
Challenges in GPU-Accelerated Nonlinear Dynamic
Analysis for Structural Systems

Barbara G. Simpson, Ph.D., M.ASCE1; Minjie Zhu, Ph.D.2; Akiri Seki3; and Michael Scott, Ph.D.4

Abstract: Many numerical simulation methods, such as finite-element analysis, were originally formulated to run serially or in parallel on

central processing units (CPUs). However, computer engineering has seen a paradigm shift toward massive parallelism using graphics

processing units (GPUs), which have become the default accelerators in many data-driven scientific disciplines outside of civil engineering.

This state-of-the-art review highlights the challenges and practicalities of GPU-accelerating nonlinear dynamic analyses for civil structural

problems. To demonstrate the feasibility of a fully GPU-accelerated finite-element analysis, a GPU-based program for linear-elastic dynamic

analysis was implemented, where all stages of the analysis were ported to the GPU. Observed speedups were 115 times that of an equivalent

CPU-driven analysis for 106 model degrees of freedom (dof). Importantly, the computational time for the assembly and update levels of the

analyses were nearly independent of the number of dof. High-resolution simulations of complex structures can be computationally expensive,

but these results and advances in other fields suggest that some levels of the finite-element analysis of civil structures could be accelerated

using GPUs at increased model resolution with little increase in computational cost, demonstrating the potential for GPU-accelerated com-

puting. However, compared to other GPU-accelerated finite-element analysis applications, the dynamic analysis of civil structures is subject

to unique challenges that need to be addressed before GPU acceleration can be fully realized. Aspects of simulating the response of civil

structures considering nonlinear response under extreme loading may not be immediately amenable to GPU acceleration; e.g., the use of

many differing element formulations within a model, potential for inelastic response and varying degrees of nonlinearity across elements, and

traditional reliance on implicit integration schemes with direct solvers. The shift to GPUs is part of a larger movement toward specialized

hardware using fine-grained parallelism, and structural engineers need to address these challenges as these emerging technologies become more

prevalent. DOI: 10.1061/JSENDH.STENG-11311. © 2022 American Society of Civil Engineers.

Introduction

Computational bottlenecks must be overcome to realize higher-

fidelity models of civil structures subjected to natural hazards.

Finite-element-based structural analysis is a common tool used by

a wide range of engineering disciplines (Bathe 1996; Hughes

1987; Zienkiewicz and Taylor 1989). However, the resolution of

structural models, in terms of both model size and mesh refine-

ment, can be limited by computational cost, resulting in an

ever-increasing need for acceleration. For example, realistic

three-dimensional models can take hours or days to run one

analysis, e.g., as observed for tsunami loading on bridges

(Motley et al. 2016), bridge-foundation-ground interaction (Elgamal

et al. 2008), tall building response (Lu and Guan 2017), among

others. Regional-scale modeling, uncertainty propagation, optimi-

zation, and many “interaction”-type problems, e.g., soil-structure

interaction (McCallen et al. 2022) or fluid-structure interaction

(Gimenez et al. 2017; Zhu and Scott 2014), often suffer from long

run times and require large-scale computing resources.

Parallel processing on central processing units (CPUs) has long

been used to accelerate finite-element analyses (FEA). Multicore

parallel computing on CPUs partitions the spatial domain to run

on multiple processors (Mackerle 1996, 2003, 2004; McKenna

1997; Topping and Khan 1996). The parallelized equations are then

solved using a special parallel equation solver. However, when the

domain is run in parallel this way, the subdomains split across

the cores are still coupled, necessitating intracore communication

between parts of the analysis running on different cores. This

communication eventually slows down the analysis as more and

more cores beyond the optimum number of cores are utilized, as

observed in Jeremic and Jie (2008). By Amdahl’s law (Amdahl

1967), using more processors is limited by the portions of the prob-

lem that cannot be parallelized, e.g., intracore communication or

data management housekeeping. This communication causes the

total performance of parallel CPU-based analyses to inevitably pla-

teau; i.e., increasing the number of CPU cores does not always

result in faster simulations.

Driven by demands for ever more realistic graphics rendering in

the 1980s, the performance of modern GPUs has surpassed that of

CPUs (Borkar et al. 2005; Sutter 2005) in efforts to display thou-

sands to millions of pixels simultaneously. Originally developed as

specialized hardware for scene rendering, GPUs have since become

the default accelerators for applications in deep learning, robotics,

self-driving vehicles, virtual or augmented reality, and, now, super-

computing (Owens et al. 2005). High-performance computing

(HPC) applications in quantum chemistry, molecular dynamics

(Anderson et al. 2008; Chen et al. 2016; Sunarso et al. 2010), cli-

mate modeling (Nyland et al. 2007), computational fluid dynamics

1Assistant Professor, School of Civil and Environmental Engineering,

Stanford Univ., Stanford, CA 94305 (corresponding author). ORCID:

https://orcid.org/0000-0002-3661-9548. Email: bsimpson@stanford.edu
2Research Associate, School of Civil and Construction Engineering,

Oregon State Univ., Corvallis, OR 97331. Email: zhum@oregonstate.edu
3Graduate Student Researcher, School of Civil and Environmental

Engineering, Stanford Univ., Stanford, CA 94305. ORCID: https://orcid

.org/0000-0002-7736-7375. Email: sekia@oregonstate.edu
4Professor, School of Civil and Construction Engineering, Oregon State

Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0001-5898

-5090. Email: Michael.Scott@oregonstate.edu

Note. This manuscript was submitted on January 21, 2022; approved

on August 24, 2022; published online on December 22, 2022. Discussion

period open until May 22, 2023; separate discussions must be submitted

for individual papers. This paper is part of the Journal of Structural En-

gineering, © ASCE, ISSN 0733-9445.

© ASCE 04022253-1 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



(CFD) (Appleyard and Drikakis 2011; Brandvik and Pullan 2007;

Corrigan et al. 2011; Kampolis et al. 2010), and healthcare imaging

(Sylwestrzak et al. 2017) have since been GPU-accelerated

(NVIDIA 2015; Snell and Segervall 2017).

Even though seismic wave propagation (Komatitsch et al. 2009;

O’Reilly et al. 2022; Roten et al. 2016; Zhou et al. 2013) and bio-

mechanics (Johnsen et al. 2015; Joldes et al. 2010; Mafi 2013;

Taylor et al. 2008) have a long history of massively parallel com-

puting on GPUs, the nonlinear dynamic analysis of civil structures

is unique due to varied element formulations and potential for in-

elastic response. While progress has been made to GPU-accelerate

simulations of earthquake fault rupture (Komatitsch et al. 2009;

Kusakabe et al. 2021; Yamaguchi et al. 2020; Zhou et al. 2013)

and ocean fluid dynamics (Tavakkol and Lynett 2017), there has

been slower progress in GPU-accelerating analyses for civil struc-

tures. This lack of progress can be attributed to the prevalence of

different element formulations and nonlinearities, coupled equa-

tions of motion, implicit integration schemes, and reliance on direct

solvers, which are not immediately amenable to fully parallel

acceleration on GPUs.

Although the theory for FEA is mature, analyzing civil struc-

tures with more modern computer architectures, e.g., like GPUs,

has not yet materialized. Scientific computing using GPUs is only

part of a larger movement toward specialized hardware offering

parallel processing optimized for specific tasks, and GPU-like

types of computing will become increasingly prevalent in any field

using numerical simulations, including the structural engineering

discipline. Foreseeing the role that GPUs will play in the future,

national and international universities and laboratories have sought

to enable GPU-driven exascale deployment (Alexander et al. 2020;

Kothe et al. 2019; Siegel et al. 2020); e.g., fault-to-structure

regional simulations (McCallen et al. 2021a, b; Roten et al. 2016).

New technologies in HPC—along with an improved understanding

of earthquake hazards, risk, and building performance—will only

continue to emerge.

Yet, there are barriers to the widespread development of modern

FEA applications that utilize GPUs and other acceleration hardware.

Although structural engineers have long had access to extreme-scale

HPC resources for nonlinear dynamic analysis [FEMA 283 (FEMA

1996)], there is still little understanding of the types of algorithms

that translate into efficient GPU acceleration for differing applica-

tions (Leung et al. 2010; Peterson et al. 2018). Moreover, a learning

curve must be overcome to fully leverage GPUs. As new technol-

ogies become available, resources need to be developed so that

high-fidelity computation becomes more accessible at reduced com-

putational cost in natural hazards engineering and research, educa-

tion, and practice. The intent of this review is to provide guidance for

the future acceleration of such applications using the GPU acceler-

ation of civil structure problems as an example.

This paper presents a high-level picture of prior work on accel-

erating FEA for structural and solid mechanics problems via GPUs.

Emphasis is placed on structural analysis problems in earthquake

engineering, but the methods can be more broadly applied to natu-

ral hazards engineering. The architecture and unique programming

model of the GPU are described. Existing work on GPU acceler-

ation of FEA has focused on the acceleration of the FEA solver, but

progress has been made on accelerating all stages of FEA, includ-

ing state determination, assembly, and the time-integration scheme.

Challenges are highlighted in porting the dynamic analyses of civil

structures to the massively parallel architecture of GPUs, including

coupled equations of motion, heterogeneous element formulations,

and inelastic constitutive laws. To show the potential of GPU ac-

celeration, a demonstration study illustrates that potential speedups

for a linear-elastic analysis depend on the number of degrees of

freedom, as observed by other disciplines. The aforementioned

challenges still need to be addressed to assess the performance

of GPU-accelerated nonlinear dynamic analyses incorporating non-

linear geometric and material effects along with varied element

formulations.

Scientific Computing and Advances in Graphics
Processing Units

Due to power and heat dissipation constraints, computer architec-

tures have moved from increasing the performance of individual

cores to increasing the number of cores on a chip; see Fig. 1. In

theory, this evolution has led to CPUs that divide work in time

(by completing serial tasks as fast as possible, low latency) and

GPUs that divide work in space (by completing as many tasks as

possible, high throughput). This massive parallelism allows GPUs

to execute many tasks (thousands) simultaneously. While CPUs

aim for speed, i.e., completing a task as fast as possible, GPUs com-

plete as many tasks as possible by dividing the work among a large

number of threads. Each thread may not be as fast as a single CPU

core, but the communication between GPU threads is lightweight

and allows thousands of threads to execute instructions at the same

time, resulting in more floating-point operations per second (FLOPs)

(Owens et al. 2005). The GPU itself can range from relatively cheap,

single-precision (SP) GPUs (often used in machine learning) with

higher memory bandwidth to high-performance double-precision

GPUs (promoted for scientific computing).

GPUs exploit fine-grain single-instruction-multiple-thread

(SIMT) parallelism, where multiple threads are processed by a sin-

gle instruction concurrently. Thus, GPUs perform best for problems

divisible into a large number of small tasks that require little-to-no

communication (i.e., embarrassingly parallel). For example, inde-

pendent operations, like matrix multiply, can be easily made par-

allel and are extremely fast on GPUs.

Although this paper focuses on GPUs, similar flavors of single-

instruction-multiple-data (SIMD) parallelism also exist, which ap-

plies the same instructions to multiple data: Cray (Carey et al. 1988;

Ting et al. 2004), CPU vector processing units (e.g., Intel MMX/

SSEn/AVX), PowerPC AltiVec, ARM Advanced SIMD, Intel’s

Xeon Phi (discontinued), and Tensor Processing Units (TPUs).

In many ways, the modern GPU can be viewed as a successor of

the classic Cray supercomputers, and methods of vectorizing FEA

can be gained from the Cray architectures (Carey et al. 1988; Ting

et al. 2004). To maximize performance, the most recent AMD ac-

celerated processing units (APUs) integrate CPU-GPU combina-

tions on a single chip. Intel has also proposed XPUs with a

Fig. 1. CPU versus GPU.

