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Visibility analyses, used in many disciplines, rely on viewshed Received 28 February 2023
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given surface model. Mapping continuous visibility over broad

extents is uncommon due to extreme computational expense. ~ KEYWORDS
This study introduces a novel method for spatially-exhaustive visi-  Viewshed; visibility; lidar;
bility mapping using airborne lidar and random forests that random forest
requires only a sparse sample of viewsheds. In 24 topographically

and vegetatively diverse landscapes across the contiguous US,

1000 random point viewsheds were generated at four different

observation radii (125m, 250 m, 500 m, 1000 m), using a 1 m reso-

lution lidar-derived digital surface model. Visibility index - the

proportion of visible area to total area — was used as the target

variable for site-scale and national-scale modeling, which used a

diverse set of 146 terrain- and vegetation-based 10 m resolution

metrics as predictors. Variables based on vegetation, especially

those based on local neighborhoods, were more important than

those based on terrain. Visibility at shorter distances was more

accurately estimated. National-scale models trained on a wider

range of vegetation and terrain conditions resulted in improved

R?, although at some sites error increased compared to site-scale

models. Results from an independent test site demonstrate poten-

tial for application of this methodology to diverse landscapes.

1. Introduction

The ability to estimate landscape visibility from a particular vantage point has great
value in many disciplines (Inglis et al. 2022), including but not limited to archaeology
(Fisher et al. 1997, Lake et al. 1998, Llobera 2003, O'Driscoll 2017, Schirru and
Castangia 2022), ecology (Aben et al. 2018, Parsons et al. 2020, Wyse et al. 2022, Zong
et al. 2022), landscape and urban planning (Bartie et al. 2011, Chamberlain and
Meitner 2013, Yu et al. 2016, Vukomanovic et al. 2018) and emergency response
(Pompa-Garcia 2010, Sivrikaya et al. 2013, Kucuk et al. 2017, Mistick et al. 2022).
Archaeological studies have demonstrated how visibility may have influenced the
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settlement patterns of historical peoples and can provide insight into the role that
built features may have played (Fisher et al. 1997, Jones 2006, Schirru and Castangia
2022). Visibility plays a key role in the evaluation of animal habitat suitability and
behavioral patterns (Aben et al. 2018, Parsons et al. 2020). Visibility analyses can also
provide useful insight into maximizing esthetically pleasing views (Chamberlain and
Meitner 2013, Yu et al. 2016). Wildland firefighters can use visibility analyses to evalu-
ate areas that may promote or hinder situational awareness (Mistick et al. 2022).
Previous studies have also focused on areas of increased visibility (eg how increasing
views results in increased home sale prices (Sander and Polasky 2009)) and areas of
decreased visibility (eg prey animals seeking concealment (Olsoy et al. 2015) or mini-
mizing views of natural resource extraction (Franklin and Ray 1994)).

Traditional visibility studies have relied on photography for quantifying visual
impacts such as clear cutting (Dean and Lizarraga-Blackard 2007, Palmer 2008).
However, current visibility analyses typically rely on the use of point-based viewsheds
to quantify how much of the landscape is visible to an observer (Fisher et al. 1997,
Wheatley and Gillings 2000, Llobera 2003, Inglis et al. 2022). Most commonly,
viewshed algorithms use a digital terrain model (DTM) to perform a line-of-sight calcu-
lation from a particular vantage point to determine whether terrain features are
obstructing sightlines to all surrounding locations across a landscape. This process
results in a binary viewshed map distinguishing between visible and obscured areas;
however, viewsheds based solely on terrain features provide an overly-optimistic esti-
mate of proportional visibility (Guth 2009, Starek et al. 2020). For example, using a
DTM to assess visibility in a forested area may result in unrealistically high visibility
estimates due to the omission of significant vegetative obstructions to lines of sight.
Airborne laser scanner (ALS) data, also known as airborne lidar, has been used in visi-
bility assessments to provide even greater three-dimensional landscape detail
(Hindsley et al. 2013, Murgoitio et al. 2013). With the increasing availability and use of
ALS data, digital surface models (DSMs) are increasingly being used in viewshed analy-
ses to account for vegetation obstructions to visibility in addition to terrain, providing
much more realistic and conservative visibility estimates (Inglis et al. 2022, Mistick
et al. 2022).

Visibility can be reduced to a fractional value using a visibility index (VI) represent-
ing the proportion of visible area from a given location (Franklin and Ray 1994, Mistick
et al. 2022). Figure 1 shows a conceptual example of how a VI is calculated. It begins
with a binary viewshed, generated from a single observer within a given radius.
Within that radius VI is calculated as a ratio between the area that is visible to that
observer and the area of the entire radius-defined buffer around that observer. Using
Figure 1 as an example, a VI of 0.09 can be interpreted as 9% of the surrounding land-
scape being visible to the observer (or, conversely, 9% of the landscape having a view
of the observer, as the relationship is assumed to be reciprocal).

Previous work has demonstrated the value of using multiple viewshed calculations
to understand visibility trends across larger areas. Cumulative viewshed methods allow
for broader understanding of landscape-scale visibility by incorporating multiple obser-
ver points into the calculation, which improves upon the single-observer, binary
viewshed approach by defining how visible areas are according to the number of
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Figure 1. Example of a point-based viewshed calculated within a 1km buffer on a landscape with
varied terrain and vegetation. (A) A red circle with 1km radius within which a viewshed is calcu-
lated from the central black observer point. White contours at a 50 m interval represent the DTM,
and the aerial base image shows varying vegetation cover. (B) Visible area (blue) and obscured
area (red), used in the (C) calculation of the visibility index (VI).

observer points that are able to view them (Wheatley 1995, Llobera 2003, Tabik et al.
2013, Aben et al. 2018, Inglis et al. 2022). Mapping visibility across entire landscapes
requires calculating viewsheds from many points (Lake et al. 1998, Tabik et al. 2013,
Zhao et al. 2013). Whether used for point-based visibility analyses or calculating VI,
viewshed analysis methods relying on line-of-sight calculations are computationally
expensive (van Kreveld 1996, Chao et al. 2011, Zhao et al. 2013, Qarah 2020).

If computational complexity issues can be resolved, mapping visibility across entire
landscapes could provide important, spatially-explicit insight into areas on the land-
scape that promote or hinder visibility. For example, an ecologist could use a VI map
to identify potential habitat preferences, or a wildland firefighter could identify loca-
tions to place a lookout. However, mapping VI in a spatially-exhaustive (pixel-by-pixel)
manner over large areas would require the generation of a number of viewsheds
equal to the number of pixels, potentially requiring immense computational power
and lengthy processing times (Franklin and Ray 1994). For example, mapping visibility
across the US state of Utah (2.2 x 10°km?) at a spatial resolution of 30m would
require the computation of over 244 million viewsheds. Even if each viewshed only
took one second to process, such an analysis would take nearly eight years to process
sequentially.

Significant advancements have been made in speeding up visibility calculations
through the introduction of new algorithms (Franklin and Ray 1994, Fishman et al.
2009, Tabik et al. 2015, Sahraoui et al. 2018), the use of advanced hardware such as
GPUs (Gao et al. 2011, Stojanovic and Stojanovic 2013, Zhao et al. 2013, Cauchi-
Saunders and Lewis 2015) and the total restructuring of data in combination with
advanced hardware (Sanchez-Fernandez et al. 2021). Sanchez-Fernandez et al. (2021)
produced total viewshed maps (akin to a VI map, but without normalization to the
total area considered) with significant improvement in processing speed. Their algo-
rithm provides an efficient technique for mapping visibility; however, it has only been
tested on bare-earth terrain conditions, relies heavily on advanced hardware and soft-
ware and requires the calculation of visibility from every possible point of view in a
given area.
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Rather than map visibility from every possible viewing perspective in a landscape, a
machine learning algorithm may be able to map visibility using a comparably small
subset of viewsheds to train a predictive model. Given our understanding of what ter-
rain and vegetation features tend to promote or hinder visibility, a machine learning
algorithm may be able to statistically link these features to sample viewsheds, ena-
bling the prediction of visibility in unsampled areas and mapping visibility in a much
more computationally-efficient manner. For example, high relative topographic pos-
ition promotes visibility, while the presence of tall vegetation in one’s surroundings
hinders visibility. Considering that these landscape features can be readily mapped
using a variety of data sources, including data derived from ALS as well as other sour-
ces (Farr and Kobrick 2000, Homer et al. 2012, Karlson et al. 2015, Vogeler et al. 2018,
Potapov et al. 2021), perhaps a sparse sample of viewsheds can be used to drive a
machine learning model that predicts visibility based on these features. Provided that
such a model had sufficient predictive power, visibility could be mapped across entire
areas much more efficiently than having to generate a computationally-expensive
viewshed from every pixel location.

