774

IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 12, NO. 5, MAY 2023

Channel Equalization Through Reservoir Computing: A Theoretical Perspective
Shashank Jere™, Ramin Safavinejad™, Lizhong Zheng, Fellow, IEEE, and Lingjia Liu™, Senior Member, IEEE

Abstract—Deep learning practice, including in wireless com-
munications, often relies on trial and error to optimize neural
network (NN) structures and their corresponding hyperparam-
eters. We show that Reservoir Computing, especially the Echo
State Network (ESN), is an ideal learning-based equalizer for a
general fading channel and for an ESN equalizing a channel
with known statistics, theoretically derive its optimum reser-
voir weights which are randomly initialized in state-of-the-art
and lack interpretability. The theoretical results are validated
with simulations. In contrast to existing literature, this let-
ter analytically adapts the NN structure to the problem being
addressed, guaranteeing optimum equalization under known
channel statistics.

Index Terms—Reservoir computing, echo state network, neural
network, channel equalization, and receive processing.

I. INTRODUCTION

EEP learning has been adopted at a rapid pace in a vari-

ety of problems, including in wireless communications in
recent times, e.g., in Dynamic Spectrum Sharing [1], among
other applications. As end-to-end wireless links become increas-
ingly complicated due to nonlinear device components, e.g.,
power amplifier and low-resolution analog-to-digital converters
(ADCs), their analytical modeling in a tractable and accurate
manner becomes difficult. Therefore, standard model-based
approaches for receiver tasks such as channel equalization,
which rely on accurate channel state information (CSI) can
result in degraded performance, especially in the low signal-to-
interference-plus-noise (SINR) ratio regime, thereby making
machine learning based and specifically neural network (NN)-
based approaches attractive. When applying deep learning
models to wireless physical layer problems in particular, the
typical offline learning approach is to train a NN model using
a large amount of offline data with the implicit expectation of
limited generalization ability of the model to channel configura-
tions or statistics that are not seen in the training data. Examples
of this approach applied to the receive symbol detection task
specifically can be seen in strategies such as DetNet [2] and
MMNet [3]. Often in such methods, the choice of the NN model
is not adapted to the problem at hand, and hyperparameters are
tuned via trial and error. Online learning attempts to address
this problem of “uncertainty in generalization” by updating NN
weights in an adaptive fashion. Reservoir Computing (RC) is a
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particularly attractive framework for online learning due to its
inherent low-complexity training and is a prime candidate for
applying learning-based techniques in receive processing, e.g.,
symbol detection, where over-the-air training data in the form
of pilots is extremely limited, as shown in [4], [5], [6]. These
methods have demonstrated superior performance compared to
traditional model-based techniques and other offline learning
strategies.

Amongst studies investigating the theoretical underpinnings
of RC’s effectiveness in time-series forecasting and regres-
sion problems, a notable mention is [7] which shows that an
RC, specifically an ESN without non-linear activation is equiv-
alent to vector autoregression (VAR). Reference [8] makes
the case for ESNs being universal approximators for ergodic
dynamical systems. The effectiveness of RC in predicting com-
plex nonlinear dynamical systems such as the Lorenz and
the Rossler systems was studied in [9], while [10] investi-
gated tuning and optimizing the length of the fading memory
of RC systems. A survey of hardware implementations of
RC systems based on optoelectronic and photonic systems
with time-delayed feedback was provided in [11], while [12]
proposed a proof-of-principle experimental microwave rever-
berant based RC system. On the other hand, statistical learning
theory-based works [13] attempt to bound the generalization
error using measures such as Rademacher complexity. While
these works shed light on the effectiveness of RC, they do not
provide much insight into how an ESN should be designed or
set up to exploit any available domain knowledge. In contrast
to existing NN applications to wireless communications prob-
lems, we would like the NN structure to be designed according
to the problem at hand. In this letter, we develop a traditional
signal processing understanding of the ESN from first prin-
ciples and show that for wireless signal propagation which
can be viewed as a filtering operation, the basic ESN is the
ideal learning-based structure to perform its inverse equaliza-
tion operation. Given first-order statistical knowledge of the
channel, we show that there is an “optimum” way to set up
the reservoir of the ESN for equalization. The primary con-
tribution of this letter is the analytical optimization of the
ESN reservoir weights, providing much needed NN model
interpretability and a systematic and flexible way to design
the ESN for predictable equalization performance. Notation:
Re(-) denotes the real part operator. () denotes linear con-
volution. VAR[:] denotes the variance of a random variable.
“W.L.0.G.” stands for “without loss of generality”.

