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Abstract—We study the problem of estimating the joint prob-
ability mass function (pmf) over two random variables. In
particular, the estimation is based on the observation of m
samples containing both variables and n samples missing one
fixed variable. We adopt the minimax framework with [} loss
functions, and we show that the composition of uni-variate
minimax estimators achieves minimax risk with the optimal first-
order constant for p > 2, in the regime m = o(n).

I. INTRODUCTION

Estimating the probability mass function (pmf) is a crucial
statistical task. A commonly used formulation for estimation is
the minimax framework [1]. Early work resolved the minimax
risk of pmf estimation under /2 loss by identifying the minimax
estimator [2]-[4]. Later studies determined the constant of the
first order for the minimax risk under KL-divergence, [; and
f-divergences [5]-[7].

Meanwhile, the last decades have witnessed a rapid ex-
pansion in the sizes of the available datasets for which the
labeling efforts lag behind. This results in heterogeneous
datasets where a significant portion of the samples lack some
of the variables. However, the estimators considered in the
works [2]-[7], can only operate in two modes in this setting:
either the estimator should ignore the complete samples to
estimate only the marginal pmf of the corresponding variable
or the estimator should neglect the incomplete samples to form
an estimate of the joint pmf. Adopting the naming conventions
from machine learning literature [8], these modes of operation
can be categorized as unsupervised and supervised estimation,
respectively. However, both modes suffer from inefficiencies,
prompting the need for estimators that can leverage both
labeled and unlabeled samples, commonly referred to as semi-
supervised learning. This paper focuses on investigating the
fundamental limits of semi-supervised pmf estimators.

In particular, we study the case where there are two random
variables X, Y jointly distributed with pxy. We observe two
datasets: m i.i.d. samples of (x;,y;) pairs drawn from pxy
and n samples of only x; drawn from the marginal distribution
px.Our goal is to find the minimax estimator of pxy based
on these observations. As a main result, we establish that the
composition of minimax univariate estimators achieves the
correct first-order term of the risk for the semi-supervised
estimation problem in the regime m = o(n).

The minimax pmf estimation problem with labeled and
unlabeled samples remains unexplored in the existing liter-
ature. In the multivariate case, the analysis is complicated

by nature’s control over the number of samples with a fixed
marginal. Previous works, such as [9] and [10], have ad-
dressed related complications with slight variations. Unlike
these works, where the number of samples is either generated
from a fixed distribution or chosen adversarially, our study
focuses on the case where the number of samples is generated
from a distribution adversarially chosen by nature [9], [10].

II. PRELIMINARIES & NOTATION

We employ Bachmann-Landau asymptotic notation and say
an = o(by) if limsup,, 3= = 0, a, = O(by) if limsup,, §= =
K < o0, ©(a,) = by, if a, = O(by,) and b, = O(ay). o,
indicates a unit point mass at x € X. We write for x,y € R,
r Ay = min(z,y), r Vy = max(z,y). We denote the space
of probability distributions over the finite set I by Ax. We
reserve the symbols k, = |X| and k, = |Y|. We use the upper
case of a letter to denote a random variable and the lower
case to indicate the realization of that random variable. Let
L1 Ax x Ax — R be a loss function. For a set of joint
samples s = {(z;,y;)}",, we define their marginal sets as
sx = {x;}, and sy = {y;}"™, and its conditional subsets
as sy|x=z = {(®i,%:) : 1 <i <m:x; = x}. We denote by
T, (s™) the number of samples with value x in the set s™. We
denote by px (s™) the maximum likelihood estimator for the
pmf estimation problem, which coincides with the empirical
counts in s™, i.e. px(z;s™) = Lr.

In the minimax setting [1], we assume that nature adversar-
ially chooses a distribution px; n samples u™ = {x;}}_, are
drawn i.i.d. from this distribution; and our goal is to design an
estimator § : X — Ax based on the samples «™ to minimize

the expected loss. We denote the associated risk by r~, and
the problem is formulated as:
= 2 min max Epn[L(px,qx(U™))] (1)

dx px€Ax

The choices of 12, KL divergence, I, and general f-divergences
for £ has been considered in the prior work [2], [4]-[7]. In
our case we chose £ to be the general [} norms for p > 2,
namely for p,q € Ax:

toa)=lp—alz 2> (@) —a@)l) @

zeX

and we denote the minimax estimation risk by rP, then (1)

becomes:

