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Abstract

Semiconducting nanocrystals passivated with organic ligands have emerged as a

powerful platform for light harvesting, light-driven chemical reactions, and sensing.

Due to their complexity and size, little structural information is available from experi-

ments, making these systems challenging to model computationally. Here, we develop a

machine-learned force field trained on DFT data and use it to investigate surface chem-

istry of a PbS nanocrystal interfaced with acetate ligands. In doing so, we go beyond

considering individual local minimum energy geometries and, importantly, circumvent

a precarious issue associated with the assumption of a single assigned atomic partial

charge, for each element in a nanocrystal, independent of its structural position. We

demonstrate that the carboxylate ligands passivate the metal-rich surfaces by adopting

a very wide range of ‘tilted-bridge’ and ‘bridge’ geometries and investigate the corre-

sponding ligand IR spectrum. This work illustrates the potential of machine-learned

force fields to transform computational modelling of these materials.
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Colloidal nanocrystals are attractive materials for optoelectronic devices and sensors due

to their tunable light absorption properties and high molar extinction coefficients. 1,2 Such

semiconducting nanocrystals, or quantum dots (QD), are typically passivated with organic

ligands which stabilise them chemically3–5 and can not only influence their optoelectronic

properties6–9 but also constitute key components in QD-based devices, for instance, as charge

or energy acceptors.10,11 The details of the surface chemistry at the semiconducting-organic

interface are therefore crucial to the performance of nanocrystal-based technologies. 12

Experimental investigations of the structure of these interfaces are challenging due to

the complexity and heterogeneity of colloidal nanocrystals. Hence, computational modelling

of such QDs is an attractive research approach but is more demanding when realistically

interfaced with organic ligands. Typically, the geometries of these systems are obtained by

DFT-based geometry optimization.13–19 Such calculations are particularly computationally

intensive due to the sheer number of degrees of freedom and the resulting size of the con-

formational space. Because of the number of possible energy minima, the outputs of these

calculations will, for instance, frequently depend on the initial geometry.20 Furthermore, it is

generally not known if a particular local energy minimum is representative of the distribution

of structures present at non-zero temperature.

Alternatively, one can turn to performing molecular dynamics (MD) simulations. This

has been done in the past using analytical force fields which explicitly account for the elec-

trostatic, bonding, and van der Waals interactions.21–27 Such simulations allow for sampling

of the geometries present at a desired temperature, as well as for investigating much larger

systems, and including explicit solvation. Formulating and validating a conventional molec-

ular mechanics force field is challenging however, in part due to the scarcity of experimental

data on an atomic scale. For example, the apparent partial charges on various metal atoms

are reasonably expected to depend not only on the stoichiometry of the nanocrystal but

also on their position (e.g., at a vertex, at the surface or in the interior of the nanocrystal;

see futher discussion below) and on their ligand coordination. Additionally, relevant force
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fields may need to allow for the possibility of a covalent component of bonding between the

semiconductor and the ligands which are mobile on a surface of the nanocrystal.28 Conse-

quently, for PbS nanocrystals, for instance, force fields with very different partial-charge and

Lennard-Jones parameters have been proposed and used in the literature.29–32 Ab initio MD

simulations are capable of alleviating the problems just discussed, but, for the systems of

interest, the high computational intensity limits them to relatively short simulation times. 33

Over the last fifteen years, MD simulations based on machine-learned (ML) force fields

have emerged as an effective alternative to ab initio MD.34–38 Within this method, a ML

(typically neural-net or kernel-based) algorithm is trained on data obtained from ab initio

quantum chemical calculations to predict both the energies and forces associated with atomic

configurations and this result is then used in Monte Carlo or MD simulations. The sequential

evaluation of the total energy and its gradients can normally be accomplished orders of

magnitude faster than is possible using ab initio electronic structure, allowing for much longer

simulations and larger system sizes, as compared to ab initio MD.39–43 Concurrently, ML

algorithms can, in principle, approach the accuracy of the quantum chemistry method used

to obtain training data and thus offer a substantial advantage over conventional (analytical)

force fields. In this work, we develop and make use of neural-net based ML force fields trained

on DFT data to further our understanding of the surface chemistry of PbS nanocrystals

beyond what can be easily accomplished with conventional methods.

