
entropy

Article

An Information Theoretic Interpretation to Deep

Neural Networks
†

Xiangxiang Xu
1

, Shao-Lun Huang
1,

* , Lizhong Zheng
2

and Gregory W. Wornell
2

!"#!$%&'(!
!"#$%&'

Citation: Xu, X.; Huang, S.-L.; Zheng,

L.; Wornell, G.W. An Information

Theoretic Interpretation to Deep

Neural Networks. Entropy 2022, 24,

135. https://doi.org/10.3390/

e24010135

Academic Editor: Raúl Alcaraz

Received: 7 December 2021

Accepted: 12 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Data Science and Information Technology Research Center, Tsinghua–Berkeley Shenzhen Institute,
Shenzhen 518055, China; xuxx@mit.edu

2 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA; lizhong@mit.edu (L.Z.); gww@mit.edu (G.W.W.)

* Correspondence: shaolun.huang@sz.tsinghua.edu.cn
† This work was presented in part at the 2019 IEEE International Symposium on Information Theory (ISIT),

Paris, France, 7–12 July 2019.

Abstract: With the unprecedented performance achieved by deep learning, it is commonly be-
lieved that deep neural networks (DNNs) attempt to extract informative features for learning tasks.
To formalize this intuition, we apply the local information geometric analysis and establish an
information-theoretic framework for feature selection, which demonstrates the information-theoretic
optimality of DNN features. Moreover, we conduct a quantitative analysis to characterize the impact
of network structure on the feature extraction process of DNNs. Our investigation naturally leads to a
performance metric for evaluating the effectiveness of extracted features, called the H-score, which il-
lustrates the connection between the practical training process of DNNs and the information-theoretic
framework. Finally, we validate our theoretical results by experimental designs on synthesized data
and the ImageNet dataset.

Keywords: deep neural network; information theory; local information geometry; feature extraction

1. Introduction

Due to the striking performance of deep learning in various application fields, deep
neural networks (DNNs) have gained great attention in modern computer science. While
it is a common understanding that the features extracted from the hidden layers of DNN
are “informative” for learning tasks, the mathematical meaning of informative features in
DNN is generally not clear. From the practical perspective, DNN models have obtained
unprecedented performance in varying tasks, such as image recognition [1], language
processing [2,3], and games [4,5]. However, the understanding of the feature extraction
behind these models is relatively lacking, which poses challenges for their application in
security-sensitive tasks, such as the autonomous vehicle.

To address this problem, there have been numerous research efforts, including both
experimental and theoretical studies [6]. The experimental studies usually focus on some
empirical properties of the feature extracted by DNNs, by visualizing the feature [7] or
testing its performance on specific training settings [8] or learning tasks [9]. Though
such empirical methods have provided some intuitive interpretations, the performance
can highly depend on the data and network architecture used. For example, while the
feature visualization works well on convolutional neural networks, its application to other
networks is typically less effective [10].

In contrast, theoretical studies focus on the analytical properties of the extracted fea-
ture or the learning process in DNNs. Due to the complicated structure of DNNs, existing
studies were often restricted to the networks of specific structures, e.g., network with
infinite width [11] or two-layer network [12,13], to characterize the theoretical behaviors.
However, the interpretation of the optimal feature remains unclear, which limits their

Entropy 2022, 24, 135. https://doi.org/10.3390/e24010135 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4178-0934
https://orcid.org/0000-0003-2827-4022
https://orcid.org/0000-0001-9166-4758
https://doi.org/10.3390/e24010135
https://doi.org/10.3390/e24010135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e24010135
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010135?type=check_update&version=2

Entropy 2022, 24, 135 2 of 28

further applications. To obtain better interpretability, tools and measures from information
theory [14] have recently been applied to connect DNNs with general information process-
ing problems [15]. For instance, the information bottleneck [16,17] employs the mutual
information as the metric to quantify the informativeness of features in DNN, and other
information metrics, such as the Kullback–Leibler (KL) divergence [18] and Weissenstein
distance [19], are also used in different problems. However, there is still a disconnection
between these information metrics and the performance objectives of the inference tasks
that DNNs want to solve [20]. Therefore, it is, in general, difficult to match the DNN
learning with the optimization of a particular information metric.

