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Abstract—We study the problem of estimating the joint prob-
ability mass function (pmf) over two random variables. In
particular, the estimation is based on the observation of m
samples containing both variables and n samples missing one
fixed variable. We adopt the minimax framework with lpp loss
functions, and we show that the composition of uni-variate
minimax estimators achieves minimax risk with the optimal first-
order constant for p � 2, in the regime m = o(n).

I. INTRODUCTION

Estimating the probability mass function (pmf) is a crucial
statistical task. A commonly used formulation for estimation is
the minimax framework [1]. Early work resolved the minimax
risk of pmf estimation under l22 loss by identifying the minimax
estimator [2]–[4]. Later studies determined the constant of the
first order for the minimax risk under KL-divergence, l1 and
f -divergences [5]–[7].

Meanwhile, the last decades have witnessed a rapid ex-
pansion in the sizes of the available datasets for which the
labeling efforts lag behind. This results in heterogeneous
datasets where a significant portion of the samples lack some
of the variables. However, the estimators considered in the
works [2]–[7], can only operate in two modes in this setting:
either the estimator should ignore the complete samples to
estimate only the marginal pmf of the corresponding variable
or the estimator should neglect the incomplete samples to form
an estimate of the joint pmf. Adopting the naming conventions
from machine learning literature [8], these modes of operation
can be categorized as unsupervised and supervised estimation,
respectively. However, both modes suffer from inefficiencies,
prompting the need for estimators that can leverage both
labeled and unlabeled samples, commonly referred to as semi-
supervised learning. This paper focuses on investigating the
fundamental limits of semi-supervised pmf estimators.

In particular, we study the case where there are two random
variables X,Y jointly distributed with pXY . We observe two
datasets: m i.i.d. samples of (xi, yi) pairs drawn from pXY

and n samples of only xj drawn from the marginal distribution
pX .Our goal is to find the minimax estimator of pXY based
on these observations. As a main result, we establish that the
composition of minimax univariate estimators achieves the
correct first-order term of the risk for the semi-supervised
estimation problem in the regime m = o(n).

The minimax pmf estimation problem with labeled and
unlabeled samples remains unexplored in the existing liter-
ature. In the multivariate case, the analysis is complicated

by nature’s control over the number of samples with a fixed
marginal. Previous works, such as [9] and [10], have ad-
dressed related complications with slight variations. Unlike
these works, where the number of samples is either generated
from a fixed distribution or chosen adversarially, our study
focuses on the case where the number of samples is generated
from a distribution adversarially chosen by nature [9], [10].

II. PRELIMINARIES & NOTATION

We employ Bachmann–Landau asymptotic notation and say
an = o(bn) if lim sup

n

an
bn

= 0, an = O(bn) if lim sup
n

an
bn

=
K < 1, ⇥(an) = bn if an = O(bn) and bn = O(an). �x
indicates a unit point mass at x 2 X. We write for x, y 2 R,
x ^ y , min(x, y), x _ y , max(x, y). We denote the space
of probability distributions over the finite set X by �X. We
reserve the symbols kx = |X| and ky = |Y|. We use the upper
case of a letter to denote a random variable and the lower
case to indicate the realization of that random variable. Let
L : �X ⇥ �X ! R be a loss function. For a set of joint
samples s = {(xi, yi)}mi=1, we define their marginal sets as
sX , {xi}mi=1 and sY , {yi}mi=1 and its conditional subsets
as sY |X=x = {(xi, yi) : 1  i  m : xi = x}. We denote by
Tx(sm) the number of samples with value x in the set sm. We
denote by p̂X(sm) the maximum likelihood estimator for the
pmf estimation problem, which coincides with the empirical
counts in sm, i.e. p̂X(x; sm) = Tx

m
.

