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Asymmetric block copolymer ultrafiltration membranes have a wide range of applications from water purifi-
cation and virus filtration all the way to drug delivery. Although optimizing flow is critical to the performance of
such ultrafiltration membranes, their numerical flow characterization has remained challenging. The main
problems include hierarchical pore structure delineation and lack of an efficient, image-based pore-scale
modeling approach. In this study, we use 2D scanning electron microscopy (SEM) images with a variety of

resolutions to delineate the hierarchical asymmetric pore structure. To simulate flow, a novel stochastic pore
network model is proposed. The absolute permeabilities of two asymmetric block copolymer ultrafiltration
membranes are computed and compared with experimental results showing good agreement.

1. Introduction

Ultrafiltration membranes have a wide range of applications ranging
from water purification, protein separation, and virus filtration to drug
delivery [1,2]. A class of ultrafiltration membranes that has received
much attention in the past decade is asymmetric block copolymer (BCP)
membranes synthesized via a hybrid block copolymer self-assembly and
non-solvent induced phase separation process first introduced by Pei-
nemann et al. [3], and later coined SNIPS [4].

A key advantage of SNIPS membranes is that their integral asym-
metric structure eliminates the permeability-selectivity tradeoff. BCP
self-assembly on the top surface gives rise to a thin (~100 nm), ordered,
isoporous separation layer that ensures high permselectivity, whereas
the hierarchical meso- to macroporous substructure provides mechani-
cal stability. Pore sizes in the separation layer can be tailored to the
desired application by varying the BCP molar mass or by incorporating
additives into the casting dope [5,6]. Membrane substructure can be
tuned from sponge-like to finger-like by systematically varying casting
parameters such as polymer concentration and evaporation time [7].
Sponge-like substructures have densely packed pores and are typically
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less permeable than finger-like substructures, which are characterized
by macrovoids (“fingers™) that extend from the bottom of the membrane
up to the separation layer [8]. This study focuses on SNIPS membranes
with sponge-like substructures.

Optimizing flow is critical to the performance of BCP ultrafiltration
membranes, however, little has been reported on their numerical flow
characterization [9,10]. One of the main challenges is the delineation of
the hierarchical pore structure. Due to the wide pore size distribution
throughout the SNIPS membrane substructure, acquiring a full
high-resolution three-dimensional (3D) reconstruction is cumbersome
and costly. For example, Sundaramoorthi et al. [11] had to use focused
ion beam scanning electron microscopy (FIB/SEM) and serial block-face
SEM (SBF/SEM) imaging techniques to create a 3D reconstruction of a
BCP membrane, from which the porosity profile could be extracted.
Most studies, however, simply restrict pore size characterization to the
easily characterizable (e.g., via SEM) separation layer [12].

Another major challenge in flow characterization of BCP membranes
is the lack of an image-based pore-scale modeling approach that is
computationally efficient and that can capture such wide pore size dis-
tributions. Traditionally, analytical and empirical equations [13] are
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used to study the effect of pore morphology on membrane permeability.
Shi et al. [10] used GeoDict (Math2Market GmbH, Germany) to generate
a 3D digital structure similar to that of asymmetric sponge-like and
finger-like membranes and simulated flow using Stokes and Stokes—
Brinkman equations. Although good agreement was achieved between
computed and measured permeability, image segmentation techniques
and SEM image data extraction were not described in the paper.

Pore-scale flow modeling approaches can generally be classified into
topologically-consistent and stochastic. Topologically-consistent ap-
proaches are used when a 3D image of the porous medium is available.
Examples range from direct numerical simulation (DNS) techniques,
such as finite volume method (FVM) and lattice Boltzmann method
(LBM), to computationally faster methods such as pore network
modeling (PNM) and pore topology method (PTM) [14-16]. In the
absence of a 3D image of the porous medium, stochastic approaches are
used to investigate pore-scale flow properties. These methods are based
on the statistical and empirical information available for the void space.
One of the most widely used stochastic approaches is the stochastic
version of the pore network modeling method, often referred to as sto-
chastic pore network modeling (SPNM). SPNM uses statistical properties
of the void space such as its pore size distribution, pore connectivity and
pore density to create a network model of the porous structure, and
employs simplified 1D equations or analytical relations to describe flow
in each pore element. For an in-depth review of pore network modeling
methods, readers are encouraged to read Xiong et al. [17].

In this study, we address the challenge of pore structure delineation
by using an array of SEM images with different resolutions. Tradition-
ally, the 3D information of BCP structures can be obtained using trans-
mission electron microscopy (TEM) tomography, an approach that has
recently been extended to substantially larger sample volumes via “slice-
and-view” scanning electron microscopy (SVSEM, also known as FIB/
SEM) [18]. Such techniques are still limited, however, in both their
accessibility as well as their sample volume relative to the dimensions of
asymmetric ultrafiltration membranes described here. In contrast, reg-
ular SEM imaging equipment is readily available in electron microscopy
imaging facilities world-wide, and was therefore used to provide imag-
ing input for our studies. SEM images were segmented using a contin-
uous max-flow and min-cut algorithm and collectively used to describe
the pore size distribution and pore density profile of the membrane. To
get insight into the 3D pore structure of the membrane, a 3D polymeric
scaffold with larger pore structure is used. To address the challenge of
pore-scale flow simulation, a novel stochastic pore network model is
proposed and used to compute the absolute permeabilities of two block
copolymer membranes, which are compared with experimental
measurements.

The outline of this article is as follows. A brief overview of SNIPS
membrane fabrication, imaging and permeability measurements is
provided in Sections 2.1-2.3. Next, the structural properties of the
membranes are discussed (Section 2.4) followed by detailed description
of stochastic pore network generation and permeability calculation
using SPNM (Section 2.5). In Section 2.6, a hypothesis is proposed on the
structure of mesoporous walls that enables us to differentiate macro-
pores from mesopores. This hypothesis is later used to delineate the
hierarchical pore size distribution of the membrane. In Results (Section
3), we use the SEM images of an actual membrane to showcase the step-
by-step process from raw SEM images to permeability calculations.
Finally, the discussion of the results and conclusions are presented in
Sections 4 and 5. Appendices (Appendix A-Appendix C) provide sup-
plementary materials for a second membrane, the segmentation method
and 3D feature extraction from the polymeric scaffold.

