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Abstract—We study kernel methods in machine learning from

the perspective of feature subspace. We establish a one-to-one

correspondence between feature subspaces and kernels and pro-

pose an information-theoretic measure for kernels. In particular,

we construct a kernel from Hirschfeld–Gebelein–Rényi maximal

correlation functions, coined the maximal correlation kernel,

and demonstrate its information-theoretic optimality. We use the

support vector machine (SVM) as an example to illustrate a

connection between kernel methods and feature extraction ap-

proaches. We show that the kernel SVM on maximal correlation

kernel achieves minimum prediction error. Finally, we interpret

the Fisher kernel as a special maximal correlation kernel and

establish its optimality.

I. INTRODUCTION

One main objective of machine learning is to obtain useful
information from often high-dimensional data. To this end, it
is a common practice to extract meaningful feature representa-
tions from original data and then process features [1]. Neural
networks [2] and kernel methods [3]–[6] are two of the most
representative approaches to map data into feature space. In
neural networks, the features are represented as the outputs
of hidden neurons in the network. In contrast, the feature
mapping in kernel methods is defined by the used kernel,
which is used implicitly and is often infinite dimensional.
While kernel approaches require much fewer parameters and
can obtain good empirical performance on certain tasks [7],
the performance significantly relies on the choice of kernels.
With many attempts to investigate kernel methods [6], [8], [9],
there still lacks a theoretical understanding of the mechanism
behind kernel methods, which restricts their applications on
complicated data.

On the other hand, the feature extraction in deep neural
networks has been studied recently by information-theoretic
and statistical analyses [10], [11]. For example, it was shown
in [10] that, the feature extracted by deep neural networks
coincides with the most informative feature, which is es-
sentially related to the classical Hirschfeld–Gebelein–Rényi
(HGR) maximal correlation problem [12]–[14]. Such the-
oretical characterizations provide a better understanding of
existing algorithms and have been shown useful in designing
algorithms for multimodal learning tasks [15].

In this paper, our goal is to characterize kernel methods from
the perspective of feature subspace and reveal its connection
with other learning approaches. We first introduce the associ-
ated kernel with each given feature subspace, which we coin
the projection kernel, to establish a correspondence between

kernel operations and geometric operations in feature sub-
spaces. This connection allows us to study kernels methods via
analyzing the corresponding feature subspaces. Specifically,
we propose an information-theoretic measure for projection
kernels, and demonstrate that the information-theoretically
optimal kernel can be constructed from the HGR maximal
correlation functions, coined the maximal correlation kernel.
We further demonstrate that the support vector machine (SVM)
with maximal correlation kernel can obtain the minimum
prediction error, which justifies its optimality in learning tasks.
Our analysis also reveals connections between SVM and other
classification approaches including neural networks. Finally,
we interpret the Fisher kernel, a classical kernel induced from
parameterized distribution families [16], as a special case of
maximal correlation kernels, thus demonstrating its optimality.

II. PRELIMINARIES AND NOTATIONS

Throughout this paper, we use X,Y to denote two random
variables with alphabets X,Y, and denote their joint distribu-
tion and marginals as PX,Y and PX , PY , respectively. We also
use E[·] to denote the expectation with respect to PX,Y .

A. Feature Space
We adopt the notation convention introduced in [15], and

let FX , {X ! R} denote the feature space formed by the
(one-dimensional) features of X , with the geometry defined
as follows. The inner product h·, ·iFX

on FX is defined as
hf1, f2iFX

, EPX [f1(X)f2(X)] for f1, f2 2 FX. This
induces a norm k · kFX

with kfkFX
,
p

hf, fiFX
for f 2 FX.

Then, for given f 2 FX and subspace G of FX, we denote the
projection of f onto G as

⇧(f ;G) , argmin
h2G

kh� fkFX
. (1)

In addition, for a d-dimensional feature f =
(f1, . . . , fd)T : X ! Rd, we use span{f} , span{f1, . . . , fd}
to denote the subspace spanned by all dimensions. We also use
f̃ to denote the centered f , i.e., f̃(x) , f(x) � EPX [f(X)],
and denote ⇤f , EPX

⇥
f(X)fT(X)

⇤
.

