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Channel Equalization Through Reservoir Computing: A Theoretical Perspective
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Abstract—Deep learning practice, including in wireless com-
munications, often relies on trial and error to optimize neural
network (NN) structures and their corresponding hyperparam-
eters. We show that Reservoir Computing, especially the Echo
State Network (ESN), is an ideal learning-based equalizer for a
general fading channel and for an ESN equalizing a channel
with known statistics, theoretically derive its optimum reser-
voir weights which are randomly initialized in state-of-the-art
and lack interpretability. The theoretical results are validated
with simulations. In contrast to existing literature, this let-
ter analytically adapts the NN structure to the problem being
addressed, guaranteeing optimum equalization under known
channel statistics.

Index Terms—Reservoir computing, echo state network, neural
network, channel equalization, and receive processing.

I. INTRODUCTION

DEEP learning has been adopted at a rapid pace in a vari-
ety of problems, including in wireless communications in

recent times, e.g., in Dynamic Spectrum Sharing [1], among
other applications. As end-to-end wireless links become increas-
ingly complicated due to nonlinear device components, e.g.,
power amplifier and low-resolution analog-to-digital converters
(ADCs), their analytical modeling in a tractable and accurate
manner becomes difficult. Therefore, standard model-based
approaches for receiver tasks such as channel equalization,
which rely on accurate channel state information (CSI) can
result in degraded performance, especially in the low signal-to-
interference-plus-noise (SINR) ratio regime, thereby making
machine learning based and specifically neural network (NN)-
based approaches attractive. When applying deep learning
models to wireless physical layer problems in particular, the
typical offline learning approach is to train a NN model using
a large amount of offline data with the implicit expectation of
limited generalization ability of the model to channel configura-
tions or statistics that are not seen in the training data. Examples
of this approach applied to the receive symbol detection task
specifically can be seen in strategies such as DetNet [2] and
MMNet [3]. Often in such methods, the choice of the NN model
is not adapted to the problem at hand, and hyperparameters are
tuned via trial and error. Online learning attempts to address
this problem of “uncertainty in generalization” by updating NN
weights in an adaptive fashion. Reservoir Computing (RC) is a
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particularly attractive framework for online learning due to its
inherent low-complexity training and is a prime candidate for
applying learning-based techniques in receive processing, e.g.,
symbol detection, where over-the-air training data in the form
of pilots is extremely limited, as shown in [4], [5], [6]. These
methods have demonstrated superior performance compared to
traditional model-based techniques and other offline learning
strategies.

Amongst studies investigating the theoretical underpinnings
of RC’s effectiveness in time-series forecasting and regres-
sion problems, a notable mention is [7] which shows that an
RC, specifically an ESN without non-linear activation is equiv-
alent to vector autoregression (VAR). Reference [8] makes
the case for ESNs being universal approximators for ergodic
dynamical systems. The effectiveness of RC in predicting com-
plex nonlinear dynamical systems such as the Lorenz and
the Rössler systems was studied in [9], while [10] investi-
gated tuning and optimizing the length of the fading memory
of RC systems. A survey of hardware implementations of
RC systems based on optoelectronic and photonic systems
with time-delayed feedback was provided in [11], while [12]
proposed a proof-of-principle experimental microwave rever-
berant based RC system. On the other hand, statistical learning
theory-based works [13] attempt to bound the generalization
error using measures such as Rademacher complexity. While
these works shed light on the effectiveness of RC, they do not
provide much insight into how an ESN should be designed or
set up to exploit any available domain knowledge. In contrast
to existing NN applications to wireless communications prob-
lems, we would like the NN structure to be designed according
to the problem at hand. In this letter, we develop a traditional
signal processing understanding of the ESN from first prin-
ciples and show that for wireless signal propagation which
can be viewed as a filtering operation, the basic ESN is the
ideal learning-based structure to perform its inverse equaliza-
tion operation. Given first-order statistical knowledge of the
channel, we show that there is an “optimum” way to set up
the reservoir of the ESN for equalization. The primary con-
tribution of this letter is the analytical optimization of the
ESN reservoir weights, providing much needed NN model
interpretability and a systematic and flexible way to design
the ESN for predictable equalization performance. Notation:
Rep¨q denotes the real part operator. (˚) denotes linear con-
volution. VARr¨s denotes the variance of a random variable.
“W.L.O.G.” stands for “without loss of generality”.