2. Materials and methods
2.1. Polymer synthesis and membrane fabrication

Two poly(isoprene-b-styrene-b-4-vinylpyridine) (ISV) triblock
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terpolymers were synthesized using an established sequential anionic
polymerization technique detailed elsewhere [19]. BCP characteristics
were determined using a combination of tetrahydrofuran (THF) gel
permeation chromatography (GPC) and 'H nuclear magnetic resonance
(NMR) in chloroform-d. ISV87 had a molar mass of 87 kg mol_l, and
poly(isoprene) (PI), poly(styrene) (PS) and poly(4-vinylpyridine)
(P4VP) fractions of 28, 57, and 15 wt%, respectively. ISV138 had a
molar mass of 138 kg mol ™!, and consisted of 20 wt% PI, 67 wt% PS, and
13 wt% P4VP. The polydispersity indices (PDI) of ISV87 and ISV138
were 1.14 and 1.18, respectively.

BCP membranes were fabricated using the SNIPS process [19].
Casting solutions were prepared by dissolving 11 wt% ISV87 (or ISV138)
polymer in a binary solvent system of 1,4-dioxane (DOX) and THF (7:3
by weight) and stirring until homogeneous. Solutions were casted onto a
glass substrate using an automated blade-casting system adjusted to a
gate height between 0.203 mm and 0.229 mm. Films were allowed to
evaporate for 80 s to drive self-assembly on the top surface and create a
concentration gradient across the film depth. Thereafter, films were
immersed in a non-solvent deionized (DI) water bath (18.2 MQ-cm) to
precipitate out the membrane and kinetically trap the asymmetric pore
structure stemming from the concentration gradient. Membranes were
stored in DI water until further use.

2.2. Scanning electron microscopy

SEM images were acquired using either a Tescan Mira3 field emis-
sion scanning electron microscope (FE-SEM) equipped with an in-lens
detector (accelerating voltage of 5 kV) or a Zeiss Gemini 500 SEM
(accelerating voltage of 1.5 kV). Prior to imaging, all samples were
coated with gold-palladium using a Denton Vacuum Desk II sputter
coater. Images of the membrane top surface were used to delineate the
ordered pore structure of the separation layer (Fig. 4c and Fig. A.1c).
Sample cross-sections—used to analyze the pore size gradient of the
membrane substructure—were prepared cryogenically. Cross-sectional
micrographs of ISV87 and ISV138 at various magnifications are shown
in Fig. 4a and Fig. A.1a, respectively.

2.3. Hydraulic permeability tests

Permeability tests were conducted using a 10 mL dead-end stirred
cell (Amicon 8010, Millipore Co.) with an active area of 4.1 cm?. The
stirred cell was pressurized to 1 psi (0.07 bar) using N gas, and the mass
of permeated DI water was recorded using a balance. Hydraulic
permeability of each membrane was reported as the ratio of volumetric
filtrate flux (Lm 2h~!, LMH) to trans-membrane pressure (bar). The
experimentally calculated hydraulic permeabilities were 484+
66 LMH/bar and 644 + 15 LMH/bar for ISV87 and ISV138, respectively.
Reported values are averages and standard deviations from three
replicate measurements.

2.4. Membrane structure

ISV SNIPS membranes consist of a ~100 nm top separation layer
integrated with a hierarchical meso- to macroporous substructure
(Fig. la). The self-assembled top separation layer exhibits narrowly-
dispersed mesopores forming a two-dimensional (2D) square lattice
(Fig. 1c). A cross-sectional view of the separation layer shows the
interconnected pore network characteristic of cubically packed micelles
(Fig. 1b). The pores constituting the substructure increase in size as
distance from the separation layer increases. As pore size increases, the
walls themselves become mesoporous (Fig. 1d). Going forward, we will
refer to the main pores in the substructure as macropores and the pores
lining the walls as mesopores.
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Fig. 1. Structure of sponge-like SNIPS membrane. (a) Membrane cross-section. (b) Cross-sectional view of the membrane top separation layer showing the inter-
connected pore network. This image is reproduced from Ref. [19]. (c) Top-view of the membrane separation layer. (d) Mesopores lining the walls of macropores. Note
that the regions of interest shown with red rectangles/parallelograms do not necessarily represent the correct scale.

2.5. Stochastic pore network model (SPNM)

A pore network consists of pore bodies, representing the large pores
in the structure, and pore throats, representing the flow path between
each pair of pore bodies. The number of pore throats emanating from
each pore body is called coordination number of the pore body. For
instance, in the example network of Fig. 2c, the filled spheres represent
the pore bodies and solid lines represent the pore throats. From a graph
theoretical standpoint, a pore network can be viewed as an undirected
graph where nodes represent pore bodies, links represent pore throats,
and the coordination number represents the node degree.

In this study, we use a stochastic pore network modeling approach to
compute membrane permeability. Such pore networks are generated
solely based on the stochastic information available for the structure of
the porous medium. We use pore density profile and coordination
number distribution to generate a stochastic pore network. Pore density
is defined as the number of pores per unit area. Since the membrane has
an asymmetric structure, averaged structural properties are assumed to
only vary in the direction perpendicular to the membrane surface (i.e.,
the z-direction).

Due to the abrupt structural changes at the separation layer-

substructure interface, two separate pore networks will be generated.
The resulting networks will be assembled using interface links [20],
collectively representing the membrane microstructure. Once a repre-
sentative pore network of the membrane is generated, a length and a
pore throat diameter are assigned to each pore throat to compute
permeability.

2.5.1. Pore network generation

The stochastic pore network model developed in this study builds
upon the multi-directional pore network model [21] by introducing a
pore density gradient. Our proposed algorithm requires three input
parameters: dimensions of the network, pore density as a function of
depth z and coordination number distribution.

