
Journal of Membrane Science 668 (2023) 121163

Available online 12 November 2022
0376-7388/© 2022 Elsevier B.V. All rights reserved.

Stochastic microstructure delineation and flow simulation in asymmetric 
block copolymer ultrafiltration membranes 

M. Sadegh Riasi a,1, Lieihn Tsaur b,1, Yuk Mun Li b,c, Qi Zhang b, Ulrich Wiesner b,d, 
Lilit Yeghiazarian a,* 

a Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA 
b Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA 
c Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA 
d Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA   

A R T I C L E  I N F O   

Keywords: 
Pore-scale flow modeling 
Permeability 
Hierarchical structures 
Ultrafiltration membrane 
Block copolymer 

A B S T R A C T   

Asymmetric block copolymer ultrafiltration membranes have a wide range of applications from water purifi
cation and virus filtration all the way to drug delivery. Although optimizing flow is critical to the performance of 
such ultrafiltration membranes, their numerical flow characterization has remained challenging. The main 
problems include hierarchical pore structure delineation and lack of an efficient, image-based pore-scale 
modeling approach. In this study, we use 2D scanning electron microscopy (SEM) images with a variety of 
resolutions to delineate the hierarchical asymmetric pore structure. To simulate flow, a novel stochastic pore 
network model is proposed. The absolute permeabilities of two asymmetric block copolymer ultrafiltration 
membranes are computed and compared with experimental results showing good agreement.   

1. Introduction 

Ultrafiltration membranes have a wide range of applications ranging 
from water purification, protein separation, and virus filtration to drug 
delivery [1,2]. A class of ultrafiltration membranes that has received 
much attention in the past decade is asymmetric block copolymer (BCP) 
membranes synthesized via a hybrid block copolymer self-assembly and 
non-solvent induced phase separation process first introduced by Pei
nemann et al. [3], and later coined SNIPS [4]. 

A key advantage of SNIPS membranes is that their integral asym
metric structure eliminates the permeability-selectivity tradeoff. BCP 
self-assembly on the top surface gives rise to a thin (~100 nm), ordered, 
isoporous separation layer that ensures high permselectivity, whereas 
the hierarchical meso- to macroporous substructure provides mechani
cal stability. Pore sizes in the separation layer can be tailored to the 
desired application by varying the BCP molar mass or by incorporating 
additives into the casting dope [5,6]. Membrane substructure can be 
tuned from sponge-like to finger-like by systematically varying casting 
parameters such as polymer concentration and evaporation time [7]. 
Sponge-like substructures have densely packed pores and are typically 

less permeable than finger-like substructures, which are characterized 
by macrovoids (“fingers”) that extend from the bottom of the membrane 
up to the separation layer [8]. This study focuses on SNIPS membranes 
with sponge-like substructures. 

Optimizing flow is critical to the performance of BCP ultrafiltration 
membranes, however, little has been reported on their numerical flow 
characterization [9,10]. One of the main challenges is the delineation of 
the hierarchical pore structure. Due to the wide pore size distribution 
throughout the SNIPS membrane substructure, acquiring a full 
high-resolution three-dimensional (3D) reconstruction is cumbersome 
and costly. For example, Sundaramoorthi et al. [11] had to use focused 
ion beam scanning electron microscopy (FIB/SEM) and serial block-face 
SEM (SBF/SEM) imaging techniques to create a 3D reconstruction of a 
BCP membrane, from which the porosity profile could be extracted. 
Most studies, however, simply restrict pore size characterization to the 
easily characterizable (e.g., via SEM) separation layer [12]. 

Another major challenge in flow characterization of BCP membranes 
is the lack of an image-based pore-scale modeling approach that is 
computationally efficient and that can capture such wide pore size dis
tributions. Traditionally, analytical and empirical equations [13] are 
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used to study the effect of pore morphology on membrane permeability. 
Shi et al. [10] used GeoDict (Math2Market GmbH, Germany) to generate 
a 3D digital structure similar to that of asymmetric sponge-like and 
finger-like membranes and simulated flow using Stokes and Stokes–
Brinkman equations. Although good agreement was achieved between 
computed and measured permeability, image segmentation techniques 
and SEM image data extraction were not described in the paper. 

Pore-scale flow modeling approaches can generally be classified into 
topologically-consistent and stochastic. Topologically-consistent ap
proaches are used when a 3D image of the porous medium is available. 
Examples range from direct numerical simulation (DNS) techniques, 
such as finite volume method (FVM) and lattice Boltzmann method 
(LBM), to computationally faster methods such as pore network 
modeling (PNM) and pore topology method (PTM) [14–16]. In the 
absence of a 3D image of the porous medium, stochastic approaches are 
used to investigate pore-scale flow properties. These methods are based 
on the statistical and empirical information available for the void space. 
One of the most widely used stochastic approaches is the stochastic 
version of the pore network modeling method, often referred to as sto
chastic pore network modeling (SPNM). SPNM uses statistical properties 
of the void space such as its pore size distribution, pore connectivity and 
pore density to create a network model of the porous structure, and 
employs simplified 1D equations or analytical relations to describe flow 
in each pore element. For an in-depth review of pore network modeling 
methods, readers are encouraged to read Xiong et al. [17]. 

In this study, we address the challenge of pore structure delineation 
by using an array of SEM images with different resolutions. Tradition
ally, the 3D information of BCP structures can be obtained using trans
mission electron microscopy (TEM) tomography, an approach that has 
recently been extended to substantially larger sample volumes via “slice- 
and-view” scanning electron microscopy (SVSEM, also known as FIB/ 
SEM) [18]. Such techniques are still limited, however, in both their 
accessibility as well as their sample volume relative to the dimensions of 
asymmetric ultrafiltration membranes described here. In contrast, reg
ular SEM imaging equipment is readily available in electron microscopy 
imaging facilities world-wide, and was therefore used to provide imag
ing input for our studies. SEM images were segmented using a contin
uous max-flow and min-cut algorithm and collectively used to describe 
the pore size distribution and pore density profile of the membrane. To 
get insight into the 3D pore structure of the membrane, a 3D polymeric 
scaffold with larger pore structure is used. To address the challenge of 
pore-scale flow simulation, a novel stochastic pore network model is 
proposed and used to compute the absolute permeabilities of two block 
copolymer membranes, which are compared with experimental 
measurements. 