II. SYSTEM MODEL

A. Wireless Propagation

The transmission of a signal through a wireless channel
can be viewed as linear filtering of that signal through a
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time-varying finite impulse response (FIR) filter. The discrete-
time baseband input-output relationship for a channel with L
resolvable taps is a convolution operation according to

yrms “
L´1ÿ

!“0

h!rmsx rm ´ !s ` w rms, (1)

where x rms P C is the baseband transmitted symbol,
yrms P C is the baseband received symbol and h!rms P C
is the !th channel filter tap value respectively, all at time
index m. The noise sample w rms is circularly symmetric
Gaussian distributed, i.e., w rms „ CNp0,σ2n q. In general, the
received signal suffers from inter-symbol interference (ISI),
i.e., the received symbol yrms is affected by symbols trans-
mitted before time index m and not only by the symbol x rms
transmitted at index m.

B. The Conventional Echo State Network (ESN)

Consider the Echo State Network (ESN), which is a
prominent framework within the Reservoir Computing (RC)
paradigm. Specifically, consider an ESN with a reservoir con-
taining K randomly inter-connected neurons and a single
output (readout) weights layer. The relevant parameters for
this ESN structure are defined below:

‚ xinrms P Cdin : ESN input at time index m.
‚ xresrms P CK : Reservoir state vector at time index m.
‚ Win P CKˆdin : Input weights matrix.
‚ Wres P CKˆK : Reservoir (recurrent) weights matrix.
‚ Wout P CdoutˆK : Output weights matrix.
‚ xoutrms P Cdout : ESN output at time index m.

din and dout are the dimensions of the ESN’s input and output
respectively. For a point-wise non-linear activation function
σp¨q, the state update and output equations are respectively:

xresrms “ σ
`
Wresxresrm ´ 1s ` Winxinrms

˘
, (2)

xoutrms “ Woutxresrms. (3)

To make our analysis tractable, we consider a “linear” ESN,
i.e., where the activation function σp¨q is an identity mapping,
so that the state update equation becomes

xresrms “ Wresxresrm ´ 1s ` Winxinrms. (4)

A linearized formulation like the above lends itself well to
tractable analysis, such as that in [7]. In the state-of-the-
art, only Wout is trained using a Least Squares approach,
while Win and Wres are initialized according to a certain pre-
determined distribution and then fixed throughout the training
as well as the inference stages. However, since our objective
in this letter is to understand why ESNs are particularly effec-
tive in channel equalization, we view this as an optimization
problem where the goal is to also optimize Wres. We hypoth-
esize that the advantage of having nonlinearity in the reservoir
and the optimization of the reservoir weights are either orthog-
onal or at least separable issues, and therefore we limit our
scope in this study to optimizing the reservoir weights in the
linear setting. The validity of this hypothesis is confirmed via
the simulation results of Section IV. The question we aim to
answer is: Given knowledge of the channel statistics and for
conventionally trained Wout , what is the optimum choice of
Wres that gives the minimum expected error across channel

realizations? In this letter, we answer this question fully for the
simple case of a two-tap fading channel and a single-neuron
ESN equalizer. The general answer for a more complicated
fading channel and reservoir construction with interconnected
neurons is part of future letter.

