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Challenges in GPU-Accelerated Nonlinear Dynamic
Analysis for Structural Systems

Barbara G. Simpson, Ph.D., M.AASCE"; Minjie Zhu, Ph.D.2; Akiri Seki®; and Michael Scott, Ph.D.*

Abstract: Many numerical simulation methods, such as finite-element analysis, were originally formulated to run serially or in parallel on
central processing units (CPUs). However, computer engineering has seen a paradigm shift toward massive parallelism using graphics
processing units (GPUs), which have become the default accelerators in many data-driven scientific disciplines outside of civil engineering.
This state-of-the-art review highlights the challenges and practicalities of GPU-accelerating nonlinear dynamic analyses for civil structural
problems. To demonstrate the feasibility of a fully GPU-accelerated finite-element analysis, a GPU-based program for linear-elastic dynamic
analysis was implemented, where all stages of the analysis were ported to the GPU. Observed speedups were 115 times that of an equivalent
CPU-driven analysis for 10 model degrees of freedom (dof). Importantly, the computational time for the assembly and update levels of the
analyses were nearly independent of the number of dof. High-resolution simulations of complex structures can be computationally expensive,
but these results and advances in other fields suggest that some levels of the finite-element analysis of civil structures could be accelerated
using GPUs at increased model resolution with little increase in computational cost, demonstrating the potential for GPU-accelerated com-
puting. However, compared to other GPU-accelerated finite-element analysis applications, the dynamic analysis of civil structures is subject
to unique challenges that need to be addressed before GPU acceleration can be fully realized. Aspects of simulating the response of civil
structures considering nonlinear response under extreme loading may not be immediately amenable to GPU acceleration; e.g., the use of
many differing element formulations within a model, potential for inelastic response and varying degrees of nonlinearity across elements, and
traditional reliance on implicit integration schemes with direct solvers. The shift to GPUs is part of a larger movement toward specialized
hardware using fine-grained parallelism, and structural engineers need to address these challenges as these emerging technologies become more

prevalent. DOI: 10.1061/JSENDH.STENG-11311. © 2022 American Society of Civil Engineers.

Introduction

Computational bottlenecks must be overcome to realize higher-
fidelity models of civil structures subjected to natural hazards.
Finite-element-based structural analysis is a common tool used by
a wide range of engineering disciplines (Bathe 1996; Hughes
1987; Zienkiewicz and Taylor 1989). However, the resolution of
structural models, in terms of both model size and mesh refine-
ment, can be limited by computational cost, resulting in an
ever-increasing need for acceleration. For example, realistic
three-dimensional models can take hours or days to run one
analysis, e.g., as observed for tsunami loading on bridges
(Motley et al. 2016), bridge-foundation-ground interaction (Elgamal
et al. 2008), tall building response (Lu and Guan 2017), among
others. Regional-scale modeling, uncertainty propagation, optimi-
zation, and many “interaction”-type problems, e.g., soil-structure
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interaction (McCallen et al. 2022) or fluid-structure interaction
(Gimenez et al. 2017; Zhu and Scott 2014), often suffer from long
run times and require large-scale computing resources.

Parallel processing on central processing units (CPUs) has long
been used to accelerate finite-element analyses (FEA). Multicore
parallel computing on CPUs partitions the spatial domain to run
on multiple processors (Mackerle 1996, 2003, 2004; McKenna
1997; Topping and Khan 1996). The parallelized equations are then
solved using a special parallel equation solver. However, when the
domain is run in parallel this way, the subdomains split across
the cores are still coupled, necessitating intracore communication
between parts of the analysis running on different cores. This
communication eventually slows down the analysis as more and
more cores beyond the optimum number of cores are utilized, as
observed in Jeremic and Jie (2008). By Amdahl’s law (Amdahl
1967), using more processors is limited by the portions of the prob-
lem that cannot be parallelized, e.g., intracore communication or
data management housekeeping. This communication causes the
total performance of parallel CPU-based analyses to inevitably pla-
teau; i.e., increasing the number of CPU cores does not always
result in faster simulations.

Driven by demands for ever more realistic graphics rendering in
the 1980s, the performance of modern GPUs has surpassed that of
CPUs (Borkar et al. 2005; Sutter 2005) in efforts to display thou-
sands to millions of pixels simultaneously. Originally developed as
specialized hardware for scene rendering, GPUs have since become
the default accelerators for applications in deep learning, robotics,
self-driving vehicles, virtual or augmented reality, and, now, super-
computing (Owens et al. 2005). High-performance computing
(HPC) applications in quantum chemistry, molecular dynamics
(Anderson et al. 2008; Chen et al. 2016; Sunarso et al. 2010), cli-
mate modeling (Nyland et al. 2007), computational fluid dynamics
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(CFD) (Appleyard and Drikakis 2011; Brandvik and Pullan 2007;
Corrigan et al. 2011; Kampolis et al. 2010), and healthcare imaging
(Sylwestrzak et al. 2017) have since been GPU-accelerated
(NVIDIA 2015; Snell and Segervall 2017).

Even though seismic wave propagation (Komatitsch et al. 2009;
O’Reilly et al. 2022; Roten et al. 2016; Zhou et al. 2013) and bio-
mechanics (Johnsen et al. 2015; Joldes et al. 2010; Mafi 2013;
Taylor et al. 2008) have a long history of massively parallel com-
puting on GPUs, the nonlinear dynamic analysis of civil structures
is unique due to varied element formulations and potential for in-
elastic response. While progress has been made to GPU-accelerate
simulations of earthquake fault rupture (Komatitsch et al. 2009;
Kusakabe et al. 2021; Yamaguchi et al. 2020; Zhou et al. 2013)
and ocean fluid dynamics (Tavakkol and Lynett 2017), there has
been slower progress in GPU-accelerating analyses for civil struc-
tures. This lack of progress can be attributed to the prevalence of
different element formulations and nonlinearities, coupled equa-
tions of motion, implicit integration schemes, and reliance on direct
solvers, which are not immediately amenable to fully parallel
acceleration on GPUs.

Although the theory for FEA is mature, analyzing civil struc-
tures with more modern computer architectures, e.g., like GPUs,
has not yet materialized. Scientific computing using GPUs is only
part of a larger movement toward specialized hardware offering
parallel processing optimized for specific tasks, and GPU-like
types of computing will become increasingly prevalent in any field
using numerical simulations, including the structural engineering
discipline. Foreseeing the role that GPUs will play in the future,
national and international universities and laboratories have sought
to enable GPU-driven exascale deployment (Alexander et al. 2020;
Kothe et al. 2019; Siegel et al. 2020); e.g., fault-to-structure
regional simulations (McCallen et al. 2021a, b; Roten et al. 2016).
New technologies in HPC—along with an improved understanding
of earthquake hazards, risk, and building performance—will only
continue to emerge.

