogen-bonding distance, rHB ≈ 0.34 nm, as well as a minimum that is broader

and deeper around the vdW contact distance, rVDW ≈ 0.45 nm. The SM demonstrates that

these pair potentials are significantly more attractive than the MS-CG pair potential, U2ϕ,

that is obtained in the absence of a LD potential. Conversely, the MS-CG LD potentials

appear rather parabolic with a minimum at a local density, ρLD = ρ0, that is near the

maximum of the corresponding LD distribution, P (ρLD; rc).

The top row of Fig. 4 presents MS-CG potentials for the relatively short LD length-scales,

rc = 0.50 nm, 0.54 nm, and 0.58 nm. As rc increases in this regime, the MS-CG potential,

U(rc), becomes significantly more attractive. Specifically, the pair potential deepens, while

the LD potential dramatically shifts to larger local densities. Figure 3b demonstrates that

the equilibrium bulk density, ρb(rc), of the MS-CG potential, U(rc), dramatically increases

as rc increases from 0.50 nm to 0.58 nm. While for rc < 0.49 nm the model vaporizes, the

MS-CG model quantitatively reproduces the AA bulk density at r∗c = 0.5234 nm, which

is slightly larger than the length-scale, rc ≈ 0.515 nm, that minimizes χ2. As rc increases

further, the CG potential becomes increasingly attractive and the bulk density continues to

16



0.5234 nm
0.54 nm
0.50 nm

0.58 nm

1.20 nm
1.10 nm

1.30 nm

(a)

(b)

(c)

(d)

ρ
LD 

[ nm -3 ]r [ nm ]
0.4 0.8 1.2 12 1614

U
2
 [

 k
J
 m

o
l-1

 ]

-4

0

4

-8

r [ nm ] ρ
LD 

[ nm -3 ]
0.4 0.80.6 2 6 841.0

U
2
 [

 k
J
 m

o
l-1

 ]

-4

0

4

U
ρ
 [

 k
J
 m

o
l-1

 ]
U

ρ
 [

 k
J
 m

o
l-1

 ]

0

2

4

0

2

4

FIG. 4. The impact of the LD length-scale, rc, upon the MS-CG potentials, U(rc) =

{U2(rc), Uρ(rc)}, calculated for the one-site methanol model at the reference state point, Tref =

260 K and Pext = 1 bar. The left panels (a and b) present the MS-CG pair potentials, U2(rc),

while the right panels (c and d) present the MS-CG LD potentials, Uρ(rc). As in Fig. 2, the blue

and orange curves correspond to relatively short and long LD length-scales, respectively, while the

intensity of the color increases as rc increases. The dashed grey curve in panels (a) and (b) indicate

the MS-CG pair and LD potential, respectively, calculated for the optimal LD length-scale, r∗c =

0.5234 nm.

increase until it reaches a maximum of ρb;max = 22.57 nm−3 when rc = rc;max ≡ 1.10 nm.

The bottom row of Figure 4 presents calculated potentials for the relatively long length-

scales, rc = 1.10 nm, 1.30 nm, and 1.50 nm. As rc increases past 1.10 nm, the MS-CG

potential becomes significantly less attractive. In particular, the pair potential becomes

much more repulsive. Moreover, while the minimum of the LD potential very slightly shifts

to higher densities, the LD potential more dramatically tilts towards lower local densities.

Consequently, Fig. 3b demonstrates that the equilibrium density, ρb(rc), of the MS-CG

model decreases as rc increases in this regime. When rc = 1.842 nm the CG model again

reproduces the bulk density of the AA model.

In the following, we adopt the shortest length-scale, r∗c = 0.5234 nm, for which the MS-CG

potential, U(rc), reproduces the bulk density. The dashed vertical line in Fig. 2a indicates

this optimal LD length-scale. Rather strikingly, the optimal LD length-scale, r∗c , corresponds

very closely to the shoulder in the second peak of the mapped RDF. Conversely, the optimal
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LD length-scale is considerably shorter than the first solvation shell that is defined by either

the second minimum of the mapped RDF or by the SANN algorithm of van Meel et al.99

This short length-scale not only maximizes the simulated efficiency of the MS-CG model,

but also allows the model to more accurately describe the local structure of inhomogeneous

interfacial environments.88

2. Accuracy and Transferability

We next assess the accuracy of the optimal MS-CG potential U(r∗c ) at the state point

for which it was parameterized. The solid grey curve in Fig. 5a reproduces the mapped

RDF from Fig. 2a. The solid grey curve in Fig. 5b presents the pressure-density equation

of state (eos) obtained from the AA constant NPT simulation at the reference state point,

Tref = 260 K and Pext = 1 bar. The dashed grey curves in Figs. 5a and 5b present the

RDF and pressure-density eos obtained from a constant NPT simulation of the optimized

MS-CG potential, U(r∗c ), at this reference state point. The MS-CG model reproduces the

mapped AA RDF with nearly quantitative accuracy. While the CG model reproduces the

bulk density by construction, it also quite accurately reproduces the AA pressure-density

equation of state. In particular, Table II demonstrates that the MS-CG model overestimates

the AA compressibility by approximately 30%. For comparison, IBI models that employ a

pressure-correction can overestimate the AA compressibility by more than 300%.119,120 Thus,

the optimized MS-CG potential, U(r∗c ), quite accurately models the state point for which it

was parameterized.

Figure 5 also assesses the transferability of the MS-CG potential, U(r∗c ), that was opti-

mized for the reference temperature, Tref = 260 K. The solid blue and red curves in Fig. 5

present the results of AA constant NPT simulations at Pext = 1 bar for Tlo = 220 K and

Thi = 300 K, respectively. In particular, Fig. 5a demonstrates that the first peak of the AA

RDF slightly shifts to larger distances and also slightly broadens as T increases at constant

external pressure. Similarly, Fig. 5b and Table I demonstrate that the equilibrium bulk den-

sity of the AA methanol model decreases from 16.24 nm−3 to 14.62 nm−3 as the temperature

increases from 220 K to 300 K at 1 bar pressure.