The outline of this article is as follows. A brief overview of SNIPS 
membrane fabrication, imaging and permeability measurements is 
provided in Sections 2.1-2.3. Next, the structural properties of the 
membranes are discussed (Section 2.4) followed by detailed description 
of stochastic pore network generation and permeability calculation 
using SPNM (Section 2.5). In Section 2.6, a hypothesis is proposed on the 
structure of mesoporous walls that enables us to differentiate macro
pores from mesopores. This hypothesis is later used to delineate the 
hierarchical pore size distribution of the membrane. In Results (Section 
3), we use the SEM images of an actual membrane to showcase the step- 
by-step process from raw SEM images to permeability calculations. 
Finally, the discussion of the results and conclusions are presented in 
Sections 4 and 5. Appendices (Appendix A-Appendix C) provide sup
plementary materials for a second membrane, the segmentation method 
and 3D feature extraction from the polymeric scaffold. 

2. Materials and methods 

2.1. Polymer synthesis and membrane fabrication 

Two poly(isoprene-b-styrene-b-4-vinylpyridine) (ISV) triblock 

terpolymers were synthesized using an established sequential anionic 
polymerization technique detailed elsewhere [19]. BCP characteristics 
were determined using a combination of tetrahydrofuran (THF) gel 
permeation chromatography (GPC) and 1H nuclear magnetic resonance 
(NMR) in chloroform-d. ISV87 had a molar mass of 87 kg mol−1, and 
poly(isoprene) (PI), poly(styrene) (PS) and poly(4-vinylpyridine) 
(P4VP) fractions of 28, 57, and 15 wt%, respectively. ISV138 had a 
molar mass of 138 kg mol−1, and consisted of 20 wt% PI, 67 wt% PS, and 
13 wt% P4VP. The polydispersity indices (PDI) of ISV87 and ISV138 
were 1.14 and 1.18, respectively. 

BCP membranes were fabricated using the SNIPS process [19]. 
Casting solutions were prepared by dissolving 11 wt% ISV87 (or ISV138) 
polymer in a binary solvent system of 1,4-dioxane (DOX) and THF (7:3 
by weight) and stirring until homogeneous. Solutions were casted onto a 
glass substrate using an automated blade-casting system adjusted to a 
gate height between 0.203 mm and 0.229 mm. Films were allowed to 
evaporate for 80 s to drive self-assembly on the top surface and create a 
concentration gradient across the film depth. Thereafter, films were 
immersed in a non-solvent deionized (DI) water bath (18.2 MΩ-cm) to 
precipitate out the membrane and kinetically trap the asymmetric pore 
structure stemming from the concentration gradient. Membranes were 
stored in DI water until further use. 

2.2. Scanning electron microscopy 

SEM images were acquired using either a Tescan Mira3 field emis
sion scanning electron microscope (FE-SEM) equipped with an in-lens 
detector (accelerating voltage of 5 kV) or a Zeiss Gemini 500 SEM 
(accelerating voltage of 1.5 kV). Prior to imaging, all samples were 
coated with gold-palladium using a Denton Vacuum Desk II sputter 
coater. Images of the membrane top surface were used to delineate the 
ordered pore structure of the separation layer (Fig. 4c and Fig. A.1c). 
Sample cross-sections—used to analyze the pore size gradient of the 
membrane substructure—were prepared cryogenically. Cross-sectional 
micrographs of ISV87 and ISV138 at various magnifications are shown 
in Fig. 4a and Fig. A.1a, respectively. 

2.3. Hydraulic permeability tests 

Permeability tests were conducted using a 10 mL dead-end stirred 
cell (Amicon 8010, Millipore Co.) with an active area of 4.1 cm2. The 
stirred cell was pressurized to 1 psi (0.07 bar) using N2 gas, and the mass 
of permeated DI water was recorded using a balance. Hydraulic 
permeability of each membrane was reported as the ratio of volumetric 
filtrate flux (Lm−2h−1, LMH) to trans-membrane pressure (bar). The 
experimentally calculated hydraulic permeabilities were 484 ±

66 LMH/bar and 644 ± 15 LMH/bar for ISV87 and ISV138, respectively. 
Reported values are averages and standard deviations from three 
replicate measurements. 

2.4. Membrane structure 

ISV SNIPS membranes consist of a ~100 nm top separation layer 
integrated with a hierarchical meso- to macroporous substructure 
(Fig. 1a). The self-assembled top separation layer exhibits narrowly- 
dispersed mesopores forming a two-dimensional (2D) square lattice 
(Fig. 1c). A cross-sectional view of the separation layer shows the 
interconnected pore network characteristic of cubically packed micelles 
(Fig. 1b). The pores constituting the substructure increase in size as 
distance from the separation layer increases. As pore size increases, the 
walls themselves become mesoporous (Fig. 1d). Going forward, we will 
refer to the main pores in the substructure as macropores and the pores 
lining the walls as mesopores. 

M.S. Riasi et al.                                                                                                                                                                                                                                 



Journal of Membrane Science 668 (2023) 121163

3

2.5. Stochastic pore network model (SPNM) 

A pore network consists of pore bodies, representing the large pores 
in the structure, and pore throats, representing the flow path between 
each pair of pore bodies. The number of pore throats emanating from 
each pore body is called coordination number of the pore body. For 
instance, in the example network of Fig. 2c, the filled spheres represent 
the pore bodies and solid lines represent the pore throats. From a graph 
theoretical standpoint, a pore network can be viewed as an undirected 
graph where nodes represent pore bodies, links represent pore throats, 
and the coordination number represents the node degree. 

In this study, we use a stochastic pore network modeling approach to 
compute membrane permeability. Such pore networks are generated 
solely based on the stochastic information available for the structure of 
the porous medium. We use pore density profile and coordination 
number distribution to generate a stochastic pore network. Pore density 
is defined as the number of pores per unit area. Since the membrane has 
an asymmetric structure, averaged structural properties are assumed to 
only vary in the direction perpendicular to the membrane surface (i.e., 
the z-direction). 

Due to the abrupt structural changes at the separation layer- 

substructure interface, two separate pore networks will be generated. 
The resulting networks will be assembled using interface links [20], 
collectively representing the membrane microstructure. Once a repre
sentative pore network of the membrane is generated, a length and a 
pore throat diameter are assigned to each pore throat to compute 
permeability. 

2.5.1. Pore network generation 
The stochastic pore network model developed in this study builds 

upon the multi-directional pore network model [21] by introducing a 
pore density gradient. Our proposed algorithm requires three input 
parameters: dimensions of the network, pore density as a function of 
depth z and coordination number distribution. 