Our model system is shown in the inset of Figure 1. It comprises an ultra-small Pb19S6

nanocrystal with a diameter of 1.2 nm postulated by Choi et al. on the basis of their

experimental work.5 This heavily lead-rich quantum dot has a rock-salt-type structure and

an octahedral shape with eight (111) surfaces passivated with 26 (de-protonated) carboxylate

ligands, making the overall system charge-neutral.44 In the present test case, the oleate

ligands used in the synthesis1,5 were replaced with acetates for computational expediency. It

is generally thought that a PbS nanocrystal with a diameter below 3 nm possesses exclusively

lead-rich (111) surfaces.5,45,46 We believe, therefore, that the considered model system can
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also shed light on the behavior of somewhat larger quantum dots such as those used recently

to achieve photon upconversion.47

To illustrate some of the difficulties that would be associated with using a standard

analytical force field here, we briefly consider the atomic partial charges for the model system

at hand. We evaluate them using ESP analysis48 (i.e., by fitting the DFT electrostatic

potential). This results in a rather wide distribution of charges for each of the elemental

atom types, as displayed in Figure S8. In particular, we find that the partial charges on Pb

atoms depend on their position within the nanocrystal: we obtain average values of 0.94e,

0.72e, and 0.58e for atoms at the edge, vertex or in the interior of the QD, respectively. As

discussed above, ML force fields allow us to circumvent the issue of parametrizing atomic

partial charges since they do not rely on models that separate the bonding, van der Waals,

and electrostatic interactions.

Figure 1: Correlation between the DFT and ML force components sampled every 100 ps
during five considered 3 ns runs. Inset: The Pb19S6(CH3COO)26 model system considered
in this work.

The ML force fields in this work were developed with the DeePMD package.49–51 They

were trained on DFT energies and forces using an iterative procedure beginning with a set

of geometries obtained using an analytical force field;31 see the Methods and Section S1

for details. Two types of force fields were considered. In the first, the PbS nanocrystal is

assumed frozen in accord with an idealised crystal geometry; this force field will be referred

to as FF1. For the second force field, FF2, we removed any constraints from the surface Pb
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atoms. Atoms in the interior of the nanocrystal remain fixed throughout. We do not include

any effects of a dielectric environment or treat solvent effects in the present study. We make

use of the FF2 force field to obtain all the results presented in the main text while those

produced using FF1 are discussed in Section S4.

Following the training of the force field, we select 5 geometries from the validation set and

use each of them as an initial geometry in an independent 3 ns MD simulation performed at

300 K; see Methods for details. To test the accuracy of the considered force field during the

simulations, we evaluate the DFT energies and forces associated with geometries sampled

every 100 ps (155 structures in total) and compare them to those predicted by the ML force

field. We obtain the mean-absolute error (MAE) and the root-mean-square error (RMSE) on

energy of MAE = 3.26 kcal/mol and RMSE = 4.20 kcal/mol (corresponding to 0.68 and 0.88

meV/atom, respectively). The RMSE on force components is found to be 1.82 kcal/mol/Å,

comparable to what is usually achieved with ML force fields in the literature.40,52 In Figure

1, we show the correlation between the predicted ML and calculated DFT force components;

the correlation between the ML and DFT energies is shown in Figure S3.