C. Signal Processing View of the ESN

The channel frequency response Hchpjωq can be found
by taking the Discrete-Time Fourier Transform (DTFT) of
the channel impulse response (CIR) with a tapped delay
line (TDL) model h :“

“
h0 h1 . . . hL´1

‰
and is written as

Hchpjωq “ řL´1
!“0 h!e

´j !ω∆τs , where ω P r0, 2πs rad/sec
and ∆τs is the tap-spacing or the sampling time interval
in sec/sample, in the TDL model of the CIR. For an input
sequence x rms with DTFT X pjωq, the channel output yrms
with DTFT Y pjωq is given by Y pjωq “ HchpjωqX pjωq. If
an ESN with a frequency response HRCpjωq is employed to
recover the transmitted symbol x rms from yrms, the DTFT
of the ESN output is pX pjωq “ HRCpjωqY pjωq.

Consider a reservoir without any interconnections between
neurons. In this case, each neuron with a delayed feed-
back connection to itself can be viewed as a simple infinite
impulse response (IIR) filter. The Z-transform of an IIR
filter with a tap weight a on the feedback path is well-
known to be H pz q “ 1

1´az´1 . Based on this perspective,
the frequency response of the IIR filter corresponding to
the i th neuron with a feedback connection having a delay
∆τRC and without interconnections to other neurons can
be written as Hi pjωq “ Win,i

1´Wr,ie´jω∆τRC
, where Wr ,i is

the recurrent weight in the feedback path of the IIR filter
modeled by the i th neuron, and Win,i is the correspond-
ing input weight. We make the simplifying assumption that
∆τs “ ∆τRC “ ∆τ . The overall frequency response of the
ESN is a weighted sum of the individual frequency responses,
i.e., HRCpjωq “ řK

i“1WiHi pjωq, where Wi is the out-
put weight for the i th neuron within the reservoir. Thus,
the linearized ESN is an IIR filter which effectively inverts
the FIR filtering effect of the wireless channel, or in other
words, performs a 1-D linear deconvolution. Intuitively, we
want pX pjωq to approach X pjωq, which is achieved when
HRCpjωq « H´1

ch pjωq. From a geometric perspective, the K
non-interconnected neurons inside the reservoir constitute a
subspace S which is a linear combination of the basis func-
tions Hi pjωq, i.e., S “ spantH1pjωq,H2pjωq, . . . ,HK pjωqu.
The inverse channel response H´1

ch pjωq can be projected
onto this subspace S , leaving a residual (regression) error
of ε as shown in Fig. 1. For a given Hchpjωq and hence
H´1
ch pjωq, an optimally designed reservoir would span the

subspace S via the basis functions tHi pjωqu such that the
error ε is minimized, or alternatively, the orthogonal projection
projS tH´1

ch pjωqu of H´1
ch pjωq onto S is maximized.

In conventional RC (ESN)-based symbol detector design,
the reservoir is randomly initialized and then kept fixed
throughout, with the recurrent weights Wr ,i chosen from a
pre-determined distribution without consideration of the chan-
nel statistics. The ESN’s conventional training involves select-
ing its output weights Wi to solve the following optimization
problem such that the squared loss given below is minimized:
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Fig. 1. Channel inverse frequency response projected onto the subspace
spanned by the reservoir basis functions.

rWi s “ argmin
rWi sKi“1

ż 2π

0

ˇ̌
ˇ̌
ˇ1 ´ Hchpjωq

Kÿ

i“1

WiHi pjωq
ˇ̌
ˇ̌
ˇ

2

dω. (5)

However, it is more natural to conceptualize the equalization
performed by the ESN as an inversion of the channel filtering
operation. The formulation that captures this is given below:

rWi s “ argmin
rWi sKi“1

ż 2π

0

ˇ̌
ˇ̌
ˇH

´1
ch pjωq ´

Kÿ

i“1

WiHi pjωq
ˇ̌
ˇ̌
ˇ

2

dω. (6)

Note that the two formulations in (5) and (6) are not entirely
equivalent since their respective objective functions are differ-
ent. In order to use the objective function in (6) but achieve
the same results for the optimum Wi ’s as in (5), we define a
new norm measure called the “channel” norm. The definitions
of the channel norm } ¨ }c and the channel dot product x¨, ¨yc
are provided in Appendix A. Based on these definitions, the
training problem in (5) can be rewritten as

rWi s “ argmin
rWi sKi“1

›››››H
´1
ch pjωq ´

Kÿ

i“1

WiHi pjωq
›››››

2

c

. (7)

