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We introduce a new jet clustering algorithm named SIFT (scale-invariant filtered tree) that maintains
the resolution of substructure for collimated decay products at large boosts. The scale-invariant measure
combines properties of kT and anti-kT by preferring the early association of soft radiation with a resilient
hard axis, while avoiding the specification of a fixed cone size. Integrated filtering and variable-
radius isolation criteria block assimilation of soft wide-angle radiation and provide a halting condition.
Mutually hard structures are preserved to the end of clustering, automatically generating a tree of
subjet axis candidates. Excellent object identification and kinematic reconstruction for multipronged
resonances are realized across more than an order of magnitude in transverse energy. The clustering
measure history facilitates high-performance substructure tagging, which we quantify with the aid of
supervised machine learning. These properties suggest that SIFT may prove to be a useful tool for the
continuing study of jet substructure.
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I. INTRODUCTION

The collider production of an isolated partonic object
bearing uncanceled strong nuclear charge is immediately
followed by a frenzied showering of soft and collinear
radiation with a complex process of recombination into
metastable color-singlet hadronic states. In order to
compare theoretical predictions for hard scattering events
against experimental observations, it is necessary to
systematically reassemble these “jets” of fragmentary
debris into a faithful representation of their particle
source. The leading clustering algorithm serving this
purpose at the Large Hadron Collider (LHC) is anti-kT
[1], which is valued for yielding regular jet shapes that are
simple to calibrate.
It can often be the case that clustering is complicated

by early decays of a heavy unstable state into multiple
hard prongs, e.g., as ðWþ → ud̄Þ, or ðt → Wþb → ud̄bÞ.
This additional structure can be of great benefit for
tagging presence of the heavy initial state. However,
identification will be confounded if essential constituents

of distinct prongs either remain uncollected or are merged
together into a joint assemblage. Standard practice is to
err in the latter direction, via construction of a large-
radius jet that is intended to encapsulate all relevant
showering products and to subsequently attempt recovery
of the lost “substructure” using a separate algorithm such
as N subjettiness [2].
The casting of this wide net invariably also sweeps up

extraneous low-energy radiation at large angular separa-
tions and successful substructure tagging typically hinges
on secondarily “grooming” large-radius jets with a tech-
nique such as soft drop [3]. Furthermore, the appropriate
angular coverage is intrinsically dependent upon the
process being investigated, since more boosted parents
will tend to produce more collimated beams of children.
Accordingly, such methods are conventionally tuned to
target specific energy scales for maximal efficacy.
In this paper, we introduce a new jet clustering

algorithm called SIFT (scale-invariant filtered tree) that
is engineered to avoid losing resolution of structure in the
first place. Similar considerations previously motivated
development of the exclusive XCone [4,5] algorithm
based on minimization of N jettiness [6]. Most algorithms
in common use reference a fixed angular cone size R0,
inside of which all presented objects will cluster and
beyond which all exterior objects will be excluded. We
identify this parameter, and the conjugate momentum
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scale which it imprints, as primary culprits responsible for
the ensuing loss of resolution.
In keeping, our proposal rejects any such references to an

external scale, while asymptotically recovering successful
angular and kinematic behaviors of algorithms in the kT
family. Specifically, the SIFT prioritizes pairing objects that
have hierarchically dissimilar transverse momentum scales
(i.e., one member is soft relative to its partner) and narrow
angular separation (i.e., the members are collinear). The
form we are lead to by these considerations is quite similar
to a prior clustering measure named Geneva [7], although
our principal motivation (retention of substructure) differs
substantively from those that applied historically.
We additionally resolve a critical fault that otherwise

precludes the practical application of radius-free measures
such as Geneva, namely the tendency to gather uncorrelated
soft radiation at wide angular separations. This is accom-
plished with a novel filtering and halting prescription that is
motivated by soft drop, but defined in terms of the scale-
invariant measure itself and applied to each candidate
merger during the initial clustering.
The final-state objects retained after algorithm termina-

tion are isolated variable-large-radius jets that dynamically
bundle decay products of massive resonances in response to
the process scale. Since mutually hard prongs tend to
merge last (this behavior is very different from that of anti-
kT), the end stages of clustering densely encode informa-
tion indicating the presence of substructure. Accordingly,
we introduce the concept of an N-subjet tree, which
represents the ensemble of a merged object’s projections
onto N axes, as directly associated with the clustering
progression from N prongs to 1.
We demonstrate that the subjet axes obtained in this

manner are effective for applications such as the compu-
tation of N subjettiness. Additionally, we confirm that they
facilitate accurate and sharply peaked reconstruction of
associated mass resonances. Finally, we show that the
sequential evolution history of the SIFT measure across
mergers is itself an excellent substructure discriminant. As
quantified with the aid of a boosted decision tree (BDT), we
find that it significantly outperforms the benchmark
approach to distinguishing one-, two-, and three-prong
events using N-subjettiness ratios, especially in the pres-
ence of a large transverse boost.1

The outline of this work is as follows. Section II presents
a master sequential jet clustering algorithm into which SIFT
and the kT prescriptions may be embedded. Sections III–VI
define the SIFT algorithm in terms of its scale-invariant
measure (with transformation to a coordinate representa-
tion), filtering and isolation criteria, and final-stateN-subjet
tree objects. Section VII visually contrasts clustering

priorities, soft radiation catchment, and halting status against
common algorithms. Sections VIII and IX comparatively
assesses SIFT’s performance invarious applications, relating
firstly to jet resolution and mass reconstruction, and sec-
ondly, to the tagging of structure. Section X addresses
computability, infrared, and collinear safety, and Oð1Þ
deviations from recursive safety. Section XI concludes and
summarizes. Appendix A provides a pedagogical review of
hadron collider coordinates. Appendix B describes available
software implementations of the SIFT algorithm along with
methods for reproducing current results and plans for
integration with the FastJet [10,11] contributions library.

II. THE MASTER ALGORITHM

This section summarizes the global structure of a general
sequential jet clustering algorithm, as illustrated in Fig. 1.
Examples are provided of how standard algorithms fit into
this framework. These examples will be referenced sub-
sequently to motivate the SIFT algorithm and to compa-
ratively assess its performance.
To begin, a pool of N low-level physics objects (e.g.,

four-vector components of track-assisted calorimeter hits)
is populated, typically including reconstructed hadrons as
well as photons and light leptons that fail applicable
hardness, identification, or isolation criteria.
The main loop then begins by finding the two most-

proximal objects (A, B), as defined via minimization of a
specified distance measure δAB over each candidate pairing.
For example, the anti-kT algorithm is a member (with index
n ¼ −1) of a broader class of algorithms that includes the
earlier kT [12,13] (with n ¼ þ1) and Cambridge-Aachen
[14,15] (with n ¼ 0) formulations, corresponding to the
measure δkT;nAB defined as

δkT;nAB ≡min½ðpA
TÞ2n; ðpB

TÞ2n� ×
�
ΔRAB

R0

�
2

: ð1Þ

The quantity ðΔRABÞ2 ≡ ðΔηÞ2 þ ðΔϕÞ2 expresses
“geometric” adjacency as a Cartesian norm square of
differences in pseudorapidity η and azimuthal angle ϕ
(cf. Appendix A) relative to the maximal cone radius R0.
The (n ¼ 0) scenario prioritizes small values of ΔRAB
without reference to the transverse momentum pT. A
positive momentum exponent ðn ¼ þ1Þ first associates
pairs wherein at least one member is very soft, naturally
rewinding the chronology of the showering process. A
negative momentum exponent ðn ¼ −1Þ favors pairs
wherein at least one member represents hard radiation
directed away from the beamline.
Once an object pair has been selected, there are various

ways to handle its members. Broadly, three useful alter-
natives are available, identified here as clustering, drop-
ping, and isolating. The criteria for distinguishing between
these actions are an important part of any algorithm’s
halting condition. Clustering means that the objects (A, B)

1For other approaches to scale-invariant resonance tagging,
variable-radius jet clustering, and single-pass grooming and
subjet finding, see Refs. [8,9].
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are merged, usually via a four-vector sum (pμ
AB ¼

pμ
A þ pμ

B), and replaced by this merged object in the pool.
Typically, clustering proceeds unless the applicable angular
separation is too great and/or the momentum scales of the
members are too dissimilar.
For pairings failing this filter, two options remain.

Dropping, wherein the softer member is set aside (it
may literally be discarded or rather reclassified as a
final-state object) while the harder member is returned to
the object pool, sensibly applies when momentum scales
are hierarchically imbalanced. Conversely, a symmetric

treatment of both members is motivated when momentum
scales are similar and isolating involves mutual reclassifi-
cation as final-state objects. Exclusive algorithms (which
guarantee a fixed ending count Nexc of jets) typically
always cluster, although any construction that reduces
the net object count by one unit per iteration is consistent.2

To complete the prior example, conventional implemen-
tations of kT-family clustering do not discard objects or

FIG. 1. Generalized logical flow chart representing a family of sequential jet clustering algorithms defined by a distance measure δAB,
along with a specification for filtering and isolation criteria and/or a target final-state jet count for exclusive clustering.

2A valid example is clustering plus dropping without isolation.
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collectively isolate final-state pairs. However, they do
singly reclassify all objects with no partners nearer than
R0 in ΔR as final-state jets. This behavior may be
conveniently embedded into the master algorithm flow
by also allowing each object in the active pool to pair one
at a time with the “beam” and associating it with the
alternative measure δkT;nbeam ¼ p2n

T . The dropping criterion is
then adapted to set aside any object for which this beam
distance is identified as the global minimum. Note that
such objects are indeed guaranteed to have no neighbors
inside a centered cone of size R0.
The described loop repeats until the number of objects

remaining in the active pool reaches a specified threshold.
In the context of an exclusive clustering mode, this would
correspond to a target count Nexc, whereas continuation
otherwise simply requires the presence of multiple (N > 1)
objects. Many clustering algorithms, including SIFT, may
be operated in either of these modes. Upon satisfaction of
the halting criteria, the list of final-state objects is returned
along with a record of the clustering sequence and
associated measure history.
The SIFT algorithm will now be systematically devel-

oped by providing specific prescriptions for each element
of the master algorithm. The scale-invariant measure δAB
is defined in Sec. III and provided with an intuitive
geometric form in Sec. IV. The filtering and isolation
criteria are itemized in Sec. V. The N-subjet tree is
introduced in Sec. VI.