© ASCE 04022253-2 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



unified programming model for any hardware architecture [CPU,

GPU, field programmable gate arrays (FPGA)] that could stream-

line the next generation of specialized heterogeneous hardware.

General-Purpose GPU Programming

General-purpose GPUs (GPGPUs) (Owens et al. 2005; Rumpf and

Strzodka 2005) are GPUs programmed for purposes other than

their original application for graphics processing. Nevertheless,

there are significant differences between CPU and GPU hardware

architectures, resulting in fundamentally different data structures

and processes at the programming level.

For early GPUs, operations were programmed manually by

mapping scientific calculations to graphics manipulations. After

2006, Nvidia’s Compute Unified Device Architecture (CUDA)

(NVIDIA 2019) programming language allowed NVIDIA GPUs

to be more easily programmed for purposes other than graphics

rendering. The Open Computing Language (OpenCL) is an alter-

native vendor-independent cross-platform language for parallel

programming on a diverse set of accelerators, e.g., NVIDIA archi-

tectures, AMD and Intel GPUs, and FPGAs, among others. Both

CUDA and OpenCL enable a C-like programming experience to

run code in parallel on GPUs. Of the two, CUDA remains the most

well-supported, providing a development environment equipped

with numerous libraries.

Library packages have also been developed to accelerate

existing code to run on GPUs at the cost of degraded performance.

In OpenACC, directives are added to CPU code to instruct portions

of the code to run in parallel on the GPU. Some have found that

speedups using OpenACC have been comparable to CUDA with

lower development and higher maintainability costs (Kusakabe

et al. 2021; Yamaguchi et al. 2020). Other abstractions of low-level

HPC access have also been proposed for improved portability of

existing codes across platforms, e.g., Intel’s OneAPI and RAJA

C++ libraries (Beckingsale et al. 2019).

Supercomputing

Although affordable GPUs are widely available on local desktop or

laptop machines, supercomputing is needed to contend with large

or high-resolution models, e.g., for regional urban environments

(O’Reilly et al. 2022) or scale-resolving CFD (Gorobets and

Bakhvalov 2022). For example, modeling end-to-end fault-to-

structure simulations, including fault rupture, seismic wave propa-

gation, and structural response, requires frequencies to be resolved

at 1–2 Hz for ground motion simulations to 5–10 Hz for modeling

stiff infrastructure (Cui et al. 2013). However, the needed compu-

tation for end-to-end regional simulations is beyond current HPC

capabilities, as billions of computations are needed to resolve

frequencies relevant to both the ground motion and structural re-

sponse (McCallen et al. 2021a, b), requiring exascale computing.

To achieve greater performance and energy efficiency, the cur-

rent generation of petascale machines combine many-core process-

ors, e.g., CPUs, with massively parallel accelerators, e.g., GPUs, to

perform quadrillions of calculations each second. The potential for

GPU-based exascale supercomputers to run on billions of cores

(Alexander et al. 2020) could resolve higher frequencies faster, ren-

dering high-fidelity simulations in civil engineering tractable. As

zettascale computing is also on the horizon after exascale comput-

ing, hardware relying on heterogeneous hardware will only con-

tinue to evolve, and structural engineers must be able to adapt

numerical methods and parallel algorithms to benefit from the next

generation of supercomputers.

Performance on modern supercomputers is driven by scalability

and parallelism of the analysis, along with optimized memory

access, reduced memory consumption, efficient scheduling, load

balancing (McCallen et al. 2021a), hidden latencies (Roten et al.

2016), and portability to allow for a broad range of architectures

(such as many-core CPUs and GPUs from various vendors)

(Gorobets and Bakhvalov 2022). The lower-level building blocks

of FEA (e.g., data structures, solvers, algorithms) affect accuracy,

scalability, and parallelism (Brown et al. 2022). Explicit integration

schemes with iterative solvers tend to have better scalability com-

pared to implicit integration schemes with direct solvers depending

on the model size and extent of nonlinear response. Similarly,

structured mesh using stencils can more easily use GPU resources

(described subsequently) (Cui et al. 2013). Exascale deployment

also depends on large degrees of massive parallelism, requiring ef-

ficient workflows (Cui et al. 2013; McCallen et al. 2021a; Roten

et al. 2016) with high-performance I/O operations (Byna et al.

2020) and data management and compression for huge datasets

(hundreds of TBs) (Lindstrom 2014).

To date, exascale efforts in end-to-end regional simulations

have focused on partitioning the geophysical domain, rather than

the structural domain, e.g., using pencil-shaped subdomains of the

ground with each structural model assigned to a single core

(McCallen et al. 2021a).

GPU Execution Model

As GPUs have an unusual programming model, knowledge of the

GPU execution model is often needed to accelerate FEA compu-

tations; see Table 1. Herein, the CUDA terminology will be used to

describe the GPU architecture, but the concepts are widely appli-

cable to other SIMD processing. CUDA uses abstractions, in terms

of a hierarchy of thread groups, shared memory, and barrier syn-

chronization, to partition the problem into coarse subproblems

solved independently and fine subproblems solved cooperatively

in parallel.

The GPU architecture implies a for loop where each iteration of

the loop runs simultaneously via the threads. The CUDA code con-

tains a host code running on the CPU and a device code running on

the GPU. The CPU is needed to initialize, organize memory, and

interact with the data on the GPU. The GPU executes a basic par-

allel function, the kernel, callable by the CPU, that defines the par-

allel computations of the threads (the kernel is executed N times in

parallel by N threads).

The threads in a kernel are organized by a grid of thread

blocks used to define the location of the thread inside the memory

hierarchy of the GPU; see Figs. 2 and 3 for widely available sche-

matics of the memory hierarchy. All threads within a thread block

can communicate and synchronize with each other. The thread

blocks are subdivided into groups of threads called warps typically

composed of 32 threads.

Table 1. Useful definitions

Term Description

Host The CPU.

Device The GPU.

Kernel Function executed in parallel by an array of threads

on the device.

Grid Set of thread blocks that can be executed independently.

Thread

Block

Set of threads with common access to shared memory

whose execution can be synchronized.

Warp Group of 16 or 32 threads executed concurrently.

© ASCE 04022253-3 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



All threads in a warp must execute the same instructions in lock-

step at the same time (in parallel). Thus, thread divergence can

occur when the threads within a warp follow different instructions,

causing the different paths to be executed serially. For example, if/

else conditional statements branch to have different instructions;

e.g., when handling different elements or varying degrees of inelas-

tic status (Yang et al. 2014). Since the “if” and “else” branches han-

dle different instructions, the threads assigned to a warp handle

each branch serially, resulting in loss of performance.

GPU Memory

CUDA allows developers to extend the C language to identify each

thread, its blocks, and organization and transfer of data across the

GPU memory hierarchy. The CPU (the host) and GPU (the device)

maintain their own memory. Information between thread blocks

and data exchange between the CPU and GPU is synchronized

through global memory, which is off-chip and slow; access to

global memory on the GPU is not cached and has large latency.

In addition, threads have private local memory, which is also

off-chip and slow.

In contrast, threads within a thread block can efficiently share

and synchronize data through shared memory, which is on-chip and

whose resources are shared across the warps assigned to the block

and is relatively fast and of high bandwidth, if limited in size. As

access to shared memory is defined by banks, bank conflicts can

occur if two threads executing the same instruction attempt to ac-

cess the same bank, resulting in serial execution. Shared memory is

beneficial for applications where neighboring threads share

common data, such as algorithms executed over regular grids,

but is unlikely to be beneficial for an unstructured mesh where

neighboring threads do not generally share the same data.

Each thread also has a register, which can be used to store fre-

quently accessed variables quickly and is limited in size. The GPU

also has access to read-only constant memory and texture memory.

The types of available memory, including its optimization, are

described extensively in NVIDIA (2013).

Performance Considerations

Precision (single 32-bit versus double 64-bit precision), data size,

and memory access can all influence GPU performance, which

can vary depending on the age/type of the GPU hardware.

For example, double precision requires twice the memory as sin-

gle precision with possible decreases in performance. Yamaguchi

et al. (2020) proposed custom low-precision arithmetic for

GPUs; e.g., using 21-bit data to provide the accuracy needed for

scientific calculations with less memory. Although (Georgescu

et al. 2013) compared GPU-based implementations of structural

mechanics, most cited literature used single-precision GPUs

(Joldes et al. 2010; Komatitsch et al. 2009; Mafi 2013; Taylor

et al. 2008) when improved, double-precision GPUs with more

memory are now available, as used by Bartezzaghi et al. (2015);

all implementations prior to CUDA 1.3 only supported single-

precision GPUs.

Generally, available memory on the GPU can be a limiting

factor in acceleration (Bartezzaghi et al. 2015; Taylor et al. 2008).

Delays also occur every time the GPU exchanges information with

global memory, which is large but off-chip and low bandwidth,

which can be particularly challenging for heterogeneous CPU-

GPU computing environments. Efficient memory access also needs

to be sequential and aligned [i.e., coalesced (Inoue 2015; Kirk and

Hwu 2013)]; see Fig. 4. Coalescence refers to when the threads in a

warp are organized consecutively with the corresponding address in

memory, allowing for the threads in that warp to access memory

simultaneously. Memory access will be serial if the access pattern

is not sequential, is sparse, or is misaligned.

“Zero padding” has been used to obtain memory alignment

in multiples of 16 (a half-warp), which is optimal in CUDA

(Komatitsch et al. 2009). Unchanging parameters can also be

hard-coded in constant or texture memory on the GPU, which

are read-only but also limited in size (Bartezzaghi et al. 2015;

Zhou et al. 2013). Register spilling, when the number of variables

that need to be stored is more than the available registers, can also

result in performance drops, as the GPU is forced to use local

Fig. 2. GPU thread organization.

Fig. 3. CUDA memory model.

Fig. 4. Memory coalescence.

© ASCE 04022253-4 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



memory, which has latencies similar to global memory (Bartezzaghi

et al. 2015; Zhou et al. 2013).

There are many other performance considerations for GPUs; an

in-depth discussion is presented in Kirk and Hwu (2013). For ef-

ficient programming on the GPU, any analysis needs to: (1) deter-

mine a data flow to minimize local/global memory access and data

transfers between the host and device, (2) tune execution to maxi-

mize performance (e.g., in terms of the number of threads per

block, blocks per grid, and overlapping latencies of memory trans-

fers with useful computation), (3) avoid parallel limitations, like

deadlock, race conditions, and load imbalance, (4) maintain coa-

lesced access to global memory, (5) balance the amount of compu-

tation with enhanced speed of simultaneous redundant calculations,

(6) avoid branches and thread execution divergences, and (7) con-

sider shared memory access patterns (to avoid bank conflicts).

Accelerating Finite-Element Analysis

Advances in GPU hardware and software (i.e., the CUDA program-

ming language has become very robust) provide new HPC opportu-

nities for civil engineering applications. On CPUs, many algorithms

for single-core computing need little modification to run on multi-

core CPUs (Baugh and Sharma 1994; Hajjar and Abel 1988; Kumar

and Adeli 1995; Mackerle 2003; Santiago and Law 1996) because

of the relatively quick data exchanges between CPU cores with

dedicated transistors supporting branch prediction and caching. In

contrast, the massive parallelism of GPUs makes directly porting

existing algorithms difficult, inefficient, or impossible.

Despite several decades of work in parallel finite-element algo-

rithms for HPC (Topping and Khan 1996), modern FEA software

(which was written to run on CPUs) must conform to massive par-

allelism to fully leverage GPUs. The typical levels of FEA in struc-

tural dynamics are shown in Fig. 5(a).

1. The response in terms of displacements Uk, velocities U̇k, and

accelerations Ük at the beginning of the time step k is known.

2. The state of the elements due to this motion is calculated, as

defined by the constitutive law.