Using this sample-based viewshed approach, Zong et al. (2021, 2022) used ran-
dom forests to model ALS-derived, fine-scale visibility trained with terrestrial laser
scanner (TLS)-derived visibility. While their study demonstrated an impressive cap-
acity to map VI using machine learning, there were a few limitations that prevent
broad applicability. First, their approach relies on the collection of TLS data to cali-
brate and validate VI predictions, making this method only applicable in areas where
TLS data exist or can be collected. Second, their VI calculations are inherently local,
meaning they only estimate proportional visibility within the spatial extent of a sin-
gle pixel (35 x 35m). While this may be a useful scale for the wildlife application
focus of their study, the ability to apply this technique to disciplines requiring
broader-scale visibility estimates is limited. Third, their study was limited to a single
study area, so the extent to which this approach could be more broadly applied
remains unknown.

Given the importance and widespread use of visibility as a critical landscape metric
in a variety of disciplines, there remains a need for an efficient algorithm to map visi-
bility in a spatially explicit and exhaustive manner. The main objective of this study
was to develop a new, computationally-efficient approach for mapping proportional
visibility, in the form of VI, across entire landscapes using ALS and machine learning
that relies only on a sparse sample of viewsheds. Our secondary objectives are as
follows:

(1) To assess the extent to which visibility derived from a high-resolution surface
model can be approximated by coarser resolution landscape information.

(2) To compare accuracies of models built within a specific area (ie ‘site-scale’ mod-
els) to models built across a diversity of areas (ie ‘national-scale’ models).

(3) To evaluate the effects of local terrain and vegetation conditions on VI predictive
accuracies.

(4) To determine which among a suite of landscape-scale, lidar-derived terrain and
vegetation metrics have the greatest influence on visibility.
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Figure 2. Flowchart summarizing the methodology used in this study.

We propose a random forest modeling approach that relies solely on ALS data to
estimate VI at four viewing radii and at two scales: (1) site-scale and (2) national-scale.
Site-scale modeling benefits from being tailored to site-specific landscape conditions,
whereas national-scale modeling benefits from the incorporation of more diverse land-
scape conditions to yield broadly-applicable landscape-visibility relationships. Our
approach has the potential to map VI across diverse landscapes and should be applic-
able to naturally-vegetated areas across the contiguous US. Given broad, multidiscip-
linary interest in visibility, this model has the potential to benefit a variety of research
and applications currently limited by the computational cost of traditional visibility
analysis.

2. Materials and methods

The methods used in this study are summarized in Figure 2. There were two main
steps in our procedure: (1) model development and cross-validation; and (2) model
testing at an independent site. In the first step, 24 study sites were selected, within
which ALS data were used to generate sample viewsheds and a suite of terrain
and vegetation predictor layers. VI was calculated from each viewshed and used to
train and validate random forest models for predicting VI at site- and national-
scales. In the second step, the national-scale model was used to predict VI at an
independent test site, the accuracy of which was assessed using ALS-driven VI
calculations.
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Figure 3. Training and validation sites used for modeling labeled by site number (Table A4). To
display vegetative and topographic variability, points are sized by mean aboveground biomass and
colored by standard deviation elevation (SDE). The red star represents the location of the Monroe
Mountain test site in Utah, USA. Quadrant borders are colored geographically (NE=purple,
SE=green, SW=red, NW = blue).

2.1. Site selection

To test the extent to which visibility can be modeled across a variety of landscapes,
24 study sites were selected to capture a broad range of vegetation and terrain condi-
tions. Only naturally vegetated (non-developed, non-farmed) landscapes were selected
for this study, based on MODIS MCD12Q1 land cover data (Friedl and Sulla-Menashe
2019), with fewer than ten structures per square kilometer according to Microsoft's
building footprints (Microsoft 2018). Selected sites were required to be completely
encompassed by US Geological Survey 3D Elevation Program (3DEP) Quality Level 1
(QL1) or 2 (QL2) ALS data extents (Sugarbaker et al. 2014) and free from any distur-
bances that occurred after data collection (according to LANDFIRE's historical disturb-
ance map) (LANDFIRE Historical Disturbance 2023).

To ensure an appropriate geographical spread of study sites, the contiguous US
was divided into four quadrants (NE, SE, SW and NW) (Figure 3). Within each quadrant,
the sample_nc() function from the R (version 4.2.3) package sgsR (version 1.4.2)
(Goodbody et al. 2023) was used to generate an initial set of 5km x 5km potential
study sites. The algorithm, based on the work of Melville and Stone (2016), subdivides
n-dimensional variable space into m clusters. It then identifies centroids within each
cluster, with the intent of capturing a wide range of variability in the resulting sample.
Mean aboveground biomass (Mg/ha) (from Spawn et al. 2020) and the standard devi-
ation of elevation (SDE) (from PRISM Climate Group 2022) were calculated at potential
sites to capture variation in both abundance (eg cover, height, density) of vegetation
and variability in terrain. We created six clusters (m=6) within each of the four US
quadrants, driven by a combination of mean biomass and SDE (n=2). This resulted
in 24 categories of terrain and vegetation conditions (eg high-biomass/low-SDE, low-
biomass/high-SDE, etc.).
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Within each of these 24 categories, we placed five samples, representing potential
study sites. Sites were then manually scored based on lidar quality and collection
date, presence of developed or agricultural land and diversity and abundance of vege-
tation, with the goal of giving a higher ranking to sites with higher point density and
more recently-collected ALS, lower proportions of developed or agricultural land cover
and higher diversity of vegetation types. From each category, the highest ranked site
was selected resulting in 24 final sites representing a wide range of geographic loca-
tions, mean biomass and SDE values (Figure 3).

2.2. Data acquisition

ALS data were used to generate DTMs, DSMs and canopy height models (CHMs) at
each of the 24 sites and the additional test site (described in Section 2.3.2). All lidar
data came from USGS 3DEP (Sugarbaker et al. 2014); see Table A1 for dataset details.
Point clouds were processed into surface products using LAStools (version 230330
(academic), Isenburg 2019). DTMs were interpolated using the las2dem() function in
LAStools, which generates a gridded representation of a triangulated irregular network
built from lidar points classified as representing the ground surface. DSMs were inter-
polated using the first returns, representing the highest aboveground surface that the
lidar pulses interacted with (eg treetops). CHMs were calculated as the difference
between DSMs and DTMs. All models were generated at 1 m resolution (Figure 4).
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Figure 4. An example site (site 8) in Washington state (Figure 3) showing lidar-derived elevation
(contours) and canopy height models (shading). UTM coordinates are provided in kilometers and
represent zone 10, based on the North American Datum of 1983.
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2.3. Modeling

To build a database of training and validation data, 1000 random points were gener-
ated within each site, with a restriction that points could not fall within 1km of the
site edge to ensure edges did not affect visibility calculations. From each point, view-
sheds were generated and VI was calculated for four different observation radii: 125 m,
250 m, 500 m, 1000 m. Considering four radii allowed for comparison between short
range (125m), intermediate range (250 - 500m) and long range (1000 m) visibility.
Although humans can see distances beyond 1000 m, we chose these distances to bal-
ance computational expense with capturing a range of visibility scales. Viewsheds
were computed using ArcGIS Pro’s (version 3.1) Geodesic Viewshed tool (ESRI 2022a),
using a Windows Server (384 GB memory) with Nvidia Tesla T4 graphics processing
unit (320 tensor cores, 16 GB of memory). A sample of 1000 viewsheds represents a
just 0.004% of the total viewsheds that would be necessary to map visibility in a spa-
tially-exhaustive manner at each site. The lidar-derived 1 m DSM was used as the sur-
face over which viewsheds were calculated to ensure that VI values represented
visibility with a high degree of precision and to take into account the structure of
both terrain and vegetation (Mistick et al. 2022).