III. THE SCALE-INVARIANT MEASURE

This section establishes the SIFT clustering measure δAB
and places it in the context of similar constructs from the
literature. Our principal objective is to develop an approach
that is intrinsically resilient against loss of substructure in
boosted event topologies, i.e., which maintains resolution
of collimated radiation associated with distinct partonic
precursors in the large-pT limit.
We identify specification of an angular size parameter R0

as the primary culprit imposing a conjugate momentum
scale dependence on the performance of traditional
approaches to jet clustering. In pursuit of a scale-indepen-
dent algorithm, we require that the clustering measure be
free of any such factor. Nevertheless, it is desirable to
asymptotically recover angular and kinematic character-
istics of existing successful approaches such as anti-kT
[cf. Eq. (1) with n ¼ −1], and we thus seek out proxies for
its dominant behaviors. Specifically, these include a pref-
erence for pairs with close angular proximity and a
preference for pairs where one member carries a large
transverse boost. For the former purpose, we invoke the
mass-square difference, defined as follows:

Δm2
AB ≡ ðpμ

A þ pμ
BÞ2 −m2

A −m2
B ¼ 2pμ

Ap
B
μ

≃ 2EAEB × ð1 − cosΔθABÞ ≃ EAEBΔθ2AB: ð2Þ

The property that small mass-square changes correlate
with collinearity of decay products was similarly leveraged
by the early JADE [16] algorithm. For the latter purpose,
we turn to suppression in a denominator by the summed
transverse energy-square,

X
E2
T ≡ ðEA

TÞ2 þ ðEB
TÞ2

E2
T ≡ p2

T þm2 ¼ E2 − p2
z : ð3Þ

The summation plays a role similar to that of the “min”
criterion in Eq. (1), in the case that the pair of objects under
consideration is very asymmetrically boosted. The choice
of E2

T over simply p2
T prevents a certain type of divergence,

as it is possible for the vector quantity  pT to cancel during a
certain phase of the clustering, but not without generation
of mass. All together, the simple prescription for the
proposed algorithm is to sequentially cluster indexed
objects A and B corresponding to the smallest pairwise
value of the following expression:

δAB ≡ Δm2
AB

ðEA
TÞ2 þ ðEB

TÞ2
: ð4Þ

Since this measure represents our default context, we
write it without an explicit superscript label for simplicity.
We note that it consists of the dimensionless ratio of a
Lorentz invariant and an invariant under longitudinal
boosts, and that it manifestly possesses the desired freedom
from arbitrary externally-specified scales. For comparison,
the JADE clustering measure is

δJADEAB ≡ EAEB

s
× ð1 − cosΔθABÞ: ð5Þ

Having been designed for application at a lepton collider,
JADE [17] references total energies (EA, EB) and spheri-
cally symmetric angular separations ΔθAB rather than
cylindrical quantities. It also treats all merger candidates
as massless; i.e., it uniformly factors (j  pj ⇒ E) out of the
angular dependence. Although Eq. (5) is dimensionless
and avoids referencing a fixed cone size, it is not scale
invariant, due to normalization against the global
Mandelstam center-of-momentum energy

ffiffiffi
s

p
. This distinc-

tion is amplified in a hadron collider context, where the
partonic

ffiffiffî
s

p
and laboratory center-of-momentum frames

are generally not equivalent.
However, the historical measure most alike to SIFT is

Geneva, which was developed as a modification to JADE,

δGenevaAB ≡ 8

9

EAEB

ðEA þ EBÞ2
× ð1 − cosΔθABÞ: ð6Þ

Like Eq. (4), Eq. (6) achieves scale invariance by
constructing its denominator from dimensionful quantities
local to the clustering process. There are also several
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differences between the two forms, which are summarized
here and explored further in Sec. IV. Variations in the
dimensionless normalization are irrelevant.3 The substitu-
tion of cylindrical for spherical kinematic quantities is
relevant, albeit trivial. Exchanging the squared sum for a
sum of squares causes the SIFT measure fall off more
sharply than the Geneva measure as the momentum scales
of the clustering candidates diverge. But, the most critical
distinguishing feature is that SIFT is sensitive to accumu-
lated mass.
Despite core similarities at measure level, the novel

filtering and isolation criteria described in Sec. V are
responsible for essential divergences in the properties of
final-state objects produced by SIFT relative to those from
Geneva. In particular, we will show that the N-subjet tree
introduced in Sec. VI is effective for reconstructing hard
objects and tagging the presence of substructure at large
transverse boosts without the need for additional de/
reclustering or postprocessing.

IV. THE GEOMETRIC FORM

This section presents a transformation of the SIFT
clustering measure into the geometric language of coor-
dinate differences. While the underlying physics is invari-
ant under this change of variables, the resulting expression
is better suited for developing intuition regarding clustering
priorities and how they compare to those of traditional
algorithms. It will also be used to motivate and express the
filtering and isolation criteria in Sec. V, and to streamline
calculations touching on computational safety in Sec. X.
Additionally, it is vital for realizing fast numerical imple-
mentations of the SIFT algorithm that employ optimized
data structures based on geometric coordinate adjacency.
The canonical form of distance measure on a manifold is

a sum of bilinear coordinate differentials dxidxj with
general coordinate-dependent coefficients gij. Measures
applicable to jet clustering must be integrated, referencing
finite coordinate separationsΔxi. The measure expressed in
Eq. (4) does not apparently refer to coordinate differences
at all, although Eq. (2) provides a hint of how an implicit
dependence of this type might manifest. We start from the
mass-square difference,

Δm2
AB ¼ 2 × ðEAEB − pA

z pB
z − pA

Tp
B
T cosΔϕABÞ: ð7Þ

To proceed, recall that Lorentz transformations are
generated by hyperbolic “rotation” in rapidity y. In par-
ticular, we may boost via matrix multiplication from the
transverse frame with y ¼ 0, pz ¼ 0, and E ¼ ET to any
longitudinally related frame,

�
E

pz

�
¼

�
cosh y sinh y

sinh y cosh y

��
ET

0

�
¼

�
ET cosh y

ET sinh y

�
:

ð8Þ
This may be used to reduce Eq. (7), using the standard

hyperbolic difference identity,

EAEB − pA
z pB

z

¼ EA
TE

B
T × ðcosh yA cosh yB − sinh yA sinh yBÞ

¼ EA
TE

B
T × coshΔyAB: ð9Þ

The transverse energy will factor perfectly out of the
mass-square difference if the constituent four-vectors are
individually massless, i.e., if ðmA ¼ mB ¼ 0Þ. Otherwise,
there are residual coefficients ðξA; ξBÞ defined as follows:

Δm2
AB ¼ 2EA

TE
B
T × ðcoshΔyAB − ξAξB cosΔϕABÞ

ξ≡ pT

ET
¼

�
1 −

m2

E2
T

�þ½

¼
�
1þm2

p2
T

�−½
: ð10Þ

The role of the ξ in Eq. (10) is to function as a “lever
arm” deemphasizing azimuthal differences in the non-
relativistic limit and at low pT. The precise relationship
between Δm2

AB and the angular separation ΔR2
AB can also

now be readily established, referencing Taylor expansions
for cosine and hyperbolic cosine in the limit of small
angular separations with (pT ≪ m),

ΔR̃2
AB ≡ Δm2

AB

EA
TE

B
T

¼ 2 × ðcoshΔyAB − ξAξB cosΔϕABÞ
≃ Δη2AB þ Δϕ2

AB ≡ ΔR2
AB: ð11Þ

The indicated correspondence becomes increasingly
exact as one approaches the collinear ðΔR2 ≪ 1Þ and
massless (Δy ⇒ Δη, ξ ⇒ 1) limits. The fact that
coshΔy is unbounded and has purely positive series
coefficients, whereas coshΔϕ is bounded and its terms
are of alternating sign, implies that ΔR̃2 is more sensitive to
separations in rapidity than separations in azimuth.
The ratio (ΔR̃2 ÷ ΔR2) is explored graphically in Fig. 2

as a function of Δη and Δϕ, for various values of (m=pT).
For purposes of illustration, deviations from (η ¼ 0) are
applied symmetrically to the candidate object pair, and the
quoted mass ratio applies equivalently to both objects.
Black contours indicate unity, bisecting regions of neutral
bias, which are colored in blue. Gray contours are spaced at
increments of 0.1 in the base-10 logarithm, and regions
where SIFT exhibits enhancement (suppression) of cluster-
ing are colored green (red).
In the massless limit (left-hand panel) a near symmetry

persists under (Δη ⇔ Δϕ), with corrections from sublead-
ing terms as described previously. When m approaches pT

3Geneva was introduced with a coefficient of 8=9 to match the
normalization of JADE in the limit of three hard prongs.