The dashed blue and red curves in Fig. 5 present the results of CG constant NPT simula-

tions with the fixed MS-CG potential, U(r∗c ), at the corresponding state points. Simulations
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FIG. 5. Accuracy and transferability of the fixed MS-CG potential, U(r∗c ) = {U2(r
∗
c ), Uρ(r

∗
c )},

calculated for the one-site methanol model at the reference state point, Tref = 260 K and Pext =

1 bar, while employing the optimal LD length-scale, r∗c = 0.5234 nm. Panel (a) compares the

mapped AA RDF (solid curve) with the RDF obtained from simulations with the MS-CG potential

(dashed curve). Panel (b) compares the pressure-density equations of state obtained from constant

NPT simulations at an external pressure Pext = 1 bar with the AA (solid curve) and MS-CG model

(dashed curve). The grey curves present results for constant NPT simulations with Pext = 1 bar at

the reference temperature, Tref = 260 K, while the blue and red curves present results for constant

NPT simulations with Pext = 1 bar at T = 220 K and 300 K, respectively.

with the fixed MS-CG potential quite accurately reproduce the AA RDF at both temper-

atures. These simulations also reasonably describe the AA pressure-density eos at both

temperatures. In particular, constant NPT simulations with the fixed MS-CG potential,

U(r∗c ), underestimate the AA bulk density at Tlo = 220 K by approximately 2.0%, while

overestimating the AA bulk density at Thi = 300 K by approximately 2.2%. Moreover, Ta-

ble II demonstrates that the fixed MS-CG potential overestimates the AA compressibility

at Tlo = 220 K by approximately 40%, and overestimates the AA compressibility at Thi =

300 K by approximately 21%. Thus, the CG potential U(r∗c ) provides rather good, although

not perfect, transferability across a temperature range of 80 K at ambient pressure.

One approach for improving the transferability of bottom-up potentials is to explicitly
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TABLE II. Equilibrium bulk density, ρb, and isothermal compressibility, κT = −V
−1

(∂V /∂P )T ,

obtained from constant NPT simulations of methanol with AA and CG models at the temperature,

T , and Pext = 1 bar. The “MS-CG” column presents results for the fixed potential, U(r∗c ), that

is optimized for Tref = 260 K in Sec. IVA1 and assessed at each temperature in Sec IVA2. The

“Pred” column presents results for the predicted potential, Upred(T ), that is defined and assessed

in Sec. IVA3. Temperatures are reported in units of K, densities are reported in units of nm−3,

and compressibilities are reported in units of 10−5 bar−1.

T
ρb κT

AA MS-CG Pred AA MS-CG Pred

220 16.24 15.92 16.21 5.46 7.60 5.57

260 15.44 15.43 - 7.32 9.53 -

300 14.62 14.94 14.63 10.39 12.59 11.06

model their state-point dependence. Because structure-based pair potentials often vary lin-

early with both temperature and density,30,33,59,62–67 we investigated whether LD potentials

might also vary linearly with temperature. Specifically, we considered constant pressure en-

sembles with Pext = 1 bar at Tlo = 220 K and Thi = 300 K, which correspond to the blue and

red curves, respectively, in Fig. 5. We performed independent FM variational calculations to

determine the MS-CG potential, U(T, r∗c ) = {U2(T, r
∗
c ), Uρ(T, r

∗
c )}, for modeling methanol

at each additional state point. Importantly, we determined U(Tlo, r
∗
c ) and U(Thi, r

∗
c ) using

the same LD length-scale, r∗c = 0.5234 nm, that was optimized for Tref = 260 K.

Figure 6a presents the resulting pair potentials, U2(T ) = U2(T, r
∗
c ). As the tempera-

ture increases (at constant external pressure), the H-bonding minimum of U2(T ) slightly

decreases, while the vdW minimum more noticeably increases. Figure 6b presents the corre-

sponding finite difference, ∆U2/∆T , where ∆U2 ≡ U2(Thi)− U2(Tlo), while ∆T ≡ Thi − Tlo.

The right panels of Fig. 6 consider the corresponding LD potentials. Figure 6c presents

the distribution of local densities, P (ρLD) = P (ρLD;T, r
∗
c ), that are sampled by the AA model

at each state point. The distribution of local densities broadens and shifts to lower densities

with increasing temperature (at constant external pressure). Given that the local density is

defined by molecules within the first solvation shell, i.e., r ≤ r∗c = 0.5234 nm, it is notable

that P (ρLD) quite closely mirrors the shift in the global density. The SM presents the ratio,

η(T ) ≡ ρLD(T )/ρb;AA(T ), of the average local density, ρLD(T ), and the equilibrium bulk

density, ρb;AA(T ), that are sampled by the AA model. The SM demonstrates that this ratio

is almost independent of temperature for methanol. (However, the SM also demonstrates
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FIG. 6. Temperature-dependence of the MS-CG potentials, U(T ) = U(T, r∗c ), calculated from AA

constant NPT simulations at ambient pressure, Pext = 1 bar, and various temperatures, T , while

employing the fixed LD length-scale, r∗c = r∗c (Tref) = 0.5234 nm, that was optimized for simulations

at Tref = 260 K. Panels (a) and (d) present the calculated pair potentials, U2(T ) = U2(T, r
∗
c ), and

calculated LD potentials, Uρ(T ) = Uρ(T, r
∗
c ), respectively. Panel (b) presents the finite difference

in the calculated pair potentials, ∆U2/∆T , where ∆U2 = U2(Thi) − U2(Tlo) and ∆T = Thi − Tlo,

while Thi = 300 K and Tlo = 220 K. Panel (c) presents the local density distributions, P (ρLD) =

P (ρLD;T, r
∗
c ), calculated from the mapped ensembles for each temperature, while employing the

fixed LD length-scale, r∗c . The grey curves present results for constant NPT simulations with Pext =

1 bar at the reference temperature, Tref = 260 K, while the blue and red curves present results for

constant NPT simulations with Pext = 1 bar at T = 220 K and 300 K, respectively.

that this trend does not hold for OTP.)

Figure 6d presents the calculated LD potentials, Uρ(T, r
∗
c ). The LD potentials shift to

lower local densities with increasing temperature, following the shift in P (ρLD). Thus, the

pair and LD potentials both become increasingly repulsive with increasing temperature (at

constant external pressure).