Visibility was modeled at the site scale (trained and validated within each site) and
at the national scale (trained and validated across sites). Site-scale modeling provides
a sense of how well visibility could be estimated in local-scale studies, tailored to local
terrain and vegetation conditions. For example, in topographically-diverse, sparsely-
vegetated areas, terrain might be the dominant feature dictating visibility. Conversely,
in densely-forested flat areas, vegetation structure would play a dominant role.
National-scale modeling, on the other hand, produces a singular model capable of
predicting visibility across all sites. Modeling was done using random forests from the
ranger package in R (version 0.14.1) (Wright et al. 2022). Random forests are an ensem-
ble machine learning technique frequently used in remote sensing and geographic
information science (GIS) (Belgiu and Dragut 2016, Zhang et al. 2022) for classification
and regression tasks such as land cover classification (Belgiu and Dragut 2016,
McPartland et al. 2019), vegetation structure and disturbance mapping (Campbell et al.
2020, 2021), hazard susceptibility mapping (Chapi et al. 2017, Zhang et al. 2022) and
ecosystem services (Hakkenberg et al. 2018, Otgonbayar et al. 2019), among many
applications.

2.3.1. Variables
VI served as the target (ie ‘dependent’) variable for modeling and was calculated
according to Equation (1):

VI =—
Ar

M
where Ay is the visible area, and Ay is the total area over which the viewshed was calcu-
lated. One hundred and forty-six predictor (ie ‘independent’) variables were broadly cate-
gorized as terrain-based (DTM-derived) or vegetation-based (CHM-derived) (Table 1).
Table 1 summarizes predictor categories; see Table A2 in Appendix A for full variable
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Table 1. Summary of predictor variable categories.

Predictor Description Scope(s) Type
Elevation® Elevation value derived from 10m DTM Local, focal  Terrain
Slope® Rate of change of elevation (steepness) derived from Local, focal  Terrain
10m DTM
Slope derivative® Rate of change of slope derived from 10m DTM Local, focal ~ Terrain
Aspect sine® The degree of ‘east-ness’ where a maximum value of 1 Local, focal ~ Terrain
indicates east-facing and a minimum value of —1
indicates west-facing.
Aspect cosine® The degree of ‘north-ness’ where a maximum value of Local, focal ~ Terrain
1 indicates north-facing and a minimum value of —1
indicates south-facing.
Slope-aspect sine? The product of slope and aspect sine, designed to Local, focal ~ Terrain
capture ‘east-ness’, while down-weighting relatively
flat areas, and enhancing relatively steep areas.
Slope-aspect cosine® The product of slope and aspect cosine, designed to Local, focal ~ Terrain
capture ‘north-ness’, while down-weighting relatively
flat areas, and enhancing relatively steep areas.
Curvature® Curvature calculated on the 10m DTM on a pixel-by- Local, focal ~ Terrain
pixel basis according to the eight surrounding
neighbors
Curvature profile Curvature in the direction of maximum slope Local Terrain
Curvature plan Curvature in the direction perpendicular to maximum Local Terrain
slope
Topographic position Relative elevation, derived according to an annulus, Focal Terrain
index (TPI)° surrounding a point, with defined inner and outer
radii (Weiss 2001)
Canopy cover (CC)? Metric describing vegetation density, calculated as the Local, focal ~ Vegetation
percentage of 1 m pixels with vegetation heights
over 2m within aggregated 10 m pixel area
Canopy height (CH)? Height of vegetation above the surface, derived from Local, focal ~ Vegetation
10m CHM.
Segmented canopy height®  Canopy height segmentation using Segment Mean Shift ~ Zonal Vegetation
(ESRI 2022b) to group pixels into similar height
segments
Segmented canopy cover Canopy cover segmentation using Segment Mean Shift Zonal Vegetation
(ESRI 2022b) to group pixels into similar canopy
cover segments
Distance to forest Distance to a canopy height segment with a vegetation Global Vegetation
height greater than or equal to 2m
Distance to clearing Distance to a canopy height segment with a vegetation Global Vegetation

height less than 2m

Notes: Predictors were generated using Spatial Analyst functions in the ArcPy Python (version 3.9.11) library. For
more detailed information see Table A2 in Appendix A.

%Includes additional variables representing the mean and standard deviation of the respective variable within a
radius of x pixels for x in [2, 4, 6, 8, 16 and 32].

BIncludes variables with outer radii of x pixels for x in [2, 4, 6, 8, 16 and 32] where inner radius = x/2.

‘Includes the mean, standard deviation, segment size and segment compactness of the variable.

9Includes the mean and standard deviation of the variable.

descriptions. This set of predictor variables was aimed at capturing the landscape-level
characteristics that promote or hinder visibility.

Some of these features are inherently local, describing a terrain and vegetation
characteristic that occurs within each pixel individually (eg elevation, slope, canopy
cover, canopy height). Other features are focal, describing terrain and vegetation char-
acteristics that occur within neighborhoods of varying size surrounding each pixel (eg
topographic position index, mean canopy cover within pixel radii of 2, 4, 6, 8, 16 and
32). A third subset of features are zonal, which rely on the image segmentation of
vegetation height and canopy cover data to produce polygons representing areas of
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similar vegetation structure (eg mean segment canopy height and cover). And lastly,
some features are global, describing landscape characteristics in a manner that evalu-
ates the full extent of the site simultaneously (eg distance to forest and distance to
clearing).

Predictor variables were generated at 10 m spatial resolution to determine if high
resolution visibility (based on 1 m DSM) can be modeled using coarser landscape infor-
mation. Given the wide availability of 10 m DTMs in the US and potential to use global
remote sensing data to generate 10 m vegetation height maps (eg Lang et al. 2019),
this resolution also provides insight into the potential capacity to predict VI in areas
where ALS data have not been collected.

2.3.2. Model tuning

Both site-scale and national-scale models were tuned, using the tuneRanger pack-
age (version 0.5) (Probst et al. 2019), for three hyperparameters: mtry, minimum
node size and sample fraction. Mtry is the number of predictor variables that are
considered when splitting a node (Wright et al. 2022). Larger mtry values will
increase the likelihood that the same set of more influential predictor variables will
be driving the growth of decision trees, potentially resulting in more similar predic-
tions among trees. Smaller mtry values may result in a greater diversity of trees,
though potentially may result in the inclusion of less meaningful predictor variables.
Minimum node size defines the minimum number of observations that can occupy a
node, which implicitly defines the depth of decision trees within the forest. For
example, a larger minimum node size would result in a shallower forest since nodes
are required to have more observations and may lead to underfitting, whereas a
small minimum node size allows the forest to grow deeper by allowing fewer obser-
vations in each node, though potentially at the expense of overfitting. Sample frac-
tion defines the number of observations to sample in each tree as a proportion of
total samples. For example, a sample fraction of 1 would sample 100% of observa-
tions for each tree, whereas a sample fraction of 0.75 would sample 75% of observa-
tions at each tree.