Yet, there are barriers to the widespread development of modern
FEA applications that utilize GPUs and other acceleration hardware.
Although structural engineers have long had access to extreme-scale
HPC resources for nonlinear dynamic analysis [FEMA 283 (FEMA
1996)], there is still little understanding of the types of algorithms
that translate into efficient GPU acceleration for differing applica-
tions (Leung et al. 2010; Peterson et al. 2018). Moreover, a learning
curve must be overcome to fully leverage GPUs. As new technol-
ogies become available, resources need to be developed so that
high-fidelity computation becomes more accessible at reduced com-
putational cost in natural hazards engineering and research, educa-
tion, and practice. The intent of this review is to provide guidance for
the future acceleration of such applications using the GPU acceler-
ation of civil structure problems as an example.

This paper presents a high-level picture of prior work on accel-
erating FEA for structural and solid mechanics problems via GPUs.
Emphasis is placed on structural analysis problems in earthquake
engineering, but the methods can be more broadly applied to natu-
ral hazards engineering. The architecture and unique programming
model of the GPU are described. Existing work on GPU acceler-
ation of FEA has focused on the acceleration of the FEA solver, but
progress has been made on accelerating all stages of FEA, includ-
ing state determination, assembly, and the time-integration scheme.
Challenges are highlighted in porting the dynamic analyses of civil
structures to the massively parallel architecture of GPUs, including
coupled equations of motion, heterogeneous element formulations,
and inelastic constitutive laws. To show the potential of GPU ac-
celeration, a demonstration study illustrates that potential speedups
for a linear-elastic analysis depend on the number of degrees of
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Fig. 1. CPU versus GPU.

freedom, as observed by other disciplines. The aforementioned
challenges still need to be addressed to assess the performance
of GPU-accelerated nonlinear dynamic analyses incorporating non-
linear geometric and material effects along with varied element
formulations.

Scientific Computing and Advances in Graphics
Processing Units

Due to power and heat dissipation constraints, computer architec-
tures have moved from increasing the performance of individual
cores to increasing the number of cores on a chip; see Fig. 1. In
theory, this evolution has led to CPUs that divide work in time
(by completing serial tasks as fast as possible, low latency) and
GPUs that divide work in space (by completing as many tasks as
possible, high throughput). This massive parallelism allows GPUs
to execute many tasks (thousands) simultaneously. While CPUs
aim for speed, i.e., completing a task as fast as possible, GPUs com-
plete as many tasks as possible by dividing the work among a large
number of threads. Each thread may not be as fast as a single CPU
core, but the communication between GPU threads is lightweight
and allows thousands of threads to execute instructions at the same
time, resulting in more floating-point operations per second (FLOPs)
(Owens et al. 2005). The GPU itself can range from relatively cheap,
single-precision (SP) GPUs (often used in machine learning) with
higher memory bandwidth to high-performance double-precision
GPUs (promoted for scientific computing).

GPUs exploit fine-grain single-instruction-multiple-thread
(SIMT) parallelism, where multiple threads are processed by a sin-
gle instruction concurrently. Thus, GPUs perform best for problems
divisible into a large number of small tasks that require little-to-no
communication (i.e., embarrassingly parallel). For example, inde-
pendent operations, like matrix multiply, can be easily made par-
allel and are extremely fast on GPUs.

Although this paper focuses on GPUs, similar flavors of single-
instruction-multiple-data (SIMD) parallelism also exist, which ap-
plies the same instructions to multiple data: Cray (Carey et al. 1988;
Ting et al. 2004), CPU vector processing units (e.g., Intel MMX/
SSEn/AVX), PowerPC AltiVec, ARM Advanced SIMD, Intel’s
Xeon Phi (discontinued), and Tensor Processing Units (TPUs).
In many ways, the modern GPU can be viewed as a successor of
the classic Cray supercomputers, and methods of vectorizing FEA
can be gained from the Cray architectures (Carey et al. 1988; Ting
et al. 2004). To maximize performance, the most recent AMD ac-
celerated processing units (APUs) integrate CPU-GPU combina-
tions on a single chip. Intel has also proposed XPUs with a
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unified programming model for any hardware architecture [CPU,
GPU, field programmable gate arrays (FPGA)] that could stream-
line the next generation of specialized heterogeneous hardware.

General-Purpose GPU Programming

General-purpose GPUs (GPGPUs) (Owens et al. 2005; Rumpf and
Strzodka 2005) are GPUs programmed for purposes other than
their original application for graphics processing. Nevertheless,
there are significant differences between CPU and GPU hardware
architectures, resulting in fundamentally different data structures
and processes at the programming level.

For early GPUs, operations were programmed manually by
mapping scientific calculations to graphics manipulations. After
2006, Nvidia’s Compute Unified Device Architecture (CUDA)
(NVIDIA 2019) programming language allowed NVIDIA GPUs
to be more easily programmed for purposes other than graphics
rendering. The Open Computing Language (OpenCL) is an alter-
native vendor-independent cross-platform language for parallel
programming on a diverse set of accelerators, e.g., NVIDIA archi-
tectures, AMD and Intel GPUs, and FPGAs, among others. Both
CUDA and OpenCL enable a C-like programming experience to
run code in parallel on GPUs. Of the two, CUDA remains the most
well-supported, providing a development environment equipped
with numerous libraries.

Library packages have also been developed to accelerate
existing code to run on GPUs at the cost of degraded performance.
In OpenACC, directives are added to CPU code to instruct portions
of the code to run in parallel on the GPU. Some have found that
speedups using OpenACC have been comparable to CUDA with
lower development and higher maintainability costs (Kusakabe
et al. 2021; Yamaguchi et al. 2020). Other abstractions of low-level
HPC access have also been proposed for improved portability of
existing codes across platforms, e.g., Intel’s OneAPI and RAJA
C++ libraries (Beckingsale et al. 2019).

Supercomputing

Although affordable GPUs are widely available on local desktop or
laptop machines, supercomputing is needed to contend with large
or high-resolution models, e.g., for regional urban environments
(O’Reilly et al. 2022) or scale-resolving CFD (Gorobets and
Bakhvalov 2022). For example, modeling end-to-end fault-to-
structure simulations, including fault rupture, seismic wave propa-
gation, and structural response, requires frequencies to be resolved
at 1-2 Hz for ground motion simulations to 5-10 Hz for modeling
stiff infrastructure (Cui et al. 2013). However, the needed compu-
tation for end-to-end regional simulations is beyond current HPC
capabilities, as billions of computations are needed to resolve
frequencies relevant to both the ground motion and structural re-
sponse (McCallen et al. 2021a, b), requiring exascale computing.