B. Kernel
Given X, k : X ⇥ X ! R is a kernel on X, if for all

finite subset I ⇢ X, the |I| by |I| matrix [k (x, x0)]x2I,x02I

is positive semidefinite. For each kernel k , we define the
associated functional operator ⌧ : FX ! FX as

[⌧(f)](x) , EPX [k (X,x)f(X)], (2)
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and we use k $ ⌧ to denote the correspondence between k
and ⌧ . Furthermore, we define the centered kernel k̃ : X⇥X !
R as

k̃ (x, x0) , k (x, x0)� k̄(x)� k̄(x0) + EPX

⇥
k̄(X)

⇤
, (3)

where we have defined k̄ : (x 7! EPX [k (X,x)]) 2 FX.
The following fact is the basis of the kernel trick in learning

algorithms.
Fact 1: For each given kernel k , there exist an inner product

space V with the inner product h·, ·iV, and a mapping ⌫ : X !
V, such that k (x, x0) = h⌫(x), ⌫(x0)iV.

Remark 1: Suppose ⌫ is one mapping for k satisfying Fact 1.
Then for the centered kernel k̃ [cf. (3)], we have k̃ (x, x0) =
h⌫̃(x), ⌫̃(x0)iV, where ⌫̃(x) , ⌫(x)� EPX [⌫(X)].

In addition, we introduce the kernelized discriminative
model (KDM) as follows.

Definition 1 (Kernelized Discriminative Model): For each
kernel k , we define its associated kernelized discriminative
model P (k )

Y |X as

P
(k )
Y |X(y|x) , PY (y)

⇣
1 + E

h
k̃ (X,x)

���Y = y

i⌘
. (4)

Then, we use ŷ
(k ) to denote the maximum a posteriori (MAP)

estimation induced from KDM P
(k )
Y |X , i.e.,

ŷ
(k )(x) , argmax

y2Y
P

(k )
Y |X(y|x). (5)

The KDM can be regarded as a generalized probability dis-
tribution, since we have

P
y2Y P

(k )
Y |X(y|x) = 1 for all x 2 X

while P
(k )
Y |X(y|x) can sometimes take negative values.

C. Modal Decomposition, Maximal Correlation, and H-score
We first introduce the modal decomposition of joint distri-

bution PX,Y [11], [15].
Proposition 1 (Modal Decomposition [11]): For given

PX,Y , there exists K  min{|X|, |Y|}� 1, such that

PX,Y (x, y) = PX(x)PY (y)

 
1 +

KX

i=1

�if
⇤
i (x)g

⇤
i (y)

!
, (6)

where �1 � �2 � �K > 0, and E
⇥
f
⇤
i (X)f⇤

j (X)
⇤

=
E
⇥
g
⇤
i (Y )g⇤j (Y )

⇤
= 1{i=j} for all 1  i, j  K , where 1{·}

denotes the indicator function.
It can be shown that (f⇤

i , g
⇤
i ) pairs are the most corre-

lated function pairs of X and Y , referred to as maximal
correlation functions. We also denote % , �1, known as the
HGR maximal correlation [12]–[14] of X and Y , and define
the K-dimensional feature f

⇤(x) , [f⇤
1 (x), . . . , f

⇤
K(x)]T. In

particular, when Y is binary, we have f
⇤ = f

⇤
1 2 FX.