JET CLUSTERING WITH A SCALE-INVARIANT FILTERED TREE: … PHYS. REV. D 108, 016005 (2023)

016005-5



(center panel), the pseudorapidity versus azimuth sym-
metry is meaningfully broken at large ΔR, and a strong
aversion emerges to the clustering of massive states at small
ΔR. The latter effect dominates for highly nonrelativistic
objects (right-hand panel), and extends to larger separa-
tions, such that the distinction between Δη and Δϕ is again
washed out. SIFT binds objects approaching (ΔR ∼ π)
significantly more tightly than the kT algorithms in this
limit. Intuition for that crossover in sign can be garnered
from the leading terms in the multivariate expansion shown
in the following, as developed from Eqs. (10), (11),
and (A5):

ΔR̃2
AB ⇒ ΔR2

AB þ
�
1 −

ΔR2
AB

2

�

×

��
mA

pA
T

�
2

þ
�
mB

pB
T

�
2
�
þ � � � ð12Þ

We turn attention next to the denominator from Eq. (4),
defining a new quantity ϵAB in conjunction with the
transverse energy product factored out of Δm2

AB,

ϵAB ≡ EA
TE

B
T

ðEA
TÞ2 þ ðEB

TÞ2
¼

��
EA
T

EB
T

�
þ
�
EB
T

EA
T

��−1
: ð13Þ

This expression has a symmetry under the transforma-
tion ðα≡ EA

T=E
B
T ⇒ α−1Þ. It is maximized at α ¼ 1, where

ðϵAB ⇒ ½Þ, and minimized at α ¼ ð0;þ∞Þ, where
ðϵAB ⇒ 0Þ. The response is balanced by a change of
variables Δu ¼ ln α, i.e., α ¼ eΔu, where the logarithm
converts ratios into differences,

u≡ lnðET=½GeV�Þ
ϵAB ¼ ðeþΔuAB þ e−ΔuABÞ−1 ¼ ð2 coshΔuABÞ−1: ð14Þ

Putting everything together, we arrive at a formulation of
the measure from Eq. (4) that is expressed almost entirely in

terms of coordinate differences of the rapidities, azimuths,
and log-transverse energies, excepting the coefficients ξ
from Eq. (10), which depend on the ratiosm=pT. Of course,
it is possible to adopt a reduction of the measure where
(ξ ⇒ 1) by fiat, which is equivalent to taking a massless
limit in the fashion of JADE and Geneva, as described in
Sec. III,

δAB ¼ ϵAB × ΔR̃2
AB

¼ coshΔyAB − ξAξB cosΔϕAB

coshΔuAB
: ð15Þ

The scale-invariance of Eq. (15) is explicit, in two
regards. By construction, there is no reference to an
external angular cutoff R0. In addition, the fact that trans-
verse energies are referenced only via ratios, and never in
absolute terms, is emergent. The measure is additionally
observed to smoothly blend attributes of kT and anti-kT jet
finding, insomuch as the former prioritizes clustering when
one member of a pair is soft, the latter when one member of
a pair is hard, and SIFT when the transverse energies are
logarithmically disparate.
This behavior is illustrated in Fig. 3, with 2 × ϵAB plotted

in blue as a function of (α≡ EA
T=E

B
T). For comparison, the

analogous momentum-dependent factor for Geneva from
Eq. (6) is shown in green on the same axes, taking
(E ⇒ ET) and normalizing to unity at (α ¼ 1). Like
SIFT, Geneva is insensitive to variation of the absolute
event scale (β≡ EA

TE
B
T=E

2
0). However, the extra cross term

appearing in its denominator produces heavier tails when
the scale ratio α is unbalanced. The cusped red region
similarly represents the kT and anti-kT measures.
Specifically, the following expression is proportional to
Eq. (1) for (n ¼ �1) in the massless limit:

δkT;nAB ∝
∼

�
EA
TE

B
T

E2
0

�
n

× min

�
EA
T

EB
T
;
EB
T

EA
T

�
: ð16Þ

FIG. 2. The factor ΔR̃2
AB is compared to the traditional angular measure ΔR2

AB, as a function of Δη and Δϕ, and for various values of
(m=pT). Regions where the SIFT measure enhances (suppresses) clustering are shown in green (red). Blue indicates similar behavior,
with black contour placed at unity. Gray contours mark increments of 0.1 in log10ðΔR̃2

AB ÷ ΔR2
ABÞ.
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The selected normalization agrees with 2 × ϵAB in the
further limits (β ⇒ 1) and (α ⇒ 1), where E0 is an
arbitrary constant reference energy. The distinction
between kT and anti-kT clustering amounts to an enhance-
ment versus suppression by the product (squared geometric
mean) of transverse momenta. This is illustrated with
the gray contours in Fig. 3, which rescale by β ¼
ð1 =

10;⅕;½; 2; 5; 10Þ from inner lower to outer upper for
(n ¼ þ1), or in the reverse order for (n ¼ −1). The β-
invariant case (n ¼ 0) is also potentially of interest, but
it is a new construction that is not to be confused with
the Cambridge-Aachen algorithm, which has no energy
dependence at all.
We conclude this section with a transformation that

identifies the coordinate u introduced in Eq. (14) as a sort of
“dual” to the rapidity y from Eq. (A5). The log-transverse
momentum lnðpT=½GeV�Þ is similarly linked to pseudor-
apidity η in the massless limit,

Ω� ≡ ln

�
E� pz

½GeV�
�

Ωþ þ Ω−

2
¼ 1

2
ln

�
E2 − p2

z

½GeV�2
�

¼ u

Ωþ −Ω−

2
¼ 1

2
ln

�
Eþ pz

E − pz

�
¼ y: ð17Þ

V. FILTERING, ISOLATION, AND HALTING

This section establishes the SIFT filtering and isolation
criteria, which are used in conjunction to formulate a
suitable halting condition for the nonexclusive clustering
mode. Direct integration of a grooming stage effectively
rejects stray radiation and pileup. SIFT’s behavior will be

visualized with and without filtering in Sec. VII, and
compared against each kT-family algorithm in the presence
of a soft “ghost” radiation background.4

In conjunction, the two factorized terms in Eq. (15)
ensure that clustering prioritizes the merger of object pairs
that have a hierarchically soft member and/or that are
geometrically collinear, mimicking fundamental poles in
the matrix element for QCD showering. This behavior is
illustrated by the “phase diagram” in Fig. 4, where the
product of horizontal “x” and vertical “yðxÞ” coordinates
on that plane is equal to δAB. Gray “yðxÞ ¼ 1=x” contours
trace constant values of the measure, equal to (.002, .005,
.01, .02, .05, .1, .2, .5), with minimal values gathered
toward the lower left. As a consequence, SIFT successfully
preserves mutually hard structures with tight angular
adjacency, maintaining their resolution as distinct objects
up to the final stages of clustering.5

However, iterative application of the SIFT (or Geneva)
measure does not offer an immediately apparent halting
mechanism, and it will ultimately consume any presented
objects into a single all-encompassing jet if left to run.
These measures are additionally prone to sweeping up
uncorrelated soft radiation onto highly boosted partners at
wide angular separation. The solution to both problems
turns out to be related. For inspiration, we turn to the soft
drop procedure, wherein a candidate jet is recursively
declustered and the softer of separated constituents is
discarded until the following criterion is satisfied:

FIG. 3. The factor 2 × ϵAB is log symmetric in the ratio EA
T=E

B
T of transverse energies, becoming small whenever candidate

scales are hierarchically dissimilar. SIFT (blue) is compared against analogous behaviors for the Geneva (green) and kT-family
(red) algorithms, the latter at (β≡ EA

TE
B
T=E

2
0 ⇒ 1). Gray contours illustrate scaling of the kT measures with a power n ¼ �1

of (β ⇒ 1 =

10; ⅕; ½, 2, 5, 10).

4The ability to effectively filter soft radiation is suggestive of
resiliency to pileup. Although beyond the scope of this work, it
will be interesting to test how SIFT’s performance scales as
additional minimum-bias collisions are overlaid.

5Mutually soft pairings tend not to occur, since such objects
are typically gathered up by a harder partner at an early stage.
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minðpA
T; p

B
TÞ

pA
T þ pB

T
> zcut

�
ΔRAB

R0

�
β

: ð18Þ

The dimensionless zcut coefficient is typically Oð0.1Þ. The
exponent β can vary for different applications, although we
focus here on β ¼ 2. We first attempt to recast the elements
of Eq. (18) into expressions with asymptotically similar
behavior that adopt the vocabulary of Eq. (4). The factor
ΔR̃2

AB can be carried over directly. Likewise, ϵAB behaves
similarly to a minimized ratio of transverse energies, with
the advantage of analyticity,

ϵAB ¼
�
min

�
EA
T

EB
T

�
þmax

�
EA
T

EB
T

��−1

≃
�
max

�
EA
T

EB
T

��−1

¼ min

�
EA
T

EB
T

�
≃
minðEA

T; E
B
TÞ

EA
T þ EB

T
: ð19Þ

Paired factors of 2 previously emerged “naturally” in
Eqs. (11) and (14), and we group them here in a way that
could be interpreted as setting “zcut ¼ ¼” in the context of a
large-radius ðR0 ¼ 1Þ jet. Putting all of this together, the
suggested analog to Eq. (18) is shown in the following:

Cluster∶
ΔR̃2

AB

2
< fð2ϵABÞ ≤ 1g: ð20Þ

An important distinction from conventional usage is that
this protocol is to be applied during the initial clustering
cycle itself, at the point of each candidate merger. This is
similar in spirit to recursive soft drop [18].
Intuition may be garnered by turning again to Fig. 4,

where clustering consistent with the Eq. (20) prescription
is observed to occur only in the upper-left (green) region of

the phase diagram, above the “yðxÞ ¼ x” diagonal cross-
cutting contours of the measure. The upper bound on
ð2ϵABÞ precludes clustering if ðΔR̃AB ≥

ffiffiffi
2

p Þ. However, this
angular threshold is dynamic, and the capturable cone
diminishes in area with increasing imbalance of the trans-
verse scales. This condition may be recast into a limit on the
clustering measure from Eq. (15),

Cluster∶ δAB < fð2ϵABÞ2 ≤ 1g: ð21Þ

The question now is what becomes of those objects
rejected by the Eq. (21) filter. Specifically, are they
discarded or are they classified for retention as isolated
final-state jets? One possible solution is to simply
determine this based on the magnitude of the transverse
energy but that runs somewhat counter to current objec-
tives. Seeking a simple scale-invariant criterion for
selecting between isolation and rejection, we observe
that there are distinct two ways in which Eq. (20) may
fail. Namely, the angular opening may be too wide, and/
or the transverse scales may be too hierarchically
separated. This is illustrated again by Fig. 4, wherein
one may exit the clustering region (green) by moving
rightward (wider angular separation) or downward (more
scale disparity).
If the former cause is dominant, e.g., if ðΔR̃2

AB ≫ 1Þ and
ðϵAB ∼ 1Þ such that both members are on equal footing and
ðδAB ≫ 1Þ, then collective isolation as a pair of distinct
final states is appropriate. Conversely, if the latter cause
primarily applies, e.g., if ðϵAB ≪ 1Þ and ðΔR̃2

AB ∼ 1Þ such
that ðδAB ≪ 1Þ, then the pertinent action is to asymmetri-
cally set aside just the softer candidate.6 These scenarios
may be quantitatively distinguished in a manner that

FIG. 4. Phase diagram for the separation of object merging, filtering, and isolation responses.