First, we need to generate the skeleton of our network comprising
cubic cells that will later contain the pore bodies. Following Fig. 2a, let
wy, be the width of a cubic cell in layer n, wheren =1,2,3,...,N, and 2,
be the z-coordinate of the cubic cell centroid. As depicted in this figure,

2, can be related to the cell width through z, = ( ?:’llwi) + % Given
1

Vi)

Therefore, one can sequentially compute the width of each layer by

pore density function y(z), the cell width in row n equals w, =

X
y
Row 1 , . . . . . w, 1\ 2 ;\
Row 2 . . . . w, 6&\/ /_\<7 \_/8
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Fig. 2. Pore network generation with prespecified pore density profile and coordination number: (a) two-dimensional view of cubic grid (dashed gray) with the
location of pore bodies (filled black circles). (b) Fully connected pore network. Solid lines represent the links (pore throats). (c) Three-dimensional pore network with
target coordination number of 6 for all nodes. The achieved average coordination number of the network is ~6.2.
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solving the following implicit equation for wy:

W SR — (€8]

n—1
7(;“’,‘ +”7">

Once the width of each layer is determined, we proceed by popu-
lating each layer with cubic cells of width w,. In the resulting cubic grid,
the pore bodies (nodes) will be located at the cell centroids. The next
step is to connect each node to all its adjacent nodes. The fully connected
network for the cubic grid in Fig. 2a is shown in Fig. 2b. Given an
arbitrary pair of nodes i and j, there can exist a link e; if the corre-
sponding cubic cells of nodes i and j fully or partially share a vertex, an
edge or a face (e.g., node 11 is connected to nodes {7,8,10,12,13,14}
because the cubic cell of node 11 is touching the cubic cells of nodes {7,
8,10,12,13,14}).

Finally, to reach the desired coordination number distribution, we
need to randomly remove the extra links. The link removal method used
in this study is inspired by Ben-Avraham et al.’s method of generating
scale-free random spatial graphs with target degree distribution [22].
Given the fully connected network and the target coordination number
distribution P(4), a coordination number Asgrge;; is assigned to each node i
in the network. The assigned values are shuffled to make sure the target
coordination number Awgrg: for each node does not exceed its current
coordination number Agyren;. Randomly going over the nodes in the
network, if Awrgeri < Acurrenti> all links {e;} for node i are listed, where
index j refers to the index of a neighboring node. From the Acyrene; links
listed in {e;}, only the links (ey) wWith Awrgetj < Acurrentj are kept. Then,
Acurrent,i — Atarger; Tandomly selected links in {e;} are removed from the
network. At this point the Acyren: for node i and its neighboring nodes j
needs to be updated. This process is repeated for all the nodes in the
network. The resulting network will have a coordination number dis-
tribution close to the target coordination number distribution. Fig. 2c
illustrates a 3D network with target coordination number of 6 and
achieved average coordination number of ~6.2.

Once the pore networks for the top separation layer and substructure
are generated, these networks are assembled by laying the separation
layer network over the substructure network and connecting adjacent
pore bodies via interface pore throats (links). We assume full connec-
tivity between the two layers (i.e., no links are removed after all the
pores at the top of the substructure network are connected to the pores at
the bottom of the separation layer network). An example of interface
links is shown in Fig. 7c.

2.5.2. Permeability simulation

To compute membrane permeability, a pressure-driven steady state
flow is simulated in the pore network by assigning inlet pressure (Pipe)
and outlet pressure (P,,4.) boundary conditions to the top of the sepa-
ration layer and the bottom of the substructure, respectively, where
Pinter > Poutier- No-flow condition is assigned to all other boundaries.
Assuming incompressible flow, mass of the fluid at each pore body is
conserved. Therefore, for each pore body i with coordination number 4;,
we have:

> ;=0 @
J

where gy is the steady state flow from pore body i to any neighboring

pore body j through pore throat ij. The steady state flow between pores i

and j is assumed to follow the Hagen-Poiseuille law, therefore:
zD},

128uL;;

95 =Ky(P; — P;), Ky = @)
where, for pore throat ij, K is the hydraulic conductance, D; is the
diameter and Ly is throat length. P; and P; refer to the fluid pressures at
pore bodies i and j, respectively, and yu is fluid viscosity. Solving the
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resulting system of linear equations, the pressure at each pore body is
computed. The overall flow rate Q can then be calculated by summing all
the flows at either the network inlet or outlet. Finally, the absolute
permeability can be calculated as:

0

k=
- Pamlet)

@

A(Pilll(‘l
where k is absolute permeability in LMH /bar and A is the cross-sectional
area of the membrane network model.

2.5.3. Input data for pore network modeling

As described in the previous sections, to construct a stochastic pore
network and compute permeability, input data are needed. Although
acquiring all this information directly via imaging is preferable, 2D SEM
images do not provide any information on the 3D membrane structure.
To this end, 3D substructural information is extracted from the 3D
tomographic reconstruction of a polymeric scaffold acquired in an
earlier study [23]. The 3D structures of the hierarchical polymeric
scaffold and the SNIPS membrane substructure are assumed to be
similar, as both are formed via spinodal decomposition. Detailed anal-
ysis of the 3D tomographic reconstruction of this polymer scaffold is
presented in Appendix C. The rest of this section discusses the input
parameters and assumptions made for each membrane layer.

Pore density is assumed to be constant throughout the separation
layer and was calculated from top surface SEM images. The 2D square-
packed top surface pore geometry and interconnected pore network
suggest that the separation layer is a simple cubic lattice. The coordi-
nation number is assumed to be constant and equal to six, where each
pore is only connected to its six closest neighbors. In other words, a pair
of pores is connected only if the associated cubic cells share a face. The
pore size distribution, also derived from top surface SEM images, is
assumed to follow a normal distribution. These pore diameters are
assigned to the pore bodies in the network and the equivalent pore
throat diameters are assumed to be the harmonic mean of the associated
pore bodies. The length of each pore throat is assumed to be the
Euclidean distance between the associated pore bodies. Separation layer
thickness is estimated from the cross-sectional SEM images.