3. Based on the element states, the coefficient matrix A, and right-

hand side vector b are assembled.

4. The linear system of equations, Ax ¼ b, is solved to obtain the

updated motion response. Depending on the integration scheme,

e.g., implicit or explicit, iterations defined by a root-finding

algorithm, e.g., Newton–Raphson, can be implemented to sat-

isfy the equations of motion to within a tolerance.

5. Upon convergence, the responsesUkþ1, U̇kþ1, and Ükþ1 for time

step kþ 1 are committed before moving on to the following

time step.

The most expensive computations occur during the state deter-

mination (step 2) (Bartezzaghi et al. 2015; Yang et al. 2014) and the

solve phase (step 4) (Georgescu et al. 2013).

Partial Acceleration

Any one level of the FEA can be accelerated individually. Early

work on GPU acceleration focused on porting only portions of

the analysis to the GPU to limit significant changes to the program-

ming structure of existing FEA code. As one of the most expensive

steps, typically, the analysis is only partially accelerated by moving

the solver from the CPU (host) to the GPU (device) (Lu and Guan

2017; Tian et al. 2015); see Fig. 5(b). However, synchronization

between the CPU and GPU must then occur every iteration, becom-

ing a bottleneck. In partially accelerated FEA, the CPU must fre-

quently copy a large amount of information needed for the solver to

the GPU (Gigabytes of data) and receive results (also in Gigabytes)

Fig. 5. CPU- versus GPU-based FEA: (a) CPU-only; (b) partial GPU

acceleration; and (c) full GPU acceleration.

© ASCE 04022253-5 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



from the GPU every iteration. This bidirectional data copying via

global memory results in time delays and can limit overall speed-

ups, as observed by Lu and Guan (2017). This host-device solver

approach is used in Ansys Mechanical (Posey and Courteille 2012),

Abaqus (Crivelli and Dunbar 2012), and LS-Dyna (Gohner 2012)

with speedups of only 1–3x (Georgescu et al. 2013; NVIDIA

2015).

Full Acceleration

Since many existing FEA codes were built to run sequentially on

CPUs, the piece-meal approach used in partial acceleration can

only accelerate an FEA so far. Some have suggested that a complete

rearchitecture of the standard FEA may be needed to reap the full

benefits of GPUs (Bartezzaghi et al. 2015; Garland and Kirk 2010;

Knepley and Terrel 2011), see Fig. 5(c), where:

1. Initial preprocessing jobs, like memory allocation, are done

from the CPU host.

2. Input data are then copied from the host to the GPU device.

3. Kernels associated with the time-loop for FEA are executed on

the GPU.

4. The resulting data are then copied from the device back to

the host.

In this case, pre/postprocessing is only done once on the CPU,

and the full analysis is performed by the GPU. In the case that there

is not enough GPU memory, asynchronous memory transfer can be

used to move on to the next time step while offloading results from

previous steps to the CPU to limit the idle time and hide the time

taken for the data transfer operation (Cai et al. 2015).

GPU Implementation

For full acceleration, the domain of the model can be decomposed

according to the parallel portions of the code. Generally, in FEA

individual element and nodal update computations are “embarrass-

ingly parallel” and can be performed simultaneously. As calcula-

tions of the force contributions and updating the motions for the

elements and nodes are nearly independent of their neighbors,

two loops can be executed to compute the element state and node

motion simultaneously on the GPU. Common parallel execution

strategies include: one-thread-per-element, one-thread-per-node,

or one-thread-per-dof. In some cases, a one-thread-per-integration

point has also been utilized (Komatitsch et al. 2009, 2010; Mihaila

et al. 2014).

A complete discussion of per-element, per-node, and per-dof

strategies is described in Bartezzaghi et al. (2015) for full compu-

tation on the GPU (along with careful memory management). For

example, the loops in a serial analysis scheme can correspond to

separate kernels for the elements and nodes (Joldes et al. 2010;

Taylor et al. 2008). However, execution on the GPU should also

be conducted with as few kernels as possible to minimize the num-

ber of kernels (which have small software/hardware overhead upon

invocation) and information transfer from the host to the device,

which is slow. Some have implemented the entire time-stepping

algorithm as a single kernel, thereby avoiding multiple kernels.

For example, each element can keep a local copy storing informa-

tion about its nodes and can perform time integration on its own

nodes, resulting in an element-wise single kernel (Bartezzaghi

et al. 2015). This strategy results in some redundant computations

but less memory access as communication between elements is

only needed during the assembly process.

Importantly, although considerable efforts have focused on op-

timized domain decomposition for CPUs (Baugh and Sharma

1994; El-Sayad and Hsiung 1990; Farhat et al. 1987; Foley and

Vinnakota 1994; Roa et al. 1994; Synn and Fulton 1995; Zhang

and Lui 1991), multicore CPU codes are based on coarse-grained

message-passing architectures. In contrast, finer-grained parallel-

ism (Che et al. 2008) is needed for GPUs. For example, the virtual

function calls used to handle class hierarchies and element types for

finite-element programs like OpenSees (McKenna et al. 2010)

often represent branch structures to cover hundreds of classes

and could represent inefficient kernels with diverging branch struc-

tures on GPUs, potentially lowering performance (Yang et al.

2014). The data on the GPU memory must also be reorganized

to obtain optimum memory access performance.

Accelerating the Levels of FEA

Not all prior work on accelerating analyses is suitable for the

nonlinear dynamic analysis of civil structures using the FEA

method. For example, physics-based gaming engines on GPUs

use simplifications that are often not accurate enough for struc-

tural analysis (NVIDIA 2012). On the other hand, scientific

approaches often accelerate models with a very fine, repetitive

mesh or particles with little communication, e.g., discontinuous

Galerkin (Klockner et al. 2009), lattice-Boltzmann methods

(Kuznik et al. 2010; Zhou et al. 2012), smoothed particle

hydrodynamics (SPH) (Dalrymple et al. 2010; Hérault et al.

2010).

Based on the literature, the following sections highlight the chal-

lenges associated with each level of the FEA of civil structures in

terms of: (1) state determination, (2) assembly (3) solver, and

(4) time-stepping integration scheme; see Table 2. Each of these

sections can be conducted partially or as part of a full acceleration

strategy.

State Determination

In FEA, numerical integration is used to determine the element

state (e.g., restoring forces, stiffness) as a function of nonlinear con-

stitutive response. Each element has its own state data, such as

internal stresses, internal strains, material properties, and inelas-

tic status, which is not shared with other elements. Thus, state

Table 2. Challenges in FEA acceleration of civil structures

Algorithm Challenge Example references

State determination heterogeneous element formulations; conditional branching

for nonlinear constitutive material models

Kusakabe et al. (2021) and Yang et al. (2014)

Assembly Coupled equations of motion; unstructured mesh Cecka et al. (2011) and Komatitsch et al. (2009)

Matrix solver Direct versus iterative solvers; selection of preconditioner Bolz et al. (2003), Georgescu et al. (2013), and Li and

Saad (2010)

Time integration Stability for “stiff” structural problems Bartezzaghi et al. (2015), Courtecuisse et al. (2010),

Joldes et al. (2010), Mafi (2013), and Taylor et al. (2008)

© ASCE 04022253-6 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



determination is easily parallelized as it involves a loop over the

elements and strain/stress calculations.

Importantly, unlike CPUs, the threads performing assembly

operate on each element simultaneously. A finer mesh does not

necessarily result in increased run time on GPUs, provided the

GPU has enough memory for the increased resolution of the model.

Simultaneous assembly has significant implications for choosing

element formulations suited to refined meshes (e.g., displacement-

versus force-based elements). Displacement-based formulations,

which do not iterate, are more easily incorporated in GPU codes

since stresses are evaluated directly from strains. Reduced time also

makes shell (Bartezzaghi et al. 2015; Cai et al. 2015; Martínez-

Frutos et al. 2015; Yang et al. 2014) and solid [e.g., tetrahedral

(Courtecuisse et al. 2010; Johnsen et al. 2015; Joldes et al. 2010;

Kusakabe et al. 2019, 2021; Mafi 2013; Taylor et al. 2008) and

hexahedral (Johnsen et al. 2015; Joldes et al. 2010; Komatitsch

et al. 2009)] elements more practical.

However, the amount of speedup compared to CPU-based codes

depends on the size and resolution of the model; i.e., in terms of

the number of dofs. In the literature, higher-order elements (which

have many redundant calculations) have shown dramatic speedups

(Brown et al. 2022); e.g., greater than 20 times (Komatitsch et al.

2009). However, unless the goal is complete acceleration, the

element matrix computations tend to be small compared to the time

needed for the solver, particularly for the first and second-order

element types commonly used in models of civil structures. Thus,

porting this part of the analysis to the GPU may not justify the

added effort.

Moreover, GPUs are optimized to perform the same operation

repeatedly on huge batches of data, and performance degrades if the

heterogeneity of the element formulations and constitutive laws is

not considered (Kusakabe et al. 2021). Unlike fluid dynamics,

which uses similar elements for every part of the mesh, elements

in structural models could be assigned different element formula-

tions, materials, and section types, which require different instruc-

tions. Varying degrees of nonlinearity can also result in variable

thread execution times and load imbalance between cores handling

elastic versus inelastic states.

GPUs also sequentially evaluate both branches of conditional

statements and then discard one of the results, which can become

costly, as divergent threads in a warp are executed serially. Thus,

the calculation of the constitutive law, which often involves con-

ditional branching for different regimes of elastic and inelastic

behavior, is unsuitable for GPU computing. Some have suggested

separating and reordering elastic from nonlinear elements to model

the heterogeneity of soil, where different soil layers (nonliquefiable

versus liquefiable) were separated to avoid load imbalance among

the processes and threads (Kusakabe et al. 2021). To avoid branch-

ing, expressions can be implemented to avoid conditional statements

so that every thread in a warp follows the same instructions.

To mitigate challenges in heterogeneous formulations (and,

thus, different instructions for different parts of the structure),

(Kiran et al. 2019) suggested assigning similar elements to a warp,

allowing for different element formulations with varying nonlinear-

ities to be executed at the same time in parallel. Bulk models have

also been used to gather elements of the same type (Yang et al.

2014), and each gathered group is then executed in parallel.

Assembly

Contributions of individual elements sharing dofs are assembled

and summed to form the global stiffness matrix and righthand

side load vector. If the analysis is nonlinear implicit (e.g., using

Newton–Raphson iterations), this assembly may need to occur iter-

atively many times, becoming a costly part of the analysis. Global

assembly of the stiffness matrix is often performed in series on

CPUs to reduce memory overhead, allowing elements that share

dofs access to the same memory locations [e.g., Addto (Markall

et al. 2013)]. However, to attain high performance on GPUs, an

assembly can be conducted in parallel across all the elements at

once, provided enough memory is available on the GPU.

Contributions from each element are computed independently

but are summed at the same location in global arrays, where the

elements share a dof. As race conditions can arise when adding

multiple contributions to the same matrix entry, assembly of

elements sharing the same dofs and memory locations can require

significant restructuring of the input data on GPUs (Fig. 6). Alter-

natively, blocking of threads or different mesh constructions can be

used to produce a more favorable thread arrangement to achieve

memory coalescence. For example, bin numbering schemes, which

ensure that neighboring elements are located consecutively in

memory, have been proposed for CFD, where boundary elements

can be stored consecutively in memory and treated separately from

nonboundary elements to reduce thread divergence (Corrigan

et al. 2011).