6Although we treat “drop” here as a synonym for “discard,” a
useful alternative (cf. Sec. II) is single reclassification as a final
state, since softness is not guaranteed in an absolute sense.
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generates a balance with and continuation of Eq. (20), as
follows:

Drop∶ fð2ϵABÞ ≤ 1g ≤
ΔR̃2

AB

2
< f1 ≤ ð2ϵABÞ−1g

Isolate∶f1 ≤ ð2ϵABÞ−1g ≤
ΔR̃2

AB

2
: ð22Þ

Each criterion may also be recast in terms of the
clustering measure, with isolation always and only indi-
cated against an absolute reference value (1) of the SIFT
measure δAB that heralds a substantial mass gap. Observe
that the onset of object isolation necessarily culminates in
global algorithmic halting since all residual pairings must
correspond to larger values of δAB,

Drop∶ fð2ϵABÞ2 ≤ 1g ≤ δAB < f1g
Isolate∶ f1g ≤ δAB: ð23Þ

Figure 4 again provides visual intuition, where isolation
occurs in the upper-right (blue) regions for values of the
measure above unity, and soft wide radiation is dropped
in the lower-central (red) regions. The clustering and
isolation regions are fully separated from each other,
making contact only at the zero-area “triple point” with
(2ϵAB ¼ 1, ΔR̃2

AB=2 ¼ 1). We will provide additional sup-
port from simulation for triggering isolation at a fixedOð1Þ
value of the measure in Sec. IX.

Note that nonrelativistic or beamlike objects at very
large rapidity that approach the (pT ⇒ 0, m ≠ 0) limit will
never cluster, since vanishing of the lever arm (ξ ¼ 0) in
Eq. (10) implies via Eq. (11) that (ΔR̃2

AB=2 ≥ 1). Also,
objects of equivalent transverse energy with angular sep-
aration ðΔR̃AB ≥

ffiffiffi
2

p Þ will always be marked for isolation,
although this radius is again dynamic. The phase gap
between clustering and isolation opens up further when
scales are mismatched, and the effective angular square
separation exceeds its traditional counterpart as mass is
accumulated during clustering [cf. Eq. (12)].

VI. THE N-SUBJET TREE

This section concludes development of the SIFT algo-
rithm by formalizing the concept of an N-subjet tree. This
data structure records the clustering history of each isolated
final-state object from N prongs down to 1, along with the
associated value of the measure at each merger.
Final-state jets defined according to the global halting

condition outlined in Sec. V may still bundle multiple hard
structured prongs, since isolation requires a minimal
separation of ðΔR̃AB ≥

ffiffiffi
2

p Þ. Within each quarantined
partition, SIFT reverts to its natural form, as an exclusive
clustering algorithm. So, for example, it might be that
reconstruction of a doubly hadronic tt̄ event would isolate
the pair of top-quark remnants but merge each bottom with

products from the associated W. This is a favorable
outcome, amounting to the identification of variable large-
radius jets. But, the question of how to identify and recover
the optimal partition of each such object into N subjets
remains.
One could consider formulating a local halting condition

that would block the further assimilation of hard prongs
within each large-radius jet once some threshold were met.
However, such objects are only defined in our prescription
after having merged to exhaustion. More precisely, a
number of candidate large-radius jets may accumulate
objects in parallel as clustering progresses, and each will
have secured a unique “N ¼ 1” configuration at themoment
of its isolation.
As such, the only available course of action appears to be

proceeding with these mergers, even potentially in the
presence of substructure. However, the fact that the SIFT
measure tends to preserve mutually hard features until the
final stages of clustering suggests that suitable proxies for
the partonic event axes may be generated automatically as a
product of this sequential transition through all possible
subjet counts, especially during the last few mergers. We
refer to the superposed ensemble of projections onto
(N ¼ …; 3, 2, 1) prongs, i.e., the history of residually
distinct four-vectors at each level of the clustering flow, as
an N-subjet tree.
In fact, it seems that interrupting the final stages of

clustering would amount to a substantial information
forfeiture. Specifically, the merger of axis candidates that
are not collinear or relatively soft imprints a sharp dis-
continuity on the measure, which operates in this context
like a mass-drop tagger [19] to flag the presence of
substructure. Additionally, the described procedure gener-
ates a basis of groomed axes that are directly suitable for the
computation of observables such as N subjettiness. In this
sense, the best way to establish that a pair of constituents
within a large-radius jet should be kept apart may be to go
ahead and join them, yet to remember what has been joined
and at which value of δAB.
In contrast to conventional methods for substructure

recovery that involve de and reclustering according to a
variety of disjoint prescriptions, the finding of N-subjet
trees representing a compound scattering event occurs in
conjunction with the filtering of stray radiation and gen-
eration of substructure observables during a single unified
operational phase. The performance of this approach for
kinematic reconstruction and tagging hard event prongs
will be comparatively assessed in Secs. VIII and IX.

VII. COMPARISON OF ALGORITHMS

This section provides a visual comparison of merging
priorities and final states for the SIFT and kT-family
algorithms. The images presented here are still frames
extracted from full-motion video simulations of each
clustering sequence. These films are provided as ancillary

JET CLUSTERING WITH A SCALE-INVARIANT FILTERED TREE: … PHYS. REV. D 108, 016005 (2023)

016005-9



files with the source package for this paper on the arXiv and
may also be viewed on YouTube [20]. Frames are generated
for every 25th clustering action, as well as each of the initial
and final 25 actions. The Mathematica notebook used to
generate these films is described in Appendix B and
maintained with the AEACuS [21] package on GitHub.
The visualized event7 comes from a simulation in

MadGraph/MadEvent [22] of top quark pair production at the

14 TeV LHC with fully hadronic decays. The scalar sum
HT of transverse momentum is approximately 1.6 TeV at
the partonic level. This large boost results in narrow
collimation of the three hard prongs (quarks) on either
side of the event, as depicted in the upper frame of Fig. 5.
In-plane axes represent the pseudorapidity η and azimuth
ϕ, with a cell width (ΔR ≃ 0.1) approximating the reso-
lution of a modern hadronic calorimeter. The height of each
block is proportional to the log-transverse momentum
log10ðpT=½GeV�Þ it contains.
The event is passed through through PYTHIA8 [23] for

showering and hadronization, and through DELPHES [24]

FIG. 5. Upper: A simulated LHC scattering event with
ffiffiffi
s

p ¼ 14 TeV is visualized at the partonic level. Top quark pair production
pp → tt̄ (red, red) is followed by the decays t → Wþb (green, black) andWþ → ud̄ (black, black), plus conjugates. A transverse boost
of pT ≃ 800 GeV for each top quark produces narrow collimation of decay products. Lower: Generator-level radiation deposits resulting
from showering, hadronization, and decay of the partonic event appearing in the upper frame.

7This event is expected to be reasonably representative, being
the first member of its Monte Carlo sample.
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for fast detector simulation. Detector effects are bypassed in
the current context, which starts with unclustered gener-
ator-level (PYTHIA8) jets and nonisolated photons/leptons
extracted from the DELPHES event record by AEACuS, but
they will be included for most of the analysis in Secs. VIII
and IX. This initial state is depicted in the lower frame of
Fig. 5, which exhibits two dense clusters of radiation that
are clearly associated with the partonic event, as well as
several offset deposits having less immediate origins in the
underlying event or initial state. Prior to clustering, a sheet

of ultrasoft ghost radiation is distributed across the angular
field in order to highlight differences between the catch-
ment area [25] of each algorithm.
We begin with an example of exclusive (Nexc ¼ 1) cluster-

ing ordered by the SIFT measure from Eq. (4), but without
application of the filtering and isolation criteria described in
Sec. V. Film A clearly exhibits both of the previously
identified pathologies, opening with a sweep of soft-wide
radiation by harder partners (as visualized with regions
of matching coloration) and closing with the contraction of

FIG. 6. Frames representing sequential clustering of the Fig. 5 event using the exclusive Nexc ¼ 1 SIFT algorithm without the
associated filtering or isolation criteria (cf. Fig. 10 for nonexclusive clustering with both criteria enabled). Upper: Mutually hard prongs
with narrow angular separation remain unmerged up to the final stages of clustering. However, hard objects are likely to sweep up soft
radiation at wide angles. Lower: An image of the initial pair production is reconstructed just prior to termination. In the absence of a
supplementary halting criterion, these structures will subsequently merge to completion, accompanied by a large discontinuity in the
measure δAB.
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hard-wide structures into a single surviving object. However,
the described success is manifest in between, vis-à-vismutual
preservation of narrowly bundled hard prongs until the end
stages of clustering. In particular, the upper frame of Fig. 6
features a pair of triplets at (δAB ≃ 0.04) that fairly approxi-
mate their collinear antecedents despite bearing wide catch-
ments. Subsequently, this substructure collapses into an
image of the original pair production, as depicted at
(δAB ≃ 0.3) in the lower frame of Fig. 6. Nothing further
occurs until (δAB ≳ 1.0), beyond which residual structures
begin to merge and migrate in unphysical ways.
For comparison, we process the same event using the

anti-kT algorithm at (R0 ¼ 0.5). Film B shows how early

activity is dominated by the hardest radiative seeds,
which promptly capture all available territory up to the
stipulated radial boundary. In particular, any substructure
that is narrower than R0 will be rapidly erased, as
illustrated in the upper frame of Fig. 7. The subsequent
stages of clustering are of lesser interest, being progres-
sively occupied with softer seeds gathering up yet softer
unclaimed scraps. At termination, the lower frame of
Fig. 7 exhibits the regular cone shapes with uniform
catchment areas that are a hallmark of anti-kT. This
property is linked to the anchoring of new cones on
hard prongs that are less vulnerable to angular drift.
It is favored by experimentalists for facilitating

FIG. 7. Frames representing sequential clustering of the Fig. 5 event using the anti-kT algorithm. Upper: Priority is given to the hardest
radiation, which immediately captures surrounding territory. Hard substructure at angular scales smaller than the clustering radius will
be washed out rapidly. Lower: The final state is characterized by regular jet shapes with uniform expected areas.