Figures 7a and 7b report the RDF and pressure-density eos, respectively, obtained from

a constant NPT simulation with the MS-CG potential, U(T, r∗c ), at each temperature. As

before, the MS-CG potentials quite accurately reproduce the mapped RDF for each tem-

perature. However, the MS-CG potentials U(Tlo, r
∗
c ) and U(Thi, r

∗
c ) do not so accurately

reproduce the AA pressure-density eos at Tlo = 220 K and Thi = 300 K. In particular, these

temperature-dependent MS-CG potentials overestimate the equilibrium density at Tlo =

220 K by 5.2% and underestimate the equilibrium density at Thi = 300 K by 2.9%. In

comparison, constant NPT simulations with the fixed MS-CG potential U(Tref , r
∗
c ) only un-

derestimated the bulk density at Tlo by 2.0% and only overestimated the bulk density at
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FIG. 7. Assessment of the temperature-dependent MS-CG potentials, U(T ) = U(T, r∗c ), that

were independently calculated for each temperature, while employing the fixed LD length-scale,

r∗c = r∗c (Tref) = 0.5234 nm. Panels (a) and (b) present the mass-center RDF and pressure-density

equations of state obtained from constant NPT simulations at ambient external pressure, Pext =

1 bar, and the temperature, T . The solid curves present the results of AA simulations and cor-

respond to the solid curves in Fig. 5. The dashed curves present the results of simulations with

the temperature-dependent MS-CG potentials, U(T ) = U(T, r∗c ). The grey curves present results

for the reference temperature, Tref = 260 K, while the blue and red curves present results for T =

220 K and 300 K, respectively.

Thi by 2.2%. Thus, independently calculating the MS-CG potential for each temperature

actually reduced the accuracy of the model when r∗c was held fixed. This presumably occurs

because the LD length-scale, r∗c , that accurately described the reference state point, Tref =

260 K, does not accurately describe Tlo = 220 K and Thi = 300 K.

3. Temperature-dependent length-scale

Accordingly, we next investigated the temperature-dependence of the optimal LD length-

scale. We considered the constant NPT ensemble with Pext = 1 bar for the four additional

temperatures indicated in Table I, i.e., T = 220 K, 240 K, 280 K, and 300 K. At each of these
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state points, we employed the FM variational principle to determine the MS-CG potential

U(T, rc) = {U2(T, rc), Uρ(T, rc)} for a wide range of LD length-scales, rc. We simulated

each MS-CG potential, U(T, rc), in the constant NPT ensemble at the temperature, T , and

external pressure, Pext = 1 bar. At each temperature, T , we determined the equilibrium

bulk density, ρb(T, rc), of the MS-CG potential, U(T, rc), as a function of rc, as illustrated in

Fig. 3b for the reference temperature, Tref = 260 K. We define the optimal LD length-scale,

r∗c (T ), for each T as the shortest length-scale for which the corresponding MS-CG potential,

U(T, r∗c (T )), accurately reproduces the equilibrium bulk density of the AA model, ρb;AA(T ).

We consider U(T ) = U(T, r∗c (T )) to be the optimal MS-CG potential for the temperature,

T .

Figure 8a presents the optimal LD length-scale, r∗c (T ), as a function of temperature.

Over this 80 K temperature range, the optimal length-scale varies by only 0.0015 nm, i.e.,

≈ 3%. While this variation appears quite small, Fig. 3b demonstrates that the simulated

bulk density of the CG model varies rapidly with rc near its optimal value. As might

be expected, r∗c (T ) increases as methanol expands with increasing T at constant Pext =

1 bar. The temperature-dependent LD length-scale, {r∗c (T )}, is described almost perfectly

(R2 = 0.9998) by the line:

f(T ) = m(T − Tref) + r∗c;0, (14)

where m = 1.865 × 10−4 nm/K, Tref = 260 K, and r∗c;0 = r∗c (Tref) = 0.5234 nm. For

comparison, the SM demonstrates that the nearest-neighbor shell distance, RNN(T ), also

increases with temperature, but at a different rate. Moreover, the SM demonstrates that

m/r∗c;0 is quite distinct from the coefficient of thermal expansion, α = V −1(∂V/∂T )P , of the

AA model.

Figure 8b presents the LD distributions obtained by mapping each AA constant NPT

ensemble to the CG resolution, while using the optimal LD length-scale, r∗c (T ), for each state

point. Because a different length-scale, r∗c (T ), is used for each T , a different local density

is being computed for each state point, i.e., ρI(R;T ) = ρI(R; r∗c (T )) and P (ρLD;T ) =

P (ρLD;T, r
∗
c (T )). As expected, the LD distribution broadens with increasing temperature.

However, we find it rather remarkable that the LD distribution, P (ρLD;T ), does not visibly

shift with T when using the optimal LD length-scale, r∗c (T ), for each T . This suggests that

the mapped ensemble for methanol may be characterized by some underlying temperature-
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FIG. 8. Analysis of the optimal LD length-scales, r∗c (T ), determined from constant NPT simula-

tions of methanol at ambient pressure, Pext = 1 bar, and various temperatures, T . Panel (a) plots

the optimal LD length-scale, r∗c (T ), as a function of temperature, as well as the corresponding best

fit line. Panel (b) presents the mapped AA LD distribution, P (ρLD) = P (ρLD;T, r
∗
c (T )), calculated

for each temperature, T , while employing the optimal LD length-scale, r∗c (T ). Panels (c) and (d)

present the LD potential, Uρ(T ) = Uρ(T, r
∗
c (T )), and pair potential, U2(T ) = U2(T, r

∗
c (T )), cal-

culated independently for each T , while employing the corresponding optimal length-scale, r∗c (T ).

The solid curve in panel (e) presents the finite difference in these pair potentials, ∆U2/∆T , where

∆U2 = U2(Thi)−U2(Tlo) and ∆T = Thi−Tlo, while Thi = 300 K and Tlo = 220 K. For comparison,

the dashed curve in panel (e) reproduces from Fig. 6b the finite difference in the temperature-

dependent pair potentials obtained with a single fixed LD length-scale, r∗c;0 = r∗c (Tref) = 0.5234 nm.

The grey curves present results for the reference temperature, Tref = 260 K, while the blue, light

blue, orange, and red curves present results for T = 220 K, 240 K, 280 K and 300 K, respectively.

dependent length scale. (Our results for OTP indicate that this trend does not always

hold.)

The remainder of Fig. 8 analyzes the optimal MS-CG potential, U(T ) = {U2(T ), Uρ(T )},

that was calculated for each T , while employing the optimal LD length-scale, r∗c (T ). Fig-

ure 8c presents the optimized MS-CG LD potentials, Uρ(T ) = Uρ(T, r
∗
c (T )), for the five

state points. Remarkably, these five LD potentials are almost indistinguishable. They very

24



slightly shift to higher local densities and also appear to demonstrate slightly greater curva-

ture with increasing T . Nevertheless, these variations are much smaller than the variations

observed in Fig. 6d among the LD potentials, Uρ(T, r
∗
c;0), that were calculated with the fixed

LD length-scale, r∗c;0 = r∗c (Tref) = 0.5234 nm.