It has been shown in [11] that the maximal correlation
functions f

⇤
i , i = 1, . . . ,K are the optimal features of X in

inferring or estimating Y . In general, given a d-dimensional
feature f of X , the effectiveness of f in inferring or estimating
Y can be measured by its H-score [10], [11], defined as

H (f) , 1

2
· E
���E

h
⇤
� 1

2
f f̃(X)

���Y
i���

2
�
, (7)

where f̃(x) , f(x)� E[f(X)]. It can be verified that for all
d and f : X ! Rd, we have

H (f)  H (f⇤) =
1

2

KX

i=1

�
2
i , (8)

where �1, . . . ,�K are as defined in (6).

D. Binary Classification
We consider the binary classification problem which pre-

dicts binary label Y from the data variable X . For conve-
nience, we assume Y takes values from Y , {�1, 1}.

Suppose the training dataset contains n sample pairs
{(xi, yi)}ni=1 of (X,Y ), and let PX,Y denote the correspond-
ing empirical distribution, i.e.,

PX,Y (x, y) ,
1

n

nX

i=1

1{xi=x,yi=y}. (9)

1) Support Vector Machine: The support vector machine
(SVM) solves binary classification tasks by finding the optimal
hyperplane that separates two classes with maximum margin
[7]. Given d-dimensional feature mapping f : X ! Rd, the
loss for SVM based on f can be written as

LSVM(f, w, b;�)

, EPX,Y [`hinge(Y, hw, f(X)i+ b)] +
�

2
· kwk2, (10)

where w, b 2 Rd are the parameters of the hyperplane, where
� > 0 is a hyperparameter of SVM, and where `hinge : Y ⇥
R ! R denotes the hinge loss, defined as `hinge(y, z) , (1�
yz)+ with x

+ , max{0, x}.
Moreover, let (wSVM, bSVM) , argmin

w,b
LSVM(f, w, b;�)

and L
⇤
SVM(f ;�) , LSVM(f, wSVM, bSVM;�) denote the opti-

mal parameters and the value of loss function, respectively.
Then, the prediction of SVM is

ŷSVM(x; f,�) , sgn(hwSVM, f(x)i+ bSVM), (11)

where sgn(·) denotes the sign function.
Specifically, for a given kernel k , the prediction of the

corresponding kernel SVM is1
ŷ
(k )
SVM(x;�) , ŷSVM(x; ⌫,�),

where ⌫ is any mapping given by Fact 1.
2) Logistic Regression and Neural Networks: Given d-

dimensional feature f of X , the discriminative model of logis-
tic regression is P̃Y |X(y|x; f, w, b) , sigmoid(y ·(hw, f(x)i+
b)), where w 2 Rd

, b 2 R are the weight and bias, respectively,
and where sigmoid(·) is defined as sigmoid(x) , 1

1+exp(�x) .
Then, the loss of logistic regression is LLR(f, w, b) ,

�E
h
log P̃Y |X(Y |X; f, w, b)

i
, and the optimal parameters

wLR, bLR are learned by minimizing the loss, i.e., (wLR, bLR) ,
argmin

w,b
LLR(f, w, b). The resulting decision rule is

ŷLR(x; f) , argmax
y2Y

P̃Y |X(y|x; f, wLR, bLR)

1It is worth mentioning that the practical implementation of kernel SVM
is typically done by solving a dual optimization problem without explicitly
using ⌫. See [17, Section 12] for detailed discussions.
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= sgn(hwLR, f(x)i+ bLR). (12)

The logistic regression is often used as the classification
layer for multi-layer neural networks, where w and b corre-
spond to weights and the bias term, respectively. In this case,
the feature mapping f(·) also takes a parameterized form, and
the parameters of f(·) are jointly learned with w and b.

Due to the space limitations, we omit most proofs in the
rest of this paper, but refer the readers to the extended version
of this paper [18] for the details.

III. PROJECTION KERNEL AND INFORMATIVE FEATURES

In this section, we introduce a one-to-one correspondence
between kernels and feature subspaces, and then characterize
the informativeness of kernels by investigating the features in
the associated subspaces.