II. SYSTEM MODEL
A. Wireless Propagation

The transmission of a signal through a wireless channel
can be viewed as linear filtering of that signal through a
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time-varying finite impulse response (FIR) filter. The discrete-
time baseband input-output relationship for a channel with L
resolvable taps is a convolution operation according to

L-1
y[m] = 2 he[m]z[m — €] + w[m], (1)
=0

where z[m] € C is the baseband transmitted symbol,
y[m] € C is the baseband received symbol and hy[m] € C
is the ¢* channel filter tap value respectively, all at time
index m. The noise sample w[m] is circularly symmetric
Gaussian distributed, i.e., w[m] ~ CN(0,52). In general, the
received signal suffers from inter-symbol interference (ISI),
i.e., the received symbol y[m] is affected by symbols trans-
mitted before time index m and not only by the symbol z[m]
transmitted at index m.

B. The Conventional Echo State Network (ESN)

Consider the Echo State Network (ESN), which is a
prominent framework within the Reservoir Computing (RC)
paradigm. Specifically, consider an ESN with a reservoir con-
taining K randomly inter-connected neurons and a single
output (readout) weights layer. The relevant parameters for
this ESN structure are defined below:

e Xjy[m] € C%n: ESN input at time index .

o Xpes[m] € CK. Reservoir state vector at time index m.

o W,, € CE*din: Input weights matrix.

e Wy € CE*K. Reservoir (recurrent) weights matrix.

o Woyt € Cout XK. Qutput weights matrix.

o Xout[m] € Cdout; ESN output at time index m.
din and dgyy are the dimensions of the ESN’s input and output
respectively. For a point-wise non-linear activation function
o(+), the state update and output equations are respectively:

(2
(3)
To make our analysis tractable, we consider a “linear” ESN,

i.e., where the activation function o (-) is an identity mapping,
so that the state update equation becomes

Xres [m] = U(Wresxres[m - 1] + Winxin [m]),

Xout [m] = WoutXres [m]

Xres [m] = WiesXres [m - 1] + Winxin[m]- 4

A linearized formulation like the above lends itself well to
tractable analysis, such as that in [7]. In the state-of-the-
art, only Wy is trained using a Least Squares approach,
while Wi, and W are initialized according to a certain pre-
determined distribution and then fixed throughout the training
as well as the inference stages. However, since our objective
in this letter is to understand why ESNs are particularly effec-
tive in channel equalization, we view this as an optimization
problem where the goal is to also optimize Wy e5. We hypoth-
esize that the advantage of having nonlinearity in the reservoir
and the optimization of the reservoir weights are either orthog-
onal or at least separable issues, and therefore we limit our
scope in this study to optimizing the reservoir weights in the
linear setting. The validity of this hypothesis is confirmed via
the simulation results of Section IV. The question we aim to
answer is: Given knowledge of the channel statistics and for
conventionally trained W ,yt, what is the optimum choice of
Wes that gives the minimum expected error across channel

realizations? In this letter, we answer this question fully for the
simple case of a two-tap fading channel and a single-neuron
ESN equalizer. The general answer for a more complicated
fading channel and reservoir construction with interconnected
neurons is part of future letter.

C. Signal Processing View of the ESN

The channel frequency response H.p(jw) can be found
by taking the Discrete-Time Fourier Transform (DTFT) of
the channel impulse response (CIR) with a tapped delay
line (TDL) model h := [hg hy ... hy_1] and is written as
Hy(jw) = ZL_& hpe IWATs \where w € [0,27] rad/sec
and Ar, is the tap-spacing or the sampling time interval
in sec/sample, in the TDL model of the CIR. For an input
sequence z[m] with DTFT X (jw), the channel output y[m]
with DTFT Y (jw) is given by Y (jw) = Hy,(jw)X (jw). If
an ESN with a frequency response Hrc(jw) is employed to
recover the transmitted symbol z[m] from y[m], the DTFT
of the ESN output is X (jw) = Hrc(jw) Y (jw).