Equivalently, (7) can be reformulated into (5) in a matrix
form as 1 “ sHRCwout, where 1 P CNˆ1 :“ r1, . . . , 1sT ,
wout P CKˆ1 :“ rW1,W2, . . . ,WK sT and the k th col-
umn pk “ 1, . . . ,K q of sHRC P CNˆK is defined as
sHRCpkq P CNˆ1 :“ r. . . ,Hchpjωn qHk pjωn q, . . .sT for
n “ ´8, . . . ,8, i.e., N Ñ 8. The Least Squares solution
for wout is pwout “ sH:

RC1, where sH:
RC “ psHH

RC
sHRCq´1sHH

RC
is the left Moore-Penrose pseudo-inverse. The pp, qqth ele-
ment of the K ˆ K matrix sHH

RC
sHRC can be written as

psHH
RC

sHRCqpp,qq “ xHq pjωq,Hppjωqyc which can be eval-
uated through complex integration and employing Cauchy’s
Residue Theorem. The regression error ε in general is ε “
}1 ´ sHRCpwout}22.

III. A SIMPLE EXAMPLE: RESERVOIR DESIGN INSIGHT

We consider a single-input single-output (SISO) wire-
less communications system, i.e., din “ dout “ 1 from
Section II-B. A simple wireless channel modeled as a
frequency-selective tapped delay line (TDL) with two taps
is considered, with each tap representing an aggregation of
multiple physical paths. The corresponding channel impulse
response (CIR) vector is then h “

“
h0 h1

‰
. W.L.O.G., this can

alternatively be written as h “
“
1 α

‰
, where α “ h1{h0 P C in

general, is a random variable with a known distribution. While
the derived optimum output weight W1 and the derived closed-
form error expression hold for α P C in general, we assume

α P R in order to make subsequent approximations of the error
expression more tractable. Additionally, for the error approx-
imation only, we will assume α „ Npα0,σ

2
c q “ α0p1 ` uq,

i.e., α is centered around a known statistical value α0 and the
variation around α0 is captured by u „ Np0,σ2c{α2

0q.
For the CIR h “

“
h0 h1

‰
, the channel frequency response

can be obtained as Hchpjωq “ h0 ` h1e
´jω∆τ . Recall the

assumption that the tap delay is the same as the IIR feedback
delay, both being ∆τ and W.L.O.G., set ∆τ “ 1. For a single-
neuron pK “ 1q reservoir trying to invert a two-tap wireless
channel with ISI, the output weight expression simplifies to

xW1 “

〈
H´1
ch pjωq,H1pjωq

〉

c

}H1pjωq}2c
“

ş2π
0

h˚
0 `h˚

1 ejω

1´W ˚
r,1e

jω dω

ş2π
0

ˇ̌
ˇ h0`h1e´jω

1´Wr,1e´jω

ˇ̌
ˇ
2
dω

, (8)

where W.L.O.G., we set Win,1 “ 1. The integrals are
evaluated in Appendix B with the final expression for xW1
found as

xW1 “ h˚
0 p1 ´ |Wr ,1|2q

|h0|2 ` |h1|2 ` 2Reth˚
1 h0Wr ,1u :“ h˚

0A

B
, (9)

with A and B defined as shown. Adapting the general error
expression to L “ 2 and K “ 1, it follows that

ε “
ż 2π

0

ˇ̌
ˇ̌1 ´ xW1

ph0 ` h1e
´jωq

p1 ´ Wr ,1e´jωq

ˇ̌
ˇ̌
2

dω. (10)

We evaluate (10) in Appendix C and provide a condensed
version of the derivation of the final expression in (11) therein:

ε “ 2π|Wr ,1 ` α|2
1 ` |α|2 ` 2Retα˚Wr ,1u . (11)

Note that the error ε P R` Yt0u is random and varies with the
channel realization and therefore that of α “ h1{h0. Therefore,
to design a reservoir (choose Wr ,1q that guarantees the low-
est error ε across channel realizations and by extension, the
lowest detection symbol error rate (SER) or bit error rate
(BER) subsequent to hard-decision decoding, we must solve
the following minimization problem:

argmin
Wr,1

Ehrεph,Wr ,1qs “ argmin
Wr,1

Eαrεpα,Wr ,1qs. (12)

Computing this expectation using the complete expression for
ε is non-trivial. To simplify ε while noting that (9) and (11)
hold in general for α P C, assume a real-valued α “ α0p1`uq.
We can inspect from (11) that if Wr ,1 “ ´α in general, then
ε “ 0. However, since α changes randomly across channel
realizations due to the randomness in u, setting Wr ,1 “ ´α
is not possible. In the trivial case where u “ 0, the optimum
reservoir weight is Wr ,1 “ ´α0. Therefore, we can generally
formulate the problem as setting Wr ,1 “ ´α0 `ζ and finding
the optimum ζ “ ζopt that minimizes the expected error across
channel realizations. With these approximations in (11) and
retaining terms up to u2, the first-order approximation ε̂ is

ε̂ “ 2π

ˆ
ζ2 ` 2α0ζu ` α2

0u
2

1 ´ α2
0

˙
, (13)

where 1`u « 1 is assumed for small u to simplify the denom-
inator. To simplify further, we take the natural logarithm on
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Fig. 2. Expected approximate error versus ζ for a given α0 “ Erαs.

both sides and perform a Taylor series expansion subsequently
to get a second-order approximation ˆ̂ε. The i th term in the
Taylor series expansion for log ε̂ evaluated at u “ 0 is given by
ci “ 1

pi´1q!
dpiqplog ε̂q

dupiq |u“0. Accordingly, the first and second
terms are found as c1 “ 2α0{ζ and c2 “ ´α2

0{ζ2 respectively.
Expanding the Taylor series only up to u2, we get

ˆ̂ε “
ˆ

2πζ2

1 ´ α2
0

˙
exp

´
c1u ` c2u

2
¯
. (14)

Inspecting (14), it is intuitively clear that if u is distributed
around 0 with a variance σ2up“ σ2c{α2

0q that is sufficiently
small, then “on average” α « α0 and the optimum value
of Wr ,1 should be set as W

poptq
r ,1 “ ´α0, i.e., ζopt “ 0.

However, we prove that this is true even when σ2u is not
small so that ζopt “ 0 still holds. The proof of this claim
along with the complete expression for Ehrˆ̂εsp“ Eu rˆ̂εsq is pro-
vided in Appendix D. Therefore, the optimum reservoir weight
W

poptq
r ,1 minimizing the expectation of the approximate error

is W
poptq
r ,1 “ ´α0 ` ζopt “ ´α0. This expectation versus ζ

is shown in Fig. 2 for α0 “ 0.8.
In summary, we have analytically derived the optimum

choice for the reservoir weight of a single-neuron ESN
equalizer equalizing a two-tap fading ISI channel. Although
the reservoirs used in general RC-based symbol detec-
tors, e.g., [5], [6] contain multiple neurons with random
interconnections, our analysis can be extrapolated to the
extreme case of a reservoir with multiple neurons but without
interconnections, as the example in Section IV demonstrates.
A tractable analysis of general ESN reservoirs with multiple
neurons and random interconnections is part of future work.
Although our analysis is for a single-carrier system, the ESN
as an equalizer is equally applicable to multicarrier (e.g.,
OFDM) based systems [4], [5], [6].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we empirically validate the optimum reser-
voir weight derived in Section III for a two-tap frequency-
selective channel and a single-neuron reservoir ESN following
linear dynamics when employed as a channel equalizer.
However, to mimic a more realistic channel, we consider
a TDL channel model with L “ 5 taps with CIR h “
rh0,αc1 ,αc2 ,αc3 ,αc4s, where h0 „ Np1, 10´4q and equalize
it using a reservoir with K “ 4 non-interconnected neurons,
such that the delay of each neuron is configured to account for