A. Projection Kernel and Feature Subspace
We first introduce a family of kernels with one-to-one

correspondence to feature subspace.
Definition 2 (Projection Kernel): Let G denote a d-

dimensional subspace of FX with a basis {f1, . . . , fd}. We use
k G : X ⇥ X ! R to denote the projection kernel associated
with G, defined as k G(x, x0) , f

T(x)⇤�1
f f(x0), where we

have defined f , (f1, . . . , fd)T and ⇤f , E
⇥
f(X)fT(X)

⇤
.

With slight abuse of notation, we also dnenote k f ,
k span{f}, the projection kernel associated with span{f}.

Note that k G is a valid kernel function, and the corre-
sponding ⌫ mapping in Fact 1 can be chosen as ⌫(x) =
[f1(x), . . . , fd(x)]T for any orthonormal basis {f1, . . . , fd}
of G. It turns out that the functional operators associated with
projection kernels are projection operators in the feature space,
which we formalize as follows.

Property 1: Let ⌧ $ k G denote the operator corresponding
to subspace G [cf. (2)], then we have ⌧(f) = ⇧(f ;G) for all
f 2 FX.

Therefore, given a projection kernel k , the associated sub-
space can be represented as {f 2 FX : ⌧(f) = f}, where
⌧ $ k is the associated operator. This establishes a one-to-
one correspondence between projection kernels and feature
subspaces.

B. H-score and Informative Features
The projection kernel provides a connection between feature

subspace and kernel, from which we can characterize subspace
G in terms of the corresponding kernel k G. Specifically, we
can represent the H-score [cf. (7)] of a feature f in terms of
the projection kernel k f , formalized as follows.

Proposition 2: For all f with span{f} = G, we have
H (f) = 1

2 ·
�
EPXX0 [k G(X,X

0)]� EPXPX0 [k G(X,X
0)]
�
,

where we have defined X
0 such that the joint distribution of

X and X
0 is

PXX0(x, x0) ,
X

y2Y

PY (y)PX|Y=y(x)PX|Y=y(x
0). (13)

With slight abuse of notation, we can use H (G) to denote
the H-score corresponding to feature subspace G. In particular,

we have the following characterization of H (G) when Y is
binary.

Proposition 3: Suppose Y is binary, and f
⇤ is the maximal

correlation function of PX,Y . Then, for each subspace G of
FX, we have

H (G) =
%
2

2
·
��⇧(f⇤;G)

��2
FX

= max
f2G

H (f) = H (⇧(f⇤;G)).

(14)

From Proposition 3, H (G) depends only on the projection
of f

⇤ onto G, which is also the most informative feature in
G. In addition, note that since kf⇤kFX

= 1,
��⇧(f⇤;G)

��2
FX

is
also the cosine value of the principal angle between f

⇤ and G.
Therefore, we can interpret the H-score as a measure of the
principal angle between the optimal feature f

⇤ and the given
subspace.

C. Maximal Correlation Kernel

Note that from (8), H (f) is maximized when f takes
the maximal correlation function f

⇤. Therefore, the subspace
span{f⇤} (and thus projection kernel k f⇤ ) is optimal in terms
of the H-score measure. We will denote k ⇤ , k f⇤ , referred
to as the maximal correlation kernel.

Specifically, the KDM (cf. Definition 1) of maximal cor-
relation kernel k ⇤ coincides with the underlying conditional
distribution PY |X , demonstrated as follows.

Property 2: For all x and y, we have PY |X(y|x) =

P
(k ⇤)
Y |X (y|x) and ŷ

(k ⇤)(x) = ŷMAP(x), where ŷMAP denotes the
MAP estimation, i.e.,

ŷMAP(x) , argmax
y2Y

PY |X(y|x). (15)

As we will develop in the next section, the maximal
correlation kernel also achieves the optimal performance in
support vector machine.