2.3.3. Site-scale modeling

Site-scale modeling was done within each of the 24 sites, at all four radii of interest
(125, 250, 500 and 1000 m), using four-fold spatial cross-validation. Each site was div-
ided into four geographical folds, where points within three folds were used to train a
model and points within the remaining fold were left out for validation. This approach
was taken to reduce the influence of spatial autocorrelation on the perception of
model performance by ensuring that validation points did not spatially overlap with
training points (Roberts et al. 2017). Models were tuned per-site and per-radius for a
total of 96 sets of hyperparameters (Table A3). Each model was trained and predic-
tions were generated in parallel using 30 CPU threads. Model performance was
assessed across all validation folds, per-site and per-radius, according to the coefficient
of determination (R?) between predicted and observed VI, which characterizes the
degree to which predictions explain variance in observations and quantifies correlation
between the predicted and observed. Performance was also assessed according to the
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normalized root mean square error (nRMSE), which characterizes average proportional
predictive error relative to the range of observations, as follows:

kK Gi— )
Zi:1(y, ky>
NRMSE = +——————— (2)
Ymax — Ymin
Where y,, ¥, ...y, are predicted VI values, y;, y2, ... yx are observed VI values, k is

the total number of observations, ymax is the maximum observed VI and yn,n is the
minimum observed VI. nRMSE was selected over RMSE to allow for more direct com-
parison between predictive error of models of different visibility radii or between mod-
els of different scope (eg site-scale or national-scale). Performance metrics (R? and
NRMSE) for each site at each visibility radius were compared to site characteristics (bio-
mass, SDE, average observed VI), using Pearson’s r to determine if significant correla-
tions existed and understand potential drivers of VI predictive capacity.

2.3.4. National-scale modeling

National-scale VI modeling was implemented using a ‘leave one site out’ cross-valid-
ation technique where 96 models were built (24 sites x 4 radii) with each site left out
once for validation. Model tuning, training and prediction were done in parallel using
30 CPU threads. Models were tuned per-radius, providing a more robust accounting of
ideal hyperparameters. A minimum node size of 2 and sample fraction of 0.89 were
consistent across radii, however mtry varied across radii with a value of 31 for 125m,
43 for 250 m, 58 for 500 m and 56 for 1000 m. Model performance (R?> and nRMSE) was
assessed at each radius, for each of the 24 models, according to the validation data.
As was done at the site-scale, Pearson’s r was used to determine if significant correla-
tions existed between performance metrics and site characteristics.

In the interest of gaining an unbiased demonstration of national-scale model per-
formance across a larger area that was not included in the training and validation
data, we selected Monroe Mountain, Utah, as an independent test area (Figure 3). The
test site has diversity of topography and vegetation, is largely uninhabited and is a
USDA Forest Service management unit within the Fishlake National Forest. ALS data
were collected over the entire unit in 2016. The test site covers 742 km?, just over 1.2
times the combined area covered by all 24 training and validation sites. For testing,
1000 points were randomly generated within the test site, again ensuring that points
did not fall within 1km of the study area’s edge to avoid edge effects. This process
also excluded areas within 1km of any open water features, including reservoirs and
lakes, to make sure that these relatively flat features did not artificially inflate VI.
Viewsheds calculated from all 1000 points were used to test the final national-scale
model, which was trained, per-radius, using all points from all 24 5km x 5km sites.
Model predictions were mapped, per 10 m pixel, across the entire site using the terra
R package (version 1.7-18) (Hijmans et al. 2022). Predicted VI was compared to
observed VI calculated from the 1000 viewsheds with model performance assessed
according to R? and nRMSE. To assess the extent to which the national model may or
may not have accounted for Monroe Mountain’s unique geography, we generated a
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Table 2. Median site- and national-scale metrics at four visibility radii.

Visibility Median Median Median Median

radius (m) site-scale R? site-scale nRMSE national-scale R? national-scale nRMSE
125 0.73 0.07 0.78 0.08

250 0.65 0.08 0.75 0.09

500 0.55 0.09 0.68 0.10

1000 0.62 0.10 0.59 0.12

subsequent random forest-driven model to explain prediction error (predicted -
observed VI) as a function of the local terrain and vegetation features.

3. Results

Viewshed processing took an average of 7 s per point for all points used in training and
validating the site- and national-scale models, for a total of nearly 47 h of processing.
The Monroe Mountain viewsheds took an average of 23 s per point, owing to the larger
processing extent, for a total of 6.4 h of processing. In contrast, the largest, most complex
random forest model took 17 s to train, and only 40 min to predict VI values for every
pixel within the test site. Based on viewshed processing times, producing a map of visi-
bility for Monroe Mountain at 10 m point spacing would take over 5.4 years if processed
sequentially (23 s/viewshed for 7.42 million pixels) using the ArcGIS Geodesic Viewshed
tool, meaning our modeling technique was over 70,000 times faster for the test site.

3.1. Site-scale modeling

Site-scale models had a median R® of 0.64 across all models. Medians are reported
rather than means due to the skewness of the distributions of performance metrics.
Smaller radii models tended to produce higher R? values than larger radii models
(Table 2; Figure 5(A)), suggesting that VI was more accurately modeled at shorter dis-
tances than that at longer distances. See Table A4 for per-site model performance and
descriptive variables (eg biomass, average observed VI). Median nRMSE values
increased as visibility radius increased, providing additional evidence that modeling
visibility at shorter distances was more accurate (Table 2, Figure 5(B)). Figure 5(A) dem-
onstrates that high biomass sites tended to have lower R? values, indicating that pre-
dicting visibility in areas with abundant vegetation may be less accurate. However,
high biomass sites also tended to have lower nRMSE (Figure 5(B)). VI for these sites
was generally very low (eg < 0.01), so while a model may have had poor predictive
power (low R?), most of the predictions were at or near zero VI, resulting in low pre-
dictive error (low nRMSE). One example of this is Site 5, where the site-scale models
produced low R? and low nRMSE values (Figure 6). Across all radii, site-scale model R?
and nRMSE values had significant (at an o= 0.05 level), negative correlations with site
mean biomass (Table 3, Figure A1). This suggests that low biomass sites tended to
have strong predictive power (high R?) (Figure 5(A)) and higher predictive error (high
nNRMSE) (Figure 5(B)), likely because these sites had a greater range of possible VI val-
ues (Table A4). SDE across all radii also had a negative relationship with model R?, but
none of the relationships were significant. Significant positive relationships were also
found between mean observed VI and model R® as well as mean observed VI and
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Table 3. Correlation between model performance metrics and site characteristics, see Figures A1
and A2 for full scatterplots from which the correlation metrics are derived.

Pearson’s r for dependent variable:

Visibility radius (m) Model type Explanatory variable R nRMSE
125 Site Biomass —0.48* —0.70"
SDE —0.37 0.13

Observed VI 0.648" 081"
National Biomass —0.13 —0.51%*

SDE —0.44* —0.17

Observed VI 0.23 —0.03

250 Site Biomass —0.48* —0.66"
SDE —0.37 0.21

Observed VI 0.64" 0.77

National Biomass —0.11 —0.37

SDE —0.51* —0.14

Observed VI 0.14 0.15
500 Site Biomass —0.47* —0.69"
SDE —0.39 0.21
Observed VI 0.57" 0.85"

National Biomass —0.37 —0.29

SDE —0.58" —0.17

Observed VI 0.01 —0.05
1000 Site Biomass —0.45* —0.69"
SDE —0.38 0.16
Observed VI 0.42* 0.89"

National Biomass 0.06 —0.16

SDE —0.52" —0.21

Observed VI —0.08 —0.13

Notes: Biomass and SDE were variables used in initial site selection. Observed VI was log transformed to account for
a strong positive skew.

*Significant at the p <.05 level.

TSignificant at the p <.01 level.

model nRMSE (Table 3). These relationships are at least partly attributable to the fact
that low-visibility sites (eg closed canopy forest) had comparably little variation in VI
for the models to use in building predictive relationships.

