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ABSTRACT
Geographic phenomena are considered complex due to the hetero-
geneous nature of spatial dependencies. It is impossible to specify a
universal law described in statistical or physical languages that can
perfectly characterize a real-world geographic process and explain
how it forms certain observed patterns. Traditional spatial analytics
based on strict statistical principles, strong assumptions, or classic
computation workflows are facing great challenges and opportu-
nities when embracing the explosive growth of geospatial data
and recent technical innovations. Here, we highlight the promises
of Intelligent Spatial Analytics (ISA), a new set of spatial analyt-
ical approaches based on spatially explicit deep neural networks
with more flexible data representation, modules for complex spatial
dependence, weaker model prior assumptions, and hence the en-
hanced ability to predict/explain unknowns. Three essential topics
in spatial analysis, i.e., geostatistics, spatial econometrics, and flow
analytics are elaborated as examples in the vision of ISA. We also
discuss challenging issues of ISA as an invitation to explore deeper
linkages between machine/deep learning and spatial analysis at the
frontier of Geospatial Artificial Intelligence.
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• Applied computing → Environmental sciences; • Information
systems→Geographic information systems; •Computingmethod-
ologies → Model verification and validation.
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1 BACKGROUND
Spatial analytics, such as spatial interpolation methods, spatial re-
gression models and point pattern analysis, provide both qualitative
and quantitative approaches to understanding complex spatial pat-
terns formed by many real-world geographic processes. Classic
operations of such spatial analysis and modeling (SAM) in Geo-
graphic Information Systems are well established with standard
data structures and computation workflows, answering questions
such as: “what are the spatial autocorrelationmeasures for a rasterized
air pollution pattern?” “how the socioeconomic factors are associated
with the crime event points?”, and “which is the best location to open
up a restaurant given the street network layout?’’. Despite the rich
history of SAM in the fields of Geographic Information Science (GI-
Science) and regional studies, we are seeing explosive growth and
diversity of geospatial data coming from various sources together
with methodological and technical innovations in relevant compu-
tational disciplines posing great opportunities but also challenges
to the current paradigm of spatial analytics.

The uniqueness of geospatial problems lies in the fact of spatial
heterogeneity, i.e., it is impossible to find a universal law described
in statistical or physical languages that can perfectly replicate a
geospatial process all over the geographical surface [4]. Taking
spatial regression as an example, it’s common to accept that the
association coefficient between household average income and the
crime rate can change in space, while it is not yet considered in
classic SAM that the spatial regression function itself could be of
different mathematical nature across study areas or scales. For pre-
dictive scenarios such as the spatial interpolation of air temperature,
stationary statistical assumptions and ad-hoc mathematical models
are commonly adopted to simplify the variation structure of the spa-
tial process, in order to conclude at the unknown locations based on
data observed at samples. Such mismatches, i.e., gaps between the
complex nature of geospatial phenomena to be understood and the
classic statistical computation paradigm of SAM, are widely-aware
but yet not adequately emphasized in the community.

To get the most out of the explosive growth and diversity of
geospatial data and technical innovations, traditional spatial ana-
lytics face a major task in the coming years: deriving new methods
and models that can learn more from the data than current ap-
proaches can, while still respecting our evolving understanding of
the geospatial nature’s complexity. In particular, recent advances in
statistical modeling and artificial intelligence (AI) can be employed
to the development of a future essential toolkit for spatial analytics.
AI techniques promise to make the modeling of complex systems
more manageable, because of the use of more general symbolic
representations arguing that various logical languages provide the
basis for construction such intelligent models [12]. Taken together,
it is not easy to define what can be considered intelligence in spatial
analytics, but the undebatable renovation comes with AI is already
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happening in related fields such as remote sensing [1] and urban
studies [9, 14]. AI techniques are now adopted in many geographi-
cal applications, while their use lag behind some other disciplines
mainly because (deep) neural networks are considered a “black
box” and are believed to be extremely complicated compared to
traditional SAM. It is not well-introduced to geographers on how to
take advantage of AI for new designs of spatial analytics. There is
also a lack of research emphasis on bringing such methodological
innovation into spatial analysis.

