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Abstract

Semiconducting nanocrystals passivated with organic ligands have emerged as a
powerful platform for light harvesting, light-driven chemical reactions, and sensing.
Due to their complexity and size, little structural information is available from experi-
ments, making these systems challenging to model computationally. Here, we develop a
machine-learned force field trained on DFT data and use it to investigate surface chem-
istry of a PbS nanocrystal interfaced with acetate ligands. In doing so, we go beyond
considering individual local minimum energy geometries and, importantly, circumvent
a precarious issue associated with the assumption of a single assigned atomic partial
charge, for each element in a nanocrystal, independent of its structural position. We
demonstrate that the carboxylate ligands passivate the metal-rich surfaces by adopting
a very wide range of ‘tilted-bridge’ and ‘bridge’ geometries and investigate the corre-
sponding ligand IR spectrum. This work illustrates the potential of machine-learned

force fields to transform computational modelling of these materials.

TOC Graphic




Colloidal nanocrystals are attractive materials for optoelectronic devices and sensors due
to their tunable light absorption properties and high molar extinction coefficients.!? Such
semiconducting nanocrystals, or quantum dots (QD), are typically passivated with organic

ligands which stabilise them chemically®™

and can not only influence their optoelectronic
properties®? but also constitute key components in QD-based devices, for instance, as charge
or energy acceptors. %! The details of the surface chemistry at the semiconducting-organic
interface are therefore crucial to the performance of nanocrystal-based technologies. 12

Experimental investigations of the structure of these interfaces are challenging due to
the complexity and heterogeneity of colloidal nanocrystals. Hence, computational modelling
of such QDs is an attractive research approach but is more demanding when realistically
interfaced with organic ligands. Typically, the geometries of these systems are obtained by
DFT-based geometry optimization.!®1® Such calculations are particularly computationally
intensive due to the sheer number of degrees of freedom and the resulting size of the con-
formational space. Because of the number of possible energy minima, the outputs of these
calculations will, for instance, frequently depend on the initial geometry.?° Furthermore, it is
generally not known if a particular local energy minimum is representative of the distribution
of structures present at non-zero temperature.

Alternatively, one can turn to performing molecular dynamics (MD) simulations. This
has been done in the past using analytical force fields which explicitly account for the elec-
trostatic, bonding, and van der Waals interactions.?' 27 Such simulations allow for sampling
of the geometries present at a desired temperature, as well as for investigating much larger
systems, and including explicit solvation. Formulating and validating a conventional molec-
ular mechanics force field is challenging however, in part due to the scarcity of experimental
data on an atomic scale. For example, the apparent partial charges on various metal atoms
are reasonably expected to depend not only on the stoichiometry of the nanocrystal but
also on their position (e.g., at a vertex, at the surface or in the interior of the nanocrystal;

see futher discussion below) and on their ligand coordination. Additionally, relevant force



fields may need to allow for the possibility of a covalent component of bonding between the
semiconductor and the ligands which are mobile on a surface of the nanocrystal.?® Conse-
quently, for PbS nanocrystals, for instance, force fields with very different partial-charge and
Lennard-Jones parameters have been proposed and used in the literature.?*32 Ab initio MD
simulations are capable of alleviating the problems just discussed, but, for the systems of
interest, the high computational intensity limits them to relatively short simulation times.??

Over the last fifteen years, MD simulations based on machine-learned (ML) force fields
have emerged as an effective alternative to ab initio MD.343® Within this method, a ML
(typically neural-net or kernel-based) algorithm is trained on data obtained from ab initio
quantum chemical calculations to predict both the energies and forces associated with atomic
configurations and this result is then used in Monte Carlo or MD simulations. The sequential
evaluation of the total energy and its gradients can normally be accomplished orders of
magnitude faster than is possible using ab initio electronic structure, allowing for much longer
simulations and larger system sizes, as compared to ab initio MD.3% 3 Concurrently, ML
algorithms can, in principle, approach the accuracy of the quantum chemistry method used
to obtain training data and thus offer a substantial advantage over conventional (analytical)
force fields. In this work, we develop and make use of neural-net based ML force fields trained
on DFT data to further our understanding of the surface chemistry of PbS nanocrystals
beyond what can be easily accomplished with conventional methods.