To achieve greater performance and energy efficiency, the cur-
rent generation of petascale machines combine many-core process-
ors, e.g., CPUs, with massively parallel accelerators, e.g., GPUs, to

Performance on modern supercomputers is driven by scalability
and parallelism of the analysis, along with optimized memory
access, reduced memory consumption, efficient scheduling, load
balancing (McCallen et al. 2021a), hidden latencies (Roten et al.
2016), and portability to allow for a broad range of architectures
(such as many-core CPUs and GPUs from various vendors)
(Gorobets and Bakhvalov 2022). The lower-level building blocks
of FEA (e.g., data structures, solvers, algorithms) affect accuracy,
scalability, and parallelism (Brown et al. 2022). Explicit integration
schemes with iterative solvers tend to have better scalability com-
pared to implicit integration schemes with direct solvers depending
on the model size and extent of nonlinear response. Similarly,
structured mesh using stencils can more easily use GPU resources
(described subsequently) (Cui et al. 2013). Exascale deployment
also depends on large degrees of massive parallelism, requiring ef-
ficient workflows (Cui et al. 2013; McCallen et al. 2021a; Roten
et al. 2016) with high-performance I/O operations (Byna et al.
2020) and data management and compression for huge datasets
(hundreds of TBs) (Lindstrom 2014).

To date, exascale efforts in end-to-end regional simulations
have focused on partitioning the geophysical domain, rather than
the structural domain, e.g., using pencil-shaped subdomains of the
ground with each structural model assigned to a single core
(McCallen et al. 2021a).

GPU Execution Model

As GPUs have an unusual programming model, knowledge of the
GPU execution model is often needed to accelerate FEA compu-
tations; see Table 1. Herein, the CUDA terminology will be used to
describe the GPU architecture, but the concepts are widely appli-
cable to other SIMD processing. CUDA uses abstractions, in terms
of a hierarchy of thread groups, shared memory, and barrier syn-
chronization, to partition the problem into coarse subproblems
solved independently and fine subproblems solved cooperatively
in parallel.

The GPU architecture implies a for loop where each iteration of
the loop runs simultaneously via the threads. The CUDA code con-
tains a host code running on the CPU and a device code running on
the GPU. The CPU is needed to initialize, organize memory, and
interact with the data on the GPU. The GPU executes a basic par-
allel function, the kernel, callable by the CPU, that defines the par-
allel computations of the threads (the kernel is executed N times in
parallel by N threads).

The threads in a kernel are organized by a grid of thread
blocks used to define the location of the thread inside the memory
hierarchy of the GPU; see Figs. 2 and 3 for widely available sche-
matics of the memory hierarchy. All threads within a thread block
can communicate and synchronize with each other. The thread
blocks are subdivided into groups of threads called warps typically
composed of 32 threads.

Table 1. Useful definitions

perform quadrillions of calculations each second. The potential for Term Description
GPU-based exascale supercomputers .to run on bill.ions of cores Host The CPU.
(Alexander et al. 2020) could resolve higher frequencies faster, ren- Device The GPU.
dering high-fidelity simulations in civil engineering tractable. As Kernel Function executed in parallel by an array of threads
zettascale computing is also on the horizon after exascale comput- on the device.
ing, hardware relying on heterogeneous hardware will only con- Grid Set of thread blocks that can be executed independently.
tinue to evolve, and structural engineers must be able to adapt Thread Set of threads with common access to shared memory
numerical methods and parallel algorithms to benefit from the next Block whose execution can be synchronized.

. Warp Group of 16 or 32 threads executed concurrently.
generation of supercomputers.
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Fig. 3. CUDA memory model.

All threads in a warp must execute the same instructions in lock-
step at the same time (in parallel). Thus, thread divergence can
occur when the threads within a warp follow different instructions,
causing the different paths to be executed serially. For example, if/
else conditional statements branch to have different instructions;
e.g., when handling different elements or varying degrees of inelas-
tic status (Yang et al. 2014). Since the “if”” and “else” branches han-
dle different instructions, the threads assigned to a warp handle
each branch serially, resulting in loss of performance.

GPU Memory

CUDA allows developers to extend the C language to identify each
thread, its blocks, and organization and transfer of data across the
GPU memory hierarchy. The CPU (the host) and GPU (the device)
maintain their own memory. Information between thread blocks
and data exchange between the CPU and GPU is synchronized
through global memory, which is off-chip and slow; access to
global memory on the GPU is not cached and has large latency.
In addition, threads have private local memory, which is also
off-chip and slow.

In contrast, threads within a thread block can efficiently share
and synchronize data through shared memory, which is on-chip and
whose resources are shared across the warps assigned to the block
and is relatively fast and of high bandwidth, if limited in size. As
access to shared memory is defined by banks, bank conflicts can
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occur if two threads executing the same instruction attempt to ac-
cess the same bank, resulting in serial execution. Shared memory is
beneficial for applications where neighboring threads share
common data, such as algorithms executed over regular grids,
but is unlikely to be beneficial for an unstructured mesh where
neighboring threads do not generally share the same data.

Each thread also has a register, which can be used to store fre-
quently accessed variables quickly and is limited in size. The GPU
also has access to read-only constant memory and texture memory.
The types of available memory, including its optimization, are
described extensively in NVIDIA (2013).

Performance Considerations

Precision (single 32-bit versus double 64-bit precision), data size,
and memory access can all influence GPU performance, which
can vary depending on the age/type of the GPU hardware.
For example, double precision requires twice the memory as sin-
gle precision with possible decreases in performance. Yamaguchi
et al. (2020) proposed custom low-precision arithmetic for
GPUs; e.g., using 21-bit data to provide the accuracy needed for
scientific calculations with less memory. Although (Georgescu
et al. 2013) compared GPU-based implementations of structural
mechanics, most cited literature used single-precision GPUs
(Joldes et al. 2010; Komatitsch et al. 2009; Mafi 2013; Taylor
et al. 2008) when improved, double-precision GPUs with more
memory are now available, as used by Bartezzaghi et al. (2015);
all implementations prior to CUDA 1.3 only supported single-
precision GPUs.

Generally, available memory on the GPU can be a limiting
factor in acceleration (Bartezzaghi et al. 2015; Taylor et al. 2008).
Delays also occur every time the GPU exchanges information with
global memory, which is large but off-chip and low bandwidth,
which can be particularly challenging for heterogeneous CPU-
GPU computing environments. Efficient memory access also needs
to be sequential and aligned [i.e., coalesced (Inoue 2015; Kirk and
Hwu 2013)]; see Fig. 4. Coalescence refers to when the threads in a
warp are organized consecutively with the corresponding address in
memory, allowing for the threads in that warp to access memory
simultaneously. Memory access will be serial if the access pattern
is not sequential, is sparse, or is misaligned.

“Zero padding” has been used to obtain memory alignment
in multiples of 16 (a half-warp), which is optimal in CUDA
(Komatitsch et al. 2009). Unchanging parameters can also be
hard-coded in constant or texture memory on the GPU, which
are read-only but also limited in size (Bartezzaghi et al. 2015;
Zhou et al. 2013). Register spilling, when the number of variables
that need to be stored is more than the available registers, can also
result in performance drops, as the GPU is forced to use local
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memory, which has latencies similar to global memory (Bartezzaghi
et al. 2015; Zhou et al. 2013).