This paper aims to provide an information-theoretic interpretation to the feature ex-
traction process in DNNs, to bridge the gap between the practical deep learning imple-
mentations and information-theoretic characterizations. To this end, we first propose an
information-theoretic feature selection framework, which establishes an information met-
ric to measure the performance of each given feature in inference tasks. In addition, we
demonstrate that the optimal features extracted by DNNs coincide with the solutions of
the information-theoretic feature selection problem, which share the same performance
metric. Therefore, our results give an explicit interpretation of the learning goal of the
back-propagation (BackProp) and stochastic gradient descent (SGD) operations in deep
learning [21], which also lead to a performance metric for evaluating the effectiveness of
the extracted features. Finally, we validate our theoretic characterizations using numerical
experiments on both synthesized data and the ImageNet [22] dataset for image classification.

2. Preliminaries and Methods

2.1. Methodological Background
The main method used in our development is local information geometry [23,24],

which characterizes the local geometric properties of the probability distribution space.
The local information geometric method is closely related to the conventional Hirschfeld–
Gebelein–Rényi (HGR) maximal correlation [25–27] problem, which has attracted increas-
ing interest in the information theory community [28–33], and has also been applied in
data analysis [34] and privacy studies [35].

Specifically, we use the local information geometric method to construct and investi-
gate an information-theoretic feature selection problem in Section 3.1, which leads to an
information metric of features and also demonstrates an SVD (singular value decomposi-
tion) structure of the feature selection process. Following the same analysis framework, we
characterize the optimal feature extracted by DNNs in Section 3.2, and demonstrate that
the same SVD structure is shared by DNNs. Based on the established connection, we then
propose an effectiveness measure for DNNs, with details presented in Section 3.3.

2.2. Notations
Throughout this paper, we use X, X, PX , and x to represent a discrete random variable,

the range, the probability distribution, and the value of X. In addition, for any function
s(X) 2 Rk of X, we use µs to denote the mean of s(X), and “˜” to denote the centered
variable with mean subtracted, e.g., s̃(X) , s(X)� µs. Moreover, we use k · k and k · kF to
denote the `2-norm and the Frobenius norm, respectively. All logarithms in our analyses
are base e, i.e., natural.

2.3. Local Information Geometry
The following concepts from local information geometry would be useful in our de-

velopment.

Entropy 2022, 24, 135 3 of 28

Definition 1 (e-Neighborhood). Let PX denote the space of distributions on some finite alphabet
X, and let relint(PX) denote the subset of strictly positive distributions. For a given e > 0, the
e-neighborhood of a distribution PX 2 relint(PX) is defined by the c2-divergence as

NX
e (PX) ,

(
P 2 PX : Â

x2X

�
P(x)� PX(x)

�2

PX(x)
 e2

)
.

Definition 2 (e-Dependence). The random variables X, Y are called e-dependent if PXY 2
NX⇥Y

e (PXPY).

Definition 3 (e-Attribute). A random variable U is called an e-attribute of X if PX|U(·|u) 2
NX

e (PX), for all u 2 U.

We will focus on the small e regime, which we refer to as the local analysis regime.
In addition, for any P 2 PX, we define the information vector f and feature function L(x)
corresponding to P, with respect to a reference distribution PX 2 relint(PX), as

f(x) , P(x)� PX(x)p
PX(x)

, L(x) , f(x)p
PX(x)

. (1)

This gives a three way correspondence P $ f $ L for all distributions in NX
e (PX), which

will be useful in our derivations.

2.4. Modal Decomposition
Given a pair of discrete random variables X, Y with the joint distribution PXY(x, y),

the |Y|⇥ |X| matrix B̃ is defined as

B̃(y, x) , PXY(x, y)� PX(x)PY(y)p
PX(x)PY(y)

, (2)

where B̃(y, x) is the (y, x)th entry of B̃. The matrix B̃ is referred to as the canonical
dependence matrix (CDM) [24]. The SVD of B̃ is referred to as the modal decomposition [24]
of the joint distribution PXY, which has the following property [18].