Our model system is shown in the inset of Figure 1. It comprises an ultra-small Pb;gSg
nanocrystal with a diameter of 1.2 nm postulated by Choi et al. on the basis of their
experimental work.® This heavily lead-rich quantum dot has a rock-salt-type structure and
an octahedral shape with eight (111) surfaces passivated with 26 (de-protonated) carboxylate
ligands, making the overall system charge-neutral.** In the present test case, the oleate
ligands used in the synthesis!® were replaced with acetates for computational expediency. It
is generally thought that a PbS nanocrystal with a diameter below 3 nm possesses exclusively

lead-rich (111) surfaces.?*516 We believe, therefore, that the considered model system can



also shed light on the behavior of somewhat larger quantum dots such as those used recently
to achieve photon upconversion.*”

To illustrate some of the difficulties that would be associated with using a standard
analytical force field here, we briefly consider the atomic partial charges for the model system
at hand. We evaluate them using ESP analysis?® (i.e., by fitting the DFT electrostatic
potential). This results in a rather wide distribution of charges for each of the elemental
atom types, as displayed in Figure S8. In particular, we find that the partial charges on Pb
atoms depend on their position within the nanocrystal: we obtain average values of 0.94e,
0.72e, and 0.58e for atoms at the edge, vertex or in the interior of the QD, respectively. As
discussed above, ML force fields allow us to circumvent the issue of parametrizing atomic

partial charges since they do not rely on models that separate the bonding, van der Waals,

and electrostatic interactions.
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Figure 1: Correlation between the DFT and ML force components sampled every 100 ps
during five considered 3 ns runs. Inset: The PbigSs(CH3COO)q6 model system considered
in this work.

The ML force fields in this work were developed with the DeePMD package. ! They
were trained on DFT energies and forces using an iterative procedure beginning with a set
of geometries obtained using an analytical force field;®! see the Methods and Section S1
for details. Two types of force fields were considered. In the first, the PbS nanocrystal is
assumed frozen in accord with an idealised crystal geometry; this force field will be referred

to as FF1. For the second force field, FF2, we removed any constraints from the surface Pb



atoms. Atoms in the interior of the nanocrystal remain fixed throughout. We do not include
any effects of a dielectric environment or treat solvent effects in the present study. We make
use of the FF2 force field to obtain all the results presented in the main text while those
produced using FF1 are discussed in Section S4.

Following the training of the force field, we select 5 geometries from the validation set and
use each of them as an initial geometry in an independent 3 ns MD simulation performed at
300 K; see Methods for details. To test the accuracy of the considered force field during the
simulations, we evaluate the DFT energies and forces associated with geometries sampled
every 100 ps (155 structures in total) and compare them to those predicted by the ML force
field. We obtain the mean-absolute error (MAE) and the root-mean-square error (RMSE) on
energy of MAE = 3.26 kcal/mol and RMSE = 4.20 kcal/mol (corresponding to 0.68 and 0.88
meV /atom, respectively). The RMSE on force components is found to be 1.82 keal/mol/A,
comparable to what is usually achieved with ML force fields in the literature. 4?2 In Figure
1, we show the correlation between the predicted ML and calculated DFT force components;
the correlation between the ML and DFT energies is shown in Figure S3.