Consider a reservoir without any interconnections between
neurons. In this case, each neuron with a delayed feed-
back connection to itself can be viewed as a simple infinite
impulse response (IIR) filter. The Z-transform of an IIR
filter with a tap weight @ on the feedback path is well-
known to be H(z) = ——. Based on this perspective,
the frequency response of the IIR filter corresponding to
the i*" neuron with a feedback connection having a delay
ATtrc and without interconnections to other neurons can

be written as H;(jw) = Wi—fﬁ)mm, where W, ; is
the recurrent weight in the feedback path of the IIR filter
modeled by the ™ neuron, and Win,; is the correspond-
ing input weight. We make the simplifying assumption that
Ats = Atprc = Ar. The overall frequency response of the
ESN is a weighted sum of the individual frequency responses,
ie, Hre(jw) = S, WiH;(jw), where W; is the out-
put weight for the it" neuron within the reservoir. Thus,
the linearized ESN is an IIR filter which effectively inverts
the FIR filtering effect of the wireless channel, or in other
words,Aperforms a 1-D linear deconvolution. Intuitively, we
want X (jw) to approach X (jw), which is achieved when
Hro(jw) ~ H Cil(jw). From a geometric perspective, the K
non-interconnected neurons inside the reservoir constitute a
subspace S which is a linear combination of the basis func-
tions H;(jw), i.e., S = span{Hj (jw), Ho(jw), ..., Hx (jw)}.
The inverse channel response Hcil(jw) can be projected
onto this subspace S, leaving a residual (regression) error
of £ as shown in Fig. 1. For a given Hg, (jw) and hence
Hcil(jw), an optimally designed reservoir would span the
subspace S via the basis functions {H;(jw)} such that the
error € is minimized, or alternatively, the orthogonal projection
projS{HC?ll(jw)} of Hcil(jw) onto S is maximized.

In conventional RC (ESN)-based symbol detector design,
the reservoir is randomly initialized and then kept fixed
throughout, with the recurrent weights W,. ; chosen from a
pre-determined distribution without consideration of the chan-
nel statistics. The ESN’s conventional training involves select-
ing its output weights W; to solve the following optimization
problem such that the squared loss given below is minimized:
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Fig. 1.  Channel inverse frequency response projected onto the subspace
spanned by the reservoir basis functions.
2m K 2
[W;] = argminJ 1= Ho,(jw) Y| W, dw. (5)
[wilie, JO 1=1

However, it is more natural to conceptualize the equalization
performed by the ESN as an inversion of the channel filtering
operation. The formulation that captures this is given below:

2

K
Hy (w) = Y WiH;(jw)| dw. (6)

2T
[W;] = arg minJ
=1

[Wi]f(:l 0

Note that the two formulations in (5) and (6) are not entirely
equivalent since their respective objective functions are differ-
ent. In order to use the objective function in (6) but achieve
the same results for the optimum W;’s as in (5), we define a
new norm measure called the “channel” norm. The definitions
of the channel norm || - || and the channel dot product (-, -),
are provided in Appendix A. Based on these definitions, the
training problem in (5) can be rewritten as

K
H (jw) = Y WiH; (jw)

i=1

[W;] = arg min @)

[Wilisy
Equivalently, (7) can be reformulated into (5) in a matrix
form as 1 = HrcWout, where 1 € (CN><1 = [1,...,1]T,
Wout € CEX1 = [, Wa, ..., Wi]T and the k' col-
umn (k = 1,...,K) of Hgc € CNXK is defined as
Hpc(k) € CNXU = [, Hy(jwn)Hy(jwn),...]T for
n = —,...,00, i.e., N — 00. The Least Squares solution
for Wout 1S Wout = ﬁTRCI, where ITI;%C = (ﬁgcﬁRc)—lﬁfifc
is the left Moore-Penrose pseudo-inverse. The (p, q)* thele-
ment of the K x K matrix HgCHRC can be written as
(HRCHRC)(p ) = = (Hy(jw), Hp(jw)). which can be eval-
vated through complex integration and employing Cauchy’s
Residue Theorem. The regression error ¢ in general is € =
|1 — HrcWout[3-