, I , PR
b £,y = minmax Ey» [[[px — ¢x (U™)]7] 3)

dx Px
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The minimax risk scales as 72 = ©(n~%). We defer the
reader to the appendix of the full version of the paper for
a proof This rate is achieved by the maximum likelihood
estimator. We will denote the constants of this rate by C,,
lim sup,, n27‘p and C,, = lim infnn%rp For the clarity of
the presentation, we w111 group the parameters C'p, C, into
Cp and adopt the notation ~ to denote that g, ~ C| fn if
lim sup,, gn/ fn < C'p and liminf,, g,/ fn > C,,. Similarly, we
say gn S Cpfn if liminf,, g,/ f, < C,, and limsup,, In/fn <
Cp.

pThis paper studies the extension of (3) in a multivariate
semi-supervised setting. We assume that nature chooses a
model pxy of a pair of jointly distributed random variables
X, Y. The estimator has access to two datasets: a collection of
complete l”” £ {(2},y/)}™, and a collection of incomplete
samples u" = {z;}"_, generated i.i.d from pxy and px. Our
goal is to design an estimator with minimal expected risk. We
formulate this new problem as:

RP

m,n

f]nlnmaXEUn e [llpxy — dxy (U™, L™)|E] @)

Pxy

Throughout our study of (4), we will consider the following
auxiliary problems:

™)IIE]
")

The problem RP, corresponds to the limit of the problem
Rﬁ%n as n — oo. Intuitively, in this case, there are sufficiently
many incomplete samples to make the perfect estimation of px
possible. The difference between the two problems is that for
RP , nature has an additional advantage in forming the dataset
{™: it can first observe the realization of the X symbols, i.e.
%, then choose py|x from which to generate the Y values
and finish the construction of the joint samples.

For a given univariate estimator ¢, we define the con-
ditional estimator q;r;((lm) as the conditional composition
based on g, to be the concatenation of ¢, (ly|x—5), Where
n, is number of samples in ly|x—,, which is equal to
T, (I'}). We further define the estimator §yy " as the joint
composition based on ¢, to be the estimator that estimates the
conditional distribution py|x with the conditional composition
estimator and the marginal px with the ML estimator, i.e.
ayy " (ut 1) = px (u” Ulm)‘]yp{(l ).

We say that an estimator {{,, } is first order minimax optimal
for the problem 7 if max, By~ [[lpx — 4x[|5] = r5+o(rh).
The same definition carries over to the problems RP RP
RP,.

R £ minmaxEpm [||pxy — pxdy|x (L
dy|x PXY

Rp £ min max Ezn |maxEpm H|pXY *pX(JY\X(
dy|x Px Py |x

m,n°>

III. RESULTS
A. Main Theorems

Theorem 1: Let ¢} be a minimax optimal estimator for
rP. Then the conditional composition qY| y based on g i

minimax optimal for RP,:

max E;m | max —pxdo™||P| = RP 5
e Lm Py X ||pXY quY‘XHp m ( )

Theorem 2: Let p > 2 and ¢;, be a first order minimax
optimal estimator for r2. Then the conditional composition

Q;& based on ¢ is first order minimax optimal for RZ :

maxEpn (lpxy — pxdy k|| = B+ o(BE)  (6)
Theorem 3: Let m = o(n):

rl < 0(m”

|Rm n ”;1 (n)71/2) (7)

Theorem 4: Let p > 2 and ¢, be a first-order optimal
estimator for 7. Then the joint composition §yy " based
on ¢y, is first order minimax optimal for RP,  in the regime
m = o(n).

B. Sketch of the proof

The main result of this paper is given in Theorem 4. To
establish Theorem 4, we first show in Theorem 1 that the
conditional composition of a minimax optimal estimator for
7P is a minimax optimal estimator for R?,. In Theorem 2,
we connect the problems RP, and RP,. In particular, we show
that when p > 2 the adversarial distribution of Rf,’n is d,, for
which the problem RP, reduces to R” Finally in Theorem 3

m*
we show that R, |, = an + o(m~%) by studying the regime
m = o(n).