We next analyze the ligand geometries observed during the above simulations. In each
run, the first 1 ns is largely relaxation and is disregarded in the analysis. As schematically
shown in Figure 2(a), geometries adopted by the carboxylate ligands are usually categorised
as belonging to either bridge, chelate, tilted-bridge or unidentate type based on their coor-
dination with metal atoms on the surface of the nanocrystal.?®*3 To understand the ligand
binding quantitatively, we perform the following coordination analysis in which we purpose-
fully avoid introducing any specific or arbitrary distance criteria. As schematically illustrated
on the example of a tilted-bridge ligand in the inset of Figure 2(b), for each of the ligands,
we first identify its “primary” lead atom, Pb*, as the Pb atom closest to the average position
of the two oxygen atoms. The two Pb*-O distances are then defined as r; and ry (where
r1 < rg). The shortest of the Pb-O distances to any Pb atom other than Pb* is defined as

r3. Distance r; will correspond to the Pb-O bonding interaction. The relative magnitudes
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Figure 2: (a) Examples of coordination geometries adopted by the acetate ligands, using
descriptive labels suggested in literature.?®% Geometries I-III were identified in the simula-
tions. Geometry IV is a hypothetical geometry. (b, ¢) Histogram plots of (b) r; vs. r3 and (c)
r9 vs. T3 distances. Symbols show the r_3 values corresponding to the bridge (A), chelate
(+), tilted-bridge (%), and unidentate (o) geometries shown in (a). Inset in (b) illustrates
the defined distances underlying the classification algorithm used here (see text).

of the o and r3 however will depend on the coordination geometry of the considered ligand;
see Figure 2(a). In particular, for a chelate, one ought to expect a relatively short ry and a
longer r3 distance. The reverse is true for a bridge-type coordination where the two Pb-O
bonds involve distinct lead atoms. For a tilted-bridge geometry, both ro and r3 should be
relatively short (and comparable to 1) while for a simple unidentate coordination 7, and
r3 ought to be significantly longer than r;. These expectations are illustrated by the r;_3
values corresponding to the structures shown in Figure 2(a), marked in panels (b) and (c).
In Figure 2(b), we plot a 2D histogram of the r; vs. r3 distances. We observe a single
broad maximum at around 71, r3 ~ 2.5 A indicating that chelating geometries are rarely
observed and that ligands typically bridge at least two different Pb atoms, similarly to what

has been previously reported in computational studies of passivated CdSe nanocrystals. 284



Additionally, the o vs. r3 histogram in Figure 2(c) reveals the presence of two maxima at
around 7, = 2.7 and 3.6 A, corresponding to the tilted-bridging and bridging geometries,
respectively. We note however that the two distributions are very broad and overlap with
a surprisingly wide range of coordination geometries apparently accessible at room temper-
ature. Finally, no evidence of unidentate structures is observed for this case in the ry ws.
r3 histogram. To additionally validate our results, we performed DFT optimizations of 10
nanocrystal geometries sampled from the MD simulations, comprising 260 initial ligand ge-
ometries. As discussed in Section S5, the obtained local-minimum geometries comprise a
distribution of tilted-bridge and bridge geometries and do not feature any chelate or uniden-
tate geometries, in complete agreement with the ML results. Furthermore, the results of a
coordination analysis of these DF T-optimized geometries are in good quantitative agreement
with the results of the ML force field simulations.

The relative fractions of bridging wvs. tilted-bridging geometries can be estimated by
clustering the {ry,r3} data. Using the k-means algorithm as implemented in scikit-learn,
we find that on average 37% of ligands adopt the bridging geometry while the remaining
63% can be categorized as tilted-bridges; see Section S2.2 for details. We also observe that
some bridging structures in our simulations appear to be stabilised by an additional Pb-O
interaction with a third lead atom; see Figure S4 for an example of such geometry. Finally,
we note that, in our analysis, coordinations in which one of the oxygen atoms bridges two
Pb atoms while the other forms no Pb-O bonds would be categorised as a bridge (since
r1 ~ r3) rather than a unidentate type. As discussed in Section S2.1, we find no substantial
contributions from such geometries — only around 2% of the ligands possess an oxygen atom
that is further than 3 A from any of the Pb atoms.