In the minimax setting [1], we assume that nature adversar-
ially chooses a distribution pX ; n samples un = {xi}ni=1 are
drawn i.i.d. from this distribution; and our goal is to design an
estimator q̂ : Xn ! �X based on the samples un to minimize
the expected loss. We denote the associated risk by rL

n
, and

the problem is formulated as:

rL
n
, min

q̂X

max
pX2�X

EUn [L(pX , q̂X(Un))] (1)

The choices of l22, KL divergence, l1 and general f -divergences
for L has been considered in the prior work [2], [4]–[7]. In
our case we chose L to be the general lp

p
norms for p � 2,

namely for p, q 2 �X:

L(p, q) = kp� qkp
p
,

X

x2X

⇣
|p(x)� q(x)|

⌘p

(2)

and we denote the minimax estimation risk by rp
n

, then (1)
becomes:

rp
n
, r

l
p
p
n = min

q̂X

max
pX

EUn

⇥
kpX � q̂X(Un)kp

p

⇤
(3)
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The minimax risk scales as rp
n
= ⇥(n� p

2 ). We defer the
reader to the appendix of the full version of the paper for
a proof This rate is achieved by the maximum likelihood
estimator. We will denote the constants of this rate by C̄p ,
lim sup

n
n

p
2 rp

n
and C

p
= lim infn n

p
2 rp

n
. For the clarity of

the presentation, we will group the parameters C̄p, C
p

into
Cp and adopt the notation ' to denote that gn ' Cpfn if
lim sup

n
gn/fn  C̄p and lim infn gn/fn � C

p
. Similarly, we

say gn . Cpfn if lim infn gn/fn  C
p

and lim sup
n
gn/fn 

C̄p.
This paper studies the extension of (3) in a multivariate

semi-supervised setting. We assume that nature chooses a
model pXY of a pair of jointly distributed random variables
X,Y . The estimator has access to two datasets: a collection of
complete lm , {(x0

i
, y0

i
)}m

i=1 and a collection of incomplete
samples un , {xi}ni=1 generated i.i.d from pXY and pX . Our
goal is to design an estimator with minimal expected risk. We
formulate this new problem as:

Rp

m,n
, min

q̂XY

max
pXY

EUn,Lm

⇥
kpXY � q̂XY (U

n, Lm)kp
p

⇤
(4)

Throughout our study of (4), we will consider the following
auxiliary problems:

Rp

m
, min

q̂Y |X
max
pXY

ELm

⇥
kpXY � pX q̂Y |X(Lm)kp

p

⇤

R̄p

m
, min

q̂Y |X
max
pX

EL
m
X


max
pY |X

EL
m
Y

⇥
kpXY � pX q̂Y |X(Lm)kp

p

⇤�

The problem Rp

m
corresponds to the limit of the problem

Rp

m,n
as n ! 1. Intuitively, in this case, there are sufficiently

many incomplete samples to make the perfect estimation of pX
possible. The difference between the two problems is that for
R̄p

m
, nature has an additional advantage in forming the dataset

lm: it can first observe the realization of the X symbols, i.e.
lm
X

, then choose pY |X from which to generate the Y values
and finish the construction of the joint samples.

For a given univariate estimator q̂⇤
n

, we define the con-
ditional estimator q̂⇤,m

Y |X(lm) as the conditional composition
based on q̂⇤

n
to be the concatenation of q̂⇤

nx
(lY |X=x), where

nx is number of samples in lY |X=x, which is equal to
Tx(lmX ). We further define the estimator q̂⇤,m,n

XY
as the joint

composition based on q̂⇤
n

to be the estimator that estimates the
conditional distribution pY |X with the conditional composition
estimator and the marginal pX with the ML estimator, i.e.
q̂⇤,m,n

XY
(un, lm) = p̂X(un [ lm

X
)q̂m

Y |X(lm).
We say that an estimator {q̂n} is first order minimax optimal

for the problem rp
n

if maxpX EUn

⇥
kpX � q̂Xkp

p

⇤
= rp

n
+o(rp

n
).

The same definition carries over to the problems Rp

m,n
,Rp

m
,

R̄p

m
.