LARKOSKI, RATHJENS, VEATCH, and WALKER PHYS. REV. D 108, 016005 (2023)

016005-12



calibration of jet energy scales and subtraction of soft
pileup radiation.
Proceeding, we repeat the prior exercise using the kT

algorithm at (R0 ¼ 0.5). In contrast to anti-kT, clustering is
driven here by the softest seeds. Film C demonstrates the
emergence of a fine grain structure in the association
pattern of objects from adjacent regions that grows in size
as the algorithm progresses. Unlike SIFT, which preferen-
tially binds soft radiation to a hard partner, mutually soft
objects without a strong physical correlation are likely to
pair in this case. Since summing geometrically adjacent
partners tends increase pT, merged objects become less
immediately attractive to the measure. As a result, activity

is dispersed widely across the plane, and attention jumps
rapidly from one location to the next. However, the
combination of mutually hard prongs is actively deferred,
which causes collimated substructures to be preserved, as
shown in the upper frame of Fig. 8. In contrast to SIFT, this
hardness criterion is absolute, rather than relative.
Ultimately, structures more adjacent than the fixed angular
cutoff R0 will still be absorbed. Jet centers are likely to drift
substantially, and associated catchment shapes are thus
highly irregular, as shown in the lower frame of Fig. 8.
Similarly, we also cluster using the Cambridge Aachen

algorithm at (R0 ¼ 0.5). Pairings are driven here solely by
angular proximity, and Film D shows an associated growth

FIG. 8. Frames representing sequential clustering of the Fig. 5 event using the kT algorithm. Upper: Priority is given to the softest
radiation, resulting in the growth of dispersed catchments having a correlation length that increases in time. Mutually hard substructures
are preserved until the last stages of clustering. Lower: The final state is characterized by irregular jet shapes with unpredictable areas.
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of grain size that is like that of the kT algorithm. The
banded sequencing is simply an artifact of the way we
disperse ghost jets, randomizing pT but regularizing place-
ment on the grid. In contrast, mutually hard substructures
are not specifically protected and will last only until the
correlation length catches up to their separation, as shown
in the upper frame of Fig. 9. As before, the angular cutoff
R0 limits resolution of structure. Likewise, jet drift leads to
irregular catchment shapes, as shown in the lower frame
of Fig. 9.
We conclude this section with a reapplication of the SIFT

algorithm, enabling the filtering and isolation criteria from
Sec. V. Film E demonstrates that the soft ghost radiation is

still targeted first, but it is now efficiently discarded (as
visualized with dark gray) rather than clustered, suggesting
resiliency to soft pileup. Hard substructures are resolved
without accumulating stray radiation, as shown in the upper
frame of Fig. 10. This helps to stabilize reconstructed jet
kinematics relative to the parton-level event. Objects
decayed and showered from the pair of opposite-hemisphere
top quarks are fully isolated from each other in the final state,
as shown in the lower frame of Fig. 10. Each such object
selectively associates constituents within a “fuzzy” scale-
dependent catchment boundary. Nevertheless, it may still be
possible to establish an “effective” jet radius by integrating
the pileup distribution function up to the maximal radius

FIG. 9. Frames representing sequential clustering of the Fig. 5 event using the Cambridge-Aachen algorithm. Upper: Priority is given
only the angular proximity, without reference to the momentum scale. Substructure is preserved only until the grain size eclipses its
angular scale. Lower: The final state is characterized by irregular jet shapes with unpredictable areas.
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ðΔR̃AB <
ffiffiffi
2

p Þ. In any case, the traditional approach to
pileup subtraction has been somewhat superseded by the
emergence of techniques for event-by-event, and per-
particle pileup estimation like PUPPI [26].

VIII. RESOLUTION AND RECONSTRUCTION

This section characterizes SIFT’s angular and energetic
response functions for the resolution of hard monojets and
tests the reconstruction of collimated di- and trijet systems
associated with a massive resonance. The best performance
is achieved for large transverse boosts.

We generate Monte Carlo collider data modeling theffiffiffi
s

p ¼ 14 TeV LHC using MadGraph/MadEvent, PYTHIA8, and
DELPHES as before. Clean (N ¼ 1, 2, 3) prong samples are
obtained by simulating the processes (pp ⇒ jZ ⇒
jþ νν̄), (pp ⇒ W�Z ⇒ jjþ νν̄), and (pp ⇒ tW− ⇒
jjjþ ν̄l−) plus conjugate, respectively. In the latter case,
an angular isolation cone with (ΔR ¼ 0.5) is placed around
the visible lepton. Hard partonic objects are required to
carry a minimal transverse momentum (pT ≥ 25 GeV) and
be inside (jηj <¼ 3.0). No restrictions are placed on the
angular separation of decay products. Jets consist of gluons
and/or light first-generation quarks (u, d), as well as b

FIG. 10. Frames representing sequential clustering of the Fig. 5 event using the SIFT algorithm with the application of filtering and
isolation criteria. Upper: Initial activity is dominated by the rejection of soft-wide radiation that is paired with a hard prong by the
measure but fails the filtering criterion. Mutually hard substructures are resolved without contamination from stray radiation. Lower:
The isolation criterion triggers halting before distinct objects associated with the initial pair production would be merged.
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quarks where required by a third-generation process. In
order to represent a wide range of event scales, we tranche
in the transverse momentum (vector sum magnitude) of the
hadronic system, considering six log-spaced intervals pT ¼
ð100; 200; 400; 800; 1600; 3200Þ GeV� 5% and giving
attention primarily to the inner four.
Clustering is disabled at the detector simulation level by

setting the jet radius R0 and aggregate pT threshold to very
small values. We retain the default DELPHES efficiencies for
tracks and calorimeter deposits (including pT thresholds on
low-level detector objects), along with cell specifications
and smearing (resolution) effects in the latter case. Jet
energy scale corrections are turned off (set to 1.0) since
these are calibrated strictly for application to fully recon-
structed (clustered) objects. For purposes of comparison
and validation, we also extract information from DELPHES

regarding the leading large-radius jet (R0 ¼ 1), which is
processed by trimming [27], pruning [28], and applying
soft drop.
Event analysis (including clustering) and computa-

tion of observables are implemented with AEACuS

(cf. Appendix B). We begin by preclustering detector-

level objects with anti-kT at (R0 ¼ 0.01) to roughly mimic
a characteristic track-assisted calorimeter resolution at the
LHC. The isolation and filtering criteria described in
Sec. V are then used in conjunction to select the subset of
detector-level object candidates retained for analysis.
Specifically, our procedure is equivalent to keeping
members gathered by the hardest isolated N-subjet tree
that survive filtering all the way down to the final merger.
All histograms are generated with RHADAManTHUS [21],
using Matplotlib [29] on the back end.
We begin by evaluating the fidelity of the variable large-

radius SIFT jet’s directional and scale reconstruction in the
context of the monojet sample. Respectively, the upper-left
and lower-left panels of Fig. 11 show distributions of the
energy response RA

B ≡ ðpA
T=p

B
T − 1Þ and angular response

ΔRA
B relative to the original truth-level (MadGraph) partonic

jet at various transverse boosts. The corresponding right-
hand panels feature the same two distributions for the
leading large-radius jet identified by DELPHES. The vanish-
ing tail of events for which the SIFT or DELPHES jet fails
(ΔR ≤ 0.5) relative to the partonic sum are vetoed here and
throughout.

FIG. 11. Top: DistributionRA
B of reconstructed jet energy responses with detector effects relative to the partonic truth level at various

transverse boosts. Bottom: Distribution ΔRA
B of reconstructed jet angular responses with detector effects relative to the partonic truth

level at various transverse boosts. Left-hand panels represent the leading filtered and isolated SIFT jet, while right-hand panels represent
the leading (R0 ¼ 1) large-radius soft drop jet reported by DELPHES. No calibration of jet energy scales is attempted for either category.
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Central values and associated widths (standard devia-
tions) are provided for the RA

B and ΔRA
B in Table I. The

SIFT variable-radius jet energy response is very regular,
systematically under-estimating the momentum of hard
objects by about 6%. The DELPHES jet energy response
shows more drift, transitioning from positive values for soft
objects to negative values for hard objects. Widths of the
two distributions are indistinguishable, with fluctuations
amounting to about 15% in both cases, narrowing slightly
at larger boosts. It is anticipated from these observations
that an energy calibration of SIFT jets would be relatively

straightforward, using standard techniques. Angular per-
formance of the two methodologies is identical, with
typical offsets and deviations both near one-tenth of a
radian (but less for hard objects and more for soft objects).
For comparison, we repeat this analysis in Fig. 12 and

Table II, using generator-level (PYTHIA8) objects without
detector effects and suppressing the emission of initial-state
radiation. The distributions are substantially narrower in all
cases, with widths around a half or a third of the prior
reference values. The energy response is affected by both
idealizations, but more so by the elimination of detector

TABLE I. Detector-level jet energy responses RA
B and angular responses ΔRA

B with associated resolutions σR and σΔR.

pGeV�5%
T hRSIFT

Truthi σSIFTR hRDELPHES
Truth i σDELPHESR hΔRSIFT

Truthi σSIFTΔR hΔRDELPHES
Truth i σDELPHESΔR

100 −0.009 0.17 þ0.087 0.17 0.17 0.12 0.17 0.12
200 −0.046 0.16 þ0.026 0.16 0.15 0.12 0.15 0.12
400 −0.059 0.15 −0.002 0.15 0.13 0.11 0.13 0.11
800 −0.071 0.14 −0.024 0.14 0.10 0.10 0.10 0.10
1600 −0.081 0.13 −0.042 0.13 0.08 0.09 0.08 0.09
3200 −0.089 0.12 −0.058 0.12 0.05 0.06 0.05 0.06

FIG. 12. Top: Distribution RA
B of reconstructed jet energy responses, at generator level and without initial-state radiation, relative to

the partonic truth level at various transverse boosts. Bottom: Distribution ΔRA
B of reconstructed jet angular responses, at generator level

and without initial-state radiation, relative to the partonic truth level at various transverse boosts. Left-hand panels represent the leading
filtered and isolated SIFT jet, while right-hand panels represent the leading (R0 ¼ 1) large-radius soft drop jet reported by DELPHES. No
calibration of jet energy scales is attempted for either category.