We next analyze the ligand geometries observed during the above simulations. In each

run, the first 1 ns is largely relaxation and is disregarded in the analysis. As schematically

shown in Figure 2(a), geometries adopted by the carboxylate ligands are usually categorised

as belonging to either bridge, chelate, tilted-bridge or unidentate type based on their coor-

dination with metal atoms on the surface of the nanocrystal.28,53 To understand the ligand

binding quantitatively, we perform the following coordination analysis in which we purpose-

fully avoid introducing any specific or arbitrary distance criteria. As schematically illustrated

on the example of a tilted-bridge ligand in the inset of Figure 2(b), for each of the ligands,

we first identify its “primary” lead atom, Pb∗, as the Pb atom closest to the average position

of the two oxygen atoms. The two Pb∗-O distances are then defined as r1 and r2 (where

r1 < r2). The shortest of the Pb-O distances to any Pb atom other than Pb∗ is defined as

r3. Distance r1 will correspond to the Pb-O bonding interaction. The relative magnitudes
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Figure 2: (a) Examples of coordination geometries adopted by the acetate ligands, using
descriptive labels suggested in literature.28,53 Geometries I-III were identified in the simula-
tions. Geometry IV is a hypothetical geometry. (b, c) Histogram plots of (b) r1 vs. r3 and (c)
r2 vs. r3 distances. Symbols show the r1−3 values corresponding to the bridge (△), chelate
(+), tilted-bridge (⋆), and unidentate (◦) geometries shown in (a). Inset in (b) illustrates
the defined distances underlying the classification algorithm used here (see text).

of the r2 and r3 however will depend on the coordination geometry of the considered ligand;

see Figure 2(a). In particular, for a chelate, one ought to expect a relatively short r2 and a

longer r3 distance. The reverse is true for a bridge-type coordination where the two Pb-O

bonds involve distinct lead atoms. For a tilted-bridge geometry, both r2 and r3 should be

relatively short (and comparable to r1) while for a simple unidentate coordination r2 and

r3 ought to be significantly longer than r1. These expectations are illustrated by the r1−3

values corresponding to the structures shown in Figure 2(a), marked in panels (b) and (c).

In Figure 2(b), we plot a 2D histogram of the r1 vs. r3 distances. We observe a single

broad maximum at around r1, r3 ∼ 2.5 Å indicating that chelating geometries are rarely

observed and that ligands typically bridge at least two different Pb atoms, similarly to what

has been previously reported in computational studies of passivated CdSe nanocrystals. 28,54
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Additionally, the r2 vs. r3 histogram in Figure 2(c) reveals the presence of two maxima at

around r2 = 2.7 and 3.6 Å, corresponding to the tilted-bridging and bridging geometries,

respectively. We note however that the two distributions are very broad and overlap with

a surprisingly wide range of coordination geometries apparently accessible at room temper-

ature. Finally, no evidence of unidentate structures is observed for this case in the r2 vs.

r3 histogram. To additionally validate our results, we performed DFT optimizations of 10

nanocrystal geometries sampled from the MD simulations, comprising 260 initial ligand ge-

ometries. As discussed in Section S5, the obtained local-minimum geometries comprise a

distribution of tilted-bridge and bridge geometries and do not feature any chelate or uniden-

tate geometries, in complete agreement with the ML results. Furthermore, the results of a

coordination analysis of these DFT-optimized geometries are in good quantitative agreement

with the results of the ML force field simulations.

The relative fractions of bridging vs. tilted-bridging geometries can be estimated by

clustering the {r2, r3} data. Using the k-means algorithm as implemented in scikit-learn,55

we find that on average 37% of ligands adopt the bridging geometry while the remaining

63% can be categorized as tilted-bridges; see Section S2.2 for details. We also observe that

some bridging structures in our simulations appear to be stabilised by an additional Pb-O

interaction with a third lead atom; see Figure S4 for an example of such geometry. Finally,

we note that, in our analysis, coordinations in which one of the oxygen atoms bridges two

Pb atoms while the other forms no Pb-O bonds would be categorised as a bridge (since

r1 ∼ r3) rather than a unidentate type. As discussed in Section S2.1, we find no substantial

contributions from such geometries – only around 2% of the ligands possess an oxygen atom

that is further than 3 Å from any of the Pb atoms.