III. RESULTS

A. Main Theorems
Theorem 1: Let q̂⇤

n
be a minimax optimal estimator for

rp
n

. Then the conditional composition q̂⇤,m
Y |X based on q̂⇤

n
is

minimax optimal for R̄p

m
:

max
pX

ELm


max
pY |X

kpXY � pX q̂⇤,m
Y |Xkp

p

�
= R̄p

m
(5)

Theorem 2: Let p � 2 and q̂⇤
n

be a first order minimax
optimal estimator for rp

n
. Then the conditional composition

q̂⇤,m
Y |X based on q̂⇤

n
is first order minimax optimal for Rp

m
:

max
pXY

ELm

h
kpXY � pX q̂⇤,m

Y |Xkp
p

i
= Rp

m
+ o(Rp

m
) (6)

Theorem 3: Let m = o(n):
��Rp

m,n
�Rp

m

��  O
⇣
m� p�1

2 (n)�1/2
⌘

(7)

Theorem 4: Let p � 2 and q̂⇤
n

be a first-order optimal
estimator for rp

n
. Then the joint composition q̂⇤,m,n

XY
based

on q̂⇤
n

is first order minimax optimal for Rp

m,n
in the regime

m = o(n).

B. Sketch of the proof
The main result of this paper is given in Theorem 4. To

establish Theorem 4, we first show in Theorem 1 that the
conditional composition of a minimax optimal estimator for
rp
n

is a minimax optimal estimator for R̄p

m
. In Theorem 2,

we connect the problems R̄p

m
and Rp

m
. In particular, we show

that when p � 2 the adversarial distribution of R̄p

m
is �x, for

which the problem R̄p

m
reduces to Rp

m
. Finally in Theorem 3

we show that Rp

m,n
= Rp

m
+ o(m� p

2 ) by studying the regime
m = o(n).

IV. PROOFS FOR THEOREMS

A. Proof for Theorem 1
We define:

f(pX , q̂Y |X) , EL
m
X


max
pY |X

EL
m
Y

⇥
kpXY � pX q̂Y |Xkp

p

⇤�
(8)

Let q̂⇤⇤
Y |X : (X ⇥ Y)m ! (�Y)|X| be an estimator for the

conditional distribution pY |X . A sufficient condition for q̂⇤⇤
Y |X

to achieve R̄p

m
is that for all pX :

min
q̂Y |X

f(pX , q̂Y |X) = f(pX , q̂⇤⇤
Y |X) (9)

since

max
pX

f(pX , q̂⇤⇤
Y |X) � R̄p

m
, min

q̂

max
pX

f(pX , q̂)

� max
pX

min
q̂

f(pX , q̂) = max
pX

f(pX , q̂⇤⇤
Y |X)

where the first inequality is due to the substitution, the second
inequality is the change of minmax with maxmin, and the
equality follows from (9). Now let us show (9) holds for the
composition estimator q̂⇤,m

Y |X . Fix a pX and for the compactness
of notation we define pi,x , P(Tx(LX) = i). Then the left-
hand side of (9) becomes:

= min
q̂Y |X

EL
m
X

"
max
pY |X

EL
m
Y

"
X

x2X

(pX(x))pkpY |X=x � q̂Y |X=xkpp

##

=
X

x2X

pp
X
(x) min

q̂Y |X=x

EL
m
X


max

pY |X=x

EL
m
Y

⇥
kpY |X=x � q̂Y |X=xkpp

⇤�
(10)

=
X

x2X

(pX(x))p
mX

i=0

pi,xr
p

i
(11)
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In (10) we note that the optimization variables are independent.
Steps leading (10) to (11) are given below and these steps
demonstrate that (9) holds for the estimator q̂⇤,m

Y |X :

min
q̂Y |X=x

EL
m
X


max

pY |X=x

EL
m
Y

⇥
kpY |X=x � q̂Y |X=xkpp

⇤�

= min
q̂Y |X=x

mX

i=0

pi,x max
pY |X=x

EL
i
Y

h
kpY |X=x � q̂i

Y |X=x
kp
p

i

=
mX

i=0

pi,x min
q̂
i
Y |X=x

max
pY |X=x

EL
i
Y

h
kpY |X=x � q̂i

Y |X=x
kp
p

i
(12)

=
mX

i=0

pi,x max
pY |X=x

EL
i
Y

h
kpY |X=x � q̂⇤,i

Y |X=x
kp
p

i
(13)

To establish (13), we observe in (12) that the expres-
sion minq̂i

Y |X=x
maxpY |X=x

EL
i
Y

⇥
kpY |X=x � q̂Y |X=xkpp

⇤
is

the problem rp
i

and hence is achieved by q̂⇤,i
Y |X .