JET CLUSTERING WITH A SCALE-INVARIANT FILTERED TREE: … PHYS. REV. D 108, 016005 (2023)

016005-17



effects, whereas the angular response is improved primarily
by the elimination of initial-state radiation. The most
distinctive difference between the SIFT and large-radius
DELPHES jets at this level is that the former is bounded from
above by the partonic pT, while the latter commonly
exceeds it. The observed momentum excess is attributable
to the capture of radiation from the underlying event.
However, SIFT’s filtering stage is apparently more adept at
rejecting this contaminant, producing a reflection in the tail
orientation that is reminiscent of various approaches to
grooming.
Proceeding, we turn to attention the reconstruction ofW-

boson and top quark mass resonances, as visualized in
Fig. 13 at each of the four central simulated pT ranges.MW

and Mt are respectively recovered from di- and trijet
samples, by summing and squaring residual four-vector
components after filtering. A second W reconstruction
is obtained from decays of a t by optimizing the combina-
toric selection of two prongs from the (N ¼ 3) clustering
flow. An excess near MW ≃ 80 GeV is apparent for
pT ≥ 200 GeV, although the top quark remains unresolved
by the leading SIFT jet at low boost, since the associated
bottom is likely to be separately isolated. The top-quark
bump is clearly visible for pT ≥ 400 GeV, though its
centroid falls somewhat to the left of Mt ≃ 175 GeV. The
plotted distributions narrow at higher boost, and substan-
tially sharper peaks are observed for pT≥800GeV. The
systematic underestimation ofmass is consistentwith effects

TABLE II. Zero-ISR generator-level jet energy responses RA
B, and angular responses ΔRA

B with associated resolutions σR and σΔR.

pGeV�5%
T hRSIFT

Truthi σSIFTR hRDELPHES
Truth i σDELPHESR hΔRSIFT

Truthi σSIFTΔR hΔRDELPHES
Truth i σDELPHESΔR

100 −0.059 0.054 þ0.034 0.052 0.038 0.052 0.043 0.049
200 −0.052 0.049 þ0.013 0.040 0.030 0.050 0.030 0.050
400 −0.045 0.045 þ0.004 0.033 0.025 0.047 0.022 0.047
800 −0.040 0.042 −0.001 0.031 0.022 0.045 0.018 0.046
1600 −0.035 0.039 −0.003 0.029 0.018 0.040 0.015 0.042
3200 −0.031 0.035 −0.004 0.025 0.015 0.032 0.011 0.033

FIG. 13. Distribution ofW-boson and top quark masses for di, and tri-jet samples reconstructed with SIFTat various transverse boosts.
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observed previously in the jet energy response, and it is
similarly expected to be improvable with a suitable
calibration.

IX. STRUCTURE TAGGING

This section describes applications of the SIFTalgorithm
related to structure and substructure tagging, including
discrimination of events with varying partonic multiplic-
ities, N subjettiness axis finding, and identification of
heavy resonances. We comparatively assess SIFT’s perfor-
mance on Monte Carlo collider data against standard
approaches and quantify its discriminating power with
the aid of a boosted decision tree (BDT).
Our first objective will be characterizing distinctive

features in the evolution of the SIFT measure δAB for
events with different numbers of hard prongs. We proceed
by simulating pure QCD multijets representing LHC
production of (N ¼ 2–5) gluons and/or light first-
generation quarks (u, d). Samples are generated at various
partonic center-of-momentum energies, taking

ffiffiffî
s

p ¼ ð100;
200; 400; 800; 1600; 3200Þ GeV� 20%. In order to ensure

that splittings are hard and wide (corresponding to a
number of nonoverlapping large-radius jets with more or
less commensurate scales), we require (pT ≥

ffiffiffî
s

p
÷ 16) and

(ΔR ≥ 2.0). We also suppress initial-state radiation so that
consistent partonic multiplicities can be achieved, and
return to the use of generator-level (PYTHIA8) objects.
Other selections and procedures are carried forward.
In contrast to the examples in Sec. VIII, the relevant

showering products of these nonresonant systems are not
expected to be captured within a single variable large-
radius jet. Accordingly, we do not engage the isolation
criterion from Sec. V for this application but instead apply
exclusive clustering to the event as a whole with termi-
nation at (Nexc ¼ 1). Filtering of soft-wide radiation is
retained, but values of δAB are registered only for the
merger of objects surviving to the final state. Relative to
Fig. 4, candidate object pairings in the green and blue
regions proceed to merge, while the softer member is
discarded for those in the red region.
Figure 14 follows evolution of the SIFT measure as it

progresses from 8 down to 1 remaining objects. Since we
are considering entire events (as opposed to a hadronic

FIG. 14. Evolution of the measure δNAB as a function of the number N of unmerged objects for QCD multijet production at various
values of

ffiffiffî
s

p
. Partons have an angular separation (ΔR ≥ 2.0) and the pT threshold is stepped in proportion to

ffiffiffî
s

p
. Initial-state radiation is

suppressed, and analysis is at generator level. The orange band indicates the interval where all samples have merged to the point of their
natural partonic count (black) but not beyond (white). The gray dashed line marks the isolation threshold at (δAB ¼ 1).
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event hemisphere recoiling off a neglected leptonic hemi-
sphere), attention is focused here on the upper four values
of

ffiffiffî
s

p
to promote closer scale alignment with prior

examples. Each of the simulated partonic multiplicities
are tracked separately, represented by the geometric mean
of δNAB over all samples at level N in the clustering flow.

The relative change in the measure is larger when
merging objects associated with distinct hard partons,
suggesting that the jettiness count is intrinsically
imprinted on the clustering history. Specifically, a steep-
ening in the log-slope of the measure evolution occurs
when transitioning past the natural object count,8 i.e.,
from the black markers to the white markers. This
supports the argument from Sec. VI that the most
useful halting criterion can sometimes be none at all.
In other words, it suggests that a determination of which
objects should be considered resolved might best be made
after observing how those objects would otherwise
recombine.
The orange bands in Fig. 14 mark the range of δNAB

wherein all structures are fully reconstructed but not

overmerged, and the gray dashed line marks (δAB ¼ 1).
Independently of the collision energy, white points tend to
land above this line and black points below it, which helps
to substantiate the isolation protocol from Sec. V. Bulk
features of the evolution curves are substantially similar
across the plotted examples and practically identical
above the isolation cutoff, reflecting the scale-invariant
design. However, δNAB “starts” with a smaller value from
large N for harder processes, and the orange band gap is
expanded accordingly. This is because the tighter colli-
mation [or smaller m=pT, cf. Eq. (11)] associated with a
large transverse boost induces smaller values of the
measure when constituents are merged. Universality at
termination is clarified by example, considering a true
dijet system with balanced pT, for which Eq. (15) indi-
cates that (δN¼1

AB ≃ ΔR2=2). This is consistent with illus-
trated values around 20 for (jΔηj ≃ 6) and (Δϕ ¼ π).
Our next objective will be to identify and test applica-

tions of SIFT for resolving substructure within a narrowly
collimated beam of radiation. N subjettiness represents one
of the most prominent contemporary strategies for coping
with loss of structure in boosted jets. In this prescription,
one first clusters a large-radius jet, e.g., with (R0 ≃ 1.0),
which is engineered to contain all of the products of a
decaying parton such as a boosted top or W boson. For

FIG. 15. Distribution of τ2=τ1 computed with SIFT axes for mono-, di-, and trijet samples at various transverse boosts.

8If the isolated objects have dissimilar pT, then the disconti-
nuity can be less severe, but the increased slope may extend to
(N ¼ 1).
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various hypotheses of the subjet count ðN ¼ 1; 2; 3;…Þ, a
set of spatial axis directions are identified via a separate
procedure, e.g., by reclustering all radiation gathered by the
large-radius jet with an exclusive variant of the kT or
Cambridge-Aachen algorithms that forgoes beam isolation
and forces explicit termination at N jets. One then com-
putes a measure τN of compatibility with the hypothesis,
which is proportional to a sum over minimal angular
separation ΔR from any of the N axes, weighted by the
transverse momentum pT of each radiation component.
Maximal discrimination of the subjet profile is achieved by
taking ratios, e.g., τ2=τ1 or τ3=τ2. This procedure will be
our reference standard for benchmarking SIFT’s substruc-
ture tagging performance.
The SIFT N-subjet tree automatically provides an

ensemble of axis candidates at all relevant multiplicities
that are intrinsically suitable for the computation of N
subjettiness. We test this claim using the previously
described mono-, di-, and trijet event samples. The axis
candidates are simply equal to the surviving objects at level
N in the clustering flow. However, this process references
only members of the leading isolated large-radius jet, rather
than constituents of the event at large.
Figures 15 and 16 respectively exhibit distributions

of τ2=τ1 and τ3=τ2 calculated in this manner at various

transverse boosts. The intuition that τ3=τ2 should be
effective at separating W bosons from top quarks,
whereas τ2=τ1 should be good for telling QCD monojets
apart from W’s is readily validated. For comparison,
Fig. 17 shows corresponding distributions of the same
two quantities at the inner pair of pT scales, as computed
directly by DELPHES from the leading (R0 ¼ 1.0) soft-
drop jet. Although there are qualitative differences
between the two sets of distributions, their apparent
power for substructure discrimination is more or less
similar. This will be quantified subsequently with a BDT
analysis.
Our final objective involves directly tagging substruc-

ture with sequential values of the SIFT measure.
Distributions of δAB at the (N ¼ 1), (N ¼ 2), and
(N ¼ 3) clustering stages are plotted in Figs. 18, 19,
and 20, respectively, for mono-, di-, and tri-jet samples at
each of the four central simulated pT ranges. Clear
separation between the three tested object multiplicities
is observed, with events bearing a greater count of
partonic prongs tending to aggregate at larger values of
the measure, especially after transitioning through their
natural prong count. We observe that superior substructure
discrimination is achieved by referencing the measure
directly, rather than constructing ratios in the fashion

FIG. 16. Distribution of τ3=τ2 computed with SIFT axes for mono-, di-, and trijet samples at various transverse boosts.
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FIG. 17. Reference distributions of τ2=τ1 and τ3=τ2 computed by DELPHES at various transverse boosts.