First, we need to generate the skeleton of our network comprising 
cubic cells that will later contain the pore bodies. Following Fig. 2a, let 
wn be the width of a cubic cell in layer n, where n = 1, 2, 3,…,N, and zn 
be the z-coordinate of the cubic cell centroid. As depicted in this figure, 
zn can be related to the cell width through zn = (

∑n−1
i=1 wi) + wn

2 . Given 
pore density function γ(z), the cell width in row n equals wn = 1̅̅̅ ̅̅̅̅̅

γ(zn)
√ . 

Therefore, one can sequentially compute the width of each layer by 

Fig. 1. Structure of sponge-like SNIPS membrane. (a) Membrane cross-section. (b) Cross-sectional view of the membrane top separation layer showing the inter
connected pore network. This image is reproduced from Ref. [19]. (c) Top-view of the membrane separation layer. (d) Mesopores lining the walls of macropores. Note 
that the regions of interest shown with red rectangles/parallelograms do not necessarily represent the correct scale. 

Fig. 2. Pore network generation with prespecified pore density profile and coordination number: (a) two-dimensional view of cubic grid (dashed gray) with the 
location of pore bodies (filled black circles). (b) Fully connected pore network. Solid lines represent the links (pore throats). (c) Three-dimensional pore network with 
target coordination number of 6 for all nodes. The achieved average coordination number of the network is ~6.2. 
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solving the following implicit equation for wn: 

wn =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ
(

∑n−1

i=1
wi + wn

2

)√ (1) 

Once the width of each layer is determined, we proceed by popu
lating each layer with cubic cells of width wn. In the resulting cubic grid, 
the pore bodies (nodes) will be located at the cell centroids. The next 
step is to connect each node to all its adjacent nodes. The fully connected 
network for the cubic grid in Fig. 2a is shown in Fig. 2b. Given an 
arbitrary pair of nodes i and j, there can exist a link eij if the corre
sponding cubic cells of nodes i and j fully or partially share a vertex, an 
edge or a face (e.g., node 11 is connected to nodes {7, 8, 10, 12, 13, 14}

because the cubic cell of node 11 is touching the cubic cells of nodes {7,

8,10,12,13,14}). 
Finally, to reach the desired coordination number distribution, we 

need to randomly remove the extra links. The link removal method used 
in this study is inspired by Ben-Avraham et al.’s method of generating 
scale-free random spatial graphs with target degree distribution [22]. 
Given the fully connected network and the target coordination number 
distribution P(λ), a coordination number λtarget,i is assigned to each node i 
in the network. The assigned values are shuffled to make sure the target 
coordination number λtarget for each node does not exceed its current 
coordination number λcurrent . Randomly going over the nodes in the 
network, if λtarget,i < λcurrent,i, all links {eij} for node i are listed, where 
index j refers to the index of a neighboring node. From the λcurrent,i links 
listed in {eij}, only the links (eij) with λtarget,j < λcurrent,j are kept. Then, 
λcurrent,i − λtarget,i randomly selected links in {eij} are removed from the 
network. At this point the λcurrent for node i and its neighboring nodes j 
needs to be updated. This process is repeated for all the nodes in the 
network. The resulting network will have a coordination number dis
tribution close to the target coordination number distribution. Fig. 2c 
illustrates a 3D network with target coordination number of 6 and 
achieved average coordination number of ~6.2. 

Once the pore networks for the top separation layer and substructure 
are generated, these networks are assembled by laying the separation 
layer network over the substructure network and connecting adjacent 
pore bodies via interface pore throats (links). We assume full connec
tivity between the two layers (i.e., no links are removed after all the 
pores at the top of the substructure network are connected to the pores at 
the bottom of the separation layer network). An example of interface 
links is shown in Fig. 7c. 

2.5.2. Permeability simulation 
To compute membrane permeability, a pressure-driven steady state 

flow is simulated in the pore network by assigning inlet pressure (Pinlet) 
and outlet pressure (Poutlet) boundary conditions to the top of the sepa
ration layer and the bottom of the substructure, respectively, where 
Pinlet > Poutlet . No-flow condition is assigned to all other boundaries. 
Assuming incompressible flow, mass of the fluid at each pore body is 
conserved. Therefore, for each pore body i with coordination number λi, 
we have: 
∑

j
qij = 0 (2)  

where qij is the steady state flow from pore body i to any neighboring 
pore body j through pore throat ij. The steady state flow between pores i 
and j is assumed to follow the Hagen-Poiseuille law, therefore: 

qij = Kij
(
Pi − Pj

)
, Kij =

πD4
ij

128μLij
(3)  

where, for pore throat ij, Kij is the hydraulic conductance, Dij is the 
diameter and Lij is throat length. Pi and Pj refer to the fluid pressures at 
pore bodies i and j, respectively, and μ is fluid viscosity. Solving the 

resulting system of linear equations, the pressure at each pore body is 
computed. The overall flow rate Q can then be calculated by summing all 
the flows at either the network inlet or outlet. Finally, the absolute 
permeability can be calculated as: 

k =
Q

A(Pinlet − Poutlet)
(4)  

where k is absolute permeability in LMH/bar and A is the cross-sectional 
area of the membrane network model. 

2.5.3. Input data for pore network modeling 
As described in the previous sections, to construct a stochastic pore 

network and compute permeability, input data are needed. Although 
acquiring all this information directly via imaging is preferable, 2D SEM 
images do not provide any information on the 3D membrane structure. 
To this end, 3D substructural information is extracted from the 3D 
tomographic reconstruction of a polymeric scaffold acquired in an 
earlier study [23]. The 3D structures of the hierarchical polymeric 
scaffold and the SNIPS membrane substructure are assumed to be 
similar, as both are formed via spinodal decomposition. Detailed anal
ysis of the 3D tomographic reconstruction of this polymer scaffold is 
presented in Appendix C. The rest of this section discusses the input 
parameters and assumptions made for each membrane layer. 

Pore density is assumed to be constant throughout the separation 
layer and was calculated from top surface SEM images. The 2D square- 
packed top surface pore geometry and interconnected pore network 
suggest that the separation layer is a simple cubic lattice. The coordi
nation number is assumed to be constant and equal to six, where each 
pore is only connected to its six closest neighbors. In other words, a pair 
of pores is connected only if the associated cubic cells share a face. The 
pore size distribution, also derived from top surface SEM images, is 
assumed to follow a normal distribution. These pore diameters are 
assigned to the pore bodies in the network and the equivalent pore 
throat diameters are assumed to be the harmonic mean of the associated 
pore bodies. The length of each pore throat is assumed to be the 
Euclidean distance between the associated pore bodies. Separation layer 
thickness is estimated from the cross-sectional SEM images. 