I'V. PROOFS FOR THEOREMS
A. Proof for Theorem 1

We define:
fpx,dyix) £ Epm ;ff‘t;(EL;y llpxy —pxdvixIB]| ®)
Let QA;*\X (X x Y)™ = (Ay)* be an estimator for the

conditional distribution py|x. A sufficient condition for qy‘ ¥
to achieve RP, is that for all py:

;Iylg(l fpx,dvix) = f(px, 4¥x) ©

since

> RP, 2 minmax f(px.q)

max ,
e f(pX qY\X) PR

> maxmin f(px,q) = maXf(PXﬁ?]X)
Px q pPx

where the first inequality is due to the substitution, the second
inequality is the change of minmax with max min, and the
equality follows from (9). Now let us show (9) holds for the
composition estimator q;(g‘( Fix a px and for the compactness

of notation we define p; , = P(T,(Lx) = i). Then the left-
hand side of (9) becomes:

(1)

=minErn lmaxEpn x))? — — Gy 1x=2|®
P Ly o Ly ;C(px( ) ||pY\X7x qY|Xx|pH
=Y pk(z) min Em[ max Ero [[lpy|x—s —dm_mng]] (10)
X Ay | x=z Py |X=x
m
=Y (x@)" Y piar?
zeX i=0
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In (10) we note that the optimization variables are independent.
Steps leading (10) to (11) are given below and these steps
demonstrate that (9) holds for the estimator qY| X'

min Epn { max EL;" [Py | x =z — (jYX_r“ﬂ:|
dy | X =z Py |x

= min szz H‘laX IE:L’ [HPY\X x QY|X x||]

dy|x=x i—0

_mejAmm max ED [||py|X z qY‘X zH} (12)

4y | x = PYIX

i= 0
~Y h Jmax By [Ipyix—s = dyjx_, ) (13)
=0
To establish (13), we observe in (12) that the expres-
sion mlnq e, Ay TELl [pr‘X x—qy|X s ] is

the problem r? and hence is achieved by qY‘ <

B. Proof for Theorem 2
We start from (11) by recaliling the definition of p; ,:

o EE0)

zeX i=0

2)) P (1 — px ()™ P (14)

pX( ) 5 _r
= CZ +o(m™%) (16)

m 2
(15) follows from Lemma 1. In (15), we note that for p > 2 the
problem is convex and symmetric in variables {px(x)}zex
in the first order. Therefore the optimizer is a vertex of
the probability simplex, which leads to (16). We obtain the
matching lower bound by substituting px = J, for some
x € X. We carry out the steps for completeness below:

Ry, > minmaxEp s, py 1102y | x — 624y x [17]
dy|x Py|x

= min maX]ELpry|x . [||pY|X z QY\X «y }
Jdy|x PY|x

= min max ELYNPY‘X ,[pr\x z—QY|X zlly ] ™

QY\X z PY|X=z
Therefore by RP, < RP, we obtain:

C” SRP < RP ~ ]

1
()
m2 m?2 m?2

finally we use Theorem 1.

C. Proof for Theorem 3
By Lemma 3

P
Rm,n

We note that 75, = O(n+m)~% and RP, = O(m~%),
as proven in the full version of the paper. Therefore, in the
regime m = o(n), vh, , = O(m="= (n)~'/2). Finally, we
observe that RY, , monotonically decreases n, and in the limit
it reduces R?,. An alternative proof for the lower bound R?, <

RP, ., is also provided in the full version of the paper.

- an < ’an,,n

D. Proof for Theorem 4
Ak, TN

By Theorem 2, the composition estimator ay'| x is first order
minimax optimal for R?, when p > 2. Finally by Theorem 3,
Rp, ,, and RP, has the same first order in the regime m = o(n).

V. SUPPLEMENTARY RESULTS

For Lemma 1 and Lemma 2 we introduce:

wméicywwlww

=0

n . p
3 (Z‘) PPy (;) 1-2)""  (18)
1=0

a7

[I>

Gp(x)

Lemma 1:
n X g _D
H(z) = C, (ﬁ) +o(n~%)

Proof: We fix the constant ¢ given in Lemma 2. There
are two cases:
In the first case z > ¢/ (") (”)

19)

_ G~ () (i gi _n—i H{}(:v))

‘ﬁth@)“lm ro(Jies) @
» Hﬂ,

= %’(m + O(n_l)) - 0(\&%) (21)
T\ % _r

“6(D)! o)

(19) holds since 1P o~ Cpn’% whereas in (20) we use

Lemma 2. To obtain (21), we utilize Theorem-3.1 in [11] as
follows: we set f(x) = 22 and bound the error of n th order
Bernstein polynomial approximation B, as:

|Bu(w; f) = f(a)] = n~ e(l — ) f"(x)/2 + o(n™")
=n"'p/A(p/2 — 1)az?* +o(n™")
<nTp/A(p/2-1)+o(n”h)  (23)
where (23) follows since p > 2. Therefore we conclude that
convergence is uniform with error O(n~1) for all z € (0,1).
Finally, (21) implies that H}'(x) = O(n_g) and in (22) we
substitute this in the error term of (21).