There are many other performance considerations for GPUs; an
in-depth discussion is presented in Kirk and Hwu (2013). For ef-
ficient programming on the GPU, any analysis needs to: (1) deter-
mine a data flow to minimize local/global memory access and data
transfers between the host and device, (2) tune execution to maxi-
mize performance (e.g., in terms of the number of threads per
block, blocks per grid, and overlapping latencies of memory trans-
fers with useful computation), (3) avoid parallel limitations, like
deadlock, race conditions, and load imbalance, (4) maintain coa-
lesced access to global memory, (5) balance the amount of compu-
tation with enhanced speed of simultaneous redundant calculations,
(6) avoid branches and thread execution divergences, and (7) con-
sider shared memory access patterns (to avoid bank conflicts).

Accelerating Finite-Element Analysis

Advances in GPU hardware and software (i.e., the CUDA program-
ming language has become very robust) provide new HPC opportu-
nities for civil engineering applications. On CPUs, many algorithms
for single-core computing need little modification to run on multi-
core CPUs (Baugh and Sharma 1994; Hajjar and Abel 1988; Kumar
and Adeli 1995; Mackerle 2003; Santiago and Law 1996) because
of the relatively quick data exchanges between CPU cores with
dedicated transistors supporting branch prediction and caching. In
contrast, the massive parallelism of GPUs makes directly porting
existing algorithms difficult, inefficient, or impossible.

Despite several decades of work in parallel finite-element algo-
rithms for HPC (Topping and Khan 1996), modern FEA software
(which was written to run on CPUs) must conform to massive par-
allelism to fully leverage GPUs. The typical levels of FEA in struc-
tural dynamics are shown in Fig. 5(a).

1. The response in terms of displacements Uy, velocities U r» and
accelerations U, at the beginning of the time step k is known.

2. The state of the elements due to this motion is calculated, as
defined by the constitutive law.

3. Based on the element states, the coefficient matrix A, and right-
hand side vector b are assembled.

4. The linear system of equations, Ax = b, is solved to obtain the
updated motion response. Depending on the integration scheme,
e.g., implicit or explicit, iterations defined by a root-finding
algorithm, e.g., Newton—Raphson, can be implemented to sat-
isfy the equations of motion to within a tolerance.

5. Upon convergence, the responses Uy, , U, L1,and U, 1 for time
step k + 1 are committed before moving on to the following
time step.

The most expensive computations occur during the state deter-
mination (step 2) (Bartezzaghi et al. 2015; Yang et al. 2014) and the
solve phase (step 4) (Georgescu et al. 2013).

Partial Acceleration

Any one level of the FEA can be accelerated individually. Early
work on GPU acceleration focused on porting only portions of
the analysis to the GPU to limit significant changes to the program-
ming structure of existing FEA code. As one of the most expensive
steps, typically, the analysis is only partially accelerated by moving
the solver from the CPU (host) to the GPU (device) (Lu and Guan
2017; Tian et al. 2015); see Fig. 5(b). However, synchronization
between the CPU and GPU must then occur every iteration, becom-
ing a bottleneck. In partially accelerated FEA, the CPU must fre-
quently copy a large amount of information needed for the solver to
the GPU (Gigabytes of data) and receive results (also in Gigabytes)
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from the GPU every iteration. This bidirectional data copying via
global memory results in time delays and can limit overall speed-
ups, as observed by Lu and Guan (2017). This host-device solver
approach is used in Ansys Mechanical (Posey and Courteille 2012),
Abaqus (Crivelli and Dunbar 2012), and LS-Dyna (Gohner 2012)
with speedups of only 1-3x (Georgescu et al. 2013; NVIDIA
2015).

Full Acceleration

Since many existing FEA codes were built to run sequentially on

CPUs, the piece-meal approach used in partial acceleration can

only accelerate an FEA so far. Some have suggested that a complete

rearchitecture of the standard FEA may be needed to reap the full

benefits of GPUs (Bartezzaghi et al. 2015; Garland and Kirk 2010;

Knepley and Terrel 2011), see Fig. 5(c), where:

1. Initial preprocessing jobs, like memory allocation, are done
from the CPU host.

2. Input data are then copied from the host to the GPU device.

3. Kernels associated with the time-loop for FEA are executed on
the GPU.

4. The resulting data are then copied from the device back to
the host.

In this case, pre/postprocessing is only done once on the CPU,
and the full analysis is performed by the GPU. In the case that there
is not enough GPU memory, asynchronous memory transfer can be
used to move on to the next time step while offloading results from
previous steps to the CPU to limit the idle time and hide the time
taken for the data transfer operation (Cai et al. 2015).

GPU Implementation

For full acceleration, the domain of the model can be decomposed
according to the parallel portions of the code. Generally, in FEA
individual element and nodal update computations are “embarrass-
ingly parallel” and can be performed simultaneously. As calcula-
tions of the force contributions and updating the motions for the
elements and nodes are nearly independent of their neighbors,
two loops can be executed to compute the element state and node
motion simultaneously on the GPU. Common parallel execution
strategies include: one-thread-per-element, one-thread-per-node,
or one-thread-per-dof. In some cases, a one-thread-per-integration
point has also been utilized (Komatitsch et al. 2009, 2010; Mihaila
et al. 2014).

A complete discussion of per-element, per-node, and per-dof
strategies is described in Bartezzaghi et al. (2015) for full compu-
tation on the GPU (along with careful memory management). For
example, the loops in a serial analysis scheme can correspond to
separate kernels for the elements and nodes (Joldes et al. 2010;
Taylor et al. 2008). However, execution on the GPU should also
be conducted with as few kernels as possible to minimize the num-
ber of kernels (which have small software/hardware overhead upon

Table 2. Challenges in FEA acceleration of civil structures

invocation) and information transfer from the host to the device,
which is slow. Some have implemented the entire time-stepping
algorithm as a single kernel, thereby avoiding multiple kernels.
For example, each element can keep a local copy storing informa-
tion about its nodes and can perform time integration on its own
nodes, resulting in an element-wise single kernel (Bartezzaghi
et al. 2015). This strategy results in some redundant computations
but less memory access as communication between elements is
only needed during the assembly process.

Importantly, although considerable efforts have focused on op-
timized domain decomposition for CPUs (Baugh and Sharma
1994; El-Sayad and Hsiung 1990; Farhat et al. 1987; Foley and
Vinnakota 1994; Roa et al. 1994; Synn and Fulton 1995; Zhang
and Lui 1991), multicore CPU codes are based on coarse-grained
message-passing architectures. In contrast, finer-grained parallel-
ism (Che et al. 2008) is needed for GPUs. For example, the virtual
function calls used to handle class hierarchies and element types for
finite-element programs like OpenSees (McKenna et al. 2010)
often represent branch structures to cover hundreds of classes
and could represent inefficient kernels with diverging branch struc-
tures on GPUs, potentially lowering performance (Yang et al.
2014). The data on the GPU memory must also be reorganized
to obtain optimum memory access performance.