B. Proof for Theorem 2
We start from (11) by recaliling the definition of pi,x:

R̄p

m
= max

pX

X

x2X

mX

i=0

✓
m

i

◆
(pX(x))i+p(1� pX(x))m�irp

i
(14)

' max
pX

X

x2X

Cp

✓
pX(x)

m

◆ p
2

+ o(m� p
2 ) (15)

=
Cp

m
p
2

+ o(m� p
2 ) (16)

(15) follows from Lemma 1. In (15), we note that for p � 2 the
problem is convex and symmetric in variables {pX(x)}x2X

in the first order. Therefore the optimizer is a vertex of
the probability simplex, which leads to (16). We obtain the
matching lower bound by substituting pX = �x for some
x 2 X. We carry out the steps for completeness below:

Rp

m
� min

q̂Y |X
max
pY |X

EL⇠�xpY |X

⇥
k�xpY |X � �xq̂Y |Xkp

p

⇤

= min
q̂Y |X

max
pY |X

ELY ⇠pY |X=x

⇥
kpY |X=x � q̂Y |X=xkpp

⇤

= min
q̂Y |X=x

max
pY |X=x

ELY ⇠pY |X=x

⇥
kpY |X=x � q̂Y |X=xkpp

⇤
= rp

m

Therefore by Rp

m
 R̄p

m
we obtain:

Cp

m
p
2

. Rp

m
 R̄p

m
' Cp

m
p
2

+ o

✓
1

m
p
2

◆

finally we use Theorem 1.

C. Proof for Theorem 3
By Lemma 3

Rp

m,n
�Rp

m
 �p

m,n

We note that rp
m+n

= ⇥(n+m)�
p
2 and Rp

m
= ⇥(m� p

2 ),
as proven in the full version of the paper. Therefore, in the
regime m = o(n), �p

m,n
= O(m� p�1

2 (n)�1/2). Finally, we
observe that Rp

m,n
monotonically decreases n, and in the limit

it reduces Rp

m
. An alternative proof for the lower bound Rp

m


Rp

m,n
is also provided in the full version of the paper.

D. Proof for Theorem 4
By Theorem 2, the composition estimator q̂⇤,m

Y |X is first order
minimax optimal for Rp

m
when p � 2. Finally by Theorem 3,

Rp

m,n
and Rp

m
has the same first order in the regime m = o(n).

V. SUPPLEMENTARY RESULTS

For Lemma 1 and Lemma 2 we introduce:

Hn

p
(x) ,

nX

i=0

✓
n

i

◆
rp
i
xi+p(1� x)n�i (17)

Gn

p
(x) ,

nX

i=0

✓
n

i

◆
rp
i
xi

✓
i

n

◆p

(1� x)n�i (18)

Lemma 1:

Hn

p
(x) = Cp

⇣x
n

⌘ p
2
+ o(n� p

2 )

Proof: We fix the constant c given in Lemma 2. There
are two cases:

In the first case x � c log
2(n)
n

:

Hn

p
(x) '

nX

i=0

✓
n

i

◆
Cp

i
p
2 + 1

xi+p(1� x)n�i (19)

=
Cp

n
p
2

nX

i=0

✓
n

i

◆✓
i

n

◆ p
2

xi(1� x)n�i +O

✓
Hn

p
(x)

p
log n

◆
(20)

=
Cp

n
p
2

⇣
x

p
2 +O

�
n�1

�⌘
+O

✓
Hn

p
(x)

p
log n

◆
(21)

= Cp

⇣x
n

⌘ p
2
+ o

⇣
n� p

2

⌘
(22)

(19) holds since rp
n

' Cpn� p
2 whereas in (20) we use

Lemma 2. To obtain (21), we utilize Theorem-3.1 in [11] as
follows: we set f(x) = x

p
2 and bound the error of n th order

Bernstein polynomial approximation Bn as:

|Bn(x; f)� f(x)| = n�1x(1� x)f 00(x)/2 + o(n�1)

= n�1p/4(p/2� 1)x
p
2�2 + o(n�1)

 n�1p/4(p/2� 1) + o(n�1) (23)

where (23) follows since p � 2. Therefore we conclude that
convergence is uniform with error O(n�1) for all x 2 (0, 1).
Finally, (21) implies that Hn

p
(x) = O(n� p

2 ) and in (22) we
substitute this in the error term of (21).