c

III. A SIMPLE EXAMPLE: RESERVOIR DESIGN INSIGHT

We consider a single-input single-output (SISO) wire-
less communications system, i.e., dj, = doyy = 1 from
Section II-B. A simple wireless channel modeled as a
frequency-selective tapped delay line (TDL) with two taps
is considered, with each tap representing an aggregation of
multiple physical paths. The corresponding channel impulse
response (CIR) vector is then h = [hg h1]. W.L.O.G., this can
alternatively be written as h = [1 ], where a = h1/h, € C in
general, is a random variable with a known distribution. While
the derived optimum output weight W7 and the derived closed-
form error expression hold for & € C in general, we assume
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a € R in order to make subsequent approximations of the error
expression more tractable. Additionally, for the error approx-
imation only, we will assume o ~ Mag,02) = ag(l + u),
i.e., o is centered around a known statistical value ag and the
variation around «y is captured by u ~ N(0,02/ad).

For the CIR h = [hg h1], the channel frequency response
can be obtained as Hy,(jw) = hg + hye 7“A7. Recall the
assumption that the tap delay is the same as the IIR feedback
delay, both being A7 and W.L.O.G., set AT = 1. For a single-
neuron (K = 1) reservoir trying to invert a two-tap wireless
channel with ISI, the output weight expression simplifies to

2 ki +hi el

o {HRNGw) mGe)) T e de
Wl = H (i 5 € = i ) 2 ’ (8)
+hy e
| Hy(jw)llz OW% dw

where W.L.O.G., we set Wy, 1 =

evaluated in Appendix B with the final expression for W1
found as

1. The integrals are

h{]k(l - |Wr,1|2) o
|ho|? + [l |2 + 2Re{h}ho Wy 1}

with A and B defined as shown. Adapting the general error
expression to L = 2 and K = 1, it follows that

27 - hye—Jw 2
Ezf 1 Lot e™®)
0 (1— Wp1e79v)
We evaluate (10) in Appendix C and provide a condensed
version of the derivation of the final expression in (11) therein:
B 21| Wy 1 + af?
1+ |af? + 2Re{a* W, 1}

A
B )

Wy = )

dw. (10)

(1)

Note that the error e € RT U {0} is random and varies with the
channel realization and therefore that of v = hy /hg. Therefore,
to design a reservoir (choose W, 1) that guarantees the low-
est error € across channel realizations and by extension, the
lowest detection symbol error rate (SER) or bit error rate
(BER) subsequent to hard-decision decoding, we must solve
the following minimization problem:

argmin Ey[e(h, W, 1)] = argminEq[e(a, W, 1)].
WT71 Wr,l

(12)

Computing this expectation using the complete expression for
€ is non-trivial. To simplify £ while noting that (9) and (11)
hold in general for o € C, assume a real-valued o = aig(1+u).
We can inspect from (11) that if W;. 1 = —« in general, then
= 0. However, since « changes randomly across channel
realizations due to the randomness in u, setting W, 1 = —«
is not possible. In the trivial case where u = 0, the optimum
reservoir weight is W,. 1 = —ayg. Therefore, we can generally
formulate the problem as setting W;. 1 = —ag + ¢ and finding
the optimum ¢ = (opt that minimizes the expected error across
channel realizations. With these approximations in (11) and
retaining terms up to u2, the first-order approximation & is

- _ o (C2+2a0Cu+agu2>
= ’ﬂ' ;

5 13)

2
1—a0

where 1+u =~ 1 is assumed for small u to simplify the denom-
inator. To simplify further, we take the natural logarithm on
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Expected (approximate) error vs ¢ (g = 0.8)

o002 =0.0]
-g-02 = 0.1
02 =05
A02 =09

Fig. 2. Expected approximate error versus ¢ for a given ag = E[a].

both sides and perform a Taylor series expansion subsequently
to get a second-order approximation £. The i*!' term in the

Taylor series expansion for log € evaluated at u = 0 is given by
1 dG ) (log €)
G—D) " du®
terms are found as ¢; = 220/ and ¢y = —og/c? respectively.
Expanding the Taylor series only up to u2, we get

o2
= (1 TFC 2) exp (clu+ 02u2).
—

0

c; = |u=0- Accordingly, the first and second

My

(14)

Inspecting (14), it is intuitively clear that if u is distributed
around 0 with a variance o2(= o2/a}) that is sufficiently
small, then “on average” o =~ «q and the optimum value
of Wy 1 should be set as Wr(?lpt) = —ap, ie., (opt = 0.
However, we prove that this is true even when a% is not
small so that (opt = O still holds. The proof of this claim
along with the complete expression for Ep[£](= E,[£]) is pro-
vided in Appendix D. Therefore, the optimum reservoir weight

Wr(olpt) minimizing the expectation of the approximate error

is W( Pt _ —ap + Copt = —ap. This expectation versus ¢
is shown in Fig. 2 for g = 0.8.