The substructure pore density function, pore size distribution, and
thickness are derived from 2D cross-sectional SEM images. The coordi-
nation number distribution is assumed to be the same as that of the block
copolymer scaffold analyzed in Appendix C. Assignment of (equivalent)
pore diameters to pore bodies and pore throats was performed as
detailed previously for the separation layer. To account for the tortu-
osity of microstructure, the length of each pore throat is assumed to be
1.265 times the Euclidean distance between the associated pore bodies
(Appendix C).

2.6. Macropores vs mesopores

To perform a meaningful flow simulation, it is essential to differen-
tiate between the macropores and mesopores within the substructure, so
that mesopores that are not connected to the macroporous network are
not included in the pore network construction.

Fig. 3a shows two large macropores (lined in red) within the sub-
structure that are separated by a mesoporous wall of thickness 2 x b. The
pores decorating this mesoporous wall (e.g., see Fig. 1d) are connected to
adjacent macropores via mesopores that are orders of magnitude smaller
than said macropores. Including either of these mesopore types in the
SPNM flow simulation may cause significant underestimation of
permeability. Performing a meaningful flow simulation thus relies upon
differentiating between macropores and mesopores so that the latter is
excluded from pore network construction.

A closer look at the walls of a macropore (Fig. 1d) reveals a relatively
ordered array of nanoscale pores (mesopores), much like those popu-
lating the membrane top surface. We also observe larger mesopores in
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Fig. 3. (a) Example of two macropores within the membrane substructure. Distance between these macropores is denoted as 2 x b (b) Schematic of one macropore
from (a) contained within its cubic cell, as represented in the pore network model. (c) Schematic of overall substructure pore size distribution in log-log scale. Blue
line marks an arbitrary location at depth z from the top of the membrane. (d) Schematic of truncated normal distribution of In (D) for the arbitrary location shown

in (c).

2D SEM images (e.g., see pores that appear between the two macropores
marked in Fig. 3a). Based on these observations, we hypothesize that the
structure of the mesoporous walls extends throughout the entirety of the
membrane: on the surface of the wall, pores sizes are similar to those of
separation layer pores; and as wall thickens, larger pores appear within
the wall. In other words, at some distance z away from the separation
layer, thin mesoporous walls with ordered pore structure transition to
thicker porous walls that contain larger pores. Following this rationale,
we assume that the structure of all porous walls is the same throughout
the membrane, i.e., if the wall (denoted by the double-headed arrow in
Fig. 3b) has a half-thickness b, its structure is identical to the top section
of membrane with thickness b.

To formulate this hypothesis, it is essential to examine the pore size
distribution in the substructure. As will be shown in the Results section,

at each depth z, the pore diameter distribution can be estimated using a
truncated lognormal distribution. It will also be shown that the mean
and standard deviation of the natural log of pore diameters increases
linearly with In(z). Therefore, the overall pore size distribution and pore
size gradient resemble the gray region shown in Fig. 3c, where the solid
line is the mean of the natural log of pore diameter uj, ,(2), dotted lines
show one standard deviation, 6p 1n(2), away from yp, ;,(2), and the dashed
lines show the truncation limits, namely pup;,(2)+a10p;(2) and
Hp n(2)+220p 1n(2). The truncated lognormal distribution at location z is
shown in Fig. 3d.

Let’s assume that at each depth z, there is a sharp threshold diameter
D (z) that marks the transition from mesopores to macropores (red circle
in Fig. 3c and d). This assumption naturally means that D' (z) equals the
diameter of the smallest macropore at depth 2 (Dmin macro(2))- Let’s define
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C

d

Fig. 4. (a) Cross-sectional SEM images for ISV87. Image 8 shows the entire membrane cross-section. Shown in numbered red boxes are the approximate locations of
SEM images with higher resolution. (b) The segmented images corresponding to SEM images in (a). Gray pixels show the solid matrix and black pixels show the void
space. (c) Top-view SEM image of separation layer. (d) Segmented image of SEM image shown in (c).

Dmin,macro (Z) =exp (”D,In (Z) + a, O-D,ln (Z)) (5)

where @; < @ < ay. The threshold diameter D'(z) also equals the largest
mesopore at depth z, which will exist in the thickest porous wall avail-
able at depth z. Following the proposed algorithm for pore network
generation, each macropore at distance z is contained in a cubic cell of
width a = 1/./7(z) (Fig. 3b). Given this assumption, the thickest porous

wall that can be formed at distance z has a half-width of b = @a—

D"“""%. If the structure of porous walls is the same throughout the entire
membrane, then the diameter of the largest mesopore (Dmaxmeso(2))
becomes:

Dmax,mesa (Z) =exp (”D,ln (b) + azo_D:’” (b)) (6)

depicted by the dotted red line in Fig. 3c. Since Dminmacro(2) =
Dmaxmeso(2), One can iteratively solve for a and subsequently D' (2).
Repeating this process for all z values provides the pore size threshold as
a function of z.
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3. Results

As described in Sections 2.1-2.2, two ISV SNIPS membranes, namely
ISV87 and ISV138, were made and characterized via SEM. While this
section focuses on the analysis of ISV87, the same approach was applied
to ISV138 (Appendix A).

3.1. Image segmentation

Fig. 4a shows two-dimensional cross-sectional images of an ISV87
membrane at different resolutions, and Fig. 4c shows the corresponding
top surface SEM image. To understand the structure of this membrane,
we first need to segment the images. The image segmentation algorithm
used in this study is the supervised continuous max-flow and min-cut
algorithm [24-26] described in Appendix B. Fig. 4b and d show the
segmentations corresponding to the SEM images shown in Fig. 4a and c,
respectively. Comparing the original images and the segmented images
shows that given sufficient image resolution, the supervised continuous
max-flow and min-cut algorithm is able to isolate the pores from the
solid matrix.

3.2. Pore size distribution

Once the images are segmented, the hydraulic diameter (Dy = 4’7")

for each pore is recorded, where A is the pore’s area and p is its
perimeter. Top surface SEM image analysis of the ISV87 membrane
(Fig. 4d) reveals a normal distribution for pore diameters with mean of
13.16 nm and standard deviation of 2.75 nm.