Overall, the site-scale models were most influenced by vegetation-based variables
with canopy height and canopy cover within smaller focal areas (eg ch_mean_2, cc_
mean_2, ch_mean_4, cc_mean_4) having the largest average increase in mean
squared error (MSE) when omitted from the model (Figure 7). Vegetation-based varia-
bles accounted for 80% of the top 20 most important variables (Figure 7). The only
terrain-based variables that ranked in the top 20 were TPl and mean curvature at four
different radii (Figure 7). However, the top 20 most important variables for modeling
the lowest biomass site (9.8 Mg/ha) were all terrain-based, again with TPl and mean
curvature occupying the top 11 most important variables. Focal predictors were by far
the most important (accounting for 90% of the top 20 most important variables)
among the four geospatial scopes (local, focal, zonal and global), suggesting that ter-
rain and vegetation conditions within an area surrounding an observer were of greater
importance in predicting VI.

3.2. National-scale modeling

Model performance metrics were derived from a comparison between the predicted and
observed VI of the validation site that was left out of model training, with 24 total
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Figure 7. Variable importance averaged across all 384 site-scale models (24 regions x 4 folds x 4
radii). Green indicates vegetation-derived variables, brown indicates terrain-derived variables.
Letters represent geospatial scope where L =local and F =focal. For descriptions of variable abbre-
viations, see Table A2.

validation sites considered per radius. This enabled a direct comparison to site-level
results, with the key difference being site-level results were driven by VI data within each
site whereas national-level results were driven by VI data outside of each site. Generally,
the national models outperformed the site models according to R across all radii except
1000 m where site-scale median R? was slightly higher than national-scale median R?
(Table 2; Figure 8(A)). As with the site-scale models, shorter distances had higher median
R? compared to longer distances (Table 2). While R* values broadly improved across the
24 sites, the most notable improvement was in sites that had very low site-scale R? val-
ues, which tended to be high in biomass and low in mean VI (Figure 8(A)). Median
NRMSE values were higher at the national scale than the site scale but were still posi-
tively correlated to visibility radius (Table 2, Figure 8(B)). High nRMSE tended to occur at
a small number of sites where national model bias was higher, resulting in systematic
under- or overprediction of VI. Site 6 is one example of this, where the strong national-
scale correlation between predictions and observations produced a high R* but the near-
universal overprediction of VI resulted in a high nRMSE (Figure 6).

Unlike the site-scale models, there were no significant relationships between
national-scale model performance (R* or nRMSE) and test site biomass mean, except
for a lower confidence (o= 0.05) negative correlation between biomass and nRMSE at
125m visibility radius (Table 3, Figure A2). This further suggests that national-scale
models are performing better across all biomass conditions. Unlike the site-scale mod-
els, there were no significant relationships between observed visibility and national
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model performance (Table 3, Figure A2). This suggests that the national-scale models
perform much more consistently across a range of visibility conditions than the site-
scale models. The lack of correlation between model performance and visibility and
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mean biomass demonstrates that national-scale models were more robust in their per-
formance, compared with site-scale models.

National models were most heavily-influenced by focal variables (accounting for
75% of the top 20 most important variables), bolstering the case that landscape fea-
tures in one’s immediate vicinity play a key role in dictating visibility (Figure 9). Unlike
site-scale models, those at the national-scale relied more heavily on zonal variables
(eg seg_mncc, seg_sdht, seg_mnht), suggesting that segmentation of landscape fea-
tures provides greater insight into drivers of visibility at a broader scale. Some
national-scale models were found to underperform, compared with site-scale models,
on sites with high SDE. For example, Site 13 in New Mexico had low biomass
(25.3 Mg/ha) and high SDE (145.1 m) and site-scale R%125m = 0.70 and R%;000m = 0.60,
but national-scale R?;5sm = 0.56 and R?;900m = 0.58. Reduced national-scale R? is likely
a result of these models’ heavier reliance on vegetation-based predictors in compari-
son to terrain-based predictors (Figure 9). Whereas site-scale models could account for
areas with complex terrain and no vegetation by upweighting terrain variables to
more accurately represent local drivers of visibility, the national models were more
dominated by vegetation-based predictors.

3.2.1. Monroe Mountain case study

The national-scale model trained on all 24 sites was able to predict visibility within the
Monroe Mountain test site with high explanatory power at a radius of 125m with an
R? of 0.89 (Figure 10). Similar to the training and validation results, R? decreased and
NRMSE increased as visibility radius increased. However, even at 1000 m the test data
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Figure 11. Monroe Mountain test site showing full map of 125 m visibility index predicted by the
final national-scale model. Three insets (A, B, C) highlighting (1) 125 m visibility index predicted by
the final national-scale model, (2) canopy height (m) and (3) elevation (m).

were able to be modeled with an R? of 0.55 and nRMSE values remained rela-
tively low.

Mapping visibility across the entire test site revealed several pockets of high visibil-
ity (Figure 11(B1,C1)), with an overall maximum VI of 0.72 at a 125m radius
(Figure 11). Generally, areas of high visibility lacked tall vegetation (Figure 11(C2));
however, not all areas with short-to-no vegetation were modeled as having high visi-
bility, likely due to local topography (Figure 11(A)). The insets in Figure 11 show nei-
ther canopy height nor elevation is the singular driver of visibility.

Prediction error (predicted VI — observed VI) across the Monroe Mountain site was
low, with 76% of points having VI error within +/— 5% and 92% of points having VI
error within +/— 10% (Figure 12(C)). Areas with high canopy cover and low visibility
maintained the relatively small prediction errors (Figure 12(A)). Larger prediction errors
could be found in proximity to forest edges and within some clearings with relatively
low canopy cover and higher topographic variability (Figures 12(B) and A3). Modeling
prediction error using the full suite of predictors revealed that, on average across radii,
they could explain 21% of the variance in observed VI. This suggests that certain land-
scape features driving visibility in the Monroe Mountain area were not optimally empha-
sized by the national model, and that marginally higher accuracy could potentially be
realized using a site-scale model. The Monroe Mountain area has many patches of high
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and low canopy cover, a fairly unique characteristic that may not be adequately repre-
sented by the 24 training and validation sites. Still, the national model produced very
low error across an independent landscape, suggesting that a national model may pre-
dict visibility across other landscapes with low prediction error.
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4, Discussion

This study presented a new method for modeling continuous visibility, across a variety
of landscapes in the contiguous US, using ALS-driven random forest models that pro-
duced accurate predictions and dramatically improved processing times compared to
a pixel-by-pixel viewshed-driven approach. We found that:

(1) VI derived from a high-resolution surface model can be approximated by coarser
resolution landscape information.

(2) National-scale models were more accurate than site-scale models, according to
R? values.

(3) Site-scale models had significant correlations between model performance and
vegetation conditions, unlike national-scale models, suggesting that the latter
are performing better across all landscape conditions.

(4) Vegetation variables were most influential in predicting visibility, especially at
small focal radii.

Overall, there was a consistent relationship between model performance and visibil-
ity radius, such that shorter radii (eg 125 m) produced higher model accuracy than lon-
ger range visibility (eg 1000 m). While the human eye can see beyond 1000 m, our
results suggest that the accuracy of modeling VI will decrease as viewing radius
increases. The chosen range of radii balanced broad landscape-scale usefulness and
processing capacity and while it could be expanded to longer distances in future
work, there would likely be a reduction in accuracy at longer distances.

Our results, especially at the national-scale 125m visibility radius (median R* =
0.78, median nRMSE = 8.4%), are generally in agreement with similar work done by
Zong et.al. (2021), whose methods — despite the many differences discussed in the
Introduction — resulted in a median R® of 0.77 and a range of nRMSE values from
11.81% to 15.92% across their different plot sizes. This further proves the usefulness of
using random forest models to model visibility across landscapes, however future
work may consider implementing other machine learning frameworks in lieu of ran-
dom forests to determine if a superior modeling framework exists.