For the second case we have x  c log
2(n)
n

:

Hn

p
(x) =

nX

i=0

✓
n

i

◆
rp
i
xi+p(1� x)n�i (24)

 Cp xp

nX

i=0

✓
n

i

◆
1

i
p
2 + 1

xi(1� x)n�i (25)

 Cp xp = O

✓
log2p(n)

np

◆
(26)

Similarly Cp

�
x

n

� p
2 = O

⇣
log2p(n)

np

⌘
when x  c log

2
n

n
, there-

fore
���Cp

�
x

n

� p
2 �Hn

p
(x)

��� = o
�
n� p

2

�
.
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Lemma 2: There exists a c > 0 such that for x � c log
2
n

n
:

��Hn

p
(x)�Gn

p
(x)

�� = O

✓
Hn

p
(x)

p
log n

◆
(27)

Proof: Fix c > 0, let �1, �2 > 0, whose values will be
determined later, we define �p(x, i) ,

���xp �
⇣

i

n

⌘p
���. As a

result of triangular inequality:
��Hn

p
(x)�Gn

p
(x)

�� 
nX

i=0

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i) (28)

Before analyzing this sum, we note that by the mean value
theorem, there exists ⇠ 2 (x ^ i

n
, x _ i

n
) hence xp �

�
i

n

�p
=�

x� i

n

�
⇠p�1, thus:

�p(x, i) =
���xp �

⇣ i

n

⌘p
���  p

���x� i

n

���
���x _ i

n

���
p�1

(29)

Now we analyze the sum in (28) over the ranges i  nx,
nx > i separately. For the case i  nx:

X

inx

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i) (30)

=
X

inx��1

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i)

+
X

nx��1<i<nx

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i) (31)


X

inx��1

✓
n

i

◆
xi(1� x)n�i2

+
X

nx��1inx

✓
n

i

◆
xi(1� x)n�irp

i
p

����x� i

n

����x
p�1 (32)

 2e�
n
x �

2
1 +

X

nx��1inx

p

✓
n

i

◆
xi(1� x)n�irp

i
�1x

p�1 (33)

= 2e�
n
x �

2
1 +

p �1
x

Hn

p
(x) (34)

In (31) we use (29). In (32), we bound the lower tail of the
binomial via lemma-2 in [12] and observe that

��x� i

n

��  �1
in the range nx � �1  i  nx. We also note that in
(32), rp

i
 2 and �p(x, i)  1. Now we choose �1 =

c1
q

� x

n
log

�
1
x
Hn

p
(x)

�
and obtain:

(34)  2

✓
Hn

p
(x)

x

◆c
2
1

+ p c1

s

� 1

nx
log

✓
1

x
Hn

p
(x)

◆
Hn

p
(x)

In order to establish the lemma, we first show thatq
� 1

nx
log 1

x
Hn

p
(x) = O( 1p

logn
).

1

x
Hn

p
(x) ' Cp

nX

i=0

xp�1

i
p
2 + 1

✓
n

i

◆
xi(1� x)n�i

� Cp

1

n
p
2 + 1

✓
c log2 n

n

◆p�1
nX

i=0

✓
n

i

◆
xi(1� x)n�i

(35)

= Cp

1

n
p
2 + 1

✓
c log2 n

n

◆p�1

� k0

n
3
2p

(36)

In (35), we notice x � c log2
n

n
. On the right-hand side of (36)

we collect the constants in k0. Therefore we establish that:
r
� 1

nx
log

1

x
Hn

p
(x) 

r
k00

1

nx
log n  O

✓
1

log(n)