Cross-sectional SEM images (Fig. 4b) were then used to determine
the pore size distribution of the substructure. Resolution limitations led
to a minimum detectable pore size at each magnification. Fig. 5 shows a
clear gradient in Dy as a function of distance between the pore centroid
and the top of the membrane (z). This gradient is also evident in image 7
(Fig. 4a and b). Analyzing the datapoints for images 7-8 reveals that, for
In (Dy) vs. In(z): (1) the pore size distribution at each distance z re-
sembles a truncated lognormal distribution and (2) a linear fit for mean
and standard deviation is sufficient to capture the pore size gradient in
each of these images. As the mean and standard deviation curve slopes
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do not change significantly across images 7-8, it was concluded that, in
log-log scale, the mean and standard deviation curves for the overall
pore size distribution have the same slopes as in images 7-8. In this
study, the image with the lowest resolution (image 8) was used to find
the mean and standard deviation curve slopes. The intercept was
assumed to be the mean and standard deviation of Dy in image 1. In
Fig. 5, the solid black line represents the mean curve for all pores, the
dotted black lines denote one standard deviation above and below the
mean curve, and dashed black lines denote the upper and lower trun-
cation limits. As this analysis was performed on a logarithmic scale, the
pore size distribution at each depth z is a truncated lognormal distri-
bution on the linear scale.

At this point, the determined pore size distribution includes both
macropores and mesopores. For SPNM simulation, however, we only
need the pore size distribution of macropores. Following the reasoning
in Section 2.6, the mesoporous threshold diameter D'(z) (Fig. 5, dashed
red line) is found for this membrane. The red circle marks the depth z =
2.74 um, below which the porous wall is completely ordered, consistent
with the transition from single-layer walls to thicker walls between z ~
2 — 3 um in SEM images 2-3 (Fig. 4a). Here we assume that the sub-
structure pore size distribution and pore density stay constant below this
depth. At z ~ 2.74 ym, the diameter threshold (Dy) is 58 nm, which,
according to our hypothesis, corresponds to the average pore diameter
of the ordered porous wall sections. Our measurements of pore sizes on
the surface of porous walls (not presented here) reveal a similar
diameter.

3.3. Pore density profile

Analyzing the ISV87 membrane top surface (Fig. 4d) reveals a pore
density of 8.97 x 10'* pores/m?.

Considering that the pore density profile for all ISV87 cross-sectional
images is consistent with an exponential decay function, we assume that
pore density function for the entire substructure is also an exponential
decay. As shown in Fig. 6, seven datapoints are used to fit the expo-
nential decay function: overall pore density in images 1-6 and corrected
pore density for the lower 10 pm in image 8. The correction accounts for
the resolution-limited missing pore size data and is calculated: (1) based
on the truncated lognormal pore size distribution assumption, and (2) by

Fig. 5. Pore size distribution for ISV87. Both axes are
in logarithmic scale. The scatter datapoints show the

10_5 T R hydraulic diameter (Dy) vs. distance between the
* Image 1 (res =2.04 nm) centroid of the pore to the top of the membrane ().
* Image 2 (res = 2.04 nm) Solid black line shows the mean curve, dotted black
Image 3 (res = 2.04 nm) lines show one standard deviation above and below
* Image 4 (res = 2.04 nm) the mean curve, and dashed black lines show the
* Image 5 (res = 2.04 nm) upper and lower truncation limits of all pores (mac-
Image 6 (res = 2.04 nm) ropores and mesopores). The threshold between
T 106} ° Image7 (res=20.55nm) 1 meso- and macropores is shown by the red dashed
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Fig. 6. Pore density profile for substructure of ISV87. The vertical axis is in logarithmic scale. Individual datapoints represent the pore densities in images 1-6 as well
as the corrected pore density for the lower 10 pm in image 8. The black solid line is the overall pore density profile of the substructure. The red dashed line is the

corrected pore density profile reflecting only macropores.
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Fig. 7. Pore network generation for ISV87. (a) 3D view of a 10 x 10 x 20 ym pore network. (b) 2D side view of the network. (c) Zoomed-in view of the separation
layer network and interface links (red). (d) comparison between the target and achieved coordination number distribution for the substructure.

accounting for the area under the lognormal curve that is not covered by
measured pore diameters in image 8. The solid black line in Fig. 6 shows
the resulting pore density profile y(z).

As was the case with the pore size distribution, the current pore
density profile includes both macro- and mesopores. To find the pore
density profile of macropores, we use the mesopore diameter threshold
in Fig. 5 (red dashed line) as the lower truncation limit of the pore size
distribution to remove the mesopore area fraction under the lognormal
curve. The red dashed line in Fig. 6 shows the corrected pore density
profile for just macropores. Pore density was assumed to be constant
below z= 2.74 ym, consistent with prior analysis of pore size

distribution.

3.4. Pore network generation

Using the SEM images of ISV87, the thickness of the separation layer
and the entire membrane are measured as ~ 100 nm and ~ 62 um,
respectively. Given the calculated pore density profile and the algorithm
in Section 2.5, a two-layer pore network model is generated. Fig. 7a—c
shows a portion of the generated pore network. The comparison be-
tween the target and achieved coordination number distribution is
shown in Fig. 7d. From this figure, the proposed link removal algorithm
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closely matches the target coordination number distribution.

3.5. Permeability simulation

Absolute permeability is simulated for ISV87 for a range of cross-
sectional areas starting from 4pum x 4 um . Incremental increases
revealed that a cross-sectional area of 10 um x 10 yum was sufficient to
represent the membrane. The calculated absolute permeability, based on
SPNM, was 371.58 + 6.70 LMH/bar, which underestimates the experi-
mental value of 484 &+ 66 LMH /bar by ~23%.

3.6. Sensitivity analysis

As shown in Fig. 4c and d, the segmentation algorithm identifies
some of the main pores in the top separation layer (i.e., pores consti-
tuting the square lattice formation) as blocked pores, while detecting
additional smaller pores that are located at the center of these square
lattices. We will refer to these smaller pores as indents. Although there is
no straightforward approach to experimentally examine whether a pore
is blocked or open, it is normal to observe such artifacts in any seg-
mentation method.