In this paper, we identify the promises of Intelligent Spatial
Analytics (ISA), which extends traditional SAMwithmore flexibility
on representing diverse spatial data, less model prior assumptions,
modules to learn complex spatial dependence, and higher accuracy
in approaching unknowns. Three methodological branches that are
essential in spatial analytics are elaborated as examples in the vision
of ISA, i.e., geostatistics, spatial econometrics, and flow analytics.
Research potentials are further discussed with respect to issues
such as transferability, interpretability, and biases.

2 ENABLING TECHNOLOGIES
The widespread proliferation of information and communication
techniques (ICTs) has fostered a plethora of big geo-data characteriz-
ing the spatiotemporal information within our human-environment
systems. A challenge coming with the abundance of data is the in-
creasing data complexity. Our ability to collect and create geospatial
data far outpaces our ability to process and digest it, let alone un-
derstand it sensibly. We are seeing issues of contemporary spatial
analytics in handling the data diversity when dealing with interdis-
ciplinary geospatial problems before providing a satisfying solution.
Spatial features derived from diverse sources may be represented
in different data types, combining raster, vector, network, flow and
other irregular structures. Also, there could be multiplex geospa-
tial knowledge to be learned that can not be simplified by ad hoc
modeling functions based on inaccurate domain knowledge.

As a result of computational innovation, AI is flourishing in
many fields. Deep learning (DL) methods have been proven their
superior abilities to approach numerous complex problems that are
almost impossible to solve in the past, such as speech recognition,
image understanding, and language translation [10]. For Geogra-
phy, Openshaw’s influential book, named Artificial Intelligence
in Geography, provided one of the first discussions to strongly
support the use of AI in geography [12]. One year later, computa-
tional neural network was proposed as a pioneer prototype that
combined spatial analytics with neural networks [2]. Around five
years ago, geospatial artificial intelligence (GeoAI) emerged as an
interdisciplinary area, where AI techniques are further developed
and utilized for geographic knowledge discovery [6].

In this context, a series of GeoAI workshops have been orga-
nized at ACM SIGSPATIAL since 2017, recognized as the premier
conference at the intersection of geospatial data analysis and com-
puter science [5]. Despite many GeoAI studies published, most
efforts are still bonded to the end-to-end DL frameworks, focus-
ing on adjusting geospatial data into well-established DL models
such as convolutional neural networks (CNN) and recurrent neural
networks (RNN) to achieve better performances on downstream ap-
plications such as land feature classification, image geolocalization,

traffic prediction, to name a few [3]. That is, the comprehensive
linkages between SAM methods and DL models have seldom been
examined so far. There is usually insufficient context provided on
the logic to adopt certain neural network architecture and a lack of
investigation on how new GeoAI models would contribute to the
current family of spatial analytics.

3 INTELLIGENT SPATIAL ANALYTICS
Spatial analytics have been evolving through the integration of bet-
ter theories, following strict statistical principles, fixed domain
knowledge, and classic computation paradigm. In the complex
human-environment systems, contemporary questions raised are
even harder to answer, while SAM methods are not intelligent
enough to cope with the exploding data, handle the geospatial com-
plexity, take advantage of the computational innovation that is
happening, or support new geographic knowledge discovery. The
focus of this paper is to propose the concept of Intelligent Spatial
Analytics (ISA). We acknowledge that ambiguity may persist in
understanding what can be considered as intelligence in spatial
analysis and uncertainty may even increase when embracing the
transformation. However, we assume there are some general trends
towards the intelligent era of SAM. We invite future works to ex-
plore the combination of ISA and current spatial analytics in fields
such as geostatistics, spatial econometrics, spatial interaction mod-
eling, spatial optimization, pattern classification/clustering, spatial
simulation, human mobility, etc.