◆
(37)

where in the first inequality we use that x � c logn

n
and collect

the constants in k00. Secondly, we need to show that H
n
p (x)

x

decays sufficiently fast. To this end, we have:
X

i

Cp

i
p
2 + 1

✓
n

i

◆
xi+p�1(1� x)n�i 

X

i

c3
i+ 1

✓
n

i

◆
xi(1� x)n�i

 c3
1� (1� x)n+1

n+ 1
xp�2  c3

xp�2

n+ 1

Therefore by choosing c1 large enough we ensure that

B
⇣

H
n
p (x)

x

⌘c
2
1

= o(n� p
2 ). Whereas in the second case i > nx:

X

nx<inx+�2

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i)

+
X

i>nx+�2

✓
n

i

◆
xi(1� x)n�irp

i
�p(x, i) (38)


X

nx<inx+�2

✓
n

i

◆
xi(1� x)n�i

����x� i

n

����

✓
i

n

◆p�1

+ 2
X

i>nx+�2

✓
n

i

◆
xi(1� x)n�i (39)

 �2
X

nx<inx+�2

✓
n

i

◆
xi(1� x)n�i(x+ �2)

p�1 + 2e
� n�22

2(x+
�2
3

)

 �22
p�1

X

nx<inx+�2

✓
n

i

◆
xi(1� x)n�i(x _ �2)

p�1 + e
� n�22

2
3
(x_�2)

 �2 2p�1
X

nx<inx+�2

✓
n

i

◆
xi(1� x)n�i(x)p�1 + 2e

�n�22
2
3
x (40)

Each step is justified in the corresponding step in the analysis
for the range i  nx, except now we are using the upper tail in
lemma-2 of [12]. In (40), we see that the problem is identical
to (34) except for the constants. Hence we choose �2 =

c2
q

� x

n
log

�
1
x
Hn

p
(x)

�
and by (36) we have �2  c3

q
x logn

n
.

This ensures that �2  x when x � c log
2
n

n
and the step (40)

is valid.
Lemma 3: For p � 0, there exists constants {ci}pi=0 and

c0, c00 such that:

Rp

m,n
 Rp

m
+ �p

m,n

with �p

m,n
=

Pbpc�1
i

ci(Rp

m
)

p�i
p
�
rp
m+n

� i
p +

c0(Rp

m
)

p�bpc
p (rp

m+n
)

bpc
p + c00(Rp

m
+ rp

m+n
)

p�bpc
p (rp

n+m
)

bpc
p

Proof: First let us fix q̂XY (U,L), U, L and let us define:

�U,L

x,y
(u) , pXY (x, y)� uq̂Y |X(y | x) (41)
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with derivatives:
����
di

dui

���U,L

x,y
(u)

��p
���� = p(i)(q̂Y |X(y | x))i

���U,L

x,y
(u)

��p�i

 p(i)
���U,L

x,y
(u)

��p�i

(42)

Continuing, we have:
���U,L

x,y
(q̂X(x))

��p (43)


bpc�1X

i=0

p(i)

i!

���U,L

x,y
(pX(x))

��p�i|q̂X(x)� pX(x)|i

+
⇣���U,L

x,y
(pX(x))

��p�bpc _
���U,L

x,y
(q̂X(x))

��p�bpc⌘

|q̂X(x)� pX(x)|bpc p
bpc

bpc! (44)


bpc�1X

i=0

p(i)

i!

���U,L

x,y
(pX(x))

��p�i|q̂X(x)� pX(x)|i

+
pbpc

bpc!
���U,L

x,y
(pX(x))

��p�bpc|q̂X(x)� pX(x)|bpc

+
pbpc

bpc!
���U,L

x,y
(q̂X(x))

��p�bpc|q̂X(x)� pX(x)|bpc (45)

EU,L

⇥
kpXY � q̂XY kpp

⇤
 EU,L

⇥
kpXY � pX q̂Y |Xkp

p

⇤

+

bpc�1X

i=1

p(i)

i!
EU,L

"
X

x,y

���U,L

x,y
(pX(x))