As these artifacts could significantly alter the pore density and pore
size distribution, and thus the simulated permeability, it is crucial to
understand the sensitivity of the SPNM model to changes in these top
separation layer parameters. To perform a meaningful sensitivity anal-
ysis, a reference case is defined based on the assumption that all pores
constituting the square lattice are open and all indents are blocked (or
solid). Based on this assumption, the top separation layer pore density is
~9.18 x 10'* pores/m?. The corresponding pore size distribution was
determined by fitting the raw pore diameter measurements with a
bimodal normal distribution (vs. a regular normal distribution), and
discarding the distribution with the smaller mean value, yielding
13.90 + 1.72 nm. Using SPNM in conjunction with these updated values
only results in a 5% increase in simulated permeability to 390.68+
7.90 LMH/bar (~19% lower than the measured permeability).

Based on the reference case (vide supra), two numerical experiments
were designed to study the effects of mean pore diameter and pore
density of top separation layer on simulated permeability in further
detail. In the first experiment (Fig. 8a), the pore diameter distribution of
13.90 + 1.72nm (denoted by a solid black marker) is used as the
reference and the incrementally increased/decreased mean pore diam-
eter is used as the input for SPNM. As shown in this figure, for small pore
diameters, a slight change in the mean pore diameter can significantly
change the simulated permeability (e.g, decreasing the mean pore
diameter by 30%, from 13.90 nm to 9.73 nm, results in a 45% reduction
in permeability). However, once the mean diameter reaches ~ 35 nm,
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permeability levels off at ~ 550 LMH/bar. According to this analysis (all
else held constant), a mean pore diameter of 18.61 nm is needed to
match the mean experimental permeability (484 LMH/bar). The
4.71 nm difference (18.61 nm vs. 13.90 nm) is equivalent to ~ 3.65
pixels.

The second experiment (Fig. 8b) simulates the effect of blocked pores
on the simulated permeability. To that end, the reference pore density of
9.18 x 10 pores/m? (0% blocked pores, denoted by a solid black
marker) is incrementally decreased to reflect the increased fraction of
blocked pores. Comparing Fig. 8a and b, the simulated permeability is
less sensitive to changes in pore density than pore diameter. For
instance, 20% decreases in pore density (from 9.18 x 10 ‘% to 7.34 x
1014%) and mean pore diameter (from 13.90 nm to 11.12 nm) result in
11% and 28% decreases in permeability, respectively.

4. Discussion

This work was inspired by challenges in characterization and flow
simulations in BCP SNIPS ultrafiltration membranes. Our goals were to
develop (1) a method to delineate the hierarchical asymmetric BCP
membrane pore structure, and (2) a fast method for pore-scale modeling
of flow in these membranes. To achieve the first goal, we developed a
procedure that uses segmented 2D top separation layer and substructure
SEM images to delineate the 3D hierarchical membrane pore structure.
To achieve the second goal, the resulting pore size distribution was used
as the input for an asymmetric SPNM, which was then employed to es-
timate absolute membrane permeability. The results are very promising.

Several assumptions have been made throughout the analysis. Given
the lack of a high-resolution 3D membrane reconstruction, this study
used 2D SEM images. Therefore, assumptions were made to account for
the missing information from the third dimension. It was assumed that
the pore structure in the xy-plane at each depth z is the same as what we
observe in cross-sectional images. For instance, images 1 and 7 (Fig. 4)
reveal that the pores are compressed near the top surface of the ISV87
membrane. Using pore sizes acquired from segmenting these cross-
sectional images, the same compression was assumed to exist in that
entire section, in all directions, which may have resulted in an under-
estimation of permeability for ISV87. To relax this assumption, one
needs to acquire 2D images of the membrane etched parallel to the top
surface.

Acquiring more 2D images would also enable the digital recon-
struction of the 3D membrane structure. Image reconstruction has been
used extensively as a cost-effective alternative to 3D imaging [27,28].
Particularly with the recent advances in computer vision and artificial
intelligence (AI), more sophisticated porous media image reconstruction
methods have been developed in the past few years [29]. If successful,
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Fig. 8. Simulated permeability of ISV87 membrane as a function of (a) average pore diameter and (b) pore density of top separation layer. Black markers in (a) and
(b) denote the reference permeability value of 390.68 + 7.90 LMH/bar simulated using pore diameter distribution of 13.90 & 1.72 nm and pore density of 9.18 x
10'* pores/m?, respectively. Data labels in (b) show the percentage decrease in pore density (i.e., the fraction of blocked pores).
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the 3D reconstructed image would not only enable us to re-examine the
assumptions made on pore shape, length, and connectivity, but it could
also be used as input to more accurate, topologically-consistent por-
e-scale flow modeling.

Segmenting SEM images also comes with a set of assumptions. For
instance, the choice of thresholds (discussed in Appendix B) is highly
user-dependent. Slight threshold alterations naturally result in different
pore size estimations and therefore permeability values. Our sensitivity
analysis presented in Section 3.6 (and Appendix A) also confirms that
even a few pixels’ difference in pore diameter measurement could lead
to significant change in simulated permeability. In addition, when a
large pore is detected and isolated during the segmentation process,
smaller low-intensity pores that are within the large pore will be
neglected. A more sophisticated image processing technique may alle-
viate this drawback.

In this study, we assume that the membrane structure is rigid, and
permeability is independent of applied pressure. However, prior work
by Zhang et al. [8] showed that higher applied pressures potentially lead
to membrane compression and decreased permeability.

To find the threshold between macropores and mesopores, a hy-
pothesis was presented in Section 2.6, in which we assumed that the
structure of all porous walls is the same throughout the entire mem-
brane. Although the result of the hypothesis is consistent with the ob-
servations from SEM images, acquiring high-resolution images from the
lower half of the substructure will help substantiate/improve this
hypothesis.

The pore network model of the membrane assumes constant thick-
ness for the separation layer, while both Fig. 4 and Fig. A1 show slight
variation in its thickness. Because of the high sensitivity of computed
permeability to properties of the separation layer discussed in Section
3.6 and Appendix A, incorporating this variation could help improve the
predictability of the SPNM model. In addition, it was assumed that the
effect of mesopores on membrane permeability is negligible. Future
work will utilize a two-scale pore network model like [30] to examine
the validity of this assumption.