While previous work has demonstrated the capacity to decrease processing times
associated with visibility calculations (Franklin and Ray 1994, Gao et al. 2011, Cauchi-
Saunders and Lewis 2015, Tabik et al. 2015, Sanchez-Fernandez et al. 2021), our work
outlines a new sample-based method relying on machine learning rather than the
traditional brute-force approach involving calculating visibility from every possible
viewpoint. While building our random forest model relied initially on a sample of
viewsheds, the final map of predictions at an independent test site relied only on the
previously built national-scale model. In theory, new maps of visibility at other loca-
tions could be produced without having to calculate a single additional viewshed.
However, the decreases in predictive accuracy that our approach yielded at greater
viewing radii demonstrates the limitations of using a sample-driven approach. These
limitations would be less likely to emerge in a purely viewshed-driven approach (such
as Sanchez-Fernandez et al. 2021), given that true visibility measurements are com-
puted for every cell, rather than estimated using a predictive model. Thus, there is an
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important trade-off between sample-based approaches (less accurate but likely faster)
and census-based approaches (more accurate but likely slower).

Using R? as the primary performance metric, national-scale models demonstrated
superior performance compared to site-scale models. We attribute this result to the
fact that national models, trained on data from a wide range of landscape conditions
across the US, captured more diversity in VI, allowing predictive models to recognize
trends even in sites that featured narrow ranges of VI. At some sites VI was almost
universally near zero due to the presence of consistently high vegetation cover.
Because these sites featured so little variance in VI, site-scale models struggled to
build robust relationships between terrain/vegetation structural metrics and VI.
However, national-scale models could more easily identify these relationships, given
their more diverse training dataset (eg Site 5, Figure 6). This result stands somewhat
in contrast to what one might expect - commonly, models trained on local data tend
to perform better at making local predictions than models trained on wide-ranging
data from a variety of distant and unrelated study areas (eg Stovall et al. 2021).
Importantly, this provides great promise toward the eventual goal of being able to
map visibility over large areas without having to acquire local training data.

We did, however, find that site-scale models produced lower nRMSE values, on aver-
age - a result that may appear at odds with the R’-based results. While the national
model was trained on a broad range of terrain and vegetation conditions, 24 sites may
not capture the full range of potential geographic conditions present within the US.
Some sites featured unique geographies not present in the training data that resulted
in systematic over- or underestimation of VI. This is evident in the long, high-nRMSE tail
of the national model distributions in Figure 8(B) and the prediction-observation com-
parisons for Site 6 (Figure 6). At these sites, correlations between predictions and obser-
vations were still fairly high (leading to high R?), but the predictions were consistently
high or low relative to observations (leading to high nRMSE). Unique, site-specific char-
acteristics may always be problematic for a national-scale model, and if less biased VI is
of prime importance, then a site-scale model may be preferable. However, if capturing
relative trends in VI is desired (eg ‘Where is the highest visibility within a study area?’),
R? would indicate that a national-scale model would be preferable.

The Monroe Mountain site that served as an independent evaluation of the final
national model produced results similar to the training and validation results across
the 24 initial sites. With an R® of 0.89 for 125 m visibility, the test at Monroe Mountain
demonstrates the potential for application to other landscapes independent of and
geographically distinct from the original 24 training and validation sites. The continu-
ous map of visibility serves as an example of the types of maps that may be useful to
an array of disciplines. Similar maps may provide useful information for habitat suit-
ability (Johnson and Swift 2000, Pilliod et al. 2022), archaeology (O'Driscoll 2017,
Schirru and Castangia 2022), landscape and urban planning (Labib et al. 2021, Nopp-
Mayr et al. 2021), or emergency response (Pompa-Garcia 2010, Sivrikaya et al. 2013,
Mistick et al. 2022) applications, among many others.

Variable importance at site and national scales highlighted the importance of focal
vegetation-based metrics for predicting visibility. Both canopy height and canopy
cover were consistently among the most influential variables in modeling
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(predominantly the focal mean across smaller radii, with standard deviation having a
lesser but still noticeable importance). Topography-based metrics were not as well rep-
resented in average importance, with curvature and TPl making up just a small per-
centage of the top 20 most important variables. This provides further evidence toward
the fact that viewshed and visibility analyses that rely purely on terrain models are fail-
ing to capture the prevalent effects of vegetation (Guth 2009, Starek et al. 2020).
However, low importance of topography-based metrics does not justify omitting these
variables from modeling. Variable importance resulting from the site-scale modeling of
our lowest biomass site showed only topography-based metrics, suggesting that some
sites — particularly low biomass sites — may rely more heavily on topographic informa-
tion than others. In areas devoid of vegetation, terrain is the dominant control on visi-
bility, so even if terrain features played a comparably small role, they cannot be
ignored.

Predictor variables were produced at a much coarser spatial resolution (10 m) than
the resolution of the lidar raster used to calculate observed VI (1 m). Since vegetation-
based metrics like canopy height are dependent on spatial resolution, visibility index
model accuracy could degrade as spatial resolution coarsens. Further work is needed to
determine the relationship between predictor spatial resolution and the capacity to
accurately estimate VI. The 10 m spatial resolution used in our analysis was selected to
be scalable to very large areas and to demonstrate predictions at a resolution at which
non-lidar-dependent vegetation and terrain structural metrics can be derived (Farr and
Kobrick 2000, Homer et al. 2012, Sugarbaker et al. 2014, Karlson et al. 2015, Vogeler et al.
2018, Lang et al. 2019, Potapov et al. 2021).

ALS data quality such as point density and variations in seasonal timing of data collec-
tion can affect the ability to accurately characterize terrain and vegetation structure
(Estornell et al. 2011, Campbell et al. 2018, Moudry et al. 2019) and generate accurate
viewsheds (Aben et al. 2018). However, given the fact that both viewsheds and terrain/-
vegetation predictors were generated using data (DSMs, DTMs, CHMs) from the same
lidar point clouds, any variations in lidar quality did not affect model performance.

One important limitation of this study is the assumption that all vegetation is vis-
ibly impenetrable. While the DSMs were generated at a high spatial resolution (1 m),
enabling the precise structural characterization of vegetation and terrain elevations,
DSM-based approaches to viewshed modeling fail to account for the fact that one can
see through and under some vegetation (Bartie et al. 2011, Murgoitio et al. 2013).
Certain vegetation types, such as lodgepole pine forests in the US (Murgoitio et al.
2013), may promote through-stand visibility, given their high canopy base heights and
lower vegetation densities in the understory. In these environments, our analysis may
underestimate visibility relative to true visibility. However, vegetation in other ecosys-
tems is naturally more opaque at or near eye-level; therefore, future work may con-
sider the importance of vegetation type on predicting visibility. Further, a growing
body of research has sought to exploit the detailed three-dimensional structural infor-
mation contained within terrestrial point clouds to gain a more nuanced accounting
of within-vegetation visibility (eg Bartie et al. 2011, Lecigne et al. 2020, Zong et al.
2021, 2022). For example, Lecigne et al. (2020) developed an algorithm that calculates
viewsheds directly from TLS point clouds, accounting for the visually penetrable nature
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of vegetation by capturing full three dimensional structures and returning the degree
to which voxels are visible. However, we sought to develop an approach that did not
require the use of TLS data in the interest of facilitating broad-scale VI mapping across
any areas with available ALS data without having to collect field data.

Another limitation of our work, and of all efforts related to quantifying VI, is that VI is
inherently directionless. Viewshed maps are valuable in that they provide a discrete and
spatially-explicit accounting of portions of the landscape that can and cannot be seen
from a particular vantage point. In many cases, there is a strong directional component to
viewsheds (eg Figure 1). For example, if one is standing at the edge of forest clearing, their
visibility will be high in the viewing direction away from the forest and low in the viewing
direction into the forest. Viewsheds can make this distinction spatially, but VI, which sim-
ply summarizes proportional visibility irrespective of direction, cannot. Both VI and pre-
dictor variables could be calculated within a directionally-limited range of view azimuths,
providing a potential path to modeling directional visibility. Future work should inquire
into the extent to which VI estimates can be made directionally-explicit. Additionally, if dir-
ectionality is germane to a particular study’s objectives, modeled VI at coarser spatial reso-
lution can still provide a path to greatly decreasing computation time. An estimated VI
raster produced by a national-scale model could be used to select a limited number of
locations with the desired visibility characteristics, and viewsheds could be subsequently
calculated for those locations using the traditional approach.