FIG. 18. Distribution of δAB at the N ¼ 1 stage of clustering with SIFT for mono-, di-, and trijet samples at various transverse boosts.
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beneficial toN subjettiness. This is is connected to the fact
that δAB is explicitly constructed as a ratio from the outset.
In order to concretely gauge relative performance of the

described substructure taggers, we provide each set of
simulated observables to a boosted decision tree for train-
ing and validation. BDTs are a kind of supervised machine
learning that is useful for discreet (usually binary) classi-
fication in a high-dimensional space of numerical features.
In contrast to “deep learning” approaches based around
neural networks, where internal operations are shrouded
behind a “black box” and the question of “what is learned”
may be inscrutable, the mechanics of a BDT are entirely
tractable and transparent. While neural networks excel at
extracting hidden associations between “low level” fea-
tures, e.g., raw image data at the pixel level, BDTs work
best when seeded with “high-level” features curated for
maximal information density.
At every stage of training, a BDT identifies which feature

and what transition value optimally separates members of
each class. This creates a branch point on a decision tree,
and the procedure is iterated for samples following either
fork. Classifications are continuous, typically on the range
(0, 1), and are successively refined across a deep stack of
shallow trees, each “boosted” (reweighted) to prioritize the
correction of errors accumulated during prior stages.

Safeguards are available against overtraining on nonrep-
resentative features, and scoring is always validated on
statistically independent samples. We use 50 trees with a
maximal depth of five levels, a training fraction of ⅔, a
learning rate of η ¼ 0.5, and L2 regularization with λ ¼ 0.1
(but no L1 regularization). The BDT is implemented with
MInOS [21], using XGBoost [30] on the backend.
The left-hand panel of Fig. 21 shows the distribution of

classification scores for mono- and dijet event samples at
pT ¼ 1600 GeV after training on values of the SIFT
measure δAB associated with the final five stages of
clustering. The two samples (plotted respectively in blue
“background” and orange “signal”) exhibit clear separa-
tion, as would be expected from examination of the second
element of Fig. 18. The underlying discretized sample data
are represented with translucent histograms, and the inter-
polation into continuous distribution functions is shown
with solid lines.
The right-hand panel of Fig. 21 shows the associated

receiver operating characteristic (ROC) curve, which plots
the true-positive rate versus the false-positive rate as a
function of a sliding cutoff for the signal classification
score. The area-under-curve (AUC) score, i.e., the frac-
tional coverage of the shaded blue region, is a good proxy
for overall discriminating power. A score of 0.5 indicates

FIG. 19. Distribution of δAB at the N ¼ 2 stage of clustering with SIFT for mono-, di-, and trijet samples at various transverse boosts.
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no separation, whereas classifiers approaching the score of
1.0 are progressively ideal.
The AUC (0.91) from the example in Fig. 21 is collected

with related results in Table III. Separability of mono- and

dijet samples is quantified at each simulated range of pT
while making various feature sets available to the BDT. The
first column uses the four DELPHES N-subjettiness ratios
built from τ1 to τ5. The next column references the same

FIG. 20. Distribution of δAB at the N ¼ 3 stage of clustering with SIFT for mono-, di-, and trijet samples at various transverse boosts.

FIG. 21. Left: Example distribution of BDT classification scores for the discrimination of mono- and dijet samples, respectively
“background” and “signal,” at pT ¼ 1600 GeV. Training features include the δNAB for (N ¼ 1–5). Right: Associated receiver operating
characteristic curve for true positives versus false positives.
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four ratios but as computed with objects and axes from
the leading SIFT N-subjet tree. The third column provides
the BDT with the final (N ¼ 1–5) values of the SIFT
measure δNAB. The last column merges information from the
prior two.
The two N-subjettiness computations perform similarly,

but the fixed-radius DELPHES implementation shows an
advantage of a few points in the majority of trials. The
performance of N subjettiness degrades at large boost,
losing around 10 points relative to its high scores by
pT ≃ 1600 GeV. The SIFT δAB measure outperforms N
subjettiness in five of six trials, with an average advantage
(over trials) of seven points. Its performance is very stable
at larger boosts, where it has an advantage of at least ten
points for pT ≥ 800 GeV. Combining the SIFT measure
with N subjettiness generates a marginal advantage of
about one point relative to δAB alone.
Table IV represents a similar comparison of discrimi-

nating power between resonances associated with hard
2- and 3-prong substructures. N subjettiness is less per-
formant in this application, and the associated AUC scores
drop by around six points. Performance of the SIFT
measure degrades for soft events, but it maintains efficacy
for events at intermediate scales and shows substantial
improvement for pT ≥ 800 GeV, where its advantage over
N subjettiness grows to around 20 points.
Table V extends the comparison to resonances with hard

3- and 1-prong substructures. The SIFT N-subjettiness
computation is marginally preferred here over its fixed-
radius counterpart. The δAB measure remains the best single

discriminant by a significant margin, yielding an AUC at or
above 0.90 for pT ≥ 200 GeV.
We conclude this section with a note on several addi-

tional procedural variations that were tested. Some manner
of jet boundary enforcement (either via a fixed R0 or the
SIFT isolation criterion) is observed to be essential to the
success of all described applications. Likewise, filtering of
soft/wide radiation is vital to axis finding, computation of
N subjettiness, and the reconstruction of mass resonances.
Increasing the preclustering cone size from 0.01 radians to
0.1 substantially degrades the performance of N subjetti-
ness, whereas discrimination with δAB is more resilient to
this change.

X. COMPUTABILITY AND SAFETY

This section addresses theoretical considerations asso-
ciated with computability of the SIFT observable δAB.
Expressions are developed for various limits of interest.
Infrared and collinear safety is confirmed, and deviations
from recursive safety are calculated and assessed. It is
suggested that SIFT’s embedded filtering criterion may
help to regulate anomalous behaviors in the latter context,
improving on the Geneva algorithm.
Soft and collinear singularities drive the QCD matrix

element governing the process of hadronic showering. In
order to compare experimental results against theoretical
predictions, it is typically necessary to perform all-order
resummation over perturbative splittings. In the context of
computing observables related to jet clustering, the calcu-
lation must first be organized according to an unambiguous
parametric understanding of the priority with which objects
are to be merged, i.e., a statement of how the applicable
distance measure ranks pairings of objects that are subject
to the relevant poles. Specifically, cases of interest include
objects that are (i) mutually hard but collinear, (ii) hierarchi-
cally dissimilar in scale, and (iii) mutually soft but at wide
angular separation. Pairs in the first two categories are
likely to be physically related by QCD, but those in the
third are not.
In order to facilitate considerations of this type, we

outline here how the Eq. (15) measure behaves in relevant
limits. The angular factor ΔR̃2

AB carries intuition for small

TABLE III. Area under curve ROC scores for discrimination of
resonances with hard 1- and 2-prong substructure using a BDT
trained on various sets of event observables.

pGeV�5%
T τNþ1=N

DELPHES τNþ1=N
SIFT δNAB δþ τ

100 0.62 0.68 0.69 0.70
200 0.91 0.86 0.88 0.89
400 0.89 0.85 0.91 0.92
800 0.82 0.79 0.92 0.93
1600 0.77 0.74 0.91 0.92
3200 0.78 0.76 0.88 0.90

TABLE IV. Area under curve ROC scores for discrimination of
resonances with hard 2- and 3-prong substructure using a BDT
trained on various sets of event observables.

pGeV�5%
T τNþ1=N

DELPHES τNþ1=N
SIFT δNAB δþ τ

100 0.61 0.61 0.63 0.65
200 0.63 0.60 0.71 0.72
400 0.82 0.74 0.90 0.90
800 0.85 0.80 0.94 0.95
1600 0.77 0.77 0.97 0.97
3200 0.77 0.79 0.98 0.99

TABLE V. Area under curve ROC scores for discrimination of
resonances with hard 3- and 1-prong substructure using a BDT
trained on various sets of event observables.

pGeV�5%
T τNþ1=N

DELPHES τNþ1=N
SIFT δNAB δþ τ

100 0.70 0.75 0.77 0.77
200 0.86 0.87 0.90 0.90
400 0.93 0.91 0.95 0.96
800 0.91 0.89 0.96 0.96
1600 0.84 0.83 0.94 0.95
3200 0.76 0.78 0.91 0.92
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differences by construction [cf. Eq. (11)], and its depend-
ence on aggregated mass has been further clarified in and
around Eq. (12). We turn attention then to the energy-
dependent factor ϵAB, as expressed in Eq. (13), in two limits
of interest. First, we take the case of hierarchically
dissimilar transverse energies, expanding in the ratio
(α≡ EA

T=E
B
T) about 0,

2 × ϵAB ⇒ 2αþ � � � ð24Þ

Next, we expand for small deviations (ζ ≡ EA
T=E

B
T − 1)

from matched transverse energies,

2 × ϵAB ⇒ 1 −
ζ2

2
þ � � � ð25Þ

The SIFT algorithm is observed be safe in the soft/
infrared and collinear (IRC) radiation limits, because the
object separation measure explicitly vanishes as (α ⇒ 0) or
(ΔR ⇒ 0), up to terms proportional to the daughter mass
squares [cf. Eq. (12)] in the latter case. This feature ensures
that splittings at small angular separation or with hierarchi-
cally distinct transverse energies will be reunited during
clustering at high priority.
With a clustering sequence strictly ranked by generated

mass, JADEwas plagued by an ordering ambiguity between
the first and third categories described above, which
presented problems for resummation. Geneva resolved
the problem of mergers between uncorrelated mutually soft
objects atwide separation in the sameway that SIFTdoes, by
diverging when neither entry in the denominator carries a
large energy.
Yet, both SIFT and Geneva fall short of meeting the

recursive IRC safety conditions described in Ref. [31] at
the measure level. The challenge arises when a soft and
collinear emission splits secondarily into a very collinear
pair, as first observed in Ref. [32]. This scenario is
visualized in Fig. 22, with hard object λ recoiling off a
much softer emission κ (having Eκ