The ultimate objective of this work is to create efficient processes to
design and synthesize ultrafiltration membranes tailored for specific
applications. Currently, designing ultrafiltration membranes with tar-
geted properties is an expensive procedure that relies heavily on prior
experience and lengthy trial-and-error procedures. Surmounting these
obstacles requires understanding the relationships between synthesis
parameters, membrane structure, and their effective properties [31]. We
envision this work and subsequent studies will help elucidate these
relationships.

Appendix A. Data and analysis of ISV138

Journal of Membrane Science 668 (2023) 121163

5. Conclusions

In this study, we proposed a novel simple method to compute the
absolute permeability of BCP SNIPS ultrafiltration membranes. First, we
used 2D SEM images with a variety of resolutions to delineate the hi-
erarchical asymmetric pore structure. Next, to simulate flow, a novel
stochastic pore network model was proposed and employed to compute
absolute permeability of two ultrafiltration membranes. Our comparison
showed good agreement between simulated and measured
permeabilities.
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SEM images for ISV138 were segmented and associated pore size distributions and pore density profiles were extracted as previously detailed for
ISV87. Figure Al shows the original and segmented SEM images for ISV138. In addition to a top surface SEM image of the top separation layer
(Fig. Alc-d), 7 cross-sectional SEM images were acquired for the substructure of the membrane (Fig. Ala-b).

The pore density of the top separation layer is calculated as 7.17 x 10'* pores/m? and its pore diameter distribution is assumed to be a normal
distribution with a mean of 20.75 nm and standard deviation of 3.45 nm. Figures A2 and A.3 show the pore size distribution and pore density profile
for ISV138, respectively. Pore size distribution and pore density profile were assumed to remain constant below z = 2.35 um.

Using the SEM images of ISV138, the thickness of the separation layer and the entire membrane were measured as ~ 130 nm and ~ 50 um,
respectively. Using SPNM and following the procedure described in Sections 3.4-3.5, the absolute permeability calculation resulted in 889.22+
37.29 LMH/bar. Comparing with experimental values of 644 + 15 LMH/bar, SPNM overestimated the permeability by ~38%.

To study the effects of segmentation errors on the simulated permeability (as done for ISV87 in the main text), a reference case is defined for
ISV138 and the sensitivity of the model to changes in pore size distribution and pore density is studied. The reference case for ISV138 comprises a pore
density of 5.87 x 10'* pores/m? and pore diameter normal distribution of 22.59 + 2.15 nm. Using SPNM in conjunction with these adjusted values
increases the simulated permeability by a meager 1.4% to 901.40 + 41.32 LMH/bar (~40% higher than the measured permeability).

Figure A4 shows the results of the sensitivity analysis where the reference case is denoted by solid black markers. Consistent with the analysis of
ISV87, the permeability of ISV138 is more sensitive to mean pore diameter than pore density. Based on Fig. A4a, to match the experimental mean
permeability of 644 LMH/bar, a mean pore diameter of 16.50 nm is needed. Alternatively, the experimental measurement can be matched by SPNM if
pore density is decreased by ~45% (Fig. A4b).

10
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d

Fig. A.1. (a) Cross-sectional SEM images for ISV138. Image 7 shows the entire membrane cross-section. Shown in numbered red boxes are the approximate locations
of SEM images with higher resolution. (b) The segmented images corresponding to the SEM images in (a). Gray pixels depict the solid matrix and black pixels the void
space. (c) Top surface SEM image. (d) Segmentation of SEM image shown in (c).

11
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Fig. A.2. Pore size distribution for ISV138. Both axes are in logarithmic scale. The individual datapoints depict the hydraulic diameter (Dy) vs. distance between the
centroid of the pore and the membrane top surface (z). Solid black line shows the mean curve, dotted black lines show one standard deviation above and below the
mean curve, and dashed black lines show the upper and lower truncation limits of all pores (macropores and mesopores). The threshold between meso- and
macropores is shown by the red dashed line. The solid red circle shows the depth below which the mesoporous wall is completely ordered.
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Fig. A.3. Pore density profile for substructure of ISV138. The vertical axis is in logarithmic scale. The individual datapoints represent the pore densities in images
1-4 as well as the corrected pore density for the lower 10 pm in image 7. The black solid line is the overall pore density profile of the substructure. The red dashed line

is the adjusted pore density profile for only macropores.

12



M.S. Riasi et al. Journal of Membrane Science 668 (2023) 121163

1200 1200
T 900 | T 900
= =
= =
2 z
3 3
[} [}
g 600 | g 600
o o
o o

300 L L 1 L 1 L 300 ! 1 L
10 15 20 25 30 35 40 45 2 3 4 5 6
Average pore diameter of separation layer (nm) Pore density of separation layer (x10'* pores/m2)
a b

Fig. A.4. Simulated permeability of ISV138 membrane as a function of (a) average pore diameter and (b) pore density of separation layer. Solid black markers in (a)
and (b) denote the reference permeability value of 901.40 + 41.32 LMH /bar simulated using pore diameter distribution of 22.59 + 2.15 nm and pore density of 5.87 x
10'* pores/m?2, respectively. Data labels in (b) show the percentage decrease in pore density (i.e., the fraction of blocked pores).

Appendix B. Continuous max-flow and min-cut algorithm

SEM images were segmented using a supervised continuous max-flow and min-cut algorithm [24-26]. Continuous max-flow segmentation is the
continuous variation of the well-known graph-cut segmentation and is based on the dual problems of maximum-flow and minimum-cut in combi-
natorial graph theory. Much like any other segmentation method, continuous max-flow problems aim to partition a gray-scale image 2 into two
disjointed regions, namely the foreground £ and the background £, = Q\;.

ps(x) Source flow

Fig. B.1. Schematic of continuous max-flow problem. Domain Q represents a 2D gray-scale image where € is the foreground and €, is the background. The dark
square in the middle represents a pixel at location x € Q. ps(x) and p¢(x) are the source flow from source to position x and sink flow from position x to sink,
respectively. p(x) is the spatial flow within the domain Q.