In summary, we have analytically derived the optimum
choice for the reservoir weight of a single-neuron ESN
equalizer equalizing a two-tap fading ISI channel. Although
the reservoirs used in general RC-based symbol detec-
tors, e.g., [5], [6] contain multiple neurons with random
interconnections, our analysis can be extrapolated to the
extreme case of a reservoir with multiple neurons but without
interconnections, as the example in Section IV demonstrates.
A tractable analysis of general ESN reservoirs with multiple
neurons and random interconnections is part of future work.
Although our analysis is for a single-carrier system, the ESN
as an equalizer is equally applicable to multicarrier (e.g.,
OFDM) based systems [4], [5], [6].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we empirically validate the optimum reser-
voir weight derived in Section III for a two-tap frequency-
selective channel and a single-neuron reservoir ESN following
linear dynamics when employed as a channel equalizer.
However, to mimic a more realistic channel, we consider
a TDL channel model with L = 5 taps with CIR h =
[hos ey s ey, Qg ey |» Where By ~ N(1,1074) and equalize
it using a reservoir with K = 4 non-interconnected neurons,
such that the delay of each neuron is configured to account for

(a) 16-QAM (ap = 0.4)

-6-02 = 0.01 (Linear, p = 0)

Linear, p = 0,

P

Linear, p = 0,
P

-0.5H -A-0?=0.9 (Linear, p = 0)

(b) BPSK (g = 0.4)

-©-07 = 0.01 (Linear, p = 0)

-a-0? =0.01

logy(€)
logy(2)

Wia Wia

Fig. 3. Empirical MSE vs W,. 1 for Gaussian distributed real-valued a.
a different NLOS tap of the CIR. Therefore, the channel effec-
tively has only one ISI tap and the reservoir effectively has
a single neuron whose recurrent weight must be optimized
to mitigate the effective tap’s ISI. The means and variances
of the NLOS taps are set as pg,, = [0.4,—0.2,0.1,—0.1]
and Ugim = [0.05,0.03,0.02,0.01] respectively. The reservoir
weight for the k'™ neuron (2 < k < 4) is fixed to its theoret-
ical optimum as W, ; = —E[a,] while only W, 1 is swept.
The output weight for each neuron is set according to (9)
before summing the weighted outputs of all the neurons. The
input sequence « € CT*1 consists of 7 16-QAM modulated
symbols, with 7 = 1000 to align with standardized wireless
systems such as 5G NR. The received sequence y = h * x
(without additive white Gaussian noise) is input to the ESN
for equalization, which outputs the estimated sequence Z. The
empirical MSE £ plotted as a function of W, 1 in Fig. 3a is
computed as & = (1/TNun,) Z s |2, — 2|3, where Ny, is
the number of independent Monte Carlo runs. It can be seen
from Fig. 3 that € over Ny, = 10° channel realizations is
minimized when the recurrent weight W, 1 is chosen to be
Wr(?pt) = —ap = —Elag,]| as previously derived. Due to
the approximations made to ¢ in the derivation of the theo-
retical W( Pt , the true optimum which minimizes € may not
exactly match the theoretical optimum of —qq especially at
high a . However, the sensitivity of £ to these approxima-
tions is low, so that setting W, 1 = —aq causes a deviation
of only 1.37% and 3.35% from the corresponding true min-
1mum error for 02 = 0.5 and 02 = 0.9 respectively, where
= VAR[ay, ] Flg. 3b also 1nc1udes results for the reservoir
With a nonlinear function (Tanh) applied (with and without
channel tap correlation, controlled by the correlation coeffi-
cient p), when x consists of BPSK modulated symbols. When
the channel taps are independent (implying p = 0), the theoret-

ically derived W( Pt) in the linear setting still holds with the
nonlinearity apphed With correlation, e.g., p = 0.9, the gap
between the linear and nonlinear reservoir cases is minimal
with the theoretical Wr(?lpt causing a deviation of only 1%
from the true optimum, strengthening our hypothesis of reser-
voir optimization and nonlinear activation being orthogonal or
separable issues.