Structured meshes can achieve memory coalescence due to reg-

ular memory access patterns; see Fig. 4. However, in general, the

unstructured meshes common to civil structures are difficult to pat-

tern for memory coalescence (Bartezzaghi et al. 2015; Courtecuisse

et al. 2010; Kusakabe et al. 2021; Taylor et al. 2008). Random

global memory access patterns between the coupled portions of

the unstructured mesh will be penalized on GPUs (Inoue 2015;

Kirk and Hwu 2013). Thus, the irregular topologies (unstructured

mesh) in civil structures mean that efficient algorithms based on

stencils (Cui et al. 2013; Zhou et al. 2013), e.g., as in finite differ-

ences, which can take advantage of cache reuse and optimized pre-

fetch, cannot be applied (Corrigan et al. 2011; Govindaraju and

Manocha 2007; Kim 2008).

Methods of restructuring the data to achieve memory coales-

cence for unstructured meshes have been proposed with varying

Fig. 6. Assembly process.

© ASCE 04022253-7 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



speedups (Cecka et al. 2011; Dziekonski et al. 2012; Filipovic et al.

2009; Karatarakis et al. 2014; Kiran et al. 2019; Komatitsch et al.

2009; Luitjens et al. 2012). For example:

• The coloring method (Berger et al. 1982; Farhat and Crivelli

1989; Hughes et al. 1987; Komatitsch et al. 2009) “colors”

elements that do not share the same dofs and assembles the dif-

ferent colors sequentially without conflict (Cecka et al. 2011;

Dziekonski et al. 2012; Markall et al. 2013). Some rebalancing

between colors may be needed (Komatitsch et al. 2009), e.g., per

a greedy algorithm (Kiran et al. 2019; Martínez-Frutos et al.

2015).

• Atomic operations are GPU synchronization primitives able to

read, modify, and write a value back to device shared memory

without the interference of other threads but do so serially to

mitigate race conditions if the same memory location is ac-

cessed at the same time. Atomic add provided in CUDA can

also result in extra instruction overhead and slower run time

(Cai et al. 2015). Yamaguchi et al. (2020) found atomic oper-

ations to be faster than coloring.

The assembly process can be viewed as a scatter operation that

assigns each thread to one local stiffness matrix that is then as-

sembled in the global matrix. The scatter approach can involve

fewer noncoalesced memory transactions provided there is an ef-

ficient use of shared memory; (Mafi and Sirouspour 2014) pro-

posed two levels of atomic add over elements grouped in thread

blocks in shared memory prior to atomic add between thread blocks

in global memory. Some have also transformed the parallel scatter

operation into a parallel gather by duplicating the computations

for each shared dof (Bartezzaghi et al. 2015; Cai et al. 2012;

Courtecuisse et al. 2010; Taylor et al. 2008). A temporary buffer

can be used to store the result of each redundant computation and

then a gather step reading from this buffer can be used to sum the

nodes. This double-buffering approach reads and writes inputs

and outputs to different buffers that are swapped at the following

time step (Bartezzaghi et al. 2015). All the nodes are processed in

parallel, resulting in redundant calculations and a temporary buffer,

and then summed, reading from this buffer (Courtecuisse et al.

2010).

Matrix-free methods (Liu and Dinavahi 2018; Rumpf and

Strzodka 2005) have also been proposed that use highly parallel

element-by-element (EbE) computations at the cost of more itera-

tions (Carey et al. 1988).

Ultimately, parallelized assembly requires a complex memory

layout on the GPU (Fig. 2) (Ljungkvist 2015; NVIDIA 2013),

as communication of element properties between thread blocks us-

ing shared memory is fast, but information shared between thread

blocks and synchronization with the CPU through global memory

is slow (NVIDIA 2007). Thread blocks may also be unable to share

the resulting large amounts of data needed for the assembly of very

fine meshes.

Matrix Solver

Most structural FEA applications use implicit time-integration

schemes, requiring a solution of the resulting linear system of equa-

tions, Ax ¼ b, that can have sparse characteristics (with Rayleigh

damping). Many previous studies (Cevahir et al. 2010; Schenk et al.

2008; Sharma et al. 2013; Tomov et al. 2010) have focused on lin-

ear matrix solvers for GPUs, because the linear solution step can

be the most computationally demanding step in FEA (Bartezzaghi

et al. 2015; Georgescu et al. 2013), and replacing the solver requires

little restructuring of the analysis; e.g., as in Ansys Mechanical

(Posey and Courteille 2012), Abaqus (Crivelli and Dunbar 2012),

and LS-Dyna (Gohner 2012).

Although direct solvers are common in structural engineering

applications (Kilic et al. 2004), direct solvers often adopt triangular

and elimination decomposition methods, which are difficult to par-

allelize for GPUs [e.g., OpenSees uses well-developed packages

like MUMPS (direct parallel solver on CPUs), SuperLU, UmfPack,

and SPOOLES]. In contrast, iterative solvers can be formulated to

require only matrix-vector products that are massively paralleliz-

able, with iterations to converge to a solution for x (Brussino

and Sonnad 1989), and are often more suitable for GPU acceler-

ation (Fu et al. 2014).

The iterative conjugate-gradient (CG) method (Berry and

Plemmons 1987; Hughes et al. 1987; Law 1986) on the GPU is

the most popular (Bolz et al. 2003; Buatois et al. 2007; Cevahir

et al. 2010; Georgescu and Okuda 2010; Goddeke et al. 2007;

Kruger and Westermann 2003; Verschoor and Jalba 2012). The

number of iterations to solve for x highly depends on the initial

guess, error tolerance, and condition number of A, which increases

with the problem size and mesh refinement. Preconditioning is

often used to replace Ax ¼ b with an equivalent set of equations

with a better condition number and less iterations. However, the

overhead of using a preconditioner should not cancel out the sav-

ings of having fewer iterations.

On GPUs, speedups for CG highly depend on the selection

of the: [a] preconditioner (Geveler et al. 2011; Haase et al.

2010; Kraus and Foster 2012; Li and Saad 2010; Neic et al.

2012; Wagner et al. 2012; Wang et al. 2009) and [b] size of

the model; i.e., >500,000 dofs were reported for significant

solver speedups in Ansys (Beisheim 2010). Many factorization-

based preconditioners are model dependent (Kusakabe et al.

2019) and were developed for serial operations on CPUs

(e.g., ILU, IC); thus, there is often a tradeoff between precondi-

tioner quality and parallelism. (Georgescu et al. 2013) found that

simple brute-force, highly iterative preconditioners, like Jacobi or

block-Jacobi, may provide the best GPU performance for struc-

tural problems.

To avoid issues of indirect memory access for the assembly and

operation of sparse matrices, the matrix need not be explicitly com-

puted in some iterative solvers. For example, EbE preconditioned

CG (PCG), sometimes referred to as matrix-free methods, can be

used to replace the matrix assembly part of the algorithm with vec-

tor assembly, with mixed speedups (Mafi and Sirouspour 2014;

Martínez-Frutos et al. 2015; Yamaguchi et al. 2020). However,

from a convergence point of view, PCG with assembled global

sparse matrices may still be preferable, as compared by Mafi

and Sirouspour (2014). Although (Papadrakakis et al. 2011) found

that a direct Cholesky solver performed better than a PCG solver

for a hybrid CPU-GPU computing environment, the study used

outdated GPUs, and the authors noticed faster speedups using

PCG with faster GPUs.

Solving sparse systems of equations is a major research topic,

involving sophisticated sparse matrix data structures and algo-

rithms. Solvers were extensively compared by Georgescu et al.

(2013), with most of the literature using single-precision hardware.

Existing solver libraries (NVIDIA 2014) optimized for scientific ap-

plications can be leveraged, particularly, AMGCL (Demidov 2019),

PETSc (Mills et al. 2021), and AMGx (Naumov et al. 2015). Libra-

ries for sparse direct solvers for GPUs also exist (Krawezik and

Poole 2009; Lacoste et al. 2012; Schenk et al. 2008). Note, the CuSP

(NVIDIA 2014) solver used by Lu et al. (Lu and Guan 2017) is no

longer supported by current GPU versions. Mafi et al. made com-

parisons with both CUSP and CUSPARSE for compressed sparse

row (CSR) sparse matrix-vector multiply (Mafi and Sirouspour

2014).

© ASCE 04022253-8 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Time-Integration Scheme

Traditionally, the second-order differential equations of motion

governing structural dynamics are discretized in time and solved

using implicit time-stepping integration schemes. Often uncondi-

tionally stable, implicit methods [e.g., Newmark-beta (Newmark

1959)] need a solver to compute the solution to the system of equa-

tions at each time step, which highly depends on the model size and

preconditioner, as previously outlined. In contrast, explicit schemes

with a lumped (diagonal) mass matrix, enable the equations of mo-

tion to become decoupled such that each dof can be solved inde-

pendently, resulting in calculations that can be easily parallelized

on an element- and node-wise basis without iterations. Table 3 sum-

marizes the literature for implicit and explicit time-integration

schemes, including notes on the GPU hardware and CPU compari-

son (serial CPU code).

Real-time GPU-based biomechanics applications often use

explicit methods (Johnsen et al. 2015; Joldes et al. 2010;

Taylor et al. 2008), but the low stiffness of soft biological tissues

means the time step needed for stability, normally restrictive, is

relatively large (Taylor et al. 2008). However, common condition-

ally stable methods, like central difference (Bartezzaghi et al.

2015; Cai et al. 2015; Joldes et al. 2010; Taylor et al. 2008)

and explicit Newmark (Komatitsch et al. 2009), often impracti-

cally restrict the time step size for multi-dof civil structural sys-

tems (Dokainish and Subbaraj 1989), even if they do not require

iterations to reach convergence.

Explicit time-integration schemes are highly suitable for GPUs,

but civil structures are a “stiff” problem (Hairer and Wanner 2012),

requiring a small time step to meet stability requirements. Several

biomechanics applications have implemented implicit time-

integration schemes successfully (Courtecuisse et al. 2010; Mafi

2013; Mafi and Sirouspour 2014). However, thread divergence

may occur more often for implicit integration schemes, which tend

to be programmed with more complex branching compared to

explicit methods (Stone and Davis 2013). Some have suggested

semiimplicit schemes that do not require Newton iterations (in-

stead, they solve a sequence of linear systems) may be better suited

to SIMTacceleration (no thread divergence); e.g., semi-implicit and

implicit Runge-Kutta methods have been used in GPU acceleration

of “stiff” chemical reaction applications (Curtis et al. 2017).

Demonstration Study

To benchmark potential speedups, a simple platform was built to

fully GPU-accelerate a linear-elastic dynamic analysis that ported

the assembly, solver, and update tasks to the GPU device. The

CPU instructs the GPU on how to perform the computations

(NVIDIA 2007), but the output was only returned to the CPU

upon completion of the analysis. Importantly, once the analysis

was sent to the GPU, data never left the GPU until the analysis

was complete.

Generic structural models were generated using elastic beam-

column elements in three ways: (1) m randomly connected ele-

ments within a cube domain containing n randomly positioned

nodes, (2) a 1D mesh with N nodes numbered sequentially from

1 to N at the end (i.e., a banded matrix), and (3) a regular 3D frame

structure defined by the number of stories, bays in each direction,

and nodes per member. The first two model types were used when

constructing the GPU-based code. Performance was then defined

based on the number of dofs in the model for the different types

of mash structure for the third model type, which best represents a

regular structure.

A new CPU-only analysis was written to be one-to-one with

GPU-based code for this comparison. The simulation was executed

on Oregon State University’s NVIDIA DGX-2 cluster with NVI-

DIATesla V100 GPUs using CUDAversion 10.0 and compared to

those executed on a single-core Intel Xeon CPU at 3.4 GHz. All

calculations were performed in double precision.

Pseudo-Code

In the GPU-accelerated code, synchronization only occurs at the

model input and final output stage. The overall code is set up with

the following pseudo-code:

1. Define inputs and set configuration files on the CPU.

2. domain().load(): Load model from the CPU to the GPU

(e.g., load nodal data, element connectivity, element data

(elasticity), etc.).