IV. SUPPORT VECTOR MACHINE ANALYSIS

In this section, we investigate support vector machine, a
representative kernel approach for binary classification. Let
(X,Y ) denote the training data and corresponding label taken
from Y = {�1, 1}, with PX,Y denoting the empirical distribu-
tion as defined in (9). Throughout this section, we will focus
on the balanced dataset with

PY (�1) = PY (1) =
1

2
. (16)

It can be verified that in this case, the MAP estimation
[cf. (15)] can be expressed in terms of maximal correlation
function.

Property 3: Under assumption (16), we can express the
MAP estimation as ŷMAP(x) = sgn(f⇤(x)) for all x 2 X,
where f

⇤ 2 FX is the maximal correlation function of PX,Y .

A. SVM on Given Features

We first consider the SVM algorithm applied on a given
feature representation f(X) 2 Rd, which can also be regarded
as the kernel SVM on kernel k (x, x0) = hf(x), f(x0)i.
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To begin, for each given feature f and � > 0, let us define

L̂(f ;�) , 1� 1

2�
· kE[f(X)Y ]k2.

Then we have the following characterization.
Theorem 1: For all given feature f and � � 0, we have

L̂(f ;�)  L
⇤
SVM(f ;�)  L̂(f ;�) +

✓
�T

�
� 1

◆+

, (17)

where we have defined �T , M · kE[f(X)Y ]k and M ,
maxx2X

��f̃(x)
��, with f̃(x) , f(x) � E[f(X)], and where

x
+ , max{0, x}.
Specifically, when � � �T, we have L

⇤
SVM(f ;�) = L̂(f ;�),

which can be achieved by

wSVM =
1

�
· E[f(X)Y ], bSVM = �hwSVM,E[f(X)]i, (18)

and the resulting SVM prediction is

ŷSVM(x; f,�) = sgn
⇣D

E
⇥
f̃(X)Y

⇤
, f̃(x)

E⌘
(19)

= argmin
y2Y

kf(x)� E[f(X)|Y = y]k. (20)

From Theorem 1, when � � �T, the SVM decision
ŷSVM(x; f,�) does not depend on the value of �. In the
remaining, we will focus on the regime where � � �T, and
drop the � in expressions whenever possible, e.g., we simply
denote ŷSVM(x; f,�) by ŷSVM(x; f). As we will see soon,
SVM can still obtain minimum prediction error in this regime,
by using a good feature mapping f (or equivalently, a good
kernel).

From (20), the SVM prediction can be interpreted as a
nearest centroid classifier, where decision is based on com-
paring the distance between f(x) and the class centroids
E[f(X)|Y = y], y 2 Y. In addition, from

E[f(X)Y ] = E[Y · E[f(X)|Y ]]

=
1

2
(E[f(X)|Y = 1]� E[f(X)|Y = �1]),

we can interpret the SVM loss L
⇤
SVM = L̂ as measuring the

distance between two class centroids.
Furthermore, when f is one-dimensional feature, we can

rewrite (19) as

ŷSVM(x; f) = sgn
⇣D

E
⇥
f̃(X)Y

⇤
, f̃(x)

E⌘
= sgn

⇣
f̂(x)

⌘
,

where f̂ , ⇧
⇣
f
⇤; span{f̃}

⌘
. Therefore, the decision rule

depends only the projection of f⇤ onto the subspace span{f̂},
which is also the most informative features on the subspace
(cf. Proposition 3). Later on we will see a similar geometric
illustration of kernel SVM.

Moreover, we can establish a connection between SVM
loss and the H-score measure, formalized as the following
corollary.

Corollary 1: Suppose � � �T, then we have

1� rmax

�
· H (f̃)  L

⇤
SVM(f ;�)  1� rmin

�
· H (f̃),

where rmax and rmin denote the maximum and minimum
positive eigenvalues of the covariance matrix ⇤f̃ , respectively.
Specifically, if ⇤f̃ = I , then we have L

⇤
SVM(f ;�) = 1��

�1 ·
H (f̃).

As a result, for each normalized feature f with covariance
matrix ⇤f̃ = I , the SVM loss L

⇤
SVM measures the informa-

tiveness of f in inferring the label Y .