In Figure 3(a), we plot the Pb-O and Pb-C distribution functions; these support the

conclusions discussed above. In the Pb-O distribution function, we observe a broad peak

centered around 2.5 Å which shows the range of accessible Pb-O interaction lengths. The

very wide peak around 4-4.5 Å corresponds to the distance between the oxygen atoms and
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Figure 3: (a) Pb-ligand separations: Pb-O and Pb-C distribution functions. (b) Intra-QD
interfacial separations: Pb-S and Pb-Pb distribution functions. The vertical lines indicate
the relevant separations in an idealised PbS crystal. Inset: nanocrystal geometry from a 300
K simulation (ligands not shown for clarity).

the neighbouring Pb atoms, including those across the (tilted) carboxylate bridge. In the

Pb-C distribution function, we find two peaks at around 3.0 and 3.5 Å. The former can be

identified as the shorter of the two Pb-C distances in a tilted-bridge geometry, c.f. Figure

2(a), while the latter corresponds to the Pb-C separation in the bridging coordination and

the remaining Pb-C distance in the tilted-bridge. (The peak at around 4.5 Å stems from

the carbon atom of the methyl group.)

We also analyze the Pb-Pb and Pb-S distribution functions (for the interfacial lead atoms)

which are shown in Figure 3(b). The vertical lines indicate the Pb-Pb and Pb-S distances

in an idealised crystal. Both of the considered distributions are broad, indicating the high

degree of ligand and Pb atom disorder on the surface of the carboxylate-passivated nanocrys-

tal. The apparent double peak in the Pb-S distribution function, at roughly 2.8 and 3.2 Å,

corresponds to the vertex and non-vertex Pb atoms, respectively.

Experimentally, the surface chemistry of nanocrystals passivated with carboxylate ligands
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is most frequently investigated using IR spectroscopy.53,56–60 In particular, the relative posi-

tions and the spacings between the symmetric and antisymmetric carboxyl stretches are used

to infer the ligand coordination geometry.61 Based on the broad and highly non-Lorentzian

shape of the IR peaks associated with the carboxyl stretches, previous experimental studies

of oleate-passivated PbS nanocrystals postulated coexistence of bridging and chelating lig-

ands,53,57,58 in an apparent contradiction to our results here. We also note here that DFT

calculations suggest that bridging and tilted-bridging ligands are expected to yield similar

IR signals56 and the two geometry types are often not discussed separately. To resolve this

apparent inconsistency, in the remainder of this work, we focus on evaluating the vibrational

spectrum of the considered system.

Broadly speaking, the IR spectra can be estimated in two different ways:62 one can either

(i) perform a static (harmonic) normal mode analysis, as typically implemented in electronic

structure software, or (ii) obtain the IR signal from a dipole moment auto-correlation function

drawn from an MD simulation. Since the former method neglects any anharmonic effects and,

at the same time, becomes computationally demanding for larger systems, the latter method

will be discussed here; results of the (harmonic) DFT frequency analysis are presented in

Section S3.4. The IR signal is often calculated on single optimized geometries comprising

individual ligands bound to a slab or a stoichiometric quantum dot.15,56 Here, we use the

dynamics of the entire nanocrystal system. In doing so, we are able to predict the spectrum

for the simulated ensemble of ligand geometries without the need to artificially introduce

any broadening.

In order to obtain the necessary dipole moments and avoid computing them with an

electronic structure method at every step, we train a new machine learning algorithm to

predict the dipole vector for the simulated geometries.63 We once again use the DeePMD

package and DFT data for training with details given in the Methods section. In Figure 4(a),

we plot the correlation between the DFT and ML dipole moments for the geometries sampled

every 100 ps from the five 3 ns simulations discussed earlier. The algorithm performs very
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well with RMSE = 0.40 D, relative to the root-mean-square of dipole vector components of

roughly 4.9 D. Using output coordinates and velocities of one of the earlier 300 K simulations

as the initial state, we next run a 1 ns constant NVE simulation, computing the ML dipole

moment at every step. As shown in Section S3.1, no significant energy drift is observed over

the course of this run. The IR signal is subsequently obtained by a Fourier transform of the

dipole-dipole correlation function; see Methods.