The solid curves in Fig. 8d present the optimized MS-CG pair potentials, U2(T ) =

U2(T, r
∗
c (T )), for the five state points. As T increases (at constant Pext = 1 bar), the H-

bonding minimum decreases, while the vdW minimum slightly rises and sharpens. The solid

curve in Fig. 8e quantifies this temperature dependence with the finite difference ∆U2/∆T ,

where ∆U2 ≡ U2(Thi, r
∗
c (Thi))−U2(Tlo, r

∗
c (Tlo)) and ∆T ≡ Thi−Tlo, as before. For comparison,

the dashed curve presents the corresponding finite difference for the potentials, U2(T, r
∗
c;0),

in Fig. 6a, which employed a fixed LD cut-off, r∗c;0. The calculated pair potentials demon-

strate qualitatively similar, but greater temperature-dependence, when calculated with the

optimal temperature-dependent LD length-scales, r∗c (T ).

The dashed curves in Fig. 9 assess the accuracy of the optimized MS-CG potentials,

U(T ) = U(T, r∗c (T )), for modeling T = Tlo, Tref , and Thi. The optimized MS-CG potentials

reproduce the AA RDF and pressure-density eos with nearly quantitative accuracy at each

state point. The SM demonstrates that the optimized MS-CG potentials provide similar

accuracy at the two other temperatures considered, i.e., T = 240 K and 280 K.

Figure 8 suggests a framework for predicting CG potentials, Upred(T ) = {U2;pred(T ),

Uρ;pred(T )}, that accurately model new temperatures, T , without performing additional AA

simulations. Specifically, Fig. 8a suggests that the optimal LD length-scale, r∗c (T ), can

be accurately predicted by the dashed best fit line, rc;pred(T ) = f(T ), that is given by

Eq. (14). Figure 8c suggests that if the local density is defined with this predicted length-

scale, ρI(R;T ) = ρI(R; rc;pred(T )), then the same LD potential can be used to model the

constant NPT ensemble at Pext = 1 bar and any temperature, T . More explicitly, we predict

the potential, ULD;pred(R;T ), by

ULD;pred(R;T ) =
N∑︂
I=1

Uρ(ρI(R;T );Tref), (15)

where Uρ(ρI ;Tref) = Uρ(ρI ;Tref , r
∗
c;0) is the LD potential originally optimized for Tref , while

ρI(R;T ) indicates the local density calculated in configuration R with the temperature-

dependent length-scale, r∗c (T ). For simplicity, we denote this prediction by Uρ;pred(T ). Fi-

25



(a)

(b)

g
(r

)
P

re
s
s
u

re
 [

 b
a

r 
]

r [ nm ]

3.0

4.5

1.5

-100

100

0

ρ
 
[ nm -3 ]

14.5 15.5 16.5

0
0 0.5 1.0 1.5

220 K

300 K
260 K

CG

Pred

AA

FIG. 9. Analysis of CG potentials, U(T ) = U(T, r∗c (T )), with temperature-dependent LD length-

scales, r∗c (T ). Panels (a) and (b) present the mass-center RDF and pressure-density eos obtained

from a constant NPT simulation of methanol at ambient external pressure, Pext = 1 bar, and each

temperature, T . The solid curves present the results of AA simulations and correspond to the

solid curves in Fig. 5. The dashed curves present the results of simulations with temperature-

dependent MS-CG potentials, U(T ) = U(T, r∗c (T )), that were independently optimized for each

temperature. The dotted curves present the results of simulations with the predicted CG potential,

Upred(T ) = {U2;pred(T ), Uρ;pred(T )}, for each temperature. The grey curves present results for the

reference temperature, Tref = 260 K, while the blue and red curves present results fror T = 220 K

and 300 K, respectively.

nally, Fig. 8d and 8e suggest that the optimal pair potential, U2(T, r
∗
c (T )), can be predicted

from simple linear extrapolation:

U2;pred(T ) = U2;0 + (T − Tref)∆U2/∆T. (16)

where U2;0 = U2(Tref , r
∗
c;0) is the pair potential optimized for the reference state point, and

∆U2/∆T is indicated by the solid curve in Fig. 8e. The dotted curves in Fig. 8d demonstrate

that the predicted pair potentials accurately match the optimized MS-CG pair potentials

for both Tlo and Thi. The SM demonstrates that this linear extrapolation also accurately
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predicts the optimal MS-CG pair potentials for the intermediate temperatures, T = 240 K

and 280 K.

The dotted curves in Fig. 9 demonstrate the accuracy of the predicted potentials,

Upred(T ) = {U2;pred(T ), Uρ;pred(T )}, in constant NPT simulations with Pext = 1 bar at

both Tlo and Thi. The predicted potentials reproduce the AA RDF and pressure-density eos

with nearly quantitative accuracy. In particular, Table II demonstrates that the predicted

potentials more accurately reproduce the bulk density and, especially, the compressibility of

the AA model than the MS-CG potential, U(Tref), that was optimized for the reference state

point. The SM demonstrates that the predicted potentials also provide similar accuracy for

modeling T = 240 K and 280 K.

B. Ortho-Terphenyl

The preceding section demonstrated that, if one defines the local density with a temperature-

dependent length-scale, then one-site CG models for methanol can employ a single LD po-

tential across a rather wide range of temperatures. In order to investigate the generality of

these findings, we now consider OTP. As illustrated by the inset of Fig. 10a, OTP is a nearly

planar molecule consisting of three connected benzene rings. Consequently, the one-site CG

model for OTP employs a much lower resolution than the one-site CG model for methanol.

While each CG site corresponded to two heavy atoms in the one-site methanol model, each

site corresponds to 18 heavy atoms in the one-site OTP model. Moreover, the OTP liquid

phase is stable over a much larger temperature range than the methanol liquid phase.