V. CONCLUSION

In this letter, we introduce a signal processing view of
the Echo State Network (ESN), a Reservoir Computing (RC)
implementation and show its resulting utility as an ideal and
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configurable learning-based channel equalizer. Going beyond
convention, we analytically optimize the ESN’s randomly ini-
tialized reservoir weight, when used as an equalizer for a
simple fading channel with known statistics. Corroborating
theory with simulation, this letter builds the ground for exten-
sion to reservoirs with greater complexity used to equalize
higher-order fading channels.

APPENDIX A
DEFINITION OF THE CHANNEL DOT PRODUCT AND NORM

The “channel dot product” can be defined as
27
(910w), 22(j)) e = | Hen(jw)r (jw) HE, (jw) g3 () dw,

27
- fo | Hen () 2 % g1(je0) g3 (jeo)dew. (15)

Similarly, the “channel norm” can be defined as |[g(jw)|? =
2 , .
§o" Hen(w)[* x |g(jew)|? dew.

APPENDIX B
DERIVATION OF OPTIMUM OUTPUT WEIGHT

Define [; and I as the definite integrals in the numerator
and denominator of (8) respectively. Substituting z = /%

in (8), the integral I; becomes
Aq As
S, 2 g
< z + 1— Wr"ilz> “

- f e
(16)

h + hiz dz
1-— Wr*,lz Jz

|z|=1 |z|=1
(@) —j[2mjA1] = 27 Ay,

where (a) follows from Cauchy’s Residue Theorem. Using

the cover-up method, Ay = h§ and therefore Iy = 2mh.
Similarly, I can be rewritten as
L - J; (ho + hz ) (b + hiz) dz
(1= Wp1z27H(1— W}Ez) jz’
|z]=1 ’
b . .
W —j[2mj(C1 + Co)] = 2m(Ch + Co), (17)

where (b) follows after partial fraction expansion and apply-

ing the Residue Theorem. From the cover-up method, C] =

hi+ho W 1) (RE+RF W, 1) . .
—h¥h _ , 0 1 )
(=h&h/w, 1) and Cy = Wrs (=W, 1) , giving,

|ho|? + [h1|? + 2Re{hohi W1}
1-— |W,n,1|2

I =27

(18)
Dividing [; by I yields the expression for /I/I71 given in (9).

APPENDIX C
CLOSED-FORM ERROR EXPRESSION

Starting with (10), set z = e/* and apply the Residue
Theorem. Then, using partial fraction expansion, the error is

2\ 2
5=27T<B_A|h0> [Dy + Do,

5 19)

BW, 1+AhFh1
where Dy and Dy are found to be D = 50—
! 2 L= W i(B=AThol?)

BW, 1+Ah¥ Iy )1 BW¥| +Ahghif )

B—Alhg|? B—Alg2 ™!
W1 (1= Wp1[?) ’

(W’f',].i

and Dy =
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Substituting for A, B,D; and Do in (19) after some
simplification gives the final expression for ¢ in (11).

APPENDIX D
EXPECTATION OF THE APPROXIMATE ERROR

The source of the randomness is the fractional deviation of
o from ag, u = (@ = @0) /oy, Assuming u ~ N(0,02) where
Oy = %c/ag, the expectation Ey[](= Ey[€]) is

u? 2
fw 1 efﬁ ( 27T< )e(clu+02u2)du
—0 27‘(0'% 1-— Oég ’

2m(? ® 1 /
=(1wga2)J 2 el lau, o)
20 — Oy

where ¢/, = /202 — ¢p. Completing squares in the exponent,

A 2 2
= Euld] = [ () oo ()

where 5% = 1/2¢), and y = e1/2¢,. This simplifies to

4¢2 (2 exp 20302
(?+2a302\1-03 (2 +2a302 )’

(22)

Ey[é]

21

which is plotted in Fig. 2 for ap = 0.8.
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