While this study relied on lidar data for modeling visibility, the predictor variables
were designed such that they could be generated from other datasets. For example,
vegetation height has been mapped over broad spatial scales at 10m and 30 m (Lang
et al. 2019, Potapov et al. 2021). Canopy cover has been extensively mapped as well
(Homer et al. 2012, Karlson et al. 2015, Vogeler et al. 2018), and digital elevation models
exist at global or near global scales at a range of resolutions (Farr and Kobrick 2000,
Sugarbaker et al. 2014). However, none of these datasets are as accurate and precise as
lidar-derived products, so there remains a degree of uncertainty surrounding the poten-
tial limits to VI predictions based on these more broadly-available data. We have begun
working on modeling visibility using more widely available, coarser resolution data to
determine whether national- or global-scale visibility maps may be feasible.

5. Conclusion

In this study, we have introduced a computationally-efficient approach to mapping pro-
portional visibility across large geographic extents in a spatially-exhaustive manner at
10m spatial resolution. Our approach, (predicting VI using a random forest model
trained on a sample of viewsheds) was found to speed up computation time by orders
of magnitude compared to a traditional viewshed approach (calculating viewsheds from
every possible raster grid cell within an area of interest), does not require the collection
of field data and can potentially be applied anywhere where there are recent, high-
quality ALS data. Our results demonstrated that visibility can be predicted with a high
degree of accuracy, both at the site scale and at the national scale. Site-scale models
benefit from the ability to tailor predictions to a set of predictor variables that are the
most relevant drivers of visibility in a given area (eg canopy height may not be a useful
predictor in a topographically diverse site devoid of vegetation). However, particularly
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in areas of low visibility, site-scale models may not capture a sufficient range of variabil-
ity for producing accurate results. National-scale models benefit from their capacity to
be broadly applied and capture universal trends in drivers of visibility across a diversity
of landscapes. However, as with all national-scale maps, they may struggle to capture
visibility within unique landscapes not included in the training and validation data. That
said, the impressive performance of our national-scale model in an independent test
area highlights the robustness of the sample data used to construct our models.
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Figure A1. Scatterplots showing regressions between site-scale model performance metrics (y-
axes) and site characteristics (x-axes), whose correlation coefficients are summarized in Table 3.
Color refers to visibility radius (black = 125, purple = 250, orange = 500, yellow = 1000).
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Figure A2. Scatterplots showing regressions between national-scale model performance metrics (y-
axes) and site characteristics (x-axes), whose correlation coefficients are summarized in Table 3.
Color refers to visibility radius (black = 125, purple = 250, orange = 500, yellow = 1000).
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Figure A3. Scatterplot showing canopy cover and prediction error at the Monroe Mountain test
site. Generally, areas with low canopy cover saw greater prediction error.



30 K. A. MISTICK ET AL.

Table A1. Summary of lidar datasets used for each site.

Pulse USGS
Collection Collection density quality
Site Dataset name start date end date (pulses/mz) level
1 NH Umbagog 2016 06 April 2016 24 May 2018 59 QL1
2 KS Statewide B18 2018 23 January 2018 18 November 2018 3.2 QL2
3 WI Sawyer 2017 21 April 2017 22 April 2017 54 QL2
4 NY FEMA R2 Northeast 2017 06 May 2018 09 May 2018 5.1 QL2
5 ME Eastern B1 2017 30 April 2017 04 December 2017 4.1 QL2
6 MI FEMA Luce Schoolcraft 2019 2020 May 13 20 May 2020 3.2 QL2
7 UT Statewide South 3 2020 06 May 2020 23 August 2020 44 QL2
8 WA EasternCascades 5 2019 03 November 2019 14 2020 August 1.7 QL1
9 WY Southwest 1 2020 11 August 2020 25 August 2020 4.6 QL2
10 SD NRCS QSI A4 2017 20 April 2017 24 April 2017 7.1 QL2
1 WY SouthCentral 5 2020 2020 August 28 2020 13 October 2020 306 QL1
12 CO SanLuisJuanMiguel 5 2020 28 May 2020 04 October 2020 5.0 QL2
13 NW SouthCentral B4 2018 20 November 2018 27 May 2019 43 QL2
14 CA SoCAL Wildfires B3 2018 27 May 2018 22 July 2018 53 QL2
15 CO Southwest NRCS B3 2018 05 October 2018 24 September 2019 13.4 QL2
16 OK Woodward UTM14 B2 2016 13 December 2016 17 April 2017 3.9 QL2
17 CO NESE Colorado 2 2019 2019 August 12 05 October 2019 5.4 QL2
18 NM NorthWest Navajo A TL 2018 14 November 2018 28 November 2018 5.0 QL2
19 GA Statewide B2 2018 28 January 2019 24 April 2019 3.0 QL2
20 GA Central 1 2018 28 November 2018 28 January 2020 3.7 QL2
21 FL Southwest B 2018 08 May 2018 29 October 2018 14.5 QL1
22 KY FluorsparDistrict 2019 05 December 2019 08 February 2020 36 QL2
23 AL 17 Co 2 2020 10 December 2020 17 January 2021 43 QL2
24 NC phase 5 Swain 2017 13 March 2017 10 April 2017 64.6 QL1

Table A2. Summary of predicator variables used in modeling with abbreviations matching those

used in Figures 7 and 10.

Predictor variable Abbreviation Description Scope Category
Elevation elevation Elevation value derived from Local Terrain
10m DTM
Elevation mean elev_mean_x Focal mean of elevation with Focal Terrain
radius x pixels for x in [2,
4,6,8, 16 and 32].
Elevation standard elev_sd_x Focal standard deviation of Focal Terrain
deviation elevation with radius x
pixels for x in [2, 4, 6, 8,
16 and 32].
Slope slope Rate of change of elevation Local Terrain
(steepness) derived from
10m DTM
Slope mean slope_mean_x Focal mean of slope with Focal Terrain
radius x pixels for x in [2,
4,6, 8, 16 and 32].
Slope standard slope_sd_x Focal standard deviation of Focal Terrain
deviation slope with radius x pixels for
xin[2,4,6,8, 16 and 32].
Slope derivative slope_deriv Rate of change of slope Local Terrain
derived from 10 m DTM
Slope derivative slope_deriv_mean_x Focal mean of slope Focal Terrain
mean derivative with radius x
pixels for x in [2, 4, 6, 8,
16 and 32].
Slope derivative slope_deriv_sd_x Focal standard deviation of Focal Terrain

standard
deviation

slope derivative with radius
x pixels for x in [2, 4, 6, 8,
16 and 32].

(continued)
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Predictor variable

Abbreviation

Description Scope Category

Aspect sine

Aspect sine mean

Aspect sine standard
deviation

Aspect cosine

Aspect cosine mean

Aspect cosine
standard
deviation

Slope-aspect sine

Slope-aspect sine
mean

Slope-aspect sine
standard
deviation

Slope-aspect cosine

Slope-aspect cosine
mean

Slope-aspect cosine
standard
deviation

Curvature

Curvature mean

aspect_sin

aspect_sin_mean_x

aspect_sin_sd_x

aspect_cos

aspect_cos_mean_x

aspect_cos_sd_x

slope_aspect_sin

slope_aspect_sin_mean_x

slope_aspect_sin_sd_x

slope_aspect_cos

slope_aspect_cos _mean_x

slope_aspect_cos_sd_x

curvature

curvature_mean_x

The degree of ‘east-ness’ Local Terrain
where a maximum value of
1 indicates east-facing and
a minimum value of —1
indicates west-facing.