In Figure 3(a), we plot the Pb-O and Pb-C distribution functions; these support the
conclusions discussed above. In the Pb-O distribution function, we observe a broad peak
centered around 2.5 A which shows the range of accessible Pb-O interaction lengths. The

very wide peak around 4-4.5 A corresponds to the distance between the oxygen atoms and
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Figure 3: (a) Pb-ligand separations: Pb-O and Pb-C distribution functions. (b) Intra-QD
interfacial separations: Pb-S and Pb-Pb distribution functions. The vertical lines indicate
the relevant separations in an idealised PbS crystal. Inset: nanocrystal geometry from a 300
K simulation (ligands not shown for clarity).

the neighbouring Pb atoms, including those across the (tilted) carboxylate bridge. In the
Pb-C distribution function, we find two peaks at around 3.0 and 3.5 A. The former can be
identified as the shorter of the two Pb-C distances in a tilted-bridge geometry, c.f. Figure
2(a), while the latter corresponds to the Pb-C separation in the bridging coordination and
the remaining Pb-C distance in the tilted-bridge. (The peak at around 4.5 A stems from
the carbon atom of the methyl group.)

We also analyze the Pb-Pb and Pb-S distribution functions (for the interfacial lead atoms)
which are shown in Figure 3(b). The vertical lines indicate the Pb-Pb and Pb-S distances
in an idealised crystal. Both of the considered distributions are broad, indicating the high
degree of ligand and Pb atom disorder on the surface of the carboxylate-passivated nanocrys-
tal. The apparent double peak in the Pb-S distribution function, at roughly 2.8 and 3.2 A,
corresponds to the vertex and non-vertex Pb atoms, respectively.

Experimentally, the surface chemistry of nanocrystals passivated with carboxylate ligands



is most frequently investigated using IR spectroscopy.®*°% % In particular, the relative posi-
tions and the spacings between the symmetric and antisymmetric carboxyl stretches are used
to infer the ligand coordination geometry.%! Based on the broad and highly non-Lorentzian
shape of the IR peaks associated with the carboxyl stretches, previous experimental studies
of oleate-passivated PbS nanocrystals postulated coexistence of bridging and chelating lig-

335758 in an apparent contradiction to our results here. We also note here that DFT

ands,
calculations suggest that bridging and tilted-bridging ligands are expected to yield similar
IR signals® and the two geometry types are often not discussed separately. To resolve this
apparent inconsistency, in the remainder of this work, we focus on evaluating the vibrational
spectrum of the considered system.

Broadly speaking, the IR spectra can be estimated in two different ways: %2 one can either
(i) perform a static (harmonic) normal mode analysis, as typically implemented in electronic
structure software, or (ii) obtain the IR signal from a dipole moment auto-correlation function
drawn from an MD simulation. Since the former method neglects any anharmonic effects and,
at the same time, becomes computationally demanding for larger systems, the latter method
will be discussed here; results of the (harmonic) DFT frequency analysis are presented in
Section S3.4. The IR signal is often calculated on single optimized geometries comprising
individual ligands bound to a slab or a stoichiometric quantum dot.!%*® Here, we use the
dynamics of the entire nanocrystal system. In doing so, we are able to predict the spectrum
for the simulated ensemble of ligand geometries without the need to artificially introduce
any broadening.