3. domain().changed(): Create data structures on GPU (e.g., nodal

dofs, nodal displacements, velocities, accelerations, mass, etc.).

4. integrator().new_step(dt): Setup the Newmark constants on

the GPU.

5. assembler().assemble(): Assemble global matrix (left-hand

side) and vector (righthand side) on the GPU.

Table 3. Time-integration schemes

Reference Method

Integration

scheme Solver Field Precision

Estimated

speedup

CPUa

comparison

Bartezzaghi et al. (2015) Explicit Central difference — Solid mechanics;

structural dynamics

DP >40x serial CPUb

Cai et al. (2015) Central difference — Sheet metal;

crashworthiness

DP 7-22x serial CPU

Taylor et al. (2008) Central difference* — Biomechanics SP 10-17xc serial CPU

Joldes et al. (2010) Central difference* — Biomechanics SP >20x serial CPU

Komatitsch et al. (2009) Explicit Newmark — Seismic modeling SP 25x serial CPU

Mafi and Sirouspour

(2014)

Implicit Implicit Newmark CG versus

EbE CG

Biomechanics SP 10x serial CPU

Yamaguchi et al. (2020) Implicit Newmark EbE CG Seismic modeling mixed-precision with FP21 11–16xd serial CPU

Courtecuisse et al. (2010) Backward Euler EbE CG Biomechanics DP 15–35x serial CPU

Note: *Total Lagrangian explicit dynamics.
aSpeedups are difficult to compare across published works due to different CPU and GPU hardware and model and resolution (in terms of dofs).
bCompared to commercial FEA codes.
cGPU acceleration with graphics primitives. All other GPU acceleration with CUDA.
dGPU acceleration with OpenACC.

© ASCE 04022253-9 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



6. solver().solve(): Solves the linear system of equations using the

AMGX iterative solver.

7. domain().update(): Update nodal displacements and calculate

velocities and accelerations based on Newmark constants.

Commit the final state.

8. Pass committed state back to CPU.

Step 3 sets up the data structures defining the memory access

on the GPU. Memory is pre-allocated for all entries into global

memory. Extra memory is also allocated for duplicate element en-

tries sharing the same node. All nonzero entries are gathered based

on the nodes (and their dofs) for each element. All element entries

are then sorted based on the first element node, ensuring that du-

plicate entries arising from entries sharing the same node are ad-

jacent to each other in global memory. In preparation to solve

Ax ¼ b, the CSR format allocates memory for pointers to the non-

zero matrix and vector values.

Assembly in Step 5 is then conducted by mapping element con-

tributions from GPU local to global memory based on the resulting

equation numbering and: (1) considering all nonzero entries, (2) gath-

ering nodes with the same dofs, (3) leaving additional memory space

for shared nodes, (4) assembling all contributions from the elements

to the global stiffness matrix in parallel at once, and (5) summing

shared dof contributions at overlapping equation numbers where

multiple elements were connected to the same node.

Speedups

The speedup for a single analysis step was compared between the

GPU- and CPU-based codes in Fig. 7 based on assembly, solve,

and update levels of the linear-elastic analysis. Total run times are

shown separately for the GPU- and equivalent CPU-based analyses

in Figs. 7(a and b) and broken down by timings for the assembly,

update, and solve stages. Fig. 7(c) shows the overall speedups, de-

fined as the ratio of the GPU computational time divided by the CPU

computational time, with respect to the number of dofs. The hori-

zontal line at 100 indicates equivalent CPU and GPU run times.

For a single time step and 106 dofs, observed speedups were

approximately 115 times that of an equivalent CPU-driven code.

Time for the CPU code increased with the number of dofs. In con-

trast, time on the GPUs was near-constant up to approximately

104 dofs when the GPU had to run more than one pass through

the available cores. Notably, GPU computing is massively parallel,

and the GPU code could operate simultaneously on each node and

element in the model at once. As such, the computational time was

nearly independent of the number of dofs.

A CG solver with a block-Jacobi preconditioner using NVIDIA’s

geometry-informed algebraic multigrid [AMGx (Naumov et al.

2015)] package was used to solve the linear system of equations.

Despite the speedups observed for the assembly and update levels,

the solver on the GPU remained a bottleneck compared to the CPU

depending on the number of dofs; as shown in Fig. 7(c).

The intent of this study was to demonstrate the potential

of GPU-accelerated structural applications. However, the afore-

mentioned challenges still need to be addressed to capitalize on

GPU-driven speedups for nonlinear structural systems. Although

promising and prevalent in other fields, e.g., seismic wave propa-

gation, questions remain on which types of algorithms best trans-

late into efficient GPU acceleration for structural analysis problems

(e.g., in terms of the time-stepping integration scheme and solver).

Ongoing work by the authors is currently exploring GPU acceler-

ation including nonlinear response with heterogeneous elements

and inelastic material formulations.

Conclusions

To guide future endeavors in accelerating FEA using GPUs,

this state-of-the-art review presents the existing literature on GPU-

accelerated structural and solid mechanics applications with a focus

on structures subjected to seismic loading. A demonstration study

was used to assess the feasibility of a fully GPU-accelerated analysis.

The demonstration study suggests that GPU acceleration is promis-

ing for linear-elastic analyses. Importantly, finer discretization—

often associated with increased accuracy—did not necessarily result

in increased run time on GPUs for the assembly and update steps of

FEA, because the GPU can operate on each dof at once.

However, GPUs are not a panacea for all scientific problems

(Owens et al. 2005); i.e., not all applications are well suited

to GPU acceleration, particularly if the system behaves in the non-

linear range. Although promising, other solvers still need to be

assessed, comparisons were not made to multicore CPUs, and non-

linear behavior was not implemented. A baseline for effective com-

parison of multicore CPU to GPU computing would give a more

effective comparison of speedups; i.e., speedups against unicore

CPUs may look more impressive than multicore CPUs. Based

on the literature, specific challenges for the GPU acceleration of

the nonlinear FEA include:

• The GPU acceleration of civil structures under dynamic loads

poses unique problems compared to other GPU-accelerated ap-

plications; e.g., in implementing extreme nonlinearities associ-

ated with inelastic constitutive laws, as for seismic loading. The

seismic response of civil structures is composed of varied

material and element formulations and patterns of inelastic

and nonlinear behavior that is not uniform across the entire

structure, which can be challenging for the massive single-

instruction parallelism desirable for GPUs.

• Structural models often have complex meshes, which result in

irregular, unstructured sparse matrices hard to organize for

GPUs; i.e., the topology is not regular and cannot be described

Fig. 7. Speedups of demonstration study.

© ASCE 04022253-10 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



by simply (i, j, k) addressing and typically requires a large num-

ber of randommemory accesses, often resulting in noncoalesced

memory access.

• The extent of GPU acceleration depends on the hardware

age/performance (Farhat 1990) and the equations being solved.

The seismic response of civil structures is in a class of nonlinear

dynamics known as inertial problems (Dokainish and Subbaraj

1989), represented by stiff equations dominated by a few low-

frequency modes, which pose unique challenges compared to

other Lagrangian formulations, e.g., real-time biomechanics

(Courtecuisse et al. 2010; Johnsen et al. 2015; Joldes et al.

2010; Taylor et al. 2008).

Despite these challenges, it is expected that this review will

facilitate the use of HPC in structural analysis applications. GPUs

are only part of a larger paradigm shift toward customized hard-

ware offering finer-grained parallelism for scientific applications.

With advancements in exascale deployment, GPUs are only the

first of many realizations of emerging hardware that structural en-

gineers can leverage to enhance understanding of multihazard

phenomena and the design of more resilient and sustainable urban

environments.

Intractable computational times are a significant obstacle to pro-

moting advanced collapse-prevention and life-saving structural de-

sign methods; e.g., high degrees of nonlinearity may require

refinement from beam-column elements to finer shell or solid el-

ements. Accelerating analyses would also be a step toward estab-

lishing physics-based, end-to-end models capable of spanning

scales (O’Rourke 2010); e.g., from the molecular-to-component-

to-structure-to-urban scales, which is inhibited by computational

time (Ghattas 2011; McCallen et al. 2021a; O’Rourke 2010).

As GPUs are often optimized for machine learning, the intersection

of GPU-accelerated HPC in FEA and artificial intelligence would

promote greater use of machine learning in natural hazards research

engineering by housing both the analysis (e.g., for training)

and machine learning algorithms on the GPU. Moreover, future

concurrent simulation and visualization on the GPU could enable

real-time interaction with the data (Tavakkol and Lynett 2017),

revolutionizing the approach to advanced analysis and structural

design. Ultimately, the ability to conduct higher-fidelity simula-

tions faster would lead to more detailed and accurate models,

encouraging more innovative structural systems and devices and

enable more computationally-intensive applications in uncertainty

propagation, regional-scale modeling, and interaction-type prob-

lems, among many other applications.

Data Availability Statement

Some or all data, models, or code that support the findings of

this study are available from the corresponding author upon

request.

Acknowledgments

This research was supported by National Science Foundation

(NSF) under grant number CMMI-2145665, titled CAREER:

Accelerating Real-time Hybrid Physical-Numerical Simulations

in Natural Hazards Engineering with a Graphics Processing Unit

(GPU)-driven Paradigm. Special thanks to Dr. Frank McKenna for

providing feedback on the initial drafts of this paper. The findings,

opinions, recommendations, and conclusions in this paper are those

of the authors alone and do not necessarily reflect the views of

others, including the sponsors.

References

Alexander, F., et al. 2020. “Exascale applications: Skin in the game.”

Philos. Trans. R. Soc. A 378 (2166): 20190056. https://doi.org/10

.1098/rsta.2019.0056.

Amdahl, G. M. 1967. “Validity of the single processor approach to achiev-

ing large scale computing capabilities.” In Proc., AFIPS Conf. Proc.,

483–485. Reston, VA: American Federation of Information Processing

Societies.

Anderson, J. A., C. D. Lorenz, and A. Travesset. 2008. “General purpose

molecular dynamics simulations fully implemented on graphics

processing units.” J. Comput. Phys. 227 (10): 5342–5359. https://doi

.org/10.1016/j.jcp.2008.01.047.

Appleyard, J., and D. Drikakis. 2011. “Higher-order CFD and interface

tracking methods on highly-parallel MPI and GPU systems.” Comput.

Fluids 46 (1): 101–105. https://doi.org/10.1016/j.compfluid.2010.10

.019.

Bartezzaghi, A., M. Cremonesi, N. Parolini, and U. Perego. 2015. “An

explicit dynamics GPU structural solver for thin shell finite elements.”

Comput. Struct. 154 (Jul): 29–40. https://doi.org/10.1016/j.compstruc

.2015.03.005.

Bathe, K. J. 1996. Finite element procedures. 1st ed. Upper Saddle River,

NJ: Prentice Hall.

Baugh, J. W., Jr., and S. K. Sharma. 1994. “Evaluation of distributed finite

element algorithms on a workstation network.” Eng. Comput. 10 (1):

45–62. https://doi.org/10.1007/BF01206539.

Beckingsale, D. A., J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.

Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. W. Scogland.

2019. “RAJA: Portable performance for large-scale scientific applica-

tions.” In Proc., 2019 IEEE/ACM Int. Workshop on Performance, Port-

ability and Productivity in HPC (P3HPC). New York: IEEE. https://doi

.org/10.1109/P3HPC49587.2019.00012.

Beisheim, J. 2010. “Speed up simulations with a GPU.” In ANSYS

Advantage, 6–8. Canonsburg, PA: ANSYS.

Berger, P., P. Brouaye, and J. C. Syre. 1982. “A mesh coloring method for

efficient MIMD processing in finite element problems.” In Proc., of the

Int. Conf. on Parallel Processing, ICPP’82, 41–46. Washington, DC:

IEEE Computer Society.