Accelerating the Levels of FEA

Not all prior work on accelerating analyses is suitable for the
nonlinear dynamic analysis of civil structures using the FEA
method. For example, physics-based gaming engines on GPUs
use simplifications that are often not accurate enough for struc-
tural analysis (NVIDIA 2012). On the other hand, scientific
approaches often accelerate models with a very fine, repetitive
mesh or particles with little communication, e.g., discontinuous
Galerkin (Klockner et al. 2009), lattice-Boltzmann methods
(Kuznik et al. 2010; Zhou et al. 2012), smoothed particle
hydrodynamics (SPH) (Dalrymple et al. 2010; Hérault et al.
2010).

Based on the literature, the following sections highlight the chal-
lenges associated with each level of the FEA of civil structures in
terms of: (1) state determination, (2) assembly (3) solver, and
(4) time-stepping integration scheme; see Table 2. Each of these
sections can be conducted partially or as part of a full acceleration
strategy.

State Determination

In FEA, numerical integration is used to determine the element
state (e.g., restoring forces, stiffness) as a function of nonlinear con-
stitutive response. Each element has its own state data, such as
internal stresses, internal strains, material properties, and inelas-
tic status, which is not shared with other elements. Thus, state

Algorithm Challenge

Example references

State determination
for nonlinear constitutive material models

Assembly

Matrix solver

Time integration Stability for “stiff” structural problems

heterogeneous element formulations; conditional branching

Coupled equations of motion; unstructured mesh
Direct versus iterative solvers; selection of preconditioner

Kusakabe et al. (2021) and Yang et al. (2014)

Cecka et al. (2011) and Komatitsch et al. (2009)

Bolz et al. (2003), Georgescu et al. (2013), and Li and
Saad (2010)

Bartezzaghi et al. (2015), Courtecuisse et al. (2010),
Joldes et al. (2010), Mafi (2013), and Taylor et al. (2008)
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determination is easily parallelized as it involves a loop over the
elements and strain/stress calculations.

Importantly, unlike CPUs, the threads performing assembly
operate on each element simultaneously. A finer mesh does not
necessarily result in increased run time on GPUs, provided the
GPU has enough memory for the increased resolution of the model.
Simultaneous assembly has significant implications for choosing
element formulations suited to refined meshes (e.g., displacement-
versus force-based elements). Displacement-based formulations,
which do not iterate, are more easily incorporated in GPU codes
since stresses are evaluated directly from strains. Reduced time also
makes shell (Bartezzaghi et al. 2015; Cai et al. 2015; Martinez-
Frutos et al. 2015; Yang et al. 2014) and solid [e.g., tetrahedral
(Courtecuisse et al. 2010; Johnsen et al. 2015; Joldes et al. 2010;
Kusakabe et al. 2019, 2021; Mafi 2013; Taylor et al. 2008) and
hexahedral (Johnsen et al. 2015; Joldes et al. 2010; Komatitsch
et al. 2009)] elements more practical.

However, the amount of speedup compared to CPU-based codes
depends on the size and resolution of the model; i.e., in terms of
the number of dofs. In the literature, higher-order elements (which
have many redundant calculations) have shown dramatic speedups
(Brown et al. 2022); e.g., greater than 20 times (Komatitsch et al.
2009). However, unless the goal is complete acceleration, the
element matrix computations tend to be small compared to the time
needed for the solver, particularly for the first and second-order
element types commonly used in models of civil structures. Thus,
porting this part of the analysis to the GPU may not justify the
added effort.

Moreover, GPUs are optimized to perform the same operation
repeatedly on huge batches of data, and performance degrades if the
heterogeneity of the element formulations and constitutive laws is
not considered (Kusakabe et al. 2021). Unlike fluid dynamics,
which uses similar elements for every part of the mesh, elements
in structural models could be assigned different element formula-
tions, materials, and section types, which require different instruc-
tions. Varying degrees of nonlinearity can also result in variable
thread execution times and load imbalance between cores handling
elastic versus inelastic states.

GPUs also sequentially evaluate both branches of conditional
statements and then discard one of the results, which can become
costly, as divergent threads in a warp are executed serially. Thus,
the calculation of the constitutive law, which often involves con-
ditional branching for different regimes of elastic and inelastic
behavior, is unsuitable for GPU computing. Some have suggested
separating and reordering elastic from nonlinear elements to model
the heterogeneity of soil, where different soil layers (nonliquefiable
versus liquefiable) were separated to avoid load imbalance among
the processes and threads (Kusakabe et al. 2021). To avoid branch-
ing, expressions can be implemented to avoid conditional statements
so that every thread in a warp follows the same instructions.

To mitigate challenges in heterogeneous formulations (and,
thus, different instructions for different parts of the structure),
(Kiran et al. 2019) suggested assigning similar elements to a warp,
allowing for different element formulations with varying nonlinear-
ities to be executed at the same time in parallel. Bulk models have
also been used to gather elements of the same type (Yang et al.
2014), and each gathered group is then executed in parallel.

Assembly

Contributions of individual elements sharing dofs are assembled
and summed to form the global stiffness matrix and righthand
side load vector. If the analysis is nonlinear implicit (e.g., using
Newton—Raphson iterations), this assembly may need to occur iter-
atively many times, becoming a costly part of the analysis. Global
assembly of the stiffness matrix is often performed in series on
CPUs to reduce memory overhead, allowing elements that share
dofs access to the same memory locations [e.g., Addto (Markall
et al. 2013)]. However, to attain high performance on GPUs, an
assembly can be conducted in parallel across all the elements at
once, provided enough memory is available on the GPU.

Contributions from each element are computed independently
but are summed at the same location in global arrays, where the
elements share a dof. As race conditions can arise when adding
multiple contributions to the same matrix entry, assembly of
elements sharing the same dofs and memory locations can require
significant restructuring of the input data on GPUs (Fig. 6). Alter-
natively, blocking of threads or different mesh constructions can be
used to produce a more favorable thread arrangement to achieve
memory coalescence. For example, bin numbering schemes, which
ensure that neighboring elements are located consecutively in
memory, have been proposed for CFD, where boundary elements
can be stored consecutively in memory and treated separately from
nonboundary elements to reduce thread divergence (Corrigan
et al. 2011).