Figure 4: (a) Correlations between the DFT and ML (x, y, z) components of the dipole
moment vector for the geometries sampled from the earlier 300 K simulations. (b) IR signal
calculated from a 1 ns NVE simulation using the ML dipole moment. Colors indicate the
approximate ranges of either CH bends or symmetric/antisymmetric carboxyl stretches.

The resulting IR spectrum in the relevant ligand frequency range is shown in Figure 4(b).

We observe a broad peak around νs ≈ 1370-1420 cm−1 which corresponds to the symmetric

stretches within the carboxyl group as well as a band that corresponds to the anti-symmetric

stretches at νas ≈ 1550-1600 cm−1. The intense signal at around νu ≈ 1450 cm−1 stems from
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the umbrella mode of the methyl group. The remaining CH bends (scissoring modes) give

rise to the weak peak at around νCH ≈ 1480 cm−1.

Alternatively, instead of using the above ML algorithm, the dipole moment and thus

the IR spectrum can be calculated using atomic partial charges. We use the previously-

calculated ESP partial charges which were averaged for each of the chemically-distinct species

including for Pb atoms at the edge, vertex, and in the interior of the QD; see Section S3.2.

As shown in Figure S9, the resulting spectrum features virtually identical peak frequencies

but markedly different intensities as compared to the IR signal shown in Figure 4(b). This

underscores the important limitations of the fixed-partial-charge approach in the present

setting. We note however that manipulating these atomic charges allows us to easily identify

the (methyl vs. carboxyl) origin of each of the vibrational peaks. We also remark here that,

as recently demonstrated by Cosseddu and Infante on an example of a carboxylate-passivated

CdSe nanocrystal,22 analytical force fields generally fail to reproduce the correct carboxyl

vibrational spectrum.

Very broadly, the IR spectrum shown in Figure 4(b) agrees with the spectra reported for

PbS nanocrystals passivated with oleate ligands in which one typically observes the carboxyl

symmetric stretches in the region of 1380-1420 cm−1, followed by weak CH bends around

1450 cm−1 and the antisymmetric stretches from roughly 1500 to 1560 cm−1.53,57,58 Some of

the main discrepancies between them, such as the presence of the intense 1450 cm−1 peak and

the higher frequencies of the antisymmetric carboxyl stretches in the simulated spectrum,

can be explained by the differences between the IR signatures of the acetate and oleate

ligands. As shown in Section S3.5, the very intense ‘umbrella’ modes seen here are virtually

silent in longer carboxylate ligands. Additionally, gas phase DFT calculations suggest that

the antisymmetric carboxyl stretch is of a slightly higher frequency in an acetate anion than

in its longer homologs. We also note that all of the aforementioned experimental studies

considered larger nanocrystals than the one investigated here, although only modest size-

dependence of the IR signal is usually observed.53,57 Importantly, however, our results suggest
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that the broad and highly non-Lorentzian character of the carboxyl-stretch lineshapes can

result from the wide distributions of the bridging/tilted-bridging geometries and need not

indicate their coexistence with chelating ligands.

Lastly, we briefly discuss the results obtained using the FF1 force field in which the

entire nanocrystal is frozen in an idealised crystal geometry. As shown in Section S4, we

again observe a wide distribution of bridging and tilted-bridging ligands, and a complete lack

of chelating geometries. As can be seen in Figure S12, the biggest difference, as compared

to the results acquired for a flexible QD surface, is the much smaller ratio of the bridging

to tilted-bridging geometries in the case of the frozen nanocrystal. This can be understood

by noting that, as shown in Figure 3(b), once the constraints on surface atoms are removed,

the typical Pb-Pb spacing on the QD surface decreases to better match the spacing optimal

for a carboxylate bridge. This suggests that distortions of the nanocrystal surface can make

important contributions to the distribution of ligand geometries.