Berry, M. W., and R. J. Plemmons. 1987. “Algorithms and experiments for

structural mechanics on high-performance architectures.” Comput.

Methods Appl. Mech. Eng. 64 (1–3): 487–507. https://doi.org/10

.1016/0045-7825(87)90052-1.

Bolz, J., I. Farmer, E. Grinspun, and P. Schrooder. 2003. “Sparse matrix

solvers on the GPU: Conjugate gradients and multigrid.” In Proc.,

ACM SIGGRAPH 2003 Papers, 917–924. New York: Association

for Computing Machinery.

Borkar, S., P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and

J. Rattner. 2005. “Platform 2015: Intel processor and platform evolution

for the next decade.” In Intel White Paper, 30–36. Santa Clara, CA: Intel.

Brandvik, T., and G. Pullan. 2007. “Acceleration of a two-dimensional

Euler flow solver using commodity graphics hardware.” Proc. Inst.

Mech. Eng., Part C: J. Mech. Eng. Sci. 221 (12): 1745–1748.

https://doi.org/10.1243/09544062JMES813FT.

Brown, J., V. Barra, N. Beams, L. Ghaffari, M. Knepley, W. Moses,

R. Shakeri, K. Stengel, J. Thompson, and J. Zhang. 2022. “Performance

portable solid mechanics via matrix-free p-multigrid.” Preprint, submit-

ted April 4, 2022. https://arxiv.org/abs/2204.01722.

Brussino, G., and V. Sonnad. 1989. “A comparison of direct and precondi-

tioned iterative techniques for sparse, unsymmetric systems of linear

equations.” Int. J. Numer. Methods Eng. 28 (4): 801–815. https://doi

.org/10.1002/nme.1620280406.

Buatois, L., G. Caumon, and B. Levy. 2007. “Concurrent number cruncher:

An efficient sparse linear solver on the GPU.” In Proc., Int. Conf. on

High Performance Computing and Communications, 358–371. Berlin:

Springer.

Byna, S., M. S. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robinson,

J. Soumagne, H. Tang, V. Vishwanath, and R. Warren. 2020.

“ExaHDF5: Delivering efficient parallel I/O on exascale computing

systems.” J. Comput. Sci. Technol. 35 (1): 145–160. https://doi.org/10

.1007/s11390-020-9822-9.

© ASCE 04022253-11 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Cai, Y., G. Li, H. Wang, G. Zheng, and S. Lin. 2012. “Development of

parallel explicit finite element sheet forming simulation system based

on GPU architecture.” Adv. Eng. Software 45 (1): 370–379. https://doi

.org/10.1016/j.advengsoft.2011.10.014.

Cai, Y., G. Wang, G. Li, and H. Wang. 2015. “A high performance crash-

worthiness simulation system based on GPU.” Adv. Eng. Software

86 (Aug): 29–38. https://doi.org/10.1016/j.advengsoft.2015.04.003.

Carey, G. F., E. Barragy, R. McLay, and M. Sharma. 1988. “Element-by-

element vector and parallel computations.” Commun. Appl. Numer.

Methods 4 (3): 299–307. https://doi.org/10.1002/cnm.1630040303.

Cecka, C., A. Lew, and E. Darve. 2011. “Assembly of finite element

methods on graphics processors.” Int. J. Numer. Methods Eng. 85 (5):

640–669. https://doi.org/10.1002/nme.2989.

Cevahir, A., A. Nukada, and S. Matsuoka. 2010. “High performance con-

jugate gradient solver on multi-GPU clusters using hypergraph parti-

tioning.” Comput. Sci.-Res. Dev. 25 (1–2): 83–91. https://doi.org/10

.1007/s00450-010-0112-6.

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron.

2008. “A performance study of general-purpose applications on graph-

ics processors using CUDA.” J. Parallel Distrib. Comput. 68 (10):

1370–1380. https://doi.org/10.1016/j.jpdc.2008.05.014.

Chen, W., Y. Zhu, F. Cui, L. Liu, Z. Sun, J. Chen, and Y. Li. 2016. “GPU-

accelerated molecular dynamics simulation to study liquid crystal phase

transition using coarse-grained Gay-Berne anisotropic potential.” PloS

one 11 (3): e0151704. https://doi.org/10.1371/journal.pone.0151704.

Corrigan, A., F. F. Camelli, R. Löhner, and J. Wallin. 2011. “Running un-

structured grid-based CFD solvers on modern graphics hardware.” Int.

J. Numer. Methods Fluids 66 (2): 221–229. https://doi.org/10.1002/fld

.2254.

Courtecuisse, H., H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin.

2010. “GPU-based real-time soft tissue deformation with cutting and

haptic feedback.” Prog. Biophys. Mol. Biol. 103 (2–3): 159–168.

https://doi.org/10.1016/j.pbiomolbio.2010.09.016.

Crivelli, L., and M. Dunbar. 2012. “Evolving use of GPU for Dassault Sys-

temes simulation products.” In Proc., GPU Technology Conf. (GTC

2012. San Jose, CA: NVIDIA.

Cui, Y., et al. 2013. “Physics-based seismic hazard analysis on petascale

heterogeneous supercomputers.” In Proc., SC’13: Proc. of the Int. Conf.

on High Performance Computing, Networking, Storage and Analysis.

New York: IEEE.

Curtis, N. J., K. E. Niemeyer, and C.-J. Sung. 2017. “An investigation of

GPU-based stiff chemical kinetics integration methods.” Combust.

Flame 179 (May): 312–324. https://doi.org/10.1016/j.combustflame

.2017.02.005.

Dalrymple, R. A., A. Hérault, G. Bilotta, and R. J. Farahani. 2010.

“GPU-accelerated SPH model for water waves and free surface flows.”

In Proc., of the Coastal Engineering Conf. Reston, VA: ASCE.

Demidov, D. 2019. “AMGCL: An efficient, flexible, and extensible alge-

braic multigrid implementation.” Lobachevskii J. Math. 40: 535–546.

https://doi.org/10.1134/S1995080219050056.

Dokainish, M. A., and K. Subbaraj. 1989. “A survey of direct time-

integration methods in computational structural dynamics—I. Explicit

methods.” Comput. Struct. 32 (6): 1371–1386. https://doi.org/10.1016

/0045-7949(89)90314-3.

Dziekonski, A., P. Sypek, A. Lamecki, and M. Mrozowski. 2012. “Finite

element matrix generation on a GPU.” Prog. Electromagn. Res.

128 (Apr): 249–265. https://doi.org/10.2528/PIER12040301.

Elgamal, A., L. Yan, Z. Yang, and J. P. Conte. 2008. “Three-dimensional

seismic response of Humboldt Bay bridge-foundation-ground system.”

J. Struct. Eng. 134 (7): 1165–1176. https://doi.org/10.1061/(ASCE)

0733-9445(2008)134:7(1165).

El-Sayad, M. E. M., and C.-K. Hsiung. 1990. “Parallel finite element com-

putation with separate substructures.” Comput. Struct. 36 (2): 261–265.

https://doi.org/10.1016/0045-7949(90)90125-L.

Farhat, C. 1990. “Which parallel finite element algorithm for which archi-

tecture and which problem?” Eng. Comput. 7 (3): 186–195. https://doi

.org/10.1108/eb023805.

Farhat, C., and L. Crivelli. 1989. “A general approach to nonlinear FE com-

putations on shared-memory multiprocessors.” Comput. Methods Appl.

Mech. Eng. 72 (2): 153–171. https://doi.org/10.1016/0045-7825(89)

90157-6.

Farhat, C., E. Wilson, and G. Powell. 1987. “Solution of finite element

systems on concurrent processing computers.” Eng. Comput. 2 (3):

157–165. https://doi.org/10.1007/BF01201263.

FEMA. 1996. Performance based seismic design of buildings: An action

plan for future studies. FEMA 283. Washington, DC: FEMA.

Filipovic, J., I. Peterlik, and J. Fousek. 2009. “GPU acceleration of

equations assembly in finite elements method—Preliminary results.”

In Proc., Symp. on Application Accelerators in HPC (SAAHPC).

Urbana, IL: US National Center for Supercomputing Applications.

Foley, C. M., and S. Vinnakota. 1994. “Parallel processing in the elastic

nonlinear analysis of high-rise frameworks.” Comput. Struct. 52 (6):

1169–1179. https://doi.org/10.1016/0045-7949(94)90183-X.

Fu, Z., T. J. Lewis, R. M. Kirby, and R. T. Whitaker. 2014. “Architecting the

finite element method pipeline for the GPU.” J. Comput. Appl. Math.

257 (Feb): 195–211. https://doi.org/10.1016/j.cam.2013.09.001.

Garland, M., and D. B. Kirk. 2010. “Understanding throughput-oriented

architectures.” Commun. ACM 53 (11): 58–66. https://doi.org/10.1145

/1839676.1839694.

Georgescu, S., P. Chow, and H. Okuda. 2013. “GPU Acceleration for

FEM-based structural analysis.” Arch. Comput. Methods Eng. 20 (2):

111–121. https://doi.org/10.1007/s11831-013-9082-8.

Georgescu, S., and H. Okuda. 2010. “Conjugate gradients on multiple

GPUs.” Int. J. Numer. Methods Fluids 64 (10–12): 1254–1273.

https://doi.org/10.1002/fld.2462.

Geveler, M., D. Ribbrock, D. Gdeke, P. Zajac, and S. Turek. 2011.

“Efficient finite element geometric multigrid solvers for unstructured

grids on GPUs.” In Proc., 2nd Int. Conf. on Parallel, Distributed, Grid

and Cloud Computing for Engineering (PARENG 2011). Corsica,

France: Civil-Comp.

Ghattas, O. 2011. “Uncertainty quantification and exascale computing:

Opportunities and challenges for earthquake engineering.” In Proc.,

Grand Challenges in Earthquake Engineering Research: A Community

Workshop Report, 74–80. Washington DC: National Research Council

of the National Academies.

Gimenez, J. M., D. E. Ramajo, S. Márquez Damián, N. M. Nigro, and

S. R. Idelsohn. 2017. “An assessment of the potential of PFEM-2

for solving long real-time industrial applications.” Comput. Part. Mech.

4 (3): 251–267. https://doi.org/10.1007/s40571-016-0135-2.

Goddeke, D., R. Strzodka, and S. Turek. 2007. “Performance and accuracy

of hardware-oriented native-, emulated- and mixed-precision solvers

in FEM simulations.” Int. J. Parallel Emergent Distrib. Syst. 22 (4):

221–256. https://doi.org/10.1080/17445760601122076.

Gohner, U. 2012. “Usage of GPU in LS-DYNA.” In Proc., LS-DYNA Fo-

rum. Stuttgart, Germany: DYNAmore.

Gorobets, A., and P. Bakhvalov. 2022. “Heterogeneous CPU+GPU paral-

lelization for high-accuracy scale-resolving simulations of compressible

turbulent flows on hybrid supercomputers.” Comput. Phys. Commun.

271 (Feb): 108231. https://doi.org/10.1016/j.cpc.2021.108231.

Govindaraju, N. K., and D. Manocha. 2007. “Cache-efficient numerical

algorithms using graphics hardware.” Parallel Comput. 33 (10–11):

663–684. https://doi.org/10.1016/j.parco.2007.09.006.

Haase, G., M. Liebmann, C. C. Douglas, and G. Plank. 2010. “A parallel

algebraic multigrid solver on graphics processing units.” In High per-

formance computing and applications, 38–47. Berlin: Springer.

Hairer, E., and G. Wanner. 2012. Solving ordinary differential equations II:

Stiff and differential-algebraic problems. Berlin: Springer-Verlag.

Hajjar, J. F., and J. F. Abel. 1988. “Parallel processing for transient non-

linear structural dynamics of three-dimensional framed structures using

domain decomposition.” Comput. Struct. 30 (6): 1237–1254. https://doi

.org/10.1016/0045-7949(88)90189-7.