Fig. 3. Empirical MSE vs Wr ,1 for Gaussian distributed real-valued α.

a different NLOS tap of the CIR. Therefore, the channel effec-
tively has only one ISI tap and the reservoir effectively has
a single neuron whose recurrent weight must be optimized
to mitigate the effective tap’s ISI. The means and variances
of the NLOS taps are set as µsim “ r0.4,´0.2, 0.1,´0.1s
and σ 2

sim “ r0.05, 0.03, 0.02, 0.01s respectively. The reservoir
weight for the k th neuron p2 ď k ď 4q is fixed to its theoret-
ical optimum as Wr ,k “ ´Erαck s while only Wr ,1 is swept.
The output weight for each neuron is set according to (9)
before summing the weighted outputs of all the neurons. The
input sequence x P CTˆ1 consists of T 16-QAM modulated
symbols, with T “ 1000 to align with standardized wireless
systems such as 5G NR. The received sequence y “ h ˚ x
(without additive white Gaussian noise) is input to the ESN
for equalization, which outputs the estimated sequence px . The
empirical MSE sε plotted as a function of Wr ,1 in Fig. 3a is
computed as sε “ p1{TNsimq řNsim

i“1 }px i ´ x i }22, where Nsim is
the number of independent Monte-Carlo runs. It can be seen
from Fig. 3 that sε over Nsim “ 105 channel realizations is
minimized when the recurrent weight Wr ,1 is chosen to be

W
poptq
r ,1 “ ´α0 “ ´Erαc1s as previously derived. Due to

the approximations made to ε in the derivation of the theo-
retical W poptq

r ,1 , the true optimum which minimizes sε may not
exactly match the theoretical optimum of ´α0 especially at
high σ2c . However, the sensitivity of sε to these approxima-
tions is low, so that setting Wr ,1 “ ´α0 causes a deviation
of only 1.37% and 3.35% from the corresponding true min-
imum error for σ2c “ 0.5 and σ2c “ 0.9 respectively, where
σ2c “ VARrαc1s. Fig. 3b also includes results for the reservoir
with a nonlinear function (Tanh) applied (with and without
channel tap correlation, controlled by the correlation coeffi-
cient ρq, when x consists of BPSK modulated symbols. When
the channel taps are independent (implying ρ “ 0q, the theoret-
ically derived W

poptq
r ,1 in the linear setting still holds with the

nonlinearity applied. With correlation, e.g., ρ “ 0.9, the gap
between the linear and nonlinear reservoir cases is minimal
with the theoretical W

poptq
r ,1 causing a deviation of only 1%

from the true optimum, strengthening our hypothesis of reser-
voir optimization and nonlinear activation being orthogonal or
separable issues.

V. CONCLUSION

In this letter, we introduce a signal processing view of
the Echo State Network (ESN), a Reservoir Computing (RC)
implementation and show its resulting utility as an ideal and
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configurable learning-based channel equalizer. Going beyond
convention, we analytically optimize the ESN’s randomly ini-
tialized reservoir weight, when used as an equalizer for a
simple fading channel with known statistics. Corroborating
theory with simulation, this letter builds the ground for exten-
sion to reservoirs with greater complexity used to equalize
higher-order fading channels.

APPENDIX A
DEFINITION OF THE CHANNEL DOT PRODUCT AND NORM

The “channel dot product” can be defined as

〈g1pjωq, g2pjωq〉c :“
ż 2π

0
Hchpjωqg1pjωqH˚

chpjωqg˚
2 pjωqdω,

“
ż 2π

0
|Hchpjωq|2 ˆ g1pjωqg˚

2 pjωqdω. (15)

Similarly, the “channel norm” can be defined as }gpjωq}2c :“ş2π
0 |Hchpjωq|2 ˆ |gpjωq|2dω.