The substructure pore density function, pore size distribution, and 
thickness are derived from 2D cross-sectional SEM images. The coordi
nation number distribution is assumed to be the same as that of the block 
copolymer scaffold analyzed in Appendix C. Assignment of (equivalent) 
pore diameters to pore bodies and pore throats was performed as 
detailed previously for the separation layer. To account for the tortu
osity of microstructure, the length of each pore throat is assumed to be 
1.265 times the Euclidean distance between the associated pore bodies 
(Appendix C). 

2.6. Macropores vs mesopores 

To perform a meaningful flow simulation, it is essential to differen
tiate between the macropores and mesopores within the substructure, so 
that mesopores that are not connected to the macroporous network are 
not included in the pore network construction. 

Fig. 3a shows two large macropores (lined in red) within the sub
structure that are separated by a mesoporous wall of thickness 2 × b. The 
pores decorating this mesoporous wall (e.g., see Fig. 1d) are connected to 
adjacent macropores via mesopores that are orders of magnitude smaller 
than said macropores. Including either of these mesopore types in the 
SPNM flow simulation may cause significant underestimation of 
permeability. Performing a meaningful flow simulation thus relies upon 
differentiating between macropores and mesopores so that the latter is 
excluded from pore network construction. 

A closer look at the walls of a macropore (Fig. 1d) reveals a relatively 
ordered array of nanoscale pores (mesopores), much like those popu
lating the membrane top surface. We also observe larger mesopores in 
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2D SEM images (e.g., see pores that appear between the two macropores 
marked in Fig. 3a). Based on these observations, we hypothesize that the 
structure of the mesoporous walls extends throughout the entirety of the 
membrane: on the surface of the wall, pores sizes are similar to those of 
separation layer pores; and as wall thickens, larger pores appear within 
the wall. In other words, at some distance z away from the separation 
layer, thin mesoporous walls with ordered pore structure transition to 
thicker porous walls that contain larger pores. Following this rationale, 
we assume that the structure of all porous walls is the same throughout 
the membrane, i.e., if the wall (denoted by the double-headed arrow in 
Fig. 3b) has a half-thickness b, its structure is identical to the top section 
of membrane with thickness b. 

To formulate this hypothesis, it is essential to examine the pore size 
distribution in the substructure. As will be shown in the Results section, 

at each depth z, the pore diameter distribution can be estimated using a 
truncated lognormal distribution. It will also be shown that the mean 
and standard deviation of the natural log of pore diameters increases 
linearly with ln(z). Therefore, the overall pore size distribution and pore 
size gradient resemble the gray region shown in Fig. 3c, where the solid 
line is the mean of the natural log of pore diameter μD,ln(z), dotted lines 
show one standard deviation, σD,ln(z), away from μD,ln(z), and the dashed 
lines show the truncation limits, namely μD,ln(z)+α1σD,ln(z) and 
μD,ln(z)+α2σD,ln(z). The truncated lognormal distribution at location z is 
shown in Fig. 3d. 

Let’s assume that at each depth z, there is a sharp threshold diameter 
D′

(z) that marks the transition from mesopores to macropores (red circle 
in Fig. 3c and d). This assumption naturally means that D′

(z) equals the 
diameter of the smallest macropore at depth z (Dmin,macro(z)). Let’s define 

Fig. 3. (a) Example of two macropores within the membrane substructure. Distance between these macropores is denoted as 2 × b (b) Schematic of one macropore 
from (a) contained within its cubic cell, as represented in the pore network model. (c) Schematic of overall substructure pore size distribution in log-log scale. Blue 
line marks an arbitrary location at depth z from the top of the membrane. (d) Schematic of truncated normal distribution of ln (D) for the arbitrary location shown 
in (c). 
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Dmin,macro(z) = exp
(
μD,ln(z) + α′ σD,ln(z)

)
(5)  

where α1 < α′

< α2. The threshold diameter D′

(z) also equals the largest 
mesopore at depth z, which will exist in the thickest porous wall avail
able at depth z. Following the proposed algorithm for pore network 
generation, each macropore at distance z is contained in a cubic cell of 
width a = 1/

̅̅̅̅̅̅̅̅
γ(z)

√
(Fig. 3b). Given this assumption, the thickest porous 

wall that can be formed at distance z has a half-width of b =
̅̅
3

√

2 a −

Dmin,macro
2 . If the structure of porous walls is the same throughout the entire 

membrane, then the diameter of the largest mesopore (Dmax,meso(z)) 
becomes: 

Dmax,meso(z) = exp
(
μD,ln(b) + α2σD,ln(b)

)
(6) 

depicted by the dotted red line in Fig. 3c. Since Dmin,macro(z) =

Dmax,meso(z), one can iteratively solve for α′ and subsequently D′

(z). 
Repeating this process for all z values provides the pore size threshold as 
a function of z. 

Fig. 4. (a) Cross-sectional SEM images for ISV87. Image 8 shows the entire membrane cross-section. Shown in numbered red boxes are the approximate locations of 
SEM images with higher resolution. (b) The segmented images corresponding to SEM images in (a). Gray pixels show the solid matrix and black pixels show the void 
space. (c) Top-view SEM image of separation layer. (d) Segmented image of SEM image shown in (c). 

M.S. Riasi et al.                                                                                                                                                                                                                                 



Journal of Membrane Science 668 (2023) 121163

7

3. Results 

As described in Sections 2.1-2.2, two ISV SNIPS membranes, namely 
ISV87 and ISV138, were made and characterized via SEM. While this 
section focuses on the analysis of ISV87, the same approach was applied 
to ISV138 (Appendix A). 

3.1. Image segmentation 

Fig. 4a shows two-dimensional cross-sectional images of an ISV87 
membrane at different resolutions, and Fig. 4c shows the corresponding 
top surface SEM image. To understand the structure of this membrane, 
we first need to segment the images. The image segmentation algorithm 
used in this study is the supervised continuous max-flow and min-cut 
algorithm [24–26] described in Appendix B. Fig. 4b and d show the 
segmentations corresponding to the SEM images shown in Fig. 4a and c, 
respectively. Comparing the original images and the segmented images 
shows that given sufficient image resolution, the supervised continuous 
max-flow and min-cut algorithm is able to isolate the pores from the 
solid matrix. 