3.1 Motivation
We suggest ISA to be a new set of AI-powered computational ap-
proaches designed specifically for SAM. Conceptually, ISA methods
and models are defined based on spatially explicit deep neural net-
works that fulfill the invariance, representation, formulation and
outcome tests in the context of GeoAI [6]. Besides that, there are
four basic motivations to be considered:

• Flexible data representation: Usage of various neural net-
work techniques to handling diverse data structures, e.g.,
regular CNN for rasterized spatial data while graph convo-
lutional networks (GCN) for vectorized spatial data.

• Modules for spatial dependence: Explicit consideration
to model complex spatial dependence concepts such as the
notion of neighborhood, variation structure, autocorrelation,
distance decay, scale, etc.

• Weak model assumption: Loose the strict statistical as-
sumptions and not to over-specify prior model definition on
the spatial process.

• Ability to predict and explain unknowns: Go beyond
just summarizing patterns into better supporting geospatial
knowledge discovery and contributing to explainable AI.

In the following sections, we select three methodological branches
in spatial analysis as examples to show how traditional spatial
analytics can be further enriched in the vision of ISA.

3.2 Geostatistics
The key of geostatistics is to derive statistical relationships describ-
ing how the values of a target spatial variable are related to the
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information collected at samples. Traditional Kriging-based inter-
polation devises semivariogram models using prior functions such
as Gaussian, Exponential and Spherical to approximate the vari-
ation structure 𝛾 w.r.t. lag distances ℎ. Then the fitted model 𝑓 ∗𝛾
provides the weights knowledge for interpolation. In view of ISA,
spatially explicit neural networks can be developed to formalize
the spatial interpolation process without such strong prior model
assumptions. For example, a generative adversarial neural networks
(GAN) can be adopted to approximate the spatial conditioned prob-
ability distribution 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑍 |𝑥 𝑗 ,∀𝑗 ∈ 1, · · · , 𝑘) that best describes
data observations 𝑝𝑑𝑎𝑡𝑎 (𝑍 |𝑥 𝑗 ,∀𝑗 ∈ 1, · · · , 𝑘) through an adversar-
ial game between the generator 𝐺 and the discriminator 𝐷 [21],
as shown in Figure 1. By structuring each location as a neuron
in the deep learning model, learnable convolutional weights can
imitate the data-borrowing process from nearby samples, offering
a more flexible notion on the spatial dependence. Besides, auxiliary
learning is found to be able to further amplify spatial knowledge
such as the autoregressive structures and local patterns for more
accurate geostatistical modeling [8].

Figure 1: Traditional Kriging-based v.s. Generative adversar-
ial learning based spatial interpolation

3.3 Spatial econometrics
For scenarios where the multivariate distributional data is available,
spatial regression models are commonly used to seek the statisti-
cal associations between observed variables. Current endeavors
rooted in spatial econometrics use prior model assumptions such
as the linearity of regression equations, the normality of distribu-
tions, and ad hoc spatial dependence structure in weights matrix.
These assumptions overlook the non-linear nature of spatial as-
sociations and enforce the specification of spatial lag effects such
as the auto-regressive, cross-regressive and linear coefficients to
be within the predefined weights matrix and linear regression. As
shown in Figure 2, GCN as a variant of the CNN framework, is
naturally suitable to build a conceptual mapping between the graph
structure and the spatial weights matrix for irregularly distributed
spatial units, and is capable of capturing complex spatial lagged
effects via the multi-layer graph convolutional filters across feature
channels. Encouraging evidences have been founded recently that
GCN can replicate the workflow of spatial regression, thanks to its
propagation mechanisms, spatial locality learning nature and the

semi-supervised training strategy [22]. This new spatial regression
logic has been adopted in several latest urban studies to understand
complex association relationships based on irregular geographic
units such as places [23] and street segments [16].