Figure 10 characterizes the mapped ensemble obtained from AA constant NPT simula-

tions of 800 OTP molecules at Pext = 1 bar and the reference temperature, Tref = 575 K. Our

prior study indicated that the simulated AA model for OTP undergoes a glass transition

near Tg ≈ 340 K.64 Consequently, we expect that the AA OTP model behaves as a well-

equilibrated liquid at this reference state point. It is worth noting that this AA model over-

estimates experimental measurements for the density of liquid OTP by approximately 2-4%

and, moreover, significantly underestimates the observed glass transition temperature.64,121

Figure 10a presents the relatively featureless mapped RDF. The mapped RDF vanishes

for r < 0.4 nm, exhibits a very broad first peak with a maximum near r ≈ 0.8 nm, and

an almost imperceptible second peak near r ≈ 1.4 nm. It is perhaps worth noting that
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FIG. 10. Analysis of the reference mapped ensemble obtained from an AA constant NPT sim-

ulation of OTP at the reference temperature, Tref = 575 K, and the external pressure, Pext =

1 bar. Panel (a) presents the mapped RDF, as well as the mapped representation of each OTP

molecule. Panel (b) presents the Lucy function, w(r) = w(r; rc), for several different values of the

LD length-scale, rc. Panel (c) presents the corresponding LD distributions, P (ρLD) = P (ρLD; rc),

calculated from the reference mapped ensemble for the various LD length-scales. In panels (b) and

(c), the intensity of the colored curves increases as rc increases. The solid grey curve in panel (c)

presents the distribution of bulk densities, ρb, sampled by the AA constant NPT simulation.

contacting OTP molecules interact via short-ranged interactions between benzene rings that

are quite distant from the location of the CG sites used to represent the molecules.

Figure 10b presents the Lucy function, w(r) = w(r; rc), used to define the local density

for five different length-scales, rc, ranging from rc = 1.10 nm to 1.50 nm. Figure 10c presents

the corresponding mapped LD distribution, P (ρLD) = P (ρLD; rc), for each length-scale. The

grey curve in Fig. 10c presents the distribution of bulk densities sampled by the AA constant

NPT simulation. As rc increases from 1.10 nm to 1.50 nm, the LD distribution shifts toward

the bulk density distribution and also sharpens.

We employed the FM variational principle to determine the MS-CG potential, U(T, rc) =

{U2(T, rc), Uρ(T, rc)}, for a wide range of LD length-scales, rc, at the reference temperature,
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Tref = 575 K, and also at three additional temperatures, T = 400 K, 500 K, and 650 K.

We performed constant NPT simulations (with Pext = 1 bar) with each MS-CG potential,

U(T, rc), at the corresponding temperature. Figure 11 presents the equilibrium density,

ρb(rc) = ρb(T, rc), for each MS-CG potential, U(T, rc), as a function of rc at each tempera-

ture. The dashed horizontal curves in Fig. 11 present the equilibrium bulk density, ρb;AA(T ),

of the AA model at the corresponding state point.
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FIG. 11. Impact of the LD length-scale, rc, upon the equilibrium bulk density of one-site MS-CG

potentials, U(rc) = {U2(rc), Uρ(rc)}, for OTP. Each point indicates the equilibrium bulk density,

ρb(rc), determined from a constant NPT simulation with the CG potential, U(rc), at ambient

pressure, Pext = 1 bar. The horizontal dashed line indicates the equilibrium bulk density, ρb;AA,

of the AA model for OTP at the same state point. Each panel corresponds to the indicated fixed

temperature.

Figure 11 recapitulates many of the features observed in Fig. 3b for methanol. When rc is

smaller than some threshold value, rc1, the LD potential does not act on sufficient molecules

and the CG model vaporizes. As rc increases past this threshold, the bulk density of the CG

model rapidly increases. As rc increases further, the bulk density of the CG model increases

less rapidly before eventually plateauing near a maximum density, ρb;max, that occurs when

rc = rc;max. Beyond this point, the bulk density begins to gradually decrease until rc again
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approaches another threshold value, beyond which the bulk density very rapidly decreases.

When rc is greater than some critical value, rc2, the MS-CG potential again vaporizes.

Figure 11 also indicates several additional interesting trends. As T decreases from 650 K,

rc1 increases, while rc2 decreases. Consequently, the window of LD length-scales, rc, for

which the MS-CG potential, U(T, rc), stabilizes a condensed phase shrinks as T decreases.

Moreover, as T decreases, the gap, ∆ρmax(T ) = ρb;max(T )−ρb;AA(T ), between the maximum

density of the CG model, ρb;max(T ), and the target AA density, ρb;AA(T ), also shrinks. In

particular, we find that no calculated MS-CG potential, U(T, rc), reproduces the AA bulk

density at Tx = 400 K.

For T = 500 K, 575 K, and 650 K, we define the optimal LD length-scale, r∗c (T ), as the

shortest length-scale for which the MS-CG potential, U(T, r∗c (T )), accurately reproduces

the AA bulk density. For these temperatures, we consider U(T ) = U(T, r∗c (T )) to be the

optimal MS-CG potential for OTP at the temperature, T . However, the MS-CG potentials,

U(Tx, rc), for Tx = 400 K always underestimate the equilibrium density of the AA model

at Tx = 400 K. In this case, we define the optimal LD length scale to be rc;max(Tx) and the

optimal MS-CG potential to be the potential, U(Tx) = U(Tx, rc;max(Tx)), that most closely

reproduces the AA bulk density at Tx = 400 K.
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FIG. 12. Analysis of the optimal LD length-scales, r∗c (T ), determined from constant NPT simula-

tions of OTP at ambient pressure, Pext = 1 bar, and various temperatures, T . The stars in panel (a)

present the optimal LD length-scale, r∗c (T ), for the indicated temperatures, while the dashed line

indicates the best fit to these points. The dark blue ‘x’ in panel (a) presents the LD length-scale,

rc;max(Tx), for the MS-CG potential, U(Tx) = U(Tx, rc;max(Tx)), that most closely reproduces the

AA density at the temperature, Tx = 400 K. The dark blue circle indicates the LD length-scale,

rc;pred(Tx), predicted for Tx by the best fit line. Panel (b) presents the mapped AA LD distribution,

P (ρLD) = P (ρLD;T, r
∗
c (T )), calculated for each temperature, T > Tx, while employing the optimal

LD length-scale, r∗c (T ). Panels (c) and (d) present the LD potential, Uρ(T ) = Uρ(T, r
∗
c (T )), and

pair potential, U2(T ) = U2(T, r
∗
c (T )), calculated independently for each T > Tx, while employing

the corresponding optimal length-scale, r∗c (T ). The solid curve in panel (e) presents the finite

difference in these pair potentials, ∆U2/∆T , where ∆U2 = U2(Thi)− U2(Tlo) and ∆T = Thi − Tlo,

while Thi = 650 K and Tlo = 500 K. The dotted curves in panel (d) present the pair potentials that

are obtained by extrapolating with this finite difference from the MS-CG pair potential, U2(Tref),

that was optimized for the reference temperature, Tref = 575 K. The grey curves present results

for the reference temperature, Tref = 575 K, while the dark blue, light blue, and red curves present

results for T = 400 K, 500 K, and 650 K, respectively.
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The stars in Fig. 12a present the optimal LD length-scales, r∗c (T ), for T = 500 K, 575 K,

and 650 K. As is clear from Fig. 11, the optimal LD length-scale for OTP decreases with

temperature over this range. This trend runs counter to the more intuitive trend observed

in Fig. 8 for methanol. Nevertheless, over the temperature-range 500 K < T < 650 K,

the optimal temperature-dependent LD length-scale for OTP is described almost perfectly