3.2. Pore size distribution 

Once the images are segmented, the hydraulic diameter (DH = 4A
p ) 

for each pore is recorded, where A is the pore’s area and p is its 
perimeter. Top surface SEM image analysis of the ISV87 membrane 
(Fig. 4d) reveals a normal distribution for pore diameters with mean of 
13.16 nm and standard deviation of 2.75 nm.

Cross-sectional SEM images (Fig. 4b) were then used to determine 
the pore size distribution of the substructure. Resolution limitations led 
to a minimum detectable pore size at each magnification. Fig. 5 shows a 
clear gradient in DH as a function of distance between the pore centroid 
and the top of the membrane (z). This gradient is also evident in image 7 
(Fig. 4a and b). Analyzing the datapoints for images 7–8 reveals that, for 
ln (DH) vs. ln(z): (1) the pore size distribution at each distance z re
sembles a truncated lognormal distribution and (2) a linear fit for mean 
and standard deviation is sufficient to capture the pore size gradient in 
each of these images. As the mean and standard deviation curve slopes 

do not change significantly across images 7–8, it was concluded that, in 
log-log scale, the mean and standard deviation curves for the overall 
pore size distribution have the same slopes as in images 7–8. In this 
study, the image with the lowest resolution (image 8) was used to find 
the mean and standard deviation curve slopes. The intercept was 
assumed to be the mean and standard deviation of DH in image 1. In 
Fig. 5, the solid black line represents the mean curve for all pores, the 
dotted black lines denote one standard deviation above and below the 
mean curve, and dashed black lines denote the upper and lower trun
cation limits. As this analysis was performed on a logarithmic scale, the 
pore size distribution at each depth z is a truncated lognormal distri
bution on the linear scale. 

At this point, the determined pore size distribution includes both 
macropores and mesopores. For SPNM simulation, however, we only 
need the pore size distribution of macropores. Following the reasoning 
in Section 2.6, the mesoporous threshold diameter D′

(z) (Fig. 5, dashed 
red line) is found for this membrane. The red circle marks the depth z =

2.74 μm, below which the porous wall is completely ordered, consistent 
with the transition from single-layer walls to thicker walls between z ≈

2 − 3 μm in SEM images 2–3 (Fig. 4a). Here we assume that the sub
structure pore size distribution and pore density stay constant below this 
depth. At z ≈ 2.74 μm, the diameter threshold (DH) is 58 nm, which, 
according to our hypothesis, corresponds to the average pore diameter 
of the ordered porous wall sections. Our measurements of pore sizes on 
the surface of porous walls (not presented here) reveal a similar 
diameter. 

3.3. Pore density profile 

Analyzing the ISV87 membrane top surface (Fig. 4d) reveals a pore 
density of 8.97 × 1014 pores/m2. 

Considering that the pore density profile for all ISV87 cross-sectional 
images is consistent with an exponential decay function, we assume that 
pore density function for the entire substructure is also an exponential 
decay. As shown in Fig. 6, seven datapoints are used to fit the expo
nential decay function: overall pore density in images 1–6 and corrected 
pore density for the lower 10 μm in image 8. The correction accounts for 
the resolution-limited missing pore size data and is calculated: (1) based 
on the truncated lognormal pore size distribution assumption, and (2) by 

Fig. 5. Pore size distribution for ISV87. Both axes are 
in logarithmic scale. The scatter datapoints show the 
hydraulic diameter (DH) vs. distance between the 
centroid of the pore to the top of the membrane (z). 
Solid black line shows the mean curve, dotted black 
lines show one standard deviation above and below 
the mean curve, and dashed black lines show the 
upper and lower truncation limits of all pores (mac
ropores and mesopores). The threshold between 
meso- and macropores is shown by the red dashed 
line. The solid red circle shows the depth below which 
the mesoporous wall is completely ordered.   
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accounting for the area under the lognormal curve that is not covered by 
measured pore diameters in image 8. The solid black line in Fig. 6 shows 
the resulting pore density profile γ(z). 

As was the case with the pore size distribution, the current pore 
density profile includes both macro- and mesopores. To find the pore 
density profile of macropores, we use the mesopore diameter threshold 
in Fig. 5 (red dashed line) as the lower truncation limit of the pore size 
distribution to remove the mesopore area fraction under the lognormal 
curve. The red dashed line in Fig. 6 shows the corrected pore density 
profile for just macropores. Pore density was assumed to be constant 
below z ≈ 2.74 μm, consistent with prior analysis of pore size 

distribution. 

3.4. Pore network generation 

Using the SEM images of ISV87, the thickness of the separation layer 
and the entire membrane are measured as ∼ 100 nm and ∼ 62 μm, 
respectively. Given the calculated pore density profile and the algorithm 
in Section 2.5, a two-layer pore network model is generated. Fig. 7a–c 
shows a portion of the generated pore network. The comparison be
tween the target and achieved coordination number distribution is 
shown in Fig. 7d. From this figure, the proposed link removal algorithm 

Fig. 6. Pore density profile for substructure of ISV87. The vertical axis is in logarithmic scale. Individual datapoints represent the pore densities in images 1–6 as well 
as the corrected pore density for the lower 10 μm in image 8. The black solid line is the overall pore density profile of the substructure. The red dashed line is the 
corrected pore density profile reflecting only macropores. 

Fig. 7. Pore network generation for ISV87. (a) 3D view of a 10 × 10 × 20 μm pore network. (b) 2D side view of the network. (c) Zoomed-in view of the separation 
layer network and interface links (red). (d) comparison between the target and achieved coordination number distribution for the substructure. 
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closely matches the target coordination number distribution. 

3.5. Permeability simulation 

Absolute permeability is simulated for ISV87 for a range of cross- 
sectional areas starting from 4 μm × 4 μm . Incremental increases 
revealed that a cross-sectional area of 10 μm × 10 μm was sufficient to 
represent the membrane. The calculated absolute permeability, based on 
SPNM, was 371.58 ± 6.70 LMH/bar, which underestimates the experi
mental value of 484 ± 66 LMH/bar by ~23%. 

3.6. Sensitivity analysis 

As shown in Fig. 4c and d, the segmentation algorithm identifies 
some of the main pores in the top separation layer (i.e., pores consti
tuting the square lattice formation) as blocked pores, while detecting 
additional smaller pores that are located at the center of these square 
lattices. We will refer to these smaller pores as indents. Although there is 
no straightforward approach to experimentally examine whether a pore 
is blocked or open, it is normal to observe such artifacts in any seg
mentation method. 