For the second case we have r < clof%:
n o . n 1+ n—1i
H? (x) 7;:; (Z>rpw P(1—x) (24)
" /n 1 . .
<C P i pil‘z 1—z)"" 25
- P ; (z) iz +1 ( ) (23)
2p
<Cpa"=0 <1°g (”)> 6)
npb

when z < clog ™ there-

Similarly C,,(2)* = O(loi% )

—H”(m)‘zo(n ). |
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Lemma 2: There exists a ¢ > 0 such that for z > clog n.

Gn(l‘)’ =0 H;’( )
P Viogn
Proof: Fix ¢ > 0, let d1,d2 > 0, whose values will be

determined later, we define A, (x,i) = ‘xp - (%) ’ As a
result of triangular inequality:

(:L) o'(1— )"} Ap(w,i) (28)

|H? () - @7)

LHOREACIEDY

i=0
Before analyzing this sum, we note that by the mean value
theorem, there exists £ € (z A £,z V L) hence a? — (%)p =
( n)fp L thus:

Ay(x,i) =

.
| (29)

L\P ) )
o = () [ 2ol ol

n n n
Now we analyze the sum in (28) over the ranges ¢ < nuz,
nx > ¢ separately. For the case 7 < nz:

Z (n) (1 —z)" P Ay (z,4) (30)
i<nx ¢
- Z (n)xl(l — )" P A (1)
i<nz—4; t
+ Z <n> ' (1 —z)" P A, (z,4) (€2))
nr—od1<i<nz t
< Z (n)xl(l —z)"7"2
i<nz—4; t
ny i n—i, p Ul ope1
+ Z Nzt =) "l ple — —|aP (32)
nr—o1<i<nz t n
_n n i n—i _
< 2e L Z p(i>x1(1 —x)" " rPo 2 L 33)

nr—§<i<nz
6
L (@) (34)

In (31) we use (29). In (32), we bound the lower tail of the
binomial via lemma-2 in [12] and observe that |m — %| < 43
in the range nx — §; < ¢ < nz. We also note that in
(32), r¥ < 2 and Ap(z,i) < 1. Now we choose d; =

1 \/7 ZJog (L Hp (x)) and obtain:

Hy (2)\ 1 1
(34) <2 (;;(@) +pa \/—m log<ng(x)>H;}(a:)

In order to establish the lemma,

n §2
2e”F0 4

we first show that

\/— 7= log %Hg(x) = O(\/@).

1 n
EHP (l’) >~

In (35), we notice = > % On the right-hand side of (36)
we collect the constants in k’. Therefore we establish that:

11 L1 1
vab%ﬁﬂ) ¢k b“‘o(%mﬂ &7

log n

and collect
(z)

where in the first inequality we use that © > c===

the constants in k”. Secondly, we need to show that
decays sufficiently fast. To this end, we have:

Cp +p1 —1
7 nz< 17 n—i
2124—1() Zz+1 7)
1—(1—a)™t! aP—?
<eg——— T P72 <
=6 n+1 v _c3n+1

Therefore by choosing c¢; large enough we ensure that
B < H;);(gﬂ) ) C%
Z (n) (1 —2)" P A, (2, 1)

1

_r . .
= o(n~ 2 ). Whereas in the second case i > nx:

nr<i<nz+dz
n 7 n—i,.p .
+ > (Z)x (1 —=2)" i Ap(2,9) 38)
i>nz+0o
< Z (n)xi(l_x)n—ix_i (Z')P—l
- : { ni\n
nx<i<nz+d2
+2 ) (> (1—a)" (39)
i>nx+s
n ) _ _ nJ%
< 69 Z <.)£El(1z)”l(1’+52)p—1+2e 2(=+ )
nr<i<nz+dz t
n X . _ nci%
< 52217*1 Z < >xz(1 _ :C)niz(l' V 52);0*1 +e Z(@viy)
nr<i<nz+doz L
n\ , _neg
< 2rt (_)ml(l — )" @) 2 3 (40)
nr<i<nx+doz v

Each step is justified in the corresponding step in the analysis
for the range ¢ < nx, except now we are using the upper tail in
lemma-2 of [12]. In (40), we see that the problem is identical
to (34) except for the constants. Hence we choose d; =

co \/—% log(%Hg(m)) and by (36) we have 63 < c34/x log L
This ensures that 6o < x when z > ck’%—L” and the step (40)
is valid. [ |

Lemma 3: For p > 0, there exists constants {c;}?_, and
c,c” such that:

R S R+ Yom

with
d(Rp,)

- ST (RS (1) P

P— ij 7J p—|p] Lp
(T%Jrn) N(Rp +Tm+n) P !