(R2 = 0.9998) by the line

f(T ) = m(T − Tref) + r∗c;0, (17)

where m = −1.135 × 10−3 nm/K and r∗c;0 = r∗c (Tref) = 1.3276 nm. The dark blue ‘X’ in

Fig. 12a presents the optimal LD length-scale, rc;max(Tx), for the problematic temperature

Tx = 400 K. This length-scale deviates significantly from the best fit line for the length-

scales, r∗c (T ), that accurately reproduce the AA bulk density at T = 500 K, 575 K, and

650 K. Consequently, we do not consider the temperature Tx = 400 K further in Fig. 12.

Figure 12b presents the mapped LD distribution, P (ρLD;T ) = P (ρLD;T, r
∗
c (T )), for T =

500 K, 575 K, and 650 K. As in Fig. 8b for methanol, Fig. 12b employs the optimal cut-

off, r∗c (T ), at each temperature to define the local density, ρI(R;T ) = ρI(R; r∗c (T )). As

in Fig. 8b, the mapped LD distribution broadens with increasing temperature. However,

in contrast to Fig. 8b for methanol, the mapped LD distribution for OTP shifts to lower

densities as T increases, mirroring the shift in the bulk density.

The remainder of Fig. 12 analyzes the optimized MS-CG potentials, U(T ) = U(T, r∗c (T )),

for T = 500 K, 575 K, and 650 K. These potentials were calculated using the optimal LD

length-scale, r∗c (T ), for each temperature. The SM demonstrates that the optimized MS-CG

potential, U(Tx) = U(Tx, rc;max), for Tx = 400 K deviates significantly from the MS-CG

potentials that were optimized for these higher temperatures.

Figure 12c presents the optimized MS-CG LD potentials, Uρ(T ) = Uρ(T, r
∗
c (T )). Even

though P (ρLD;T ) varies significantly across these state points, the optimized LD potentials

again appear remarkably independent of T .

The solid curves in Fig. 12d present the optimized MS-CG pair potentials, U2(T ) =

U2(T, r
∗
c (T )). In contrast to the optimized MS-CG pair potentials for methanol, the opti-

mized pair potentials for OTP become slightly more repulsive as T increases (at constant

external pressure, Pext = 1 bar). Fig. 12e presents the finite difference, ∆U2/∆T , where

∆U2 ≡ U2(Thi) − U2(Tlo) and ∆T = Thi − Tlo, while Thi = 650 K and Tlo = 500 K. The
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dotted dark red and light blue curves in Fig. 12d present the linear extrapolation given by

Eq. (16) for Thi and Tlo, respectively. This linear extrapolation very accurately describes the

optimized MS-CG pair potentials at both temperatures.

Figure 13 assesses the accuracy of the MS-CG models that have been optimized for

OTP at each state point. The solid and dashed curves present the results of constant NPT

simulations with the AA and optimized MS-CG models, respectively. In particular, the

dark blue dashed curves present results with the optimized MS-CG potential, U(Tx, rc;max),

that most accurately reproduces the AA bulk density at the problematic temperature, Tx =

400 K.

TABLE III. Bulk density, ρb and isothermal compressibility, κT = −V
−1

(∂V /∂P )T obtained for

OTP from constant NPT simulations with the AA model and various CG models. The “MS-CG”

column presents results for the optimal MS-CG potential, U(T, r∗c (T )), at each temperature. The

“Pred” column presents results for the potential, Upred(T ), that is predicted for each temperature.

Temperatures are reported in units of K, densities are reported in units of nm−3, and compress-

ibilities are reported in units of 10−5 bar−1.

T
ρb κT

AA MS-CG Pred AA MS-CG Pred

400 2.70 2.52 2.67 5.91 15.17 5.69

500 2.49 2.49 2.48 10.74 7.98 8.90

575 2.32 2.32 - 19.57 17.24 -

650 2.14 2.14 2.14 34.97 24.45 34.92

Figure 13a demonstrates that the optimized MS-CG models quite accurately reproduce

the AA pair structure at each temperature. As the temperature decreases, the MS-CG

model appears to become slightly more structured than the AA model. In particular, at

Tx = 400 K, the MS-CG model slightly underestimates the AA RDF near r ≈ 0.5 nm and

also demonstrates slightly larger oscillations in the first two solvation shells. Nevertheless,

the MS-CG models quite reasonably reproduce the AA RDF’s at all 4 temperatures.

Figure 13b demonstrates that the optimized MS-CG models quite accurately reproduce

the AA pressure-density equations of state at T = 500 K, 575 K, and 650 K. The opti-

mized MS-CG models quantitatively reproduce the bulk density by construction. Table III

demonstrates that they underestimate the AA compressibility by only 12 - 30% for these

three temperatures. Conversely, the dark blue dashed curve demonstrates that the optimized
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MS-CG model at Tx = 400 K describes the AA pressure-density eos with considerably less

accuracy. In particular, this MS-CG model underestimates the AA bulk density by 7.1%

and badly overestimates the AA compressibility.
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FIG. 13. Analysis of 1-site CG models for OTP with temperature-dependent LD length-scales.

Panels (a) and (b) present the mass-center RDF and pressure-density eos obtained from constant

NPT simulations of OTP at ambient external pressure, Pext = 1 bar, and the indicated temperature,

T . The solid curves present the results of AA simulations. The dashed and dotted curves present

the results of simulations with optimized MS-CG potentials, U(T ), and predicted CG potentials,

Upred(T ), respectively. The grey curves present results for the reference temperature, Tref = 575 K,

while the dark blue, light blue, and red curves present results for T = 400 K, 500 K, and 650 K,

respectively.

Finally, we predict CG potentials, Upred(T ) = {U2;pred(T ), Uρ;pred(T )}, for OTP according

to the approach introduced in Sec. IVA3 and assessed for methanol in Figs. 8 and 9.

Specifically, we first employ the dashed black line in Fig. 12 to predict an LD length-scale for

OTP at each temperature, rc;pred(T ) = f(T ), according to Eq. (17). In particular, the dark

blue dot in Fig. 12a indicates the predicted LD cut-off for Tx = 400 K, which is significantly

shorter than the LD cut-off, rc;max(Tx), that was originally optimized for this temperature.