As these artifacts could significantly alter the pore density and pore 
size distribution, and thus the simulated permeability, it is crucial to 
understand the sensitivity of the SPNM model to changes in these top 
separation layer parameters. To perform a meaningful sensitivity anal
ysis, a reference case is defined based on the assumption that all pores 
constituting the square lattice are open and all indents are blocked (or 
solid). Based on this assumption, the top separation layer pore density is 
~9.18 × 1014 pores/m2. The corresponding pore size distribution was 
determined by fitting the raw pore diameter measurements with a 
bimodal normal distribution (vs. a regular normal distribution), and 
discarding the distribution with the smaller mean value, yielding 
13.90 ± 1.72 nm. Using SPNM in conjunction with these updated values 
only results in a 5% increase in simulated permeability to 390.68±

7.90 LMH/bar (~19% lower than the measured permeability). 
Based on the reference case (vide supra), two numerical experiments 

were designed to study the effects of mean pore diameter and pore 
density of top separation layer on simulated permeability in further 
detail. In the first experiment (Fig. 8a), the pore diameter distribution of 
13.90 ± 1.72 nm (denoted by a solid black marker) is used as the 
reference and the incrementally increased/decreased mean pore diam
eter is used as the input for SPNM. As shown in this figure, for small pore 
diameters, a slight change in the mean pore diameter can significantly 
change the simulated permeability (e.g., decreasing the mean pore 
diameter by 30%, from 13.90 nm to 9.73 nm, results in a 45% reduction 
in permeability). However, once the mean diameter reaches ∼ 35 nm, 

permeability levels off at ∼ 550 LMH/bar. According to this analysis (all 
else held constant), a mean pore diameter of 18.61 nm is needed to 
match the mean experimental permeability (484 LMH/bar). The 
4.71 nm difference (18.61 nm vs. 13.90 nm) is equivalent to ∼ 3.65 
pixels. 

The second experiment (Fig. 8b) simulates the effect of blocked pores 
on the simulated permeability. To that end, the reference pore density of 
9.18 × 1014 pores/m2 (0% blocked pores, denoted by a solid black 
marker) is incrementally decreased to reflect the increased fraction of 
blocked pores. Comparing Fig. 8a and b, the simulated permeability is 
less sensitive to changes in pore density than pore diameter. For 
instance, 20% decreases in pore density (from 9.18 × 1014 pores

m2 to 7.34 ×

1014pores
m2 ) and mean pore diameter (from 13.90 nm to 11.12 nm) result in 

11% and 28% decreases in permeability, respectively. 

4. Discussion 

This work was inspired by challenges in characterization and flow 
simulations in BCP SNIPS ultrafiltration membranes. Our goals were to 
develop (1) a method to delineate the hierarchical asymmetric BCP 
membrane pore structure, and (2) a fast method for pore-scale modeling 
of flow in these membranes. To achieve the first goal, we developed a 
procedure that uses segmented 2D top separation layer and substructure 
SEM images to delineate the 3D hierarchical membrane pore structure. 
To achieve the second goal, the resulting pore size distribution was used 
as the input for an asymmetric SPNM, which was then employed to es
timate absolute membrane permeability. The results are very promising. 

Several assumptions have been made throughout the analysis. Given 
the lack of a high-resolution 3D membrane reconstruction, this study 
used 2D SEM images. Therefore, assumptions were made to account for 
the missing information from the third dimension. It was assumed that 
the pore structure in the xy-plane at each depth z is the same as what we 
observe in cross-sectional images. For instance, images 1 and 7 (Fig. 4) 
reveal that the pores are compressed near the top surface of the ISV87 
membrane. Using pore sizes acquired from segmenting these cross- 
sectional images, the same compression was assumed to exist in that 
entire section, in all directions, which may have resulted in an under
estimation of permeability for ISV87. To relax this assumption, one 
needs to acquire 2D images of the membrane etched parallel to the top 
surface. 

Acquiring more 2D images would also enable the digital recon
struction of the 3D membrane structure. Image reconstruction has been 
used extensively as a cost-effective alternative to 3D imaging [27,28]. 
Particularly with the recent advances in computer vision and artificial 
intelligence (AI), more sophisticated porous media image reconstruction 
methods have been developed in the past few years [29]. If successful, 

Fig. 8. Simulated permeability of ISV87 membrane as a function of (a) average pore diameter and (b) pore density of top separation layer. Black markers in (a) and 
(b) denote the reference permeability value of 390.68 ± 7.90 LMH/bar simulated using pore diameter distribution of 13.90 ± 1.72 nm and pore density of 9.18 ×

1014 pores/m2, respectively. Data labels in (b) show the percentage decrease in pore density (i.e., the fraction of blocked pores). 

M.S. Riasi et al.                                                                                                                                                                                                                                 



Journal of Membrane Science 668 (2023) 121163

10

the 3D reconstructed image would not only enable us to re-examine the 
assumptions made on pore shape, length, and connectivity, but it could 
also be used as input to more accurate, topologically-consistent por
e-scale flow modeling. 

Segmenting SEM images also comes with a set of assumptions. For 
instance, the choice of thresholds (discussed in Appendix B) is highly 
user-dependent. Slight threshold alterations naturally result in different 
pore size estimations and therefore permeability values. Our sensitivity 
analysis presented in Section 3.6 (and Appendix A) also confirms that 
even a few pixels’ difference in pore diameter measurement could lead 
to significant change in simulated permeability. In addition, when a 
large pore is detected and isolated during the segmentation process, 
smaller low-intensity pores that are within the large pore will be 
neglected. A more sophisticated image processing technique may alle
viate this drawback. 

In this study, we assume that the membrane structure is rigid, and 
permeability is independent of applied pressure. However, prior work 
by Zhang et al. [8] showed that higher applied pressures potentially lead 
to membrane compression and decreased permeability. 

To find the threshold between macropores and mesopores, a hy
pothesis was presented in Section 2.6, in which we assumed that the 
structure of all porous walls is the same throughout the entire mem
brane. Although the result of the hypothesis is consistent with the ob
servations from SEM images, acquiring high-resolution images from the 
lower half of the substructure will help substantiate/improve this 
hypothesis. 