In summary, we developed and made use of ML force fields to understand the surface

chemistry of an ultra small and heavily lead-rich PbS nanocrystal. We have shown that car-

boxylate ligands passivating the (111) surfaces of the QD adopt a notably broad distribution

of bridge and tilted-bridge geometries. Similarly, we have demonstrated that the surface of

the passivated nanocrystal is significantly distorted compared to the idealised crystal struc-

ture. Our simulations appear to contradict the conventional interpretation of experimental

IR studies on PbS quantum dots according to which the non-Lorentzian lineshape is a result

of coexistence of chelating and bridging oleate ligands. Although, here, we made use of

shorter acetate ligands and the nanocrystal considered is smaller than the ones investigated

experimentally, our results suggest that the broad vibrational spectrum can stem from the

wide range of accessible (tilted) bridge geometries without invoking another class of struc-

tures. Our future efforts will focus on introducing solvation as well as investigating larger

quantum dots and bulkier ligands, in order to allow for a clear, direct comparison with ex-

periment. Finally, this work reinforces the view that machine-learned force fields constitute
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a powerful tool in the modelling of semiconducting nanocrystals, where traditional analytical

partial charge models are clearly challenged. Such studies should advance our understanding

of these complex systems and therefore aid in the design of quantum dot-based technologies.

Computational Methods

Unless indicated otherwise, the electronic structure calculations were performed in NWChem

7.0.0.48 We use the dispersion corrected PBE0-D3 functional64,65 and the polarization-

consistent lanl2dz and 6-31G basis sets throughout for PbS and the remaining light atoms,

respectively. The core electrons in Pb and S atoms were accounted for using the correspond-

ing effective core potentials. The starting point for force field training were geometries from

a conventional MD simulation obtained using a force field akin to the one used by us previ-

ously.31 The force fields were trained on both the energies and forces with a cut-off of 8 Å.

Within DeePMD, we use three hidden layers of size (25, 50, 100) for the embedding net and

three (240, 240, 240) hidden layers for the fitting neural network. We followed an iterative

scheme66,67 in which the force field trained on a given set of geometries was used to generate

new coordinates for training and validation by propagating geometries from the original set;

see Section S1 for details. This cycle is repeated until the energies stabilize, MAE on energy

drops below 1 meV/atom for the validation set, and the force field appears stable. Overall,

for FF1, we used 7400 geometries for training and 845 for validation. For FF2, we used 8961

geometries for training and 994 for validation.

The constant-temperature MD was implemented using the Langevin BAOAB algorithm68

with a time step of 1 fs and the damping coefficient of 0.5 ps−1; geometries were saved every

0.5 ps. For the NVE simulations, we use the Verlet algorithm with a time step of 1 fs.

The IR signal obtained from the NVE simulations was calculated by performing a Fourier
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transform of the classical dipole-dipole correlation function69

I(ω) ∝
∫ ∞

−∞
dt ⟨µ̇(τ)µ̇(t− τ)⟩τ eiωt, (1)

where µ̇(t) is the derivative of the dipole moment at time t and ⟨·⟩τ denotes an ensemble

average over τ . The above expression makes use of the harmonic quantum correction factor70

which has been shown to satisfy the fluctuation-dissipation theorem.71

To machine-learn the dipole moment obtained from DFT calculations, we again used the

DeePMD framework with three hidden layers of size (25, 50, 100) for the embedding net

and three (100, 100, 100) hidden layers for the fitting neural network. The training was

performed for 1.2 × 105 steps with an exponentially decaying learning rate (from 0.01 to

3.51 × 10−8). 5780 geometries, with corresponding dipole moments, were used for training

and 200 for validation.

All 3D visualisations were rendered using VMD.72
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