In fact, Fig. 11a indicates that the MS-CG potential, U(Tx, rc;pred(Tx)), for this predicted
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length-scale vaporized. We then define the predicted LD potential for each T as the MS-CG

LD potential that was optimized for the single fixed temperature Thi = 650 K, while using

the predicted LD length-scale, i.e., Uρ;pred(T ) = Uρ(Thi, rc;pred(T )). In this case, we employ

the high temperature simulation at Thi = 650K to determine this fixed LD potential because

it determines Uρ over the widest range of local densities. Finally, we define the predicted

pair potential, U2;pred(T ), for each temperature by employing Eq. (16) to extrapolate from

the reference temperature, Tref = 575 K. As already noted, the dotted red and light blue

curves in Fig. 12d demonstrate that this linear extrapolation accurately predicts the MS-CG

pair potentials that were independently optimized for T = 500 K and 650 K. Conversely, the

dark blue dotted curve in Fig. 12d presents the predicted pair potential for Tx = 400 K. The

SM demonstrates that this predicted pair potential deviates significantly from the MS-CG

pair potential, U2(Tx) = U2(Tx, rc;max(Tx)), that was originally optimized for this state point.

The dotted curves in Fig. 13 present results for the predicted potential, Upred(T ), at each

temperature. The predicted potentials are very similar to the MS-CG potentials originally

optimized for T = 500 K, 575 K, and 650 K. Consequently, the red and light blue dot-

ted curves demonstrate that the predicted potentials reproduce the AA RDF and pressure-

density eos with similar accuracy to the optimized MS-CG potentials for these temperatures.

In fact, Table III demonstrates that the predicted potentials reproduce the AA compressibil-

ities with considerably better accuracy than the optimized MS-CG potentials. Conversely,

the dark blue dotted curves present results for the predicted potential, Upred(Tx), at Tx =

400 K, which significantly differs from the MS-CG potential, U(Tx), that was optimized for

Tx. Figure 13a demonstrates that this predicted potential reproduces the AA RDF with

similar accuracy to the MS-CG potential at Tx = 400 K. More importantly, the dark blue

dotted curve in Fig. 13b demonstrates that the predicted potential for Tx = 400 K repro-

duces the AA pressure-density eos much more accurately than the original MS-CG potential.

In particular, the potential, Upred(Tx), which was predicted without any information from

simulations at Tx, only underestimates the AA bulk density by 1.8 % and compressibility

by 3.7 %. Thus, Fig. 13 demonstrates that this approach for predicting CG potentials ac-

curately models OTP across a very wide range of temperatures. Even more remarkably,

the predicted potentials can provide greater accuracy than the MS-CG potentials that we

optimized for specific state points.
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V. DISCUSSION

In the present work we have investigated the temperature-dependence of LD potentials

for one-site MS-CG models of molecular liquids at a fixed external pressure, Pext = 1 bar.

We first considered models for methanol at a reference temperature, Tref = 260 K. In this

case, the MS-CG potential with a short LD length-scale, r∗c;0 = 0.5234 nm, very accurately

described the mapped RDF and pressure-density eos of the AA model at the reference state

point. Moreover, this single MS-CG potential accurately reproduced the mapped RDF

and reasonably reproduced the pressure-density eos of the AA methanol across the entire

temperature range from 220 K to 300 K. Thus, the fixed MS-CG potential not only accurately

modeled the reference state point, but also provided rather satisfactory transferability for

essentially the entire liquid phase (at 1 bar pressure).

We had anticipated that it would be possible to improve the transferability of the MS-

CG potentials by predictively modeling the temperature-dependence of the pair and LD

potentials, e.g., via the dual approach.65 Consequently, we calculated an independent MS-

CG potential, U(T, r∗c;0), for each temperature, T , while employing the same LD length-

scale, r∗c;0, that we had optimized for the reference state point. The resulting potentials did

indeed vary linearly with temperature. However, these temperature-dependent potentials,

U(T, r∗c;0), proved less transferable than the single fixed MS-CG potential, U(Tref , r
∗
c;0), that

we had originally optimized for Tref . This reduced transferability reflects the high sensitivity

of the MS-CG models to the LD length-scale.88

Accordingly, we investigated the temperature-dependence of the optimal LD length-scale,

r∗c (T ). We observed that r∗c (T ) increases linearly with temperature from 220 K to 300 K.

Quite surprisingly, if one defines the local density at each temperature with the optimal

length-scale, r∗c (T ), then the LD distribution for methanol does not shift with temperature.

Moreover, when employing this temperature-dependent optimal LD length-scale, r∗c (T ), the

MS-CG LD potential is essentially independent of temperature, while the MS-CG pair po-

tential varies linearly with temperature. This suggests a simple predictive framework for

parameterizing accurate CG models by predicting the temperature-dependent LD length-

scale, r∗c (T ), and pair potential, U2(T ), based upon linear extrapolation between two state

points, while employing a single fixed reference LD potential, Uρ(Tref). This approach accu-

rately models methanol at all state points that we considered.
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We next investigated the generality of these observations for OTP, which provides a very

different model liquid. In particular, we employed the FM variational principle to calculate

MS-CG potentials, U(T, rc), for a wide range of LD length-scales, rc, at several different

temperatures, T . None of the MS-CG potentials reproduced the equilibrium density of

the AA model at 1 bar external pressure when Tx = 400 K. However, as T increased, we

observed a growing range of LD length-scales for which the MS-CG potential, U(T, rc), sta-

bilized the liquid phase. At these higher temperatures, we again observed an optimal LD

length-scale, r∗c (T ), for which the MS-CG potential, U(T, r∗c (T )), very accurately described

the corresponding mapped ensemble. In contrast to methanol, r∗c (T ) decreased linearly and

the corresponding LD distribution systematically shifted to lower densities with increasing

temperature. More importantly, though, the optimal MS-CG pair potential, U2(T ), var-

ied linearly with temperature, while the optimal MS-CG LD potential, Uρ(T ), appeared

essentially temperature-independent. Remarkably, these trends allowed us to predict a CG

potential, Upred(Tx), that accurately modeled the problematic state point, Tx = 400 K. Thus,

this predictive framework not only predicts accurate MS-CG potentials, but also predicts

novel potentials for state points that our MS-CG potentials did not accurately model.