Structured meshes can achieve memory coalescence due to reg-
ular memory access patterns; see Fig. 4. However, in general, the
unstructured meshes common to civil structures are difficult to pat-
tern for memory coalescence (Bartezzaghi et al. 2015; Courtecuisse
et al. 2010; Kusakabe et al. 2021; Taylor et al. 2008). Random
global memory access patterns between the coupled portions of
the unstructured mesh will be penalized on GPUs (Inoue 2015;
Kirk and Hwu 2013). Thus, the irregular topologies (unstructured
mesh) in civil structures mean that efficient algorithms based on
stencils (Cui et al. 2013; Zhou et al. 2013), e.g., as in finite differ-
ences, which can take advantage of cache reuse and optimized pre-
fetch, cannot be applied (Corrigan et al. 2011; Govindaraju and
Manocha 2007; Kim 2008).

Methods of restructuring the data to achieve memory coales-
cence for unstructured meshes have been proposed with varying
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Fig. 6. Assembly process.
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speedups (Cecka et al. 2011; Dziekonski et al. 2012; Filipovic et al.

2009; Karatarakis et al. 2014; Kiran et al. 2019; Komatitsch et al.

2009; Luitjens et al. 2012). For example:

e The coloring method (Berger et al. 1982; Farhat and Crivelli
1989; Hughes et al. 1987; Komatitsch et al. 2009) “colors”
elements that do not share the same dofs and assembles the dif-
ferent colors sequentially without conflict (Cecka et al. 2011;
Dziekonski et al. 2012; Markall et al. 2013). Some rebalancing
between colors may be needed (Komatitsch et al. 2009), e.g., per
a greedy algorithm (Kiran et al. 2019; Martinez-Frutos et al.
2015).

* Atomic operations are GPU synchronization primitives able to
read, modify, and write a value back to device shared memory
without the interference of other threads but do so serially to
mitigate race conditions if the same memory location is ac-
cessed at the same time. Atomic add provided in CUDA can
also result in extra instruction overhead and slower run time
(Cai et al. 2015). Yamaguchi et al. (2020) found atomic oper-
ations to be faster than coloring.

The assembly process can be viewed as a scatfer operation that
assigns each thread to one local stiffness matrix that is then as-
sembled in the global matrix. The scatter approach can involve
fewer noncoalesced memory transactions provided there is an ef-
ficient use of shared memory; (Mafi and Sirouspour 2014) pro-
posed two levels of atomic add over elements grouped in thread
blocks in shared memory prior to atomic add between thread blocks
in global memory. Some have also transformed the parallel scatter
operation into a parallel gather by duplicating the computations
for each shared dof (Bartezzaghi et al. 2015; Cai et al. 2012;
Courtecuisse et al. 2010; Taylor et al. 2008). A temporary buffer
can be used to store the result of each redundant computation and
then a gather step reading from this buffer can be used to sum the
nodes. This double-buffering approach reads and writes inputs
and outputs to different buffers that are swapped at the following
time step (Bartezzaghi et al. 2015). All the nodes are processed in
parallel, resulting in redundant calculations and a temporary buffer,
and then summed, reading from this buffer (Courtecuisse et al.
2010).

Matrix-free methods (Liu and Dinavahi 2018; Rumpf and
Strzodka 2005) have also been proposed that use highly parallel
element-by-element (EbE) computations at the cost of more itera-
tions (Carey et al. 1988).

Ultimately, parallelized assembly requires a complex memory
layout on the GPU (Fig. 2) (Ljungkvist 2015; NVIDIA 2013),
as communication of element properties between thread blocks us-
ing shared memory is fast, but information shared between thread
blocks and synchronization with the CPU through global memory
is slow (NVIDIA 2007). Thread blocks may also be unable to share
the resulting large amounts of data needed for the assembly of very
fine meshes.

Matrix Solver

Most structural FEA applications use implicit time-integration
schemes, requiring a solution of the resulting linear system of equa-
tions, Ax = b, that can have sparse characteristics (with Rayleigh
damping). Many previous studies (Cevahir et al. 2010; Schenk et al.
2008; Sharma et al. 2013; Tomov et al. 2010) have focused on lin-
ear matrix solvers for GPUs, because the linear solution step can
be the most computationally demanding step in FEA (Bartezzaghi
et al. 2015; Georgescu et al. 2013), and replacing the solver requires
little restructuring of the analysis; e.g., as in Ansys Mechanical
(Posey and Courteille 2012), Abaqus (Crivelli and Dunbar 2012),
and LS-Dyna (Gohner 2012).

© ASCE
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Although direct solvers are common in structural engineering
applications (Kilic et al. 2004), direct solvers often adopt triangular
and elimination decomposition methods, which are difficult to par-
allelize for GPUs [e.g., OpenSees uses well-developed packages
like MUMPS (direct parallel solver on CPUs), SuperLU, UmfPack,
and SPOOLES]. In contrast, iterative solvers can be formulated to
require only matrix-vector products that are massively paralleliz-
able, with iterations to converge to a solution for x (Brussino
and Sonnad 1989), and are often more suitable for GPU acceler-
ation (Fu et al. 2014).

The iterative conjugate-gradient (CG) method (Berry and
Plemmons 1987; Hughes et al. 1987; Law 1986) on the GPU is
the most popular (Bolz et al. 2003; Buatois et al. 2007; Cevahir
et al. 2010; Georgescu and Okuda 2010; Goddeke et al. 2007;
Kruger and Westermann 2003; Verschoor and Jalba 2012). The
number of iterations to solve for x highly depends on the initial
guess, error tolerance, and condition number of A, which increases
with the problem size and mesh refinement. Preconditioning is
often used to replace Ax = b with an equivalent set of equations
with a better condition number and less iterations. However, the
overhead of using a preconditioner should not cancel out the sav-
ings of having fewer iterations.

On GPUs, speedups for CG highly depend on the selection
of the: [a] preconditioner (Geveler et al. 2011; Haase et al.
2010; Kraus and Foster 2012; Li and Saad 2010; Neic et al.
2012; Wagner et al. 2012; Wang et al. 2009) and [b] size of
the model; i.e., >500,000 dofs were reported for significant
solver speedups in Ansys (Beisheim 2010). Many factorization-
based preconditioners are model dependent (Kusakabe et al.
2019) and were developed for serial operations on CPUs
(e.g., ILU, IC); thus, there is often a tradeoff between precondi-
tioner quality and parallelism. (Georgescu et al. 2013) found that
simple brute-force, highly iterative preconditioners, like Jacobi or
block-Jacobi, may provide the best GPU performance for struc-
tural problems.

To avoid issues of indirect memory access for the assembly and
operation of sparse matrices, the matrix need not be explicitly com-
puted in some iterative solvers. For example, EbE preconditioned
CG (PCG), sometimes referred to as matrix-free methods, can be
used to replace the matrix assembly part of the algorithm with vec-
tor assembly, with mixed speedups (Mafi and Sirouspour 2014;
Martinez-Frutos et al. 2015; Yamaguchi et al. 2020). However,
from a convergence point of view, PCG with assembled global
sparse matrices may still be preferable, as compared by Mafi
and Sirouspour (2014). Although (Papadrakakis et al. 2011) found
that a direct Cholesky solver performed better than a PCG solver
for a hybrid CPU-GPU computing environment, the study used
outdated GPUs, and the authors noticed faster speedups using
PCG with faster GPUs.