B. Kernel SVM

In practice, instead of applying SVM on a given or manually
designed feature f , it is more often to directly implement
SVM on a kernel k . Similar to Theorem 1, we have the
following characterization, from which we can interpret KDM
as a probabilistic output for kernel SVM.

Theorem 2: For each given kernel k , there exists a constant
�T > 0, such that when � � �T, the SVM prediction
is ŷ

(k )
SVM(x) = sgn([⌧(f⇤)](x)), where ⌧ $ k̃ is the op-

erator associated with centered kernel k̃ [cf. (2) and (3)].
In addition, the SVM prediction coincides with the KDM
prediction (cf. Definition 1) obtained from k , i.e., we have
ŷ
(k )
SVM(x) = ŷ

(k )(x) for all x 2 X.
Proof: Let V and ⌫ : X ! V denote the inner product

space and mapping associated with kernel k (cf. Fact 1), and
let ⌫̃(x) , ⌫(x)� EPX [⌫(X)]. Then, we have

hE[⌫̃(X)Y ], ⌫̃(x)iV = E[h⌫̃(X), ⌫̃(x)iV · Y ]

= E
h

k̃ (X,x) · Y
i
, (21)

which can be rewritten as

E
h

k̃ (X,x) · Y
i

= EPX,Y

h
k̃ (X,x) · Y

i

= EPXPY

h
k̃ (X,x) · Y · (1 + % · f⇤(X) · Y )

i

= E
h

k̃ (X,x)
i
· E[Y ] + % · E

h
k̃ (X,x)f⇤(X)

i
· E
⇥
Y

2
⇤

= % · E
h

k̃ (X,x)f⇤(X)
i

= % · [⌧(f⇤)](x),

where to obtain the second equality we have used the modal
decomposition of PX,Y .

Hence, from Theorem 1 we obtain

ŷ
(k )
SVM(x) = ŷSVM(x; ⌫) = sgn(hE[⌫̃(X)Y ], ⌫̃(x)i)

= sgn
⇣
E
h

k̃ (X,x) · Y
i⌘

= sgn([⌧(f⇤)](x)).

It remains only to establish the equivalence between ŷ
(k )
SVM

and KDM decision ŷ
(k ). To this end, note that from (4) and

the balanced dataset assumption (16), we have

P
(k )
Y |X(y|x) = PY (y)

⇣
1 + E

h
k̃ (X,x)

���Y = y

i⌘

=
1

2

⇣
1 + y · E

h
k̃ (X,x)Y

i⌘

for all x 2 X, y 2 Y.
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Hence, for all x 2 X,

ŷ
(k )(x) = argmax

y2Y
P

(k )
Y |X(y|x) = sgn

⇣
E
h

k̃ (X,x)Y
i⌘

= ŷ
(k )
SVM(x),

which completes the proof.
From Theorem 2, the final decision ŷ

(k )
SVM depends on k only

through the centered kernel k̃ . Moreover, compare Theorem 2
with Property 3, kernel SVM prediction differs from MAP
only in applying the operator ⌧ on f

⇤. In particular, when the
maximal correlation function f

⇤ is an eigenfunction of the
corresponding operator ⌧ $ k̃ , i.e., ⌧(f⇤) = c · f⇤ for some
c > 0, the SVM prediction coincides with the MAP prediction,
i.e., ŷ(k )

SVM(x) = ŷMAP(x) for all x 2 X.
If we restrict our attention to projection kernels, the kernel

SVM decision can be further interpreted as a projection
operation on the associated subspace. To see this, let G denote
a feature subspace of FX spanned by zero-mean features, then
from Theorem 1 and Proposition 3, the kernel SVM loss for
k G is

1� 1

�
· H (G) = 1� %

2

2�
·
��⇧(f⇤;G)

��2
FX

,

which measures the principal angle between f
⇤ and G. In

addition, the decision rule can be expressed as

ŷ
(k G)
SVM (x) = sgn([⇧(f⇤;G)](x)), (22)

From Proposition 3, ⇧(f⇤;G) is also the most informative
feature in G. Therefore, kernel SVM on k G is equivalent to
first extracting the most informative feature in G, and then
using the extracted feature to make decision.