The pore network model of the membrane assumes constant thick
ness for the separation layer, while both Fig. 4 and Fig. A1 show slight 
variation in its thickness. Because of the high sensitivity of computed 
permeability to properties of the separation layer discussed in Section 
3.6 and Appendix A, incorporating this variation could help improve the 
predictability of the SPNM model. In addition, it was assumed that the 
effect of mesopores on membrane permeability is negligible. Future 
work will utilize a two-scale pore network model like [30] to examine 
the validity of this assumption. 

The ultimate objective of this work is to create efficient processes to 
design and synthesize ultrafiltration membranes tailored for specific 
applications. Currently, designing ultrafiltration membranes with tar
geted properties is an expensive procedure that relies heavily on prior 
experience and lengthy trial-and-error procedures. Surmounting these 
obstacles requires understanding the relationships between synthesis 
parameters, membrane structure, and their effective properties [31]. We 
envision this work and subsequent studies will help elucidate these 
relationships. 

5. Conclusions 

In this study, we proposed a novel simple method to compute the 
absolute permeability of BCP SNIPS ultrafiltration membranes. First, we 
used 2D SEM images with a variety of resolutions to delineate the hi
erarchical asymmetric pore structure. Next, to simulate flow, a novel 
stochastic pore network model was proposed and employed to compute 
absolute permeability of two ultrafiltration membranes. Our comparison 
showed good agreement between simulated and measured 
permeabilities. 
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Appendix A. Data and analysis of ISV138 

SEM images for ISV138 were segmented and associated pore size distributions and pore density profiles were extracted as previously detailed for 
ISV87. Figure A1 shows the original and segmented SEM images for ISV138. In addition to a top surface SEM image of the top separation layer 
(Fig. A1c-d), 7 cross-sectional SEM images were acquired for the substructure of the membrane (Fig. A1a-b). 

The pore density of the top separation layer is calculated as 7.17 × 1014 pores/m2 and its pore diameter distribution is assumed to be a normal 
distribution with a mean of 20.75 nm and standard deviation of 3.45 nm. Figures A2 and A.3 show the pore size distribution and pore density profile 
for ISV138, respectively. Pore size distribution and pore density profile were assumed to remain constant below z = 2.35 μm. 

Using the SEM images of ISV138, the thickness of the separation layer and the entire membrane were measured as ∼ 130 nm and ∼ 50 μm, 
respectively. Using SPNM and following the procedure described in Sections 3.4-3.5, the absolute permeability calculation resulted in 889.22±

37.29 LMH/bar. Comparing with experimental values of 644 ± 15 LMH/bar, SPNM overestimated the permeability by ~38%. 
To study the effects of segmentation errors on the simulated permeability (as done for ISV87 in the main text), a reference case is defined for 

ISV138 and the sensitivity of the model to changes in pore size distribution and pore density is studied. The reference case for ISV138 comprises a pore 
density of 5.87 × 1014 pores/m2 and pore diameter normal distribution of 22.59 ± 2.15 nm. Using SPNM in conjunction with these adjusted values 
increases the simulated permeability by a meager 1.4% to 901.40 ± 41.32 LMH/bar (~40% higher than the measured permeability). 

Figure A4 shows the results of the sensitivity analysis where the reference case is denoted by solid black markers. Consistent with the analysis of 
ISV87, the permeability of ISV138 is more sensitive to mean pore diameter than pore density. Based on Fig. A4a, to match the experimental mean 
permeability of 644 LMH/bar, a mean pore diameter of 16.50 nm is needed. Alternatively, the experimental measurement can be matched by SPNM if 
pore density is decreased by ~45% (Fig. A4b). 

M.S. Riasi et al.                                                                                                                                                                                                                                 



Journal of Membrane Science 668 (2023) 121163

11

Fig. A.1. (a) Cross-sectional SEM images for ISV138. Image 7 shows the entire membrane cross-section. Shown in numbered red boxes are the approximate locations 
of SEM images with higher resolution. (b) The segmented images corresponding to the SEM images in (a). Gray pixels depict the solid matrix and black pixels the void 
space. (c) Top surface SEM image. (d) Segmentation of SEM image shown in (c).  

M.S. Riasi et al.                                                                                                                                                                                                                                 



Journal of Membrane Science 668 (2023) 121163

12

Fig. A.2. Pore size distribution for ISV138. Both axes are in logarithmic scale. The individual datapoints depict the hydraulic diameter (DH) vs. distance between the 
centroid of the pore and the membrane top surface (z). Solid black line shows the mean curve, dotted black lines show one standard deviation above and below the 
mean curve, and dashed black lines show the upper and lower truncation limits of all pores (macropores and mesopores). The threshold between meso- and 
macropores is shown by the red dashed line. The solid red circle shows the depth below which the mesoporous wall is completely ordered. 

Fig. A.3. Pore density profile for substructure of ISV138. The vertical axis is in logarithmic scale. The individual datapoints represent the pore densities in images 
1–4 as well as the corrected pore density for the lower 10 μm in image 7. The black solid line is the overall pore density profile of the substructure. The red dashed line 
is the adjusted pore density profile for only macropores.  
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Fig. A.4. Simulated permeability of ISV138 membrane as a function of (a) average pore diameter and (b) pore density of separation layer. Solid black markers in (a) 
and (b) denote the reference permeability value of 901.40 ± 41.32 LMH/bar simulated using pore diameter distribution of 22.59 ± 2.15 nm and pore density of 5.87 ×

1014 pores/m2, respectively. Data labels in (b) show the percentage decrease in pore density (i.e., the fraction of blocked pores). 

Appendix B. Continuous max-flow and min-cut algorithm 

SEM images were segmented using a supervised continuous max-flow and min-cut algorithm [24–26]. Continuous max-flow segmentation is the 
continuous variation of the well-known graph-cut segmentation and is based on the dual problems of maximum-flow and minimum-cut in combi
natorial graph theory. Much like any other segmentation method, continuous max-flow problems aim to partition a gray-scale image Ω into two 
disjointed regions, namely the foreground Ωf and the background Ωb = Ω\Ωf .

Fig. B.1. Schematic of continuous max-flow problem. Domain Ω represents a 2D gray-scale image where Ωf is the foreground and Ωb is the background. The dark 
square in the middle represents a pixel at location x ∈ Ω. ps(x) and pt(x) are the source flow from source to position x and sink flow from position x to sink, 
respectively. p(x) is the spatial flow within the domain Ω. 