Solving sparse systems of equations is a major research topic,
involving sophisticated sparse matrix data structures and algo-
rithms. Solvers were extensively compared by Georgescu et al.
(2013), with most of the literature using single-precision hardware.
Existing solver libraries (NVIDIA 2014) optimized for scientific ap-
plications can be leveraged, particularly, AMGCL (Demidov 2019),
PETSc (Mills et al. 2021), and AMGx (Naumov et al. 2015). Libra-
ries for sparse direct solvers for GPUs also exist (Krawezik and
Poole 2009; Lacoste et al. 2012; Schenk et al. 2008). Note, the CuSP
(NVIDIA 2014) solver used by Lu et al. (Lu and Guan 2017) is no
longer supported by current GPU versions. Mafi et al. made com-
parisons with both CUSP and CUSPARSE for compressed sparse
row (CSR) sparse matrix-vector multiply (Mafi and Sirouspour
2014).
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Time-Integration Scheme

Traditionally, the second-order differential equations of motion
governing structural dynamics are discretized in time and solved
using implicit time-stepping integration schemes. Often uncondi-
tionally stable, implicit methods [e.g., Newmark-beta (Newmark
1959)] need a solver to compute the solution to the system of equa-
tions at each time step, which highly depends on the model size and
preconditioner, as previously outlined. In contrast, explicit schemes
with a lumped (diagonal) mass matrix, enable the equations of mo-
tion to become decoupled such that each dof can be solved inde-
pendently, resulting in calculations that can be easily parallelized
on an element- and node-wise basis without iterations. Table 3 sum-
marizes the literature for implicit and explicit time-integration
schemes, including notes on the GPU hardware and CPU compari-
son (serial CPU code).

Real-time GPU-based biomechanics applications often use
explicit methods (Johnsen et al. 2015; Joldes et al. 2010;
Taylor et al. 2008), but the low stiffness of soft biological tissues
means the time step needed for stability, normally restrictive, is
relatively large (Taylor et al. 2008). However, common condition-
ally stable methods, like central difference (Bartezzaghi et al.
2015; Cai et al. 2015; Joldes et al. 2010; Taylor et al. 2008)
and explicit Newmark (Komatitsch et al. 2009), often impracti-
cally restrict the time step size for multi-dof civil structural sys-
tems (Dokainish and Subbaraj 1989), even if they do not require
iterations to reach convergence.

Explicit time-integration schemes are highly suitable for GPUs,
but civil structures are a “stiff” problem (Hairer and Wanner 2012),
requiring a small time step to meet stability requirements. Several
biomechanics applications have implemented implicit time-
integration schemes successfully (Courtecuisse et al. 2010; Mafi
2013; Mafi and Sirouspour 2014). However, thread divergence
may occur more often for implicit integration schemes, which tend
to be programmed with more complex branching compared to
explicit methods (Stone and Davis 2013). Some have suggested
semiimplicit schemes that do not require Newton iterations (in-
stead, they solve a sequence of linear systems) may be better suited
to SIMT acceleration (no thread divergence); e.g., semi-implicit and
implicit Runge-Kutta methods have been used in GPU acceleration
of “stiff” chemical reaction applications (Curtis et al. 2017).

Table 3. Time-integration schemes

Demonstration Study

To benchmark potential speedups, a simple platform was built to
fully GPU-accelerate a linear-elastic dynamic analysis that ported
the assembly, solver, and update tasks to the GPU device. The
CPU instructs the GPU on how to perform the computations
(NVIDIA 2007), but the output was only returned to the CPU
upon completion of the analysis. Importantly, once the analysis
was sent to the GPU, data never left the GPU until the analysis
was complete.

Generic structural models were generated using elastic beam-
column elements in three ways: (1) m randomly connected ele-
ments within a cube domain containing n randomly positioned
nodes, (2) a 1D mesh with N nodes numbered sequentially from
1 to N at the end (i.e., a banded matrix), and (3) a regular 3D frame
structure defined by the number of stories, bays in each direction,
and nodes per member. The first two model types were used when
constructing the GPU-based code. Performance was then defined
based on the number of dofs in the model for the different types
of mash structure for the third model type, which best represents a
regular structure.

A new CPU-only analysis was written to be one-to-one with
GPU-based code for this comparison. The simulation was executed
on Oregon State University’s NVIDIA DGX-2 cluster with NVI-
DIA Tesla V100 GPUs using CUDA version 10.0 and compared to
those executed on a single-core Intel Xeon CPU at 3.4 GHz. All
calculations were performed in double precision.

Pseudo-Code

In the GPU-accelerated code, synchronization only occurs at the
model input and final output stage. The overall code is set up with
the following pseudo-code:

1. Define inputs and set configuration files on the CPU.

2. domain().load(): Load model from the CPU to the GPU
(e.g., load nodal data, element connectivity, element data
(elasticity), etc.).

3. domain().changed(): Create data structures on GPU (e.g., nodal
dofs, nodal displacements, velocities, accelerations, mass, etc.).

4. integrator().new_step(dt): Setup the Newmark constants on
the GPU.

5. assembler().assemble(): Assemble global matrix (left-hand
side) and vector (righthand side) on the GPU.

Integration Estimated CPU*
Reference Method scheme Solver Field Precision speedup  comparison
Bartezzaghi et al. (2015)  Explicit ~ Central difference — Solid mechanics; DP >40x serial CPU®
structural dynamics
Cai et al. (2015) Central difference — Sheet metal; DP 7-22x serial CPU
crashworthiness
Taylor et al. (2008) Central difference* — Biomechanics SP 10-17x¢ serial CPU
Joldes et al. (2010) Central difference* — Biomechanics SP >20x serial CPU
Komatitsch et al. (2009) Explicit Newmark — Seismic modeling SP 25x serial CPU
Mafi and Sirouspour Implicit  Implicit Newmark  CG versus  Biomechanics Sp 10x serial CPU
(2014) EbE CG
Yamaguchi et al. (2020) Implicit Newmark EbE CG  Seismic modeling mixed-precision with FP21 11-16x!  serial CPU
Courtecuisse et al. (2010) Backward Euler EbE CG Biomechanics DP 15-35x serial CPU

Note: *Total Lagrangian explicit dynamics.
“Speedups are difficult to compare across published works due to different CPU and GPU hardware and model and resolution (in terms of dofs).

"Compared to commercial FEA codes.

‘GPU acceleration with graphics primitives. All other GPU acceleration with CUDA.

4GPU acceleration with OpenACC.
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6. solver().solve(): Solves the linear system of equations using the
AMGX iterative solver.

7. domain().update(): Update nodal displacements and calculate
velocities and accelerations based on Newmark constants.
Commit the final state.