In order to obtain the necessary dipole moments and avoid computing them with an
electronic structure method at every step, we train a new machine learning algorithm to
predict the dipole vector for the simulated geometries.®® We once again use the DeePMD
package and DFT data for training with details given in the Methods section. In Figure 4(a),
we plot the correlation between the DF'T and ML dipole moments for the geometries sampled

every 100 ps from the five 3 ns simulations discussed earlier. The algorithm performs very
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well with RMSE = 0.40 D, relative to the root-mean-square of dipole vector components of
roughly 4.9 D. Using output coordinates and velocities of one of the earlier 300 K simulations
as the initial state, we next run a 1 ns constant NVE simulation, computing the ML dipole
moment at every step. As shown in Section S3.1, no significant energy drift is observed over
the course of this run. The IR signal is subsequently obtained by a Fourier transform of the

dipole-dipole correlation function; see Methods.
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Figure 4: (a) Correlations between the DFT and ML (x,y,2) components of the dipole
moment vector for the geometries sampled from the earlier 300 K simulations. (b) IR signal
calculated from a 1 ns NVE simulation using the ML dipole moment. Colors indicate the
approximate ranges of either CH bends or symmetric/antisymmetric carboxyl stretches.

The resulting IR spectrum in the relevant ligand frequency range is shown in Figure 4(b).
We observe a broad peak around v, ~ 1370-1420 cm ™! which corresponds to the symmetric
stretches within the carboxyl group as well as a band that corresponds to the anti-symmetric

stretches at v, ~ 1550-1600 cm~!. The intense signal at around v, ~ 1450 cm~! stems from
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the umbrella mode of the methyl group. The remaining CH bends (scissoring modes) give
rise to the weak peak at around vep ~ 1480 cm ™.

Alternatively, instead of using the above ML algorithm, the dipole moment and thus
the IR spectrum can be calculated using atomic partial charges. We use the previously-
calculated ESP partial charges which were averaged for each of the chemically-distinct species
including for Pb atoms at the edge, vertex, and in the interior of the QD; see Section S3.2.
As shown in Figure S9, the resulting spectrum features virtually identical peak frequencies
but markedly different intensities as compared to the IR signal shown in Figure 4(b). This
underscores the important limitations of the fixed-partial-charge approach in the present
setting. We note however that manipulating these atomic charges allows us to easily identify
the (methyl vs. carboxyl) origin of each of the vibrational peaks. We also remark here that,
as recently demonstrated by Cosseddu and Infante on an example of a carboxylate-passivated

1,22 analytical force fields generally fail to reproduce the correct carboxyl

CdSe nanocrysta
vibrational spectrum.

Very broadly, the IR spectrum shown in Figure 4(b) agrees with the spectra reported for
PbS nanocrystals passivated with oleate ligands in which one typically observes the carboxyl
symmetric stretches in the region of 1380-1420 cm™!, followed by weak CH bends around
1450 cm ™! and the antisymmetric stretches from roughly 1500 to 1560 cm™t.5357%8 Some of
the main discrepancies between them, such as the presence of the intense 1450 cm ™! peak and
the higher frequencies of the antisymmetric carboxyl stretches in the simulated spectrum,
can be explained by the differences between the IR signatures of the acetate and oleate
ligands. As shown in Section S3.5, the very intense ‘umbrella’ modes seen here are virtually
silent in longer carboxylate ligands. Additionally, gas phase DFT calculations suggest that
the antisymmetric carboxyl stretch is of a slightly higher frequency in an acetate anion than
in its longer homologs. We also note that all of the aforementioned experimental studies

considered larger nanocrystals than the one investigated here, although only modest size-

dependence of the IR signal is usually observed. 5> Importantly, however, our results suggest
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that the broad and highly non-Lorentzian character of the carboxyl-stretch lineshapes can
result from the wide distributions of the bridging/tilted-bridging geometries and need not
indicate their coexistence with chelating ligands.

Lastly, we briefly discuss the results obtained using the FF1 force field in which the
entire nanocrystal is frozen in an idealised crystal geometry. As shown in Section S4, we
again observe a wide distribution of bridging and tilted-bridging ligands, and a complete lack
of chelating geometries. As can be seen in Figure S12, the biggest difference, as compared
to the results acquired for a flexible QD surface, is the much smaller ratio of the bridging
to tilted-bridging geometries in the case of the frozen nanocrystal. This can be understood
by noting that, as shown in Figure 3(b), once the constraints on surface atoms are removed,
the typical Pb-Pb spacing on the QD surface decreases to better match the spacing optimal
for a carboxylate bridge. This suggests that distortions of the nanocrystal surface can make
important contributions to the distribution of ligand geometries.