Focal mean of aspect sine Focal Terrain
with radius x pixels for x in
[2, 4, 6,8, 16 and 32].

Focal standard deviation of Focal Terrain
aspect sine with radius x
pixels for x in [2, 4, 6, 8,
16 and 32].

The degree of ‘north-ness’ Local Terrain
where a maximum value of
1 indicates north-facing
and a minimum value of
—1 indicates south-facing.

Focal mean of aspect cosine Focal Terrain
with radius x pixels for x in
[2, 4, 6,8, 16 and 32].

Focal standard deviation of Focal Terrain
aspect cosine with radius x
pixels for x in [2, 4, 6, 8,
16 and 32].

The product of slope and Local Terrain
aspect sine, designed to
capture ‘east-ness’, while
down-weighting relatively
flat areas and enhancing
relatively steep areas.

Focal mean of slope-aspect Focal Terrain
sine with radius x pixels
forxin [2, 4,6, 8,16
and 32].

Focal standard deviation of Focal Terrain
slope-aspect sine with
radius x pixels for x in [2,
4, 6,8, 16 and 32].

The product of slope and Local Terrain
aspect sine, designed to
capture ‘east-ness’, while
down-weighting relatively
flat areas and enhancing
relatively steep areas.

Focal mean of slope-aspect Focal Terrain
cosine with radius x pixels
forxin[2, 4,6, 8, 16
and 32].

Focal standard deviation of Focal Terrain
slope-aspect cosine with
radius x pixels for x in [2,
4, 6,8, 16 and 32].

Curvature calculated on the Local Terrain
10m DTM on a pixel-by-pixel
basis according to the eight
surrounding neighbors

Focal mean of curvature with Focal Terrain
radius x pixels for x in [2,
4, 6,8, 16 and 32].

(continued)
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Table A2. Continued.

Predictor variable Abbreviation Description Scope Category
Curvature standard curvature_sd_x Focal standard deviation of Focal Terrain
deviation curvature with radius x
pixels for x in [2, 4, 6, 8,
16 and 32].
Curvature plan curvature_plan Curvature in the direction Local Terrain
perpendicular to maximum
slope
Curvature profile curvature_profile Curvature in the direction of Local Terrain
maximum slope
Topographic position tpi_x Relative elevation, derived Focal Terrain
index (TPI) according to an annulus
surrounding a point, with
defined inner x/2 and
outer radii x for x in [2, 4,
6, 8, 16, 32] (Weiss 2001)
Canopy cover (CC) cc Metric describing vegetation Local Vegetation
density, calculated as the
percentage of 1 m pixels
with vegetation heights
over 2m within
aggregated 10 m pixel area
Canopy cover mean cc_mean_x Focal mean of canopy cover Focal Vegetation
with radius x pixels for x in
[2, 4, 6,8 16 and 32].
Canopy cover cc_sd_x Focal standard deviation of Focal Vegetation
standard canopy cover with radius x
deviation pixels for x in [2, 4, 6, 8,
16 and 32].
Canopy height (CH) ch Height of vegetation above Local Vegetation
the surface, derived from
10m CHM.
Canopy height mean ch_mean_x Focal mean of canopy height Focal Vegetation
with radius x pixels for x in
[2, 4, 6,8, 16 and 32].
Canopy height ch_sd_x Focal standard deviation of Focal Vegetation
standard canopy height with radius
deviation x pixels for x in [2, 4, 6, 8,
16 and 32].
Segmented canopy seg_mnht Mean height of segmented Zonal Vegetation
height mean canopy height
Segmented canopy seg_sdht Standard deviation of Zonal Vegetation
height standard segmented canopy height
deviation
Segment size seg_size Segment size of canopy Zonal Vegetation
height segment
Segment seg_comp Compactness of canopy Zonal Vegetation
compactness height segment
Segmented canopy seg_mncc Mean height of segmented Zonal Vegetation
cover mean canopy cover
Segmented canopy seg_sdcc Standard deviation of Zonal Vegetation
cover standard segmented canopy cover
deviation
Distance to forest seg_d2tree Distance to nearest tree, Global Vegetation
calculated as accumulated
distance to a segment with
mean canopy height > 2m.
Distance to clearing seg_d2open Distance to nearest clearing, Global Vegetation

calculated as accumulated
distance to a segment with
mean canopy height < 2m.
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Table A3. Summary of hyperparameters used in local modeling.

Site Visibility radius mtry Minimum node Sample fraction
1 125 87 16 0.3922208
1 250 42 4 0.3572937
1 500 6 6 0.8500453
1 1000 22 2 0.8956246
2 125 67 2 0.8677242
2 250 41 2 0.896949
2 500 84 2 0.8490319
2 1000 20 3 0.8588589
3 125 59 6 0.6847182
3 250 30 2 0.7901344
3 500 24 2 0.8910706
3 1000 33 2 0.8694142
4 125 15 2 0.7572997
4 250 12 2 0.8719646
4 500 1 2 0.8590565
4 1000 14 2 0.8903354
5 125 126 2 0.8956859
5 250 33 2 0.8971066
5 500 127 2 0.8956309
5 1000 31 10 0.8692783
6 125 62 2 0.8401027
6 250 35 2 0.7919344
6 500 24 2 0.8959702
6 1000 14 2 0.893316
7 125 45 3 0.8866096
7 250 28 2 0.8890775
7 500 22 2 0.8922536
7 1000 29 3 0.8754808
8 125 47 2 0.7693361
8 250 34 3 0.8294339
8 500 25 3 0.8912013
8 1000 33 5 0.8844946
9 125 36 2 0.8765147
9 250 25 2 0.8948843
9 500 70 2 0.8538757
9 1000 29 2 0.7871462
10 125 59 3 0.8403822
10 250 40 2 0.8968215
10 500 93 2 0.8830722
10 1000 105 2 0.8959829
1 125 36 5 0.869242
" 250 26 2 0.8022546
1 500 22 3 0.8725041
1 1000 28 2 0.8655543
12 125 51 4 0.877519
12 250 44 3 0.8070093
12 500 25 4 0.862699
12 1000 72 4 0.8355278
19 125 65 3 0.5227165
19 250 106 2 0.2213255
19 500 20 2 0.798396
19 1000 26 2 0.833453
20 125 66 2 0.7353243
20 250 17 3 0.8218555
20 500 13 2 0.8270835
20 1000 10 2 0.8560917
21 125 36 2 0.6712375
21 250 52 2 0.799502
21 500 67 2 0.8484888
21 1000 71 4 0.8930487
22 125 24 2 0.8315354

(continued)
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Table A3. Continued.

Site Visibility radius mtry Minimum node Sample fraction
22 250 23 2 0.7820119
22 500 23 2 0.7151937
22 1000 16 2 0.8154879
23 125 38 2 0.8720128
23 250 30 2 0.8950507
23 500 62 3 0.8980366
23 1000 71 2 0.8701863
24 125 146 9 0.341819
24 250 144 5 0.2908651
24 500 121 131 0.245984
24 1000 129 85 0.2029855
13 125 65 2 0.8226684
13 250 37 3 0.8788999
13 500 46 3 0.8933841
13 1000 38 2 0.8941363
14 125 38 4 0.8718092
14 250 36 3 0.882612
14 500 22 2 0.8921064
14 1000 56 2 0.8787552
15 125 55 2 0.8492914
15 250 43 2 0.8976967
15 500 44 2 0.8917132
15 1000 35 2 0.8921256
16 125 55 2 0.7888848
16 250 64 3 0.8404448
16 500 91 5 0.8554722
16 1000 63 2 0.8891268
17 125 25 3 0.8544691
17 250 30 2 0.8753437
17 500 24 2 0.8924092
17 1000 49 2 0.8553929
18 125 17 2 0.88636
18 250 19 2 0.8607471
18 500 27 2 0.8555644
18 1000 43 2 0.8128176
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