8. Pass committed state back to CPU.

Step 3 sets up the data structures defining the memory access
on the GPU. Memory is pre-allocated for all entries into global
memory. Extra memory is also allocated for duplicate element en-
tries sharing the same node. All nonzero entries are gathered based
on the nodes (and their dofs) for each element. All element entries
are then sorted based on the first element node, ensuring that du-
plicate entries arising from entries sharing the same node are ad-
jacent to each other in global memory. In preparation to solve
Ax = b, the CSR format allocates memory for pointers to the non-
zero matrix and vector values.

Assembly in Step 5 is then conducted by mapping element con-
tributions from GPU local to global memory based on the resulting
equation numbering and: (1) considering all nonzero entries, (2) gath-
ering nodes with the same dofs, (3) leaving additional memory space
for shared nodes, (4) assembling all contributions from the elements
to the global stiffness matrix in parallel at once, and (5) summing
shared dof contributions at overlapping equation numbers where
multiple elements were connected to the same node.

Speedups

The speedup for a single analysis step was compared between the
GPU- and CPU-based codes in Fig. 7 based on assembly, solve,
and update levels of the linear-elastic analysis. Total run times are
shown separately for the GPU- and equivalent CPU-based analyses
in Figs. 7(a and b) and broken down by timings for the assembly,
update, and solve stages. Fig. 7(c) shows the overall speedups, de-
fined as the ratio of the GPU computational time divided by the CPU
computational time, with respect to the number of dofs. The hori-
zontal line at 10° indicates equivalent CPU and GPU run times.

For a single time step and 10° dofs, observed speedups were
approximately 115 times that of an equivalent CPU-driven code.
Time for the CPU code increased with the number of dofs. In con-
trast, time on the GPUs was near-constant up to approximately
10* dofs when the GPU had to run more than one pass through
the available cores. Notably, GPU computing is massively parallel,
and the GPU code could operate simultaneously on each node and
element in the model at once. As such, the computational time was
nearly independent of the number of dofs.

A CG solver with a block-Jacobi preconditioner using NVIDIA’s
geometry-informed algebraic multigrid [AMGx (Naumov et al.
2015)] package was used to solve the linear system of equations.
Despite the speedups observed for the assembly and update levels,

the solver on the GPU remained a bottleneck compared to the CPU
depending on the number of dofs; as shown in Fig. 7(c).

The intent of this study was to demonstrate the potential
of GPU-accelerated structural applications. However, the afore-
mentioned challenges still need to be addressed to capitalize on
GPU-driven speedups for nonlinear structural systems. Although
promising and prevalent in other fields, e.g., seismic wave propa-
gation, questions remain on which types of algorithms best trans-
late into efficient GPU acceleration for structural analysis problems
(e.g., in terms of the time-stepping integration scheme and solver).
Ongoing work by the authors is currently exploring GPU acceler-
ation including nonlinear response with heterogeneous elements
and inelastic material formulations.

Conclusions

To guide future endeavors in accelerating FEA using GPUs,

this state-of-the-art review presents the existing literature on GPU-

accelerated structural and solid mechanics applications with a focus
on structures subjected to seismic loading. A demonstration study
was used to assess the feasibility of a fully GPU-accelerated analysis.

The demonstration study suggests that GPU acceleration is promis-

ing for linear-elastic analyses. Importantly, finer discretization—

often associated with increased accuracy—did not necessarily result
in increased run time on GPUs for the assembly and update steps of

FEA, because the GPU can operate on each dof at once.
However, GPUs are not a panacea for all scientific problems

(Owens et al. 2005); i.e., not all applications are well suited

to GPU acceleration, particularly if the system behaves in the non-

linear range. Although promising, other solvers still need to be
assessed, comparisons were not made to multicore CPUs, and non-
linear behavior was not implemented. A baseline for effective com-
parison of multicore CPU to GPU computing would give a more
effective comparison of speedups; i.e., speedups against unicore

CPUs may look more impressive than multicore CPUs. Based

on the literature, specific challenges for the GPU acceleration of

the nonlinear FEA include:

* The GPU acceleration of civil structures under dynamic loads
poses unique problems compared to other GPU-accelerated ap-
plications; e.g., in implementing extreme nonlinearities associ-
ated with inelastic constitutive laws, as for seismic loading. The
seismic response of civil structures is composed of varied
material and element formulations and patterns of inelastic
and nonlinear behavior that is not uniform across the entire
structure, which can be challenging for the massive single-
instruction parallelism desirable for GPUs.

e Structural models often have complex meshes, which result in
irregular, unstructured sparse matrices hard to organize for
GPUgs; i.e., the topology is not regular and cannot be described
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by simply (i, j, k) addressing and typically requires a large num-

ber of random memory accesses, often resulting in noncoalesced

memory access.

* The extent of GPU acceleration depends on the hardware
age/performance (Farhat 1990) and the equations being solved.
The seismic response of civil structures is in a class of nonlinear
dynamics known as inertial problems (Dokainish and Subbaraj
1989), represented by stiff equations dominated by a few low-
frequency modes, which pose unique challenges compared to
other Lagrangian formulations, e.g., real-time biomechanics
(Courtecuisse et al. 2010; Johnsen et al. 2015; Joldes et al.
2010; Taylor et al. 2008).

Despite these challenges, it is expected that this review will
facilitate the use of HPC in structural analysis applications. GPUs
are only part of a larger paradigm shift toward customized hard-
ware offering finer-grained parallelism for scientific applications.
With advancements in exascale deployment, GPUs are only the
first of many realizations of emerging hardware that structural en-
gineers can leverage to enhance understanding of multihazard
phenomena and the design of more resilient and sustainable urban
environments.

Intractable computational times are a significant obstacle to pro-
moting advanced collapse-prevention and life-saving structural de-
sign methods; e.g., high degrees of nonlinearity may require
refinement from beam-column elements to finer shell or solid el-
ements. Accelerating analyses would also be a step toward estab-
lishing physics-based, end-to-end models capable of spanning
scales (O’Rourke 2010); e.g., from the molecular-to-component-
to-structure-to-urban scales, which is inhibited by computational
time (Ghattas 2011; McCallen et al. 2021a; O’Rourke 2010).
As GPUs are often optimized for machine learning, the intersection
of GPU-accelerated HPC in FEA and artificial intelligence would
promote greater use of machine learning in natural hazards research
engineering by housing both the analysis (e.g., for training)
and machine learning algorithms on the GPU. Moreover, future
concurrent simulation and visualization on the GPU could enable
real-time interaction with the data (Tavakkol and Lynett 2017),
revolutionizing the approach to advanced analysis and structural
design. Ultimately, the ability to conduct higher-fidelity simula-
tions faster would lead to more detailed and accurate models,
encouraging more innovative structural systems and devices and
enable more computationally-intensive applications in uncertainty
propagation, regional-scale modeling, and interaction-type prob-
lems, among many other applications.
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