Hérault, A., G. Bilotta, and R. A. Dalrymple. 2010. “SPH on GPU with

CUDA.” Supplement, J. Hydraul. Res. 48 (S1): 74–79. https://doi

.org/10.1080/00221686.2010.9641247.

Hughes, T. J. R. 1987. The finite element method. Englewood Cliffs, NJ:

Prentice Hall.

Hughes, T. J. R., R. M. Ferencz, and J. O. Hallquist. 1987. “Large-scale

vectorized implicit calculations in solid mechanics on a Cray X-MP/48

utilizing EBE preconditioned conjugate gradients.” Comput. Methods

© ASCE 04022253-12 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Appl. Mech. Eng. 61 (2): 215–248. https://doi.org/10.1016/0045-7825

(87)90005-3.

Inoue, N. 2015. “Speeding up a finite element computation on GPU.”

In Proc., GPU Technology Conf. Silicon Valley, CA: NVIDIA.

Jeremic, B., and G. Jie. 2008. “Parallel soil–foundation–structure

interaction computations.” In Computational structural dynamics and

earthquake engineering. Boca Raton, FL: CRC Press.

Johnsen, S. F., et al. 2015. “NiftySim: A GPU-based nonlinear finite

element package for simulation of soft tissue biomechanics.” Int. J.

Comput. Assisted Radiol. Surg. 10 (7): 1077–1095. https://doi.org/10

.1007/s11548-014-1118-5.

Joldes, G. R., A. Wittek, and K. Miller. 2010. “Real-time nonlinear finite

element computations on GPU—Application to neurosurgical simula-

tion.” Comput. Methods Appl. Mech. Eng. 199 (49–52): 3305–3314.

https://doi.org/10.1016/j.cma.2010.06.037.

Kampolis, I. C., X. S. Trompoukis, V. G. Asouti, and K. C. Giannakoglou.

2010. “CFD-based analysis and two-level aerodynamic optimization

on graphics processing units.” Comput. Methods Appl. Mech. Eng.

199 (9–12): 712–722. https://doi.org/10.1016/j.cma.2009.11.001.

Karatarakis, A., P. Karakitsios, and M. Papadrakakis. 2014. “GPU accel-

erated computation of the isogeometric analysis stiffness matrix.” Com-

put. Methods Appl. Mech. Eng. 269 (Feb): 334–355. https://doi.org/10

.1016/j.cma.2013.11.008.

Kilic, S. A., F. Saied, and A. Sameh. 2004. “Efficient iterative solvers for

structural dynamics problems.” Comput. Struct. 82 (28): 2363–2375.

https://doi.org/10.1016/j.compstruc.2004.06.001.

Kim, T. 2008. “Hardware-aware analysis and optimization of ‘Stable flu-

ids’.” In Proc., of the ACM Symp. on Interactive 3D Graphics and

Games. New York: Association for Computing Machinery.

Kiran, U., D. Sharma, and S. S. Gautam. 2019. “GPU-warp based finite

element matrices generation and assembly using coloring method.”

J. Comput. Des. Eng. 6 (4): 705–718. https://doi.org/10.1016/j.jcde

.2018.11.001.

Kirk, D. B., and W.-M. W. Hwu. 2013. Programming massively parallel

processors: A hands-on approach. Waltham, MA: Morgan Kaufmann.

Klockner, A., T. Warburton, J. Bridge, and J. S. Hesthaven. 2009. “Nodal

discontinuous Galerkin methods on graphics processors.” J. Comput.

Phys. 228 (21): 7863–7882. https://doi.org/10.1016/j.jcp.2009.06.041.

Knepley, M. G., and A. R. Terrel. 2011. Finite element integration on

GPUs. Austin, TX: Texas Advanced Computing Center.

Komatitsch, D., G. Erlebacher, D. Göddeke, and D. Michéa. 2010. “High-

order finite-element seismic wave propagation modeling with MPI on a

large GPU cluster.” J. Comput. Phys. 229 (20): 7692–7714. https://doi

.org/10.1016/j.jcp.2010.06.024.

Komatitsch, D., D. Michéa, and G. Erlebacher. 2009. “Porting a high-order

finite-element earthquake modeling application to NVIDIA graphics

cards using CUDA.” J. Parallel Distrib. Comput. 69 (5): 451–460.

https://doi.org/10.1016/j.jpdc.2009.01.006.

Kothe, D., L. Diachin, A. Siegel, and E. Draeger. 2019. Application devel-

opment update. Washington, DC: Exascale Computing Project.

Kraus, J., andM. Foster. 2012. “Efficient AMG on heterogeneous systems.”

In Vol. 7174 of Facing the multicore—Challenge II, lecture notes in

computer science, edited by R. Keller, D. Kramer, and J. P. Weiss,

133–146. Berlin: Springer.

Krawezik, G., and G. Poole. 2009. “Accelerating the ANSYS direct sparse

solver with GPUs.” In Proc., 2009 Symp. on Application Accelerators

in High Performance Computing (SAAHPC’09). Urbana, IL: US Na-

tional Center for Supercomputing Applications.

Kruger, J., and R. Westermann. 2003. “Linear algebra operators for GPU

implementation of numerical algorithms.” ACM Trans. Graphics 22 (3):

908–916. https://doi.org/10.1145/882262.882363.

Kumar, S., and H. Adeli. 1995. “Distributed finite-element analysis on

network of workstations—Implementation and application.” J. Struct.

Eng. 121 (10): 1456–1462. https://doi.org/10.1061/(ASCE)0733-9445

(1995)121:10(1456).

Kusakabe, R., K. Fujita, T. Ichimura, M. Hori, and L. Wijerathne. 2019.

“A fast 3D finite-element solver for large-scale seismic soil liquefaction

analysis.” In Vol. 11537 of Proc., Int. Conf. on Computational Science,

Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics),

349–362. Cham, Switzerland: Springer.

Kusakabe, R., K. Fujita, T. Ichimura, T. Yamaguchi, M. Hori, and L.

Wijerathne. 2021. “Development of regional simulation of seismic

ground-motion and induced liquefaction enhanced by GPU comput-

ing.” Earthquake Eng. Struct. Dyn. 50 (1): 197–213. https://doi.org/10

.1002/eqe.3369.

Kuznik, F., C. Obrecht, G. Rusaouen, and J.-J. Roux. 2010. “LBM based

flow simulation using GPU computing processor.” Comput. Math. Appl.

59 (7): 2380–2392. https://doi.org/10.1016/j.camwa.2009.08.052.

Lacoste, X., P. Ramet, M. Faverge, Y. Ichitaro, and J. Dongarra. 2012.

Sparse direct solvers with accelerators over DAG runtimes. Research

Rep. RR-7972. Talence, France: INRIA Bordeaux.

Law, K. H. 1986. “A parallel finite element solution method.”

Comput. Struct. 23 (6): 845–858. https://doi.org/10.1016/0045-7949

(86)90254-3.

Leung, A., N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C. Bastoul,

and R. Lethin. 2010. “A mapping path for multi-GPGPU accelerated

computers from a portable high level programming abstraction.” In

Proc., 3rd Workshop on General-Purpose Computation on Graphics

Processing Units, 51–61. New York: Association for Computing

Machinery.

Li, R., and Y. Saad. 2010. “GPU-accelerated preconditioned iterative

linear solvers.” Technical Rep. Minneapolis: Univ. of Minnesota.

Lindstrom, P. 2014. “Fixed-rate compressed floating-point arrays.” IEEE

Trans. Visual Comput. Graphics 20 (12): 2674–2683. https://doi.org/10

.1109/TVCG.2014.2346458.

Liu, P., and V. Dinavahi. 2018. “Matrix-free nodal domain decomposition

with relaxation for massively parallel finite-element computation of EM

apparatus.” IEEE Trans. Magn. 54 (9): 1–7. https://doi.org/10.1109

/TMAG.2018.2848622.

Ljungkvist, K. 2015. “Techniques for finite element methods on modern

processors.” Ph.D. dissertation, Dept. of Information Technology,

Uppsala Univ.

Lu, X., and H. Guan. 2017. Earthquake disaster simulation of civil infra-

structures: From tall buildings to urban areas. Beijing: Science Press.

Luitjens, J., A. Williams, and M. Heroux. 2012. “Optimizing MiniFE an

implicit nite element application on GPUs.” In Proc., GPU Technology

Conf. (GTC 2012). Santa Clara, CA: NVIDIA.

Mackerle, J. 1996. “Implementing finite element methods on supercomputers,

workstations and PCs: A bibliography (1985-1995).” Eng. Comput.

13 (1): 33–85. https://doi.org/10.1108/02644409610110985.

Mackerle, J. 2003. “FEM and BEM parallel processing: Theory and

applications—A bibliography (1996-2002).” Eng. Comput. 20 (4):

436–484. https://doi.org/10.1108/02644400310476333.

Mackerle, J. 2004. “Object-oriented programming in FEM and BEM:

A bibliography (1990-2003).” Adv. Eng. Software 35 (6): 325–336.

https://doi.org/10.1016/j.advengsoft.2004.04.006.

Mafi, R. 2013. GPU-based parallel computing for nonlinear finite element

deformation analysis. Hamilton, ON, Canada: McMaster Univ.

Mafi, R., and S. Sirouspour. 2014. “GPU-based acceleration of computa-

tions in nonlinear finite element deformation analysis.” Int. J. Numer.

Methods Biomed. Eng. 30 (3): 365–381. https://doi.org/10.1002/cnm

.2607.

Markall, G., A. Slemmer, D. Ham, P. Kelly, C. Cantwell, and S. Sherwin.

2013. “Finite element assembly strategies on multi-core and many-core

architectures.” Int. J. Numer. Methods Fluids 71 (1): 80–97. https://doi

.org/10.1002/fld.3648.

Martínez-Frutos, J., P. J. Martínez-Castejón, and D. Herrero-Pérez. 2015.

“Fine-grained GPU implementation of assembly-free iterative solver for

finite element problems.” Comput. Struct. 157 (Sep): 9–18. https://doi

.org/10.1016/j.compstruc.2015.05.010.

McCallen, D., A. Petersson, A. Rodgers, A. Pitarka, M. Miah, F. Petrone,

B. Sjogreen, N. Abrahamson, and H. Tang. 2021a. “EQSIM—A multi-

disciplinary framework for fault-to-structure earthquake simulations on

exascale computers part I: Computational models and workflow.”

Earthquake Spectra 37 (2): 707–735. https://doi.org/10.1177/8755

293020970982.

McCallen, D., F. Petrone, M. Miah, A. Pitarka, A. Rodgers, and N.

Abrahamson. 2021b. “EQSIM—A multidisciplinary framework for

© ASCE 04022253-13 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



fault-to-structure earthquake simulations on exascale computers, Part II:

Regional simulations of building response.” Earthquake Spectra 37 (2):

736–761. https://doi.org/10.1177/8755293020970980.

McCallen, D., H. Tang, S. Wu, E. Eckert, J. Huang, and N. A. Petersson.

2022. “Coupling of regional geophysics and local soil-structure models

in the EQSIM fault-to-structure earthquake simulation framework.” Int.

J. High Perform. Comput. Appl. 36 (1): 78–92. https://doi.org/10.1177

/10943420211019118.

McKenna, F. 1997. Object-oriented finite element programming: Frame-

works for analysis, algorithms and parallel computing. Berkeley, CA:

Univ. of California.

McKenna, F., M. H. Scott, and G. L. Fenves. 2010. “Nonlinear finite-

element analysis software architecture using object composition.”

J. Comput. Civ. Eng. 24 (1): 95–107. https://doi.org/10.1061/(ASCE)

CP.1943-5487.0000002.