We have focused on modeling homogeneous liquids at ambient pressure. Importantly, the

predicted CG potentials quite accurately reproduce not only the RDF and bulk density, but

also the compressibility of the AA models. In particular, Figs. 9b and 13b demonstrate that

the predicted potentials quite accurately reproduce the AA equation of state for methanol

and for OTP, respectively, over a pressure range from 0 bar up to approximately 100 bar.

Consequently, one anticipates that these potentials should provide a reasonable description

of these liquids at both lower and higher pressures. Our preliminary studies suggest that

this is indeed the case.

In closing, it is worth noting that we have determined “optimal” CG potentials by mini-

mizing the FM functional, χ2[U ], in Eq. (13).69,70 The FM approach employs AA forces to

estimate conditioned mean forces that correspond to the gradients of the PMF.100,101 The

FM variational principle then determines U in order to optimally match this configuration-

dependence of the PMF. However, because the FM variational principle averages over the

mapped ensemble, the resulting MS-CG potential is not guaranteed to reproduce the RDF

or any other structural property of the mapped ensemble.122–127 Moreover, the FM vari-

ational principle does not guarantee that the CG model will reproduce the internal pres-
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sure or any other thermodynamic property of the AA model. Consequently, the RDF and

pressure-density eos determined by CG simulations are predictions of the CG model. The

observed agreement between the mapped RDF and the simulated RDF, as well as between

the pressure-density equations of state observed for the AA and MS-CG models, indicates

that the MS-CG model accurately describes the mapped ensemble. Conversely, it may be

possible that alternative approaches for parameterizing the CG potentials, e.g., by employing

the inverse Monte Carlo method60 or the relative entropy variational principle,85,91,128 may

determine LD potentials that provide better accuracy and transferability than the MS-CG

potentials that we obtained.

VI. CONCLUSIONS

In this study, we have systematically investigated the temperature-dependence of bottom-

up LD potentials for one-site CG models of molecular liquids. As we have previously

emphasized,88,90 the accuracy of MS-CG LD potentials depends very sensitively upon the

length-scale employed to define the local density. In many - though not all - cases, it is

possible to determine a LD length-scale, r∗c , such that the optimized MS-CG potential very

accurately describes the reference state point and also provides reasonably good transfer-

ability across a rather wide range of temperatures (at fixed external pressure). If one wishes

to improve the transferability of the MS-CG potential, then it seems necessary to account

for the temperature-dependence of the optimal LD length-scale, r∗c (T ). Fortunately, the op-

timal LD length-scale can be very accurately predicted across a wide temperature range via

simple linear extrapolation. Moreover, if one employs the optimal LD length-scale, r∗c (T ),

then a single LD potential can be employed to model this temperature range, while the op-

timal pair potential can be predicted via linear extrapolation. In the cases that we consider,

these predicted potentials accurately model a very wide temperature range. Even more re-

markably, the predicted potentials can accurately model problematic state-points that our

MS-CG potentials did not accurately model.

The present work indicates several interesting directions for future study. Future stud-

ies should elucidate the physical basis for the temperature-dependent LD length-scale and

temperature-independent LD potential. In particular, one wonders why the LD distribution

appears temperature-independent for methanol – but not for OTP – when the local den-
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sity is defined by the optimal length-scale, r∗c (T ). It is worth noting that this observation

is a property of the AA model and the CG mapping, but is otherwise independent of the

CG model. Pragmatically, it would be very beneficial to determine methods for predicting

r∗c (T ) directly from the mapped ensemble, i.e., without parameterizing and testing families

of CG potentials. While we have exclusively considered the Lucy function for modeling the

local density, it would be highly beneficial to develop insight and computational methods to

predictively optimize the LD weighting function for different state points, as illustrated by

Shahidi et al.60 One expects that this may be particularly important for transferring LD po-

tentials between states points that are characterized by differences in the local intermolecular

packing. Future studies should also investigate why our MS-CG LD potentials did not accu-

rately model certain state points and, moreover, how the proposed approach predicted novel

potentials that did accurately model these problematic state points. Furthermore, future

work should extend this study to multicomponent systems and to more complex molecules,

such as polymers or proteins. CG models for such systems will require parameterizing an

increasing number of LD potentials with a corresponding number of LD length-scales, which

may possibly vary with temperature and composition. Surmounting this daunting technical

challenge may well require new physical insight and robust numerical methods for addressing

the LD length-scale. Nevertheless, we hope that this study provides useful insight into the

temperature-dependence of bottom-up LD potentials.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional analysis of the local density and details of

our computational methods, as well as for additional results of the CG models for methanol

and OTP.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. Michael DeLyser for many helpful discussions

throughout this project. The authors also gratefully acknowledge financial support from the

National Science Foundation (Grant Nos. CHE-1856337 and CHE-2154433). Portions of this

research were conducted with Advanced CyberInfrastructure computational resources pro-

39



vided by The Institute for Computational and Data Sciences at The Pennsylvania State Uni-

versity (http://icds.psu.edu). Additionally, parts of this research used the Expanse resource

at the San Diego Supercomputer Center though allocation TG-CHE170062 from the Extreme

Science and Engineering Discovery Environment (XSEDE),129 which was supported by Na-

tional Science Foundation grant number TG-CHE170062. This work also used Rockfish at

Johns Hopkins University through allocation CHE170062 from the Advanced Cyberinfras-

tructure Coordination Ecosystem: Services & Support (ACCESS) program, which is sup-

ported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603,

and #2138296. Figures 2 and 10 employed VMD.130 VMD is developed with NIH support by

the Theoretical and Computational Biophysics group at the Beckman Institute, University

of 2510 Illinois at Urbana-Champaign.

AUTHOR DECLARATIONS

Conflict of interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

40



REFERENCES

1Marco Giulini, Marta Rigoli, Giovanni Mattiotti, Roberto Menichetti, Thomas Tarenzi,

Raffaele Fiorentini, and Raffaello Potestio. From System Modeling to System Analy-

sis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided

Investigation of Biomolecules. Front. Mol. Biosci., 8:676976, June 2021.

2Satyen Dhamankar and Michael A. Webb. Chemically specific coarse-graining of polymers:

Methods and prospects. Journal of Polymer Science, 59(22):2613–2643, 2021.

3Nicholas E. Jackson. Coarse-Graining Organic Semiconductors: The Path to Multiscale

Design. The Journal of Physical Chemistry B, 125(2):485–496, 2021.

4Tiedong Sun, Vishal Minhas, Nikolay Korolev, Alexander Mirzoev, Alexander P. Lyubart-
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