As shown in Fig. B1, for a given image, let 2 be a continuous 2D domain where x € 2 represents the location of pixels in the image and s and t are
the source and sink terminals, respectively. Let p(x) be the spatial flow within the domain £2 at position x € £, and let p;(x) and p;(x) be the source flow
from source to position x and sink flow from position x to sink, respectively. The supervised continuous max-flow model is then formulated as:

max / up(x) ps(x) dx — / us(x) p:(x) dx

pspib ) ¢

Q (B.1)
subject 10+ [p(x)] < C(x), pu(x) < Cy(x),pr(x) = Co(x),div p(x) — po(x) + pilx) = 0

where C(x), Cs(x) and C,(x) are flow capacity functions. At each position x, C(x) is the flow capacity within the domain. Cs(x) and C;(x) are the flow
capacities for flow from the source and to the sink at position x, respectively. The equality condition in the optimization problem of Eqn B.1 is the flow
conservation equation, and us(x) and uy(x) are indicators that enforce the user-defined constraints of the foreground/background labels for specific
pixels. These indicators can be defined as

l,xe 0,x € 2
uf(x):{()’xggi 7ub(x):{ l’xggz (B.2)

It has been shown [24,26] that the max-flow problem of Eqn B.1 can be solved using its augmented Lagrangian function:
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Lepopp )= [ w0 p. 0 v~ [ 1) pi0) -t [ v po) = pu6) 0] e = Sl ) = pua) 4 () ®.3)

where ¢ > 0 and 1 € [0, 1] is a multiplier. Solving the max-flow problem of Eqn B.3 will result in a A map where each pixel is assigned a value between
zero and one, representing the probability of that pixel belonging to the foreground. Therefore, the segmented image can be easily generated by
thresholding the A map with an arbitrary Agresnoiq. For unsupervised max-flow problem, the indicators must be set to ug(x) = 0 and uy(x) = 1. The
detailed algorithm on solving the max-flow problem described above can be found in Refs. [24,26].

In this study we propose the following steps:

Step 1. If needed, crop the image to the region of interest.

Step 2. Apply a 3 x 3 median filter.

Step 3. Normalize the image. Let I(x) be the resulting matrix for the image.
Step 4. Define the flow capacities as follows:

Cy(x) = [1(x) — (gp *I(x) — 0.3)]
Ci(x) = [1(x) — (g * 1(x) +0.3)| 3.4
C(x) =05

where g, is a gaussian kernel with standard deviation of p = 3.

Step 5. Given two arbitrary scalar values 0 < t; < t; < 1, define the indicators as follows:

[ LIx) >t _0,I(x) <1
”f(x)*{o71(x)<z] ’”b(")*{171(x)>zz (B.5)

In this study, we used Otsu’s two-level thresholding technique to find t; and t,.

Step 6. Use I(x), C(x), Cs(x), C¢(x), ur(x) and up(x) to solve the max-flow problem. The result of this step will be the multiplier 1(x).
Step 7. Threshold A using Ayreshola = 0.5. If 1 > Areshoid, the pixel belongs to foreground, i.e. the membrane matrix. Otherwise, the pixel belongs to
void space.

Appendix C. BCP Pore structure analysis

The 3D tomographic reconstruction of a polymeric scaffold from an earlier study [23] was acquired and analyzed to extract information about the
3D structure of ISV membranes. We use Skeletonize3D and Analyze Skeleton plugins [32,33] in Fiji Image Processing Package [34-36] to extract and
analyze the 3D skeleton (medial axis) of the void space of the polymeric scaffold.

Figure Cla shows the 3D structure of the polymeric scaffold in gray. Shown in red is the extracted medial axis of the void space. From the medial
axis, one can construct an undirected graph network (Fig. C.1b) much like the pore networks generated in this study. The degree distribution of the
graph network is used as the coordination number distribution in pore network modeling (Fig. C1c). To eliminate the effect of boundary nodes, nodes
with coordination number of one are removed from coordination number analysis.
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Fig. C.1. (a) 3D reconstruction of polymeric scaffold [23] shown in gray along with the extracted medial axis shown in red. (b) Graph network extracted from the
medial axis. (¢) Coordination number distribution of the extracted network.

Since the polymer scaffold has a disordered pore structure, the tortuosity of the pore throats needs to be accounted for. Figure C2a shows the
relationship between the length of pore throats, computed from the medial axis, and the Euclidean distance between end-nodes. The linear fit shows
that the average length of pore throats is ~1.265 times larger than their associated Euclidean length. We use this multiplier for all pore throats in the
substructure portion of the membrane pore network.

Since we assume that the measured diameters from SEM images belong to the pore bodies in the network, a pore diameter must be defined for each
pore throat as well. Using the extracted medial axis in Fig. Cla, the hydraulic conductance of each medial axis segment can be computed as described
in an earlier study [37]:

T
Kinedial axis segment = P (C.1)
128 p |, D
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where L is the length of medial axis segment in voxels and D(x) is the varying diameter of medial axis in voxels. Replacing the medial axis segment with
an equivalent cylinder of length L and hydraulic conductance of kpedgiat axis segment> the equivalent diameter of the cylinder becomes:
1/4
L

L _dx
0 D)’

(C.2)

Dequivalent =

Red circles in Fig. C2b depict the equivalent diameters of pore throats with respect to the pore diameters of associated pore bodies. The gray surface
represents the harmonic mean of diameters of each pair of pore bodies. As shown in this figure, a good correlation is observed. Therefore, the di-

ameters of pore throats in the pore network model are assumed to be the harmonic mean of their corresponding pore bodies.
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Fig. C.2. (a) Real length of pore throat vs. the Euclidean distance of end-nodes. Measured data shown in red. Solid black line represents the linear fit. (b) Equivalent
diameters of pore throats vs. the diameters of the pore bodies at the end-nodes. Measured data shown in red. The gray surface represents the harmonic mean of the
diameters of the pore bodies located at the end-nodes.
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