��p�i|q̂X(x)� pX(x)|i
#

+
pbpc

bpc! EU,L

"
X

x,y

���U,L

x,y
(pX(x))

��p�bpc|q̂X(x)� pX(x)|p�bpc
#

+
pbpc

bpc! EU,L

"
X

x,y

���U,L

x,y
(q̂X(x))

��p�bpc|q̂X(x)� pX(x)|p�bpc
#

(46)
EU,L

⇥
kpXY � q̂XY kpp

⇤
 EU,L

⇥
kpXY � pX q̂Y |Xkp

p

⇤

+

bpc�1X

i=1

p(i)k
i
p
y

i!
E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�i
p E

⇥
kq̂X � pXkp

p

⇤ i
p

+
pbpck

bpc
p

y

bpc! E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�bpc
p E

⇥
kq̂X � pXkp

p

⇤ bpc
p

+
pbpck

bpc
p

y

bpc! E
⇥
kpXY � q̂X q̂Y |Xkp

p

⇤ p�bpc
p E

⇥
kq̂X � pXkp

p

⇤ bpc
p

(47)
, m,n(pXY , q̂XY )

In (43) we Taylor expand the h(q̂X(x)) ,
���U,L

x,y
(q̂X(x))

��p

around the pX(x) and use the upper bound (42) for the deriva-
tives. We bound the remainder of the Taylor expansion with
the mean value theorem via the monotonicity of the derivatives
as in (29), leading to (44). In (46) we sum over x, y and

take expectations with respect to U,L ⇠ pXY of both hand-
sides (43) ,(45) by noting that EU,L

hP
x,y

���U,L

x,y
(q̂(X))

��p
i
=

EU,L

⇥
kpXY � q̂XY kpp

⇤
. To obtain (47), we apply Hölder’s

inequality to each summation inside the expectations in (46).
Taking maximum of both sides over pXY and taking the
minimum of the left-hand side over q̂Y |X we establish that
for all q̂XY :

Rp

m,n
= min

q̂XY

max
pXY

EU,L

⇥
kpXY � q̂XY kpp

⇤
 max

pXY

m,n(pXY , q̂XY ) (48)

 max
pXY

EU,L

⇥
kpXY � pX q̂Y |Xkp

p

⇤
+

bpc�1X

i=1

ci max
pXY

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�i
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ i
p

+ c0 max
pXY

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�bpc
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ bpc
p

+ c000 max
pXY

E
⇥
kpXY � q̂X q̂Y |Xkp

p

⇤ p�bpc
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ bpc
p

(49)
Rp

m,n
 max

pXY

EU,L

⇥
kpXY � pX q̂Y |Xkp

p

⇤
+

bpc�1X

i=1

ci max
pXY

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�i
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ i
p

+ c0 max
pXY

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�bpc
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ bpc
p

+ c00 max
pXY

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤ p�bpc
p max

pX

E
⇥
kq̂X � pXkp

p

⇤ bpc
p

+ c00 max
pX

E
⇥
kpX � q̂Xkp

p

⇤
(50)

In (49) we further upper bound (48) by taking the maximum
of each summation separately. We define the constants are

ci , p(i)k
i
p
y /i!, c0 = c000 , p(bpc)k

bpc
p

y /bpc! based on (47). In
(50) we note that:

max
pXY

E
⇥
kpXY � q̂X q̂Y |Xkp

p

⇤

 2p�1 max
pX

E
⇥
kpXY � pX q̂Y |Xkp

p

⇤
+ 2p�1 max

pXY

E
⇥
kpX � q̂Xkp

p

⇤

which is a consequence of convexity of |x|p for p � 1. Finally,
we choose q̂X , q̂Y |X to be the minimax estimators of the rp

m

and Rp

m
respectively to establish the Lemma 3.

VI. CONCLUSION

In this work, we considered the problem of minimax pmf
estimation problem under lp

p
loss when there are m labeled and

n unlabeled samples. In particular, we showed that for p � 2,
the composition estimators of univariate minimax problems are
optimal in the first order over the regime m = o(n). Extending
the results to 1  p  2 and for f -divergences are possible
future directions.
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