Figure 2: Traditional spatial lag models v.s. Graph convolu-
tional neural networks in spatial regression

3.4 Flow analytics
Flow analytics aim at modeling the spatial flow intensity between
locations (e.g., the number of people move from one location to
another) given the demographics and geographic characteristics
(e.g., population and distance). Traditional spatial interaction mod-
els such as the gravity model and radiation model assume the flow
between two locations increases with the locations’ populations
while decreases with spatial displacement factors like distance or
intervening opportunities. These models have relatively fixed in-
puts and formal expressions, unable to capture the structure of
real flows, and also ignore the rich features that are essential to
account for the complex geographical landscape. In light of in-
telligent flow analytics, deep gravity model [15] extends gravity
model into a shallow neural network with added hidden layers
to introduce nonlinearities and additional geographical features
such as land uses and POI types. Latest GCN-based deep learning
models such as SI-GCN [19] and ConvGCN-RF [20] also report
accuracy improvement in predicting unobserved spatial flows with
the help of distributed embeddings to integrate diverse geographic
features and the spatially-informed graph convolutional modules
to approximate the greater variability of real spatial flows [14].

4 POTENTIALS AND CHALLENGES
In this section, we outline several challenging issues that need to
be addressed to advance the development of ISA.

• Transferability and Generalization. GeoAI model’s trans-
ferability and generalization across space are weak due to
the spatial heterogeneity [4]. To address this issue, geospa-
tial knowledge-informed models have been developed and
are generalizable for both natural and man-made features
[11]. Spatial-heterogeneity-aware deep learning architec-
tures have shown promising results in spatial prediction
tasks [17]. ISA should take the advantages of generalization
capability across geographic scales from traditional SAM and
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the automatic spatiotemporal feature extraction capability
from deep neural networks. ISA models for small regions
should be transferable to large regions and vice versa.

• Interpretability and Explainability. To open the AI model
“black boxes”, great efforts have been made in the AI commu-
nity to increase the interpretability and explainability of deep
learning models, such as the layer-wise relevance propaga-
tion (LRP) to assess the feature importance in classification
tasks and the attention mechanisms to explain the relevant
context in neural networks [11]. Future development of ISA
should keep the interpretability and explainability in mind,
especially how to incorporate spatial principles (e.g, spatial
dependence) and geographic knowledge to advance explain-
able ISA models. One direction might be the incorporation of
spatiotemporal-LRP and attention weights in assessing the
relevance of geographic contexts in spatially explicit neural
network models [18]. Moreover, the inclusion of causal in-
ference capabilities including association, intervention and
counterfactuals from econometrics would further enhance
the intelligence of spatial analytics [13].

• Biases and Ethics. There may exist multiple types of bi-
ases in the ISA computational frameworks such as data bias,
model bias, and inductive bias. ISAmay become reliant on un-
desired sensitive features (e.g., human socioeconomic status),
and result in unfair decision making. Those biases should be
mitigated throughout the data-model-action loop to ensure
equitable outcomes. Emerging ethical principles including
transparency, justice, non-maleficence, responsibility and
privacy should also be considered when developing ISA for
social good [7]. For example, while human mobility and dig-
ital contact tracing are important for geospatial modeling
of virus spread, privacy concerns in location tracking have
generated barriers for data usage and method replicability.

5 CONCLUSIONS
In this paper, we call for attentions on Intelligent Spatial Analytics
(ISA), a set of new computational approaches designed specifically
for spatial analysis and modeling based on spatially explicit deep
neural networks. ISA methods and models have the motivations to
extend traditional spatial analytics with more flexible data repre-
sentation, intelligent module for spatial dependence, weaker model
prior assumptions, and higher accuracy for predictions and ex-
planations. Geostatistics, spatial econometrics and flow analytics
are presented as examples of how major methodological branches
in spatial analysis can be enriched with the ISA motivations. Re-
searchers should also be aware of challenging issues such as model
transferability, interpretability, bias and ethics to promote the fur-
ther breadth and widespread of GeoAI in spatial analytics.
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