Proof: First let us fix §xy (U, L),U, L and let us define:
UL\ &
Fz,/y (u) -

pxy (w,y) —ugyx(y | =) (41)
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with derivatives:

d’ p—i
i Dy (" =2 @y x (v | 2)) |02y ()
pO|TLE ()" 42)
Continuing, we have:
TV (Gx (2))]” 43)
lp]—-1 p(i) i _
< Y Sl ox @) ax (@) - px (@)
i=0 :
-l J —|p]
+(|r£i;;<px<x>>|” Py Eax @)
Lp]
. lp) P
q (44)
Lplflp@) i ,
< Z a I px (@) lix (@) — px (2)]'
i=0 :
Lp]
p Lp]
+w»r;{’;<p @))” " ax (x) — px ()|
Lp]
p N [p]
i ULige (@) M ax (@) — px(@)® @5)

Ev.c[lloxy — dxvlE] <Euclllpxy — pxdvix 3]

lp]-1 i
DL ) ST

plr UL
PR, [zm; o
lp]! prviig

P Lp]

T Eo lZIF%@x(w))Vm'@X(m) ‘pX(‘”)'p_m]
o (46)

)" dx (@) —px($)|i]

NP lax (@) —m(m)”“”]

Ev.c[llpxy — dxvlE] < Euclllpxy — pxdvix 3]
p]—1 ( )kp

X

ple) ky p=lr| Le)

10

||pXY_pXQY|X||p] P E[”QX pX||p}

| Ellpxy —pxdvix|] 7 Elldx —px|b] *
Lp]!
LkaT p=lp] L]

p R PPl N ip]

+ TﬁE[HPXY —axavixIB] 7 E[llgx —px|b] *
47)

£ Kmn(Pxy,dxy)
In (43) we Taylor expand the h(qx(z)) = [TYL(4x(x))|”

around the px (x) and use the upper bound (42) for the deriva-
tives. We bound the remainder of the Taylor expansion with
the mean value theorem via the monotonicity of the derivatives
as in (29), leading to (44). In (46) we sum over z,y and

take expectations with respect to U, L ~ pxy of both hand-
sides (43) ,(45) by noting that Ey/ 1 {nyy}rg;;(q()())\p} -
IEUyL[Hpr _(jXYH§]~ To obtain (47), we apply Holder’s
inequality to each summation inside the expectations in (46).
Taking maximum of both sides over pxy and taking the
minimum of the left-hand side over gy|x we establish that
for all ¢xy:

RP,, =minmaxEy 1 [[lpxy — dxv 3] < MAX K 2 (Pxy,dxy) (48)
dxy PXY

<maxEy[|lpxy — pxdyixIB] +
PXY

lp]-1

Z szaX]E[HPXY pXQYlX”p} ? maX]E[”(IX px|lp ]E
=1
, R p—|p] R Ll
+ ' maxE{|lpxy —pxdvix|p] 7 maxE[[lgx —px|] ¥
PXY Px

p—lp] 1ln]
maxE[|lpxy — 4xdyix|5] * maxE[|lgx —px|5]
PXY PXx

(49)

1"

+c

Rb < gi{ai(EU,L[HpXY —pxayix ] +

lp]—1

Z CzIHaX]E[HPXY pXQY|X||p} b maX]E[HQX px||b ]%
i=1

—
S

r—|p]
+ ¢dmaxE[|lpxy — pxdyx|I}] * maxE[[|Gx —px][F] ”
PXY pPx

p=ln] izl
+c maxE[HPXY *PX‘?YIXH%] i maXE[HQX *pXHg] :
PXY px

+ ¢ maxE|[px - x| (50)
In (49) we further upper bound (48) by taking the maximum

of each summatlon separately. We define the constants are
Lol

c=p )k Jil,d =" & pllPD,» /|p|! based on (47). In
(50) we note that:

max E[|pxy — gxgvix|IP]
PXy

< 2 'maxE[[lpxy — pxdyx|[f] + 2P maxE[|[px — gx|[7]
pPx PXYy

which is a consequence of convexity of |z|” for p > 1. Finally,

we choose Gx, Gy|x to be the minimax estimators of the rf,

and RP respectively to establish the Lemma 3. [ |

VI. CONCLUSION

In this work, we considered the problem of minimax pmf
estimation problem under /5 loss when there are m labeled and
n unlabeled samples. In particular, we showed that for p > 2,
the composition estimators of univariate minimax problems are
optimal in the first order over the regime m = o(n). Extending
the results to 1 < p < 2 and for f-divergences are possible
future directions.
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