T=E
λ
T ≪ 1) at a narrow

pseudorapidity separation (Δη ≪ 1). Azimuthal offsets are
neglected here for simplicity. The secondary radiation
products are of comparable hardness for the situation of
interest, carrying momentum fractions (z ≃½) and (1 − z)
relative to their parent object κ.
It can be that the members of this secondary pair each

successively combine with the hard primary object rather
than first merging with each other. This ordering ambiguity
implies that the value of the measure δAB after the final
recombination of all three objects is likewise sensitive to
the details of the secondary splitting. However, the mis-
match is guaranteed to be no more than a factor of 2.
Accordingly, this is a much milder violation than one
associated with a divergence (as for JADE). While it does
present difficulties for standard approaches to automated
computation, it does not exclude computation.
We conclude this section by sketching the relevant

calculation, translating results fromAppendix F of Ref. [31]
into the language of the current work. The secondary
splitting is characterized by a parameter μ2κ ≡ ðmκ=pκ

TÞ2.
We further apply the limit (μ2κ ≪ 1), which implies
(Eκ

T ≃ pκ
T), and treat the radiation products of object κ as

individually massless. The value of the measure for merging
these objects is readily computed with Eq. (4), yielding
(δz1−z ≃ 2μ2κ). Note that the coefficient comes from the sumof
squares in the measure denominator, in the limit of a
balanced splitting. The merger of objects λ and κ (given
prior recombination of the κ products) is best treated with
Eq. (15), defining μ2λ ≡ ðmλ=pλ

TÞ2, and applying the limits in
Eqs. (12) and (24), as follows:

δκλ ≃
�
Eκ
T

Eλ
T

�
× ½ðΔηκλÞ2 þ μ2κ þ μ2λ �: ð26Þ

However, if the remnants of object κ instead combine in
turn with object λ, then the final value of the measure
(taking z ≥ ½ without loss of generality) is instead
(δzλ ≃ z × δκλ). In addition to that overall rescaling, the μ2κ
term from Eq. (26) is absent from the analogous summation
in this context. If the κ splitting is hierarchically imbalanced
(with z ≃ 1), then the secondary splittings are less resistant
to merging first and the terminal measure value becomes
insensitive to the merging order.
For balanced splittings, the physical showering history

will be “correctly” rewound if (δz1−z < δ1−zλ ). But, there are
no applicable kinematic restrictions enforcing that con-
dition, and SIFT’s preference for associating objects at
dissimilar momentum scales actually constitutes a bias in
the other direction. On the other hand, the filtering criterion
can help curb potential ambiguities in this regime.
Specifically, the energy scale factor (2 × ϵz1−z ≃ 1) associ-
ated with products of object κ will be subject here to the
Eq. (25) limit. So, the “wrong” order of association is
strongly correlated with cases where (ϵ1−zλ ≪ 1), since this
is generally required in order to overcome the tendency for

FIG. 22. Hard object λ emits a soft and collinear object κ at
separation Δη, which experiences a secondary collinear splitting
into a pair of objects with comparable hardness (z ≃½).
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strict collinearity (ΔR̃z
1−z ≪ ΔR̃1−z

λ ) in secondary splittings
to commensurate momentum scales. In turn, this enhances
the likelihood that the drop condition from Eq. (22) will
veto any such merger. A full clarification of the SIFT
filtering criterion’s implications for recursive IRC safety is
beyond our current scope, but is of interest for future work.

XI. CONCLUSIONS AND SUMMARY

We have introduced a new scale-invariant jet clustering
algorithm named SIFT (scale-invariant filtered tree) that
maintains the resolution of substructure for collimated
decay products at large boosts. This construction unifies
the isolation of variable-large-radius jets, recursive
grooming of soft wide-angle radiation, and finding of
subjet-axis candidates into a single procedure. The asso-
ciated measure asymptotically recovers angular and kin-
ematic behaviors of algorithms in the kT family, by
preferring early association of soft radiation with a
resilient hard axis, while avoiding the specification of a
fixed cone size. Integrated filtering and variable-radius
isolation criteria resolve the halting problem common to
radius-free algorithms and block assimilation of soft wide-
angle radiation. Mutually hard structures are preserved to
the end of clustering, automatically generating a tree of
subjet axis candidates at all multiplicities N for each
isolated final-state object. Excellent object identification
and kinematic reconstruction are maintained without
parameter tuning across more than a magnitude order
of transverse momentum scales, and superior resolution is
exhibited for highly boosted partonic systems. The mea-
sure history captures information that is useful for tagging
massive resonances, and we have demonstrated with the
aid of supervised machine learning that this observable
has substantially more power for discriminating narrow
1-, 2-, and 3-prong event shapes than the benchmark
technique using N subjettiness. These properties suggest
that SIFT may prove to be a useful tool for the continuing
study of jet substructure.
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APPENDIX A: REVIEW OF COLLIDER
COORDINATES

This appendix provides a brief pedagogical review of
hadron collider coordinates. In this application, it is tradi-
tional to use a mapping from four-vector coordinates Pμ ≡
fE;  pg into coordinates fη;ϕ; pT; mg that are well-behaved
under Lorentz boosts along the longitudinal axis ẑ of the
beam. The pseudorapidity η (defined following) is a pure
function of the zenith angle θ,

η≡ 1

2
ln

�j  pj þ pz

j  pj − pz

�
≡ − ln tan

�
θ

2

�
: ðA1Þ

Forward (or backward) scattering correspond to η equals
plus (or minus) infinity, while η ¼ 0 represents entirely
transverse scattering. The azimuthal angle ϕ measures
orientation about the ẑ axis. The transverse momentum
pT is the magnitude of the 3-vector momentum  p projec-
tion perpendicular to the beam,

pT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
: ðA2Þ

The final parcel of kinematic information is the Lorentz-
invariant mass m, which is especially important for jets
representing the composition of several lower level physi-
cal objects. The four-vector sum of individually massless
objects may accumulate cancellation in the three-
momentum that manifests as a non-negligible mass square
in the invariant product,

pμpμ ≡ E2 −  p ·  p ¼ m2: ðA3Þ
The quantity ΔR provides a radianlike measure of the

relativistic “angular separation” between an object pair,

ΔR≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

q
: ðA4Þ

The motivation for the definition in Eq. (A1) is that
differences Δη in pseudorapidity are “nearly” invariant
under longitudinal boosts. To be precise, differences in the
rapidity y (defined following) are a strict longitudinal
invariant (as are the transverse coordinates pT and ϕ),
and y converges with η in the relativistic ðm ≪ pTÞ limit,

y≡ 1

2
ln

�
Eþ pz

E − pz

�

¼ ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ηþ m2

p2
T

q
þ sinh ηffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2

p2
T

q
1
CA: ðA5Þ

Figure 23 provides a visualization of angular dependence
of the pseudorapidity, along with deviation from the
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rapidity for various amounts of transverse boost. See
Ref. [33] for an argument on the primacy of rapidity y.

APPENDIX B: SOFTWARE IMPLEMENTATIONS

This appendix describes two publicly available imple-
mentations of the SIFT algorithm. It also summarizes
provided materials that facilitate reproduction of the key
analyses in this manuscript. Finally, it outlines challenges
to and plans for future integration with the FastJet contri-
butions library.
The AEACuS, RHADAManTHUS, and MInOS packages

respectively automate the processes of event analysis,
visualization, and machine learning in a collider physics
context. These tools are distributed and maintained at
GitHub [21] by JWW, and inquiries are welcome. A
quick-start tutorial (with a link to a video presentation)
is additionally available at Ref. [34]. In brief, each of these
programs is invoked from the command line and is
interpreted with PERL 5.8+. Certain back-end features are
implemented in Python 3, importing modules that include
Matplotlib and XGBoost, as noted previously. All instructions
regarding the computation of observables, application of
event selection, generation of plots, and application of
machine learning are specified in an associated card file,
using a compact meta-language. Control cards used in the

preparation of this work are provided with its source
package on the arXiv.
These programs are designed for easy integration with

the standard MadGraph/MadEvent, PYTHIA8, and DELPHES

chain, and cards are similarly included that document
our approach to event production, generator-level selec-
tions, and the simulation of showering, hadronization, and
detector effects. AEACuS autogenerates an extended-LHCO
event record that bundles parton, hadron, and detector-level
information (with weights) from the primary simulation
chain for subsequent analysis. It further facilitates a variety
of jet clustering and substructure applications, including an
implementation of the SIFT algorithm. This usage is
documented further in the example “cut” cards. The
output is a space-delimited plain-text record of observables
for each passing event, which serves in turn as an input to
subsequent plotting and machine-learning operations.
The second existing public implementation of the SIFT

algorithm is in the Mathematica notebook used here to
produce jet clustering films and still frames. That notebook
is likewise distributed on GitHub, bundled with the tools
described prior. To run the notebook, simply place a
suitable extended-LHCO event record into its working
directory and “evaluate initialization cells.” User-adjustable
parameters are documented in the notebook, for stipulating
the clustering algorithm (members of the kT family are also
supported), a cone size (as applicable), any halting and
filtering criteria, and whether ultra-soft ghost radiation
should be included. An .mp4 film is typically output
within a few minutes on a laptop computer, although
running the notebook with ghost radiation enabled can
be considerably more time consuming.
Additionally, a third implementation is planned that

interfaces with FastJet, facilitating broader exploration of
the SIFT algorithm within existing workflows. The FastJet

implementation of Cacciari and Salam is famous for
reducing the naïve OðN3Þ runtime required for iterative
pairwise jet clustering to OðN2Þ or even to OðN logNÞ in
certain cases. It assumes a pairwise clustering measure
δij ≡min½fðpi

TÞ; fðpj
TÞ� × gðΔRijÞ composed as the prod-

uct of a kinematic function referencing the minimal value
of fðpi;j

T Þ over the pair times a “geometric” measure
gðΔRijÞ that is typically a power of the pairwise angular
separation. In contrast to the kT family of measures, where
factorization under the “FastJet Lemma” reduces neighbor
finding to the ΔR plane, the search for SIFT neighbors is
necessarily active in (at least) three dimensions. Moreover,
the associated measure [cf. Eq. (15)] prioritizes furthest
neighbors along one of these axes (u). Adaptations capable
of confronting these unique challenges while maintaining
“linearithmic” OðN logNÞ scaling will be presented in a
future work.

FIG. 23. The pseudorapidity η (bold, orange) is plotted as a
function of the polar angle θ. For comparison, the longitudinal
rapidity y (fine, blue) is also shown for various values of (m=pT),
equal to (½, 1, 2, 5, 10, 20) from top to bottom.
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