In summary, we developed and made use of ML force fields to understand the surface
chemistry of an ultra small and heavily lead-rich PbS nanocrystal. We have shown that car-
boxylate ligands passivating the (111) surfaces of the QD adopt a notably broad distribution
of bridge and tilted-bridge geometries. Similarly, we have demonstrated that the surface of
the passivated nanocrystal is significantly distorted compared to the idealised crystal struc-
ture. Our simulations appear to contradict the conventional interpretation of experimental
IR studies on PbS quantum dots according to which the non-Lorentzian lineshape is a result
of coexistence of chelating and bridging oleate ligands. Although, here, we made use of
shorter acetate ligands and the nanocrystal considered is smaller than the ones investigated
experimentally, our results suggest that the broad vibrational spectrum can stem from the
wide range of accessible (tilted) bridge geometries without invoking another class of struc-
tures. Our future efforts will focus on introducing solvation as well as investigating larger
quantum dots and bulkier ligands, in order to allow for a clear, direct comparison with ex-

periment. Finally, this work reinforces the view that machine-learned force fields constitute
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a powerful tool in the modelling of semiconducting nanocrystals, where traditional analytical
partial charge models are clearly challenged. Such studies should advance our understanding

of these complex systems and therefore aid in the design of quantum dot-based technologies.

Computational Methods

Unless indicated otherwise, the electronic structure calculations were performed in NWChem
7.0.0.® 'We use the dispersion corrected PBE0-D3 functional®% and the polarization-
consistent lanl2dz and 6-31G basis sets throughout for PbS and the remaining light atoms,
respectively. The core electrons in Pb and S atoms were accounted for using the correspond-
ing effective core potentials. The starting point for force field training were geometries from
a conventional MD simulation obtained using a force field akin to the one used by us previ-
ously.?! The force fields were trained on both the energies and forces with a cut-off of 8 A.
Within DeePMD, we use three hidden layers of size (25, 50, 100) for the embedding net and
three (240, 240, 240) hidden layers for the fitting neural network. We followed an iterative

scheme %6:67

in which the force field trained on a given set of geometries was used to generate
new coordinates for training and validation by propagating geometries from the original set;
see Section S1 for details. This cycle is repeated until the energies stabilize, MAE on energy
drops below 1 meV/atom for the validation set, and the force field appears stable. Overall,
for FF1, we used 7400 geometries for training and 845 for validation. For FF2, we used 8961
geometries for training and 994 for validation.

The constant-temperature MD was implemented using the Langevin BAOAB algorithm

L. geometries were saved every

with a time step of 1 fs and the damping coefficient of 0.5 ps™
0.5 ps. For the NVE simulations, we use the Verlet algorithm with a time step of 1 fs.

The IR signal obtained from the NVE simulations was calculated by performing a Fourier
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transform of the classical dipole-dipole correlation function %

rw) o [ de it - ). e, 1)

o

where fi(t) is the derivative of the dipole moment at time ¢ and (), denotes an ensemble
average over 7. The above expression makes use of the harmonic quantum correction factor ™
which has been shown to satisfy the fluctuation-dissipation theorem.™

To machine-learn the dipole moment obtained from DF'T calculations, we again used the
DeePMD framework with three hidden layers of size (25, 50, 100) for the embedding net
and three (100, 100, 100) hidden layers for the fitting neural network. The training was
performed for 1.2 x 10° steps with an exponentially decaying learning rate (from 0.01 to
3.51 x 1078). 5780 geometries, with corresponding dipole moments, were used for training

and 200 for validation.

All 3D visualisations were rendered using VMD. ™
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