APPENDIX B
DERIVATION OF OPTIMUM OUTPUT WEIGHT

Define I1 and I2 as the definite integrals in the numerator
and denominator of (8) respectively. Substituting z “ ejω

in (8), the integral I1 becomes

I1 “
¿

|z |“1

h˚
0 ` h˚

1 z

1 ´ W ˚
r ,1z

dz
jz

“ ´j

¿

|z |“1

˜
A1

z
` A2

1 ´ W ˚
r ,1z

¸
dz ,

paq“ ´j r2πjA1s “ 2πA1, (16)

where (a) follows from Cauchy’s Residue Theorem. Using
the cover-up method, A1 “ h˚

0 and therefore I1 “ 2πh˚
0 .

Similarly, I2 can be rewritten as

I2 “
¿

|z |“1

ph0 ` h1z
´1qph˚

0 ` h˚
1 z q

p1 ´ Wr ,1z´1qp1 ´ W ˚
r ,1z q

dz

jz
,

pbq“ ´j r2πj pC1 ` C2qs “ 2πpC1 ` C2q, (17)

where (b) follows after partial fraction expansion and apply-
ing the Residue Theorem. From the cover-up method, C1 “
p´h˚

0 h1{Wr,1q and C2 “ ph1`h0Wr,1qph˚
0 `h˚

1 Wr,1q
Wr,1p1´|Wr,1|2q , giving,

I2 “ 2π
|h0|2 ` |h1|2 ` 2Reth0h˚

1Wr ,1u
1 ´ |Wr ,1|2 . (18)

Dividing I1 by I2 yields the expression for xW1 given in (9).

APPENDIX C
CLOSED-FORM ERROR EXPRESSION

Starting with (10), set z “ ejω and apply the Residue
Theorem. Then, using partial fraction expansion, the error is

ε “ 2π

ˆ
B ´ A|h0|2

B

˙2

rD1 ` D2s, (19)

where D1 and D2 are found to be D1 “ BWr,1`Ah˚
0 h1

Wr,1pB´A|h0|2q

and D2 “
pWr,1´BWr,1`Ah˚

0 h1
B´A|h0|2 qp1´BW˚

r,1`Ah0h
˚
1

B´A|h0|2 Wr,1q
Wr,1p1´|Wr,1|2q .

Substituting for A,B ,D1 and D2 in (19) after some
simplification gives the final expression for ε in (11).

APPENDIX D
EXPECTATION OF THE APPROXIMATE ERROR

The source of the randomness is the fractional deviation of
α from α0, u “ pα ´ α0q{α0. Assuming u „ Np0,σ2u q where
σu “ σc{α0, the expectation Ehrˆ̂εsp“ Eu rˆ̂εsq is

Eu rˆ̂εs “
ż 8

´8
1a
2πσ2u

e
´ u2

2σ2
u

ˆ
2πζ2

1 ´ α2
0

˙
epc1u`c2u2qdu,

“
ˆ

2πζ2

1 ´ α2
0

˙ ż 8

´8
1a
2πσ2u

erc1u´c1
2u

2sdu, (20)

where c1
2 “ 1{2σ2

u ´ c2. Completing squares in the exponent,

ñ Eu rˆ̂εs “
b

2
c1
2σ

2
u

´
πζ2

1´α2
0

¯
exp

´
c21
4c1

2

¯
, (21)

where rσ2 “ 1{2c1
2 and µ “ c1{2c1

2. This simplifies to

Eu rˆ̂εs “
d

4ζ2

ζ2 ` 2α2
0σ

2
u

ˆ
πζ2

1 ´ α2
0

˙
exp

ˆ
2α2

0σ
2
c

ζ2 ` 2α2
0σ

2
u

˙
,

(22)

which is plotted in Fig. 2 for α0 “ 0.8.
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