As shown in Fig. B1, for a given image, let Ω be a continuous 2D domain where x ∈ Ω represents the location of pixels in the image and s and t are 
the source and sink terminals, respectively. Let p(x) be the spatial flow within the domain Ω at position x ∈ Ω, and let ps(x) and pt(x) be the source flow 
from source to position x and sink flow from position x to sink, respectively. The supervised continuous max-flow model is then formulated as: 

max
ps ,pt ,p

∫

Ω
ub(x) ps(x) dx −

∫

Ω
uf (x) pt(x) dx

subject to : |p(x)| ≤ C(x), ps(x) ≤ Cs(x), pt(x) ≤ Ct(x), div p(x) − ps(x) + pt(x) = 0
(B.1)  

where C(x), Cs(x) and Ct(x) are flow capacity functions. At each position x, C(x) is the flow capacity within the domain. Cs(x) and Ct(x) are the flow 
capacities for flow from the source and to the sink at position x, respectively. The equality condition in the optimization problem of Eqn B.1 is the flow 
conservation equation, and uf (x) and ub(x) are indicators that enforce the user-defined constraints of the foreground/background labels for specific 
pixels. These indicators can be defined as 

uf (x) =

{
1, x ∈ Ωf
0, x ∕∈ Ωf

, ub(x) =

{
0, x ∈ Ωb
1, x ∕∈ Ωb

(B.2) 

It has been shown [24,26] that the max-flow problem of Eqn B.1 can be solved using its augmented Lagrangian function: 
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Lc(ps, pt, p, λ) =

∫

Ω
ub(x) ps(x) dx −

∫

Ω
uf (x) pt(x) dx +

∫

Ω
λ[div p(x) − ps(x) + pt(x)] dx −

c
2

‖div p(x) − ps(x) + pt(x)‖
2 (B.3) 

where c > 0 and λ ∈ [0, 1] is a multiplier. Solving the max-flow problem of Eqn B.3 will result in a λ map where each pixel is assigned a value between 
zero and one, representing the probability of that pixel belonging to the foreground. Therefore, the segmented image can be easily generated by 
thresholding the λ map with an arbitrary λthreshold. For unsupervised max-flow problem, the indicators must be set to uf (x) = 0 and ub(x) = 1. The 
detailed algorithm on solving the max-flow problem described above can be found in Refs. [24,26]. 

In this study we propose the following steps: 

Step 1. If needed, crop the image to the region of interest. 
Step 2. Apply a 3 × 3 median filter. 
Step 3. Normalize the image. Let I(x) be the resulting matrix for the image. 
Step 4. Define the flow capacities as follows: 

Cs(x) = |I(x) − (gρ ∗ I(x) − 0.3)|

Ct(x) = |I(x) − (gρ ∗ I(x) + 0.3)|

C(x) = 0.5
(B.4)  

where gρ is a gaussian kernel with standard deviation of ρ = 3. 

Step 5. Given two arbitrary scalar values 0 < t2 < t1 < 1, define the indicators as follows: 

uf (x) =

{
1, I(x) > t1
0, I(x) < t1

, ub(x) =

{
0, I(x) < t2
1, I(x) > t2

(B.5) 

In this study, we used Otsu’s two-level thresholding technique to find t1 and t2. 

Step 6. Use I(x), C(x), Cs(x), Ct(x), uf (x) and ub(x) to solve the max-flow problem. The result of this step will be the multiplier λ(x). 
Step 7. Threshold λ using λthreshold = 0.5. If λ > λthreshold, the pixel belongs to foreground, i.e. the membrane matrix. Otherwise, the pixel belongs to 
void space. 

Appendix C. BCP Pore structure analysis 

The 3D tomographic reconstruction of a polymeric scaffold from an earlier study [23] was acquired and analyzed to extract information about the 
3D structure of ISV membranes. We use Skeletonize3D and Analyze Skeleton plugins [32,33] in Fiji Image Processing Package [34–36] to extract and 
analyze the 3D skeleton (medial axis) of the void space of the polymeric scaffold. 

Figure C1a shows the 3D structure of the polymeric scaffold in gray. Shown in red is the extracted medial axis of the void space. From the medial 
axis, one can construct an undirected graph network (Fig. C.1b) much like the pore networks generated in this study. The degree distribution of the 
graph network is used as the coordination number distribution in pore network modeling (Fig. C1c). To eliminate the effect of boundary nodes, nodes 
with coordination number of one are removed from coordination number analysis.

Fig. C.1. (a) 3D reconstruction of polymeric scaffold [23] shown in gray along with the extracted medial axis shown in red. (b) Graph network extracted from the 
medial axis. (c) Coordination number distribution of the extracted network. 

Since the polymer scaffold has a disordered pore structure, the tortuosity of the pore throats needs to be accounted for. Figure C2a shows the 
relationship between the length of pore throats, computed from the medial axis, and the Euclidean distance between end-nodes. The linear fit shows 
that the average length of pore throats is ~1.265 times larger than their associated Euclidean length. We use this multiplier for all pore throats in the 
substructure portion of the membrane pore network. 

Since we assume that the measured diameters from SEM images belong to the pore bodies in the network, a pore diameter must be defined for each 
pore throat as well. Using the extracted medial axis in Fig. C1a, the hydraulic conductance of each medial axis segment can be computed as described 
in an earlier study [37]: 

kmedial axis segment =
π

128 μ
∫ L

0
dx

D(x)4

(C.1) 
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where L is the length of medial axis segment in voxels and D(x) is the varying diameter of medial axis in voxels. Replacing the medial axis segment with 
an equivalent cylinder of length L and hydraulic conductance of kmedial axis segment , the equivalent diameter of the cylinder becomes: 

Dequivalent =

⎛

⎜
⎜
⎝

L
∫ L

0
dx

D(x)4

⎞

⎟
⎟
⎠

1/4

(C.2) 

Red circles in Fig. C2b depict the equivalent diameters of pore throats with respect to the pore diameters of associated pore bodies. The gray surface 
represents the harmonic mean of diameters of each pair of pore bodies. As shown in this figure, a good correlation is observed. Therefore, the di
ameters of pore throats in the pore network model are assumed to be the harmonic mean of their corresponding pore bodies.

Fig. C.2. (a) Real length of pore throat vs. the Euclidean distance of end-nodes. Measured data shown in red. Solid black line represents the linear fit. (b) Equivalent 
diameters of pore throats vs. the diameters of the pore bodies at the end-nodes. Measured data shown in red. The gray surface represents the harmonic mean of the 
diameters of the pore bodies located at the end-nodes. 
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