C. Relationship to Other Classification Approaches

1) Maximum a Posteriori (MAP) Estimation: From (22),
when the maximal correlation kernel k ⇤ is applied, the kernel
SVM decision is sgn(f⇤(x)), which coincides with the MAP
prediction (cf. Property 3). Since MAP achieves the minimum
prediction error, kernel SVM on the maximal correlation
kernel also obtains the minimum prediction error.

2) Logistic Regression and Neural Networks: We have
interpreted SVM as extracting the most informative feature,
where the informativeness is measured by H-score. The anal-
ysis in [10] has shown that logistic regression is also equivalent
to maximizing the H-score, when X and Y are weakly
independent. Indeed, we can show that SVM and logistic
regression lead to the same prediction in a weak dependence
regime, which we formalize as follows.

Proposition 4: Suppose % = O(✏) for some ✏ > 0. For
SVM and logistic regression applied on feature f : X ! Rd

with covariance ⇤f̃ = Id, the optimal parameters satisfy

wLR = 2� · wSVM + o(✏),

bLR = 2� · bSVM + o(✏),

where � is the hyperparameter in SVM. In addition, we have
ŷSVM(x; f) = ŷLR(x; f) for ✏ sufficiently small.

Remark 2: Since H-score can also be directly maximized
by implementing the maximal correlation regression [19], a
similar connection holds for SVM and maximal correlation
regression.

V. FISHER KERNEL

We demonstrate that Fisher kernel [16], [20] can also be
interpreted as a maximal correlation kernel.

Given a family of distributions ⇡(·; ✓) supported on X and
parameterized by ✓ 2 Rm, suppose the score function s✓(x) ,
@
@✓ log ⇡(x; ✓) exists. Then, the Fisher kernel is defined as the
projection kernel associated with the score function s✓, i.e.,
k s✓ .

Specifically, we consider classification tasks where the joint
distribution between data variable X and label Y are a mixture
of the parameterized forms. Suppose for each class Y = y 2
Y, the data variable X is generated from

PX|Y (x|y) = ⇡(x; ✓y) (23)

for some ✓y 2 Rm. Then we have the following result.
Theorem 3: Suppose k✓yk < ✏ for all y 2 Y, and let

s(x) , s0(x). Then for the joint distribution PX,Y = PX|Y PY

generated according to (23), we have

PX,Y (x, y) = PX(x)PY (y)
⇣
1 + hs(x), ✓̃yi

⌘
+ o(✏), (24)

k s(x, x
0) = k ⇤(x, x0) + o(✏), (25)

where ✓̃y , ✓y�E[✓Y ] denotes the centered ✓y , and where k ⇤

is the maximal correlation kernel defined on PX,Y . In addition,
the H-score of s satisfies

H (s) = I(X;Y ) + o(✏2), (26)

where I(X;Y ) denotes the mutual information between X

and Y .
From (24), the score function s is equal to the maximal correla-
tion function f

⇤ of PX,Y up to a linear transformation [cf. (6)],
and we have PY |X(y|x) = P

(k ⇤)
Y |X (y|x) = P

(k s)
Y |X (y|x) + o(✏).

Therefore, Fisher kernel is the optimal kernel for tasks gener-
ated from (23).

VI. CONCLUSION

In this paper, we study kernel methods from the perspective
of feature subspace, where we demonstrate a connection be-
tween kernel methods and informative feature extraction prob-
lems. With SVM as an example, we illustrate the relationship
between kernel methods and neural networks. The theoretical
results can help guide practical kernel designs and incorporate
kernel methods with feature-based learning approaches.
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