Mihaila, B., M. Knezevic, and A. Cardenas. 2014. “Three orders of

magnitude improved efficiency with high-performance spectral crystal

plasticity on GPU platforms.” Int. J. Numer. Methods Eng. 97 (11):

785–798. https://doi.org/10.1002/nme.4592.

Mills, R. T., et al. 2021. “Toward performance-portable PETSc for GPU-

based exascale systems.” Parallel Comput. 108 (2021): 102831. https://

doi.org/10.48550/arXiv.2011.00715.

Motley, M. R., H. K. Wong, X. Qin, A. O. Winter, and M. O. Eberhard.

2016. “Tsunami-induced forces on skewed bridges.” J. Waterway, Port,

Coastal, Ocean Eng. 142 (3): 04015025. https://doi.org/10.1061

/(ASCE)WW.1943-5460.0000328.

Naumov, M., et al. 2015. “AmgX: A library for GPU accelerated algebraic

multigrid and preconditioned iterative methods.” SIAM J. Sci. Comput.

37 (5): S602–S626. https://doi.org/10.1137/140980260.

Neic, A., M. Liebmann, and G. Haase. 2012. “Algebraic multigrid solver

on clusters of CPUs and GPUs.” In Proc., Int. Workshop on Applied

Parallel and Scienti c Computing, 389–398. Berlin: Springer.

Newmark, N. 1959. “A method of computation for structural dynamics.”

J. Eng. Mech. Div. 85 (3): 67–94. https://doi.org/10.1061/JMCEA3

.0000098.

NVIDIA. 2007. Compute unified device architecture programming guide.

Santa Clara, CA: NVIDIA.

NVIDIA. 2012. PhysX. Santa Clara, CA: NVIDIA.

NVIDIA. 2013. NVIDIA CUDA C programming guide. Santa Clara, CA:

NVIDIA.

NVIDIA. 2014. CuSP. Santa Clara, CA: NVIDIA.

NVIDIA. 2015.GPU-accelerated applications. Santa Clara, CA: NVIDIA.

NVIDIA. 2019. CUDA C best practices guide (v5.0). Santa Clara, CA:

NVIDIA.

Nyland, L., M. Harris, and J. Prins. 2007. “Fast N-body simulation with

CUDA.” In GPU Gems 3, 677–695. Boston: Addison-Wesley.

O’Reilly, O., T.-Y. Yeh, K. B. Olsen, Z. Hu, A. Breuer, D. Roten, and C. A.

Goulet. 2022. “A high-order finite-difference method on staggered cur-

vilinear grids for seismic wave propagation applications with topogra-

phy.” Bull. Seismol. Soc. Am. 112 (1): 3–22. https://doi.org/10.1785

/0120210096.

O’Rourke, T. D. 2010. “Geohazards and large, geographically distributed

systems.” Géotechnique 60 (7): 505–543. https://doi.org/10.1680/geot

.2010.60.7.505.

Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell. 2005. “A survey of general-purpose compu-

tation on graphics hardware.” Comput. Graphics Forum 26 (1): 80–113.

https://doi.org/10.1111/j.1467-8659.2007.01012.x.

Papadrakakis, M., G. Stavroulakis, and A. Karatarakis. 2011. “A new era in

scientific computing: Domain decomposition methods in hybrid CPU-

GPU architectures.” Comput. Methods Appl. Mech. Eng. 200 (13–16):

1490–1508. https://doi.org/10.1016/j.cma.2011.01.013.

Peterson, B., A. Humphrey, J. Holmen, T. Harman, M. Berzins, D.

Sunderland, and H. C. Edwards. 2018. “Demonstrating GPU code port-

ability and scalability for radiative heat transfer computations.” J. Com-

put. Sci. 27 (Jul): 303–319. https://doi.org/10.1016/j.jocs.2018.06.005.

Posey, S., and F. Courteille. 2012. “GPU progress in sparse matrix solvers

for applications in computational mechanics.” In Vol. ESCO12 of Proc.,

European Seminar on Computing. Reston, VA: American Institute of

Aeronautics and Astronautics.

Roa, M., K. Logarathan, and N. V. Raman. 1994. “Multi-frontal based ap-

proach for concurrent finite element analysis.” Comput. Struct. 52 (4):

841–846. https://doi.org/10.1016/0045-7949(94)90364-6.

Roten, D., Y. Cui, K. Olsen, S. Day, K. Withers, W. Savran, P. Wang, and

D. Mu. 2016. “High-frequency nonlinear earthquake simulations on

petascale heterogeneous supercomputers.” In Proc., SC’16 Proc.

Supercomputing Conf. New York: IEEE.

Rumpf, M., and R. Strzodka. 2005. “Numerical solution of partial differ-

ential equations on parallel computers.” In Vol. 51 of Lecture notes

in computational science and engineering, edited by A. M. Bruaset and

A. Tveito, 89–134. Berlin: Springer.

Santiago, E. D., and K. H. Law. 1996. “An implementation of finite element

method on distributed workstations.” In Proc., Analysis and Computa-

tion: Proc. of the Twelfth Conf. Held in Conjunction with Structures

Congress XIV, edited by F. Y. Cheng, 188–199. Reston, VA: ASCE.

Schenk, O., M. Christen, and H. Burkhart. 2008. “Algorithmic performance

studies on graphics processing units.” J. Parallel Distrib. Comput.

68 (10): 1360–1369. https://doi.org/10.1016/j.jpdc.2008.05.008.

Sharma, G., A. Agarwala, and B. Bhattacharya. 2013. “A fast parallel

Gauss Jordan algorithm for matrix inversion using CUDA.” Comput.

Struct. 128 (Nov): 31–37. https://doi.org/10.1016/j.compstruc.2013

.06.015.

Siegel, A., E. Draeger, J. Deslippe, A. Dubey, T. Evans, T. Germann, and

W. Hart. 2020. Early application results on pre-exascale architecture

with analysis of performance challenges and projections. Washington,

DC: Exascale Computing Project.

Snell, A., and L. Segervall. 2017. HPC application support for GPU

computing. Sunnyvale, CA: Intersect 360 Research: Accurate Market

Intelligence for High Performance Computing.

Stone, C. P., and R. L. Davis. 2013. “Techniques for solving stiff chemical

kinetics on graphical processing units.” J. Propul. Power 29 (4):

764–773. https://doi.org/10.2514/1.B34874.

Sunarso, A., T. Tsuji, and S. Chono. 2010. “GPU-accelerated molecular

dynamics simulation for study of liquid crystalline flows.” J. Comput.

Phys. 229 (15): 5486–5497. https://doi.org/10.1016/j.jcp.2010.03.047.

Sutter, H. 2005. “The free lunch is over: A fundamental turn toward con-

currency in software.” Dr. Dobb’s J. 30 (3): 202–210.

Sylwestrzak, M., D. Szlag, P. J. Marchand, A. S. Kumar, and T. Lasser.

2017. “Massively parallel data processing for quantitative total flow im-

aging with optical coherence microscopy and tomography.” Comput.

Phys. Commun. 217 (Aug): 128–137. https://doi.org/10.1016/j.cpc

.2017.03.008.

Synn, S. Y., and R. E. Fulton. 1995. “Practical strategy for concurrent sub-

structure analysis.” Comput. Struct. 54 (5): 939–944. https://doi.org/10

.1016/0045-7949(94)00385-G.

Tavakkol, S., and P. Lynett. 2017. “Celeris: AGPU-accelerated open source

software with a Boussinesq-type wave solver for real-time interactive

simulation and visualization.” Comput. Phys. Commun. 217 (Aug):

117–127. https://doi.org/10.1016/j.cpc.2017.03.002.

Taylor, Z., M. Cheng, and S. Ourselin. 2008. “High-speed nonlinear finite

element analysis for surgical simulation using graphics processing

units.” IEEE Trans. Med. Imaging 27 (5): 650–663. https://doi.org/10

.1109/TMI.2007.913112.

Tian, Y., L. Xie, Z. Xu, and X. Lu. 2015. “GPU-powered high-performance

computing for the analysis of large-scale structures based on Open-

Sees.” In Proc., ASCE Computing in Civil Engineering, 411–418.

Reston, VA: ASCE.

Ting, E. C., C. Shih, and Y.-K. Wang. 2004. “Fundamentals of a vector

form intrinsic finite element: Part I. Basic procedure and a plane frame

element.” J. Mech. 20 (2): 113–122. https://doi.org/10.1017/S1727719

100003336.

Tomov, S., J. Dongarra, and M. Baboulin. 2010. “Towards dense linear

algebra for hybrid GPU accelerated manycore systems.” Parallel Com-

put. 36 (5–6): 232–240. https://doi.org/10.1016/j.parco.2009.12.005.

Topping, B. H., and A. I. Khan. 1996. Parallel finite element computations.

Edinburgh, UK: Saxe-Coburg Publications.

Verschoor, M., and A. C. Jalba. 2012. “Analysis and performance estima-

tion of the conjugate gradient method on multiple GPUs.” Parallel

Comput. 38 (10–11): 552–575. https://doi.org/10.1016/j.parco.2012

.07.002.

© ASCE 04022253-14 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Wagner, M., K. Rupp, and J. Weinbub. 2012. “A comparison of algebraic

multigrid preconditioners using graphics processing units and multi-

core central processing units.” In Vol. 2 of Proc., 2012 Symp. on High

Performance Computing, HPC ’12, 1–8. San Diego: Society for Com-

puter Simulation International.

Wang, M., H. Klie, M. Parashar, and H. Sudan. 2009. “Solving sparse linear

systems on NVIDIA Tesla GPUs.” In Proc., Computational Science

(ICCS 2009), 864–873. Cham, Switzerland: Springer Nature.

Yamaguchi, T., K. Fujita, T. Ichimura, A. Naruse, M. Lalith, and M. Hori.

2020. “GPU implementation of a sophisticated implicit low-order finite

element solver with FP21-32-64 computation using OpenACC.” In Vol.

12017 of Lecture notes in computer science (including subseries lecture

notes in artificial intelligence and lecture notes in bioinformatics),

3–24. Cham, Switzerland: Springer.

Yang, Y.-S., C.-M. Yang, and T.-J. Hsieh. 2014. “GPU parallelization

of an object-oriented nonlinear dynamic structural analysis platform.”

Simul. Modell. Pract. Theory 40 (Jan): 112–121. https://doi.org/10

.1016/j.simpat.2013.09.004.

Zhang, W., and E. M. Lui. 1991. “A parallel frontal solver on the Alliant

FX/80.” Comput. Struct. 38 (2): 203–215. https://doi.org/10.1016/0045

-7949(91)90097-6.

Zhou, H., G. Mo, F. Wu, J. Zhao, M. Rui, and K. Cen. 2012. “GPU im-

plementation of lattice Boltzmann method for flows with curved boun-

daries.” Comput. Methods Appl. Mech. Eng. 225 (Jun): 65–73. https://

doi.org/10.1016/j.cma.2012.03.011.

Zhou, J., Y. Cui, E. Poyraz, D. J. Choi, and C. C. Guest. 2013. “Multi-GPU

implementation of a 3D finite difference time domain earthquake code

on heterogeneous supercomputers.” Procedia Comput. Sci. 18 (Jan):

1255–1264. https://doi.org/10.1016/j.procs.2013.05.292.

Zhu, M., and M. H. Scott. 2014. “Modeling fluid–structure inter-

action by the particle finite element method in OpenSees.” Comput.

Struct. 132 (Feb): 12–21. https://doi.org/10.1016/j.compstruc.2013

.11.002.

Zienkiewicz, O. C., and R. L. Taylor. 1989. The finite element method.

London: McGraw-Hill.

© ASCE 04022253-15 J. Struct. Eng.

 J. Struct. Eng., 2023, 149(3): 04022253 

 D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 0

8
/2

9
/2

5
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 