Lemma 1. The SVD of B̃ can be written as B̃ = ÂK
i=1 si yY

i
�
yX

i
�T, where K , min{|X|, |Y|},

and si denotes the ith singular value with the ordering 1 � s1 � · · · � sK = 0, and yY
i and yX

i are
the corresponding left and right singular vectors with yX

K (x) =
p

PX(x) and yY
K(y) =

p
PY(y).

This SVD decomposes the feature spaces of X, Y into maximally correlated features.
To see that, consider the generalized canonical correlation analysis (CCA) problem:

max
E[fi(X)]=E[gi(Y)]=0

E[fi(X) f j(X)]=E[gi(Y) gj(Y)]=dij

k

Â
i=1

E[fi(X) gi(Y)], (3)

where dij denotes the Kronecker delta function. It can be shown that for any 1  k 
K � 1, the optimal features are fi(x) = yX

i (x)/
p

PX(x), and gi(y) = yY
i (y)/

p
PY(y), for

i = 0, . . . , K � 1, where yX
i (x) and yY

i (y) are the xth and yth entries of yX
i and yY

i , respec-
tively [18]. The special case k = 1 corresponds to the HGR maximal correlation [25–27], and
the optimal features can be computed from the ACE (Alternating Conditional Expectation)
algorithm [36].

Entropy 2022, 24, 135 4 of 28

2.5. Deep Neural Networks
The architecture of deep neural networks (under log-loss) can be depicted as Figure 1,

where X is the input data, e.g., images, audios, or natural languages. Moreover, Y is
the objective to predict, which can represent a discrete label in classification tasks, or
represent target natural languages in machine translations [37]. Specifically, for given data
X, the network produces a (trainable) feature mapping to generate k-dimensional feature
s(x) = (s1, . . . , sk)

T. In practice, the feature mapping block (depicted as the gray block in
Figure 1) is typically composed of hundreds and thousands of functional components (e.g.,
residual block [1]) with different types of layers, and may contain recurrent structure, e.g.,
LSTM (Long Short-Term Memory) [38]. In general, the internal structure of the feature
mapping can have various different types of designs, depending on the learning tasks.

X
Feature
Mapping

...

s1

sk

Y = 1

Y = 2

...

Y = |Y|+1

b(1)

b(2)

b(|Y|)

v(1)

v(2)

v(|Y|)

P̃Y|X(y|x) ,
evT(y)s(x)+b(y)

Ây02Y evT(y0)s(x)+b(y0)

Probabilistic Prediction

Figure 1. A deep neural network that uses data X to predict Y. All hidden layers together map the
input data X to k-dimensional feature s(x) = (s1, . . . , sk)

T. Then, the probabilistic prediction P̃Y|X of
Y is computed from s(x), v(y), and b(y), where v and bias b are the weights and bias in the last layer.

After obtaining the feature s(X), the Y is then predicted by the probability distribution
P̃(s,v,b)

Y|X of the form

P̃(s,v,b)
Y|X (y|x) , evT(y)s(x)+b(y)

Ây02Y evT(y0)s(x)+b(y0)
, (4)

which is obtained by applying the softmax function [39] on vT(y)s(x) + b(y), where v(·)
and b(·) are the weights and biases in the last layer, respectively (this is equivalent to the
common practice that denotes weight and biases by the matrix [v(1), . . . , v(|Y|)]T and the
vector [b(1), . . . , b(|Y|)]T, respectively. However, as we will show later, expressing weights
v and biases b as mappings of y can better illustrate their roles in feature selection). We will
use P̃Y|X to refer to P̃(s,v,b)

Y|X when there is no ambiguity.
Then, for a given training set of labeled samples (xi, yi), for i = 1, . . . , N, all the

parameters in the network, including v, b, as well as those in the feature mapping block,
are chosen to maximize the log-likelihood function (or, equivalently, minimize the log-loss)

1
N

N

Â
i=1

log P̃Y|X(yi|xi). (5)

The procedure of choosing such parameters is called the training of network, which
can be performed by stochastic gradient descent (SGD) or its variants [21]. With a trained
network, the label ŷ for a new data sample x can be predicted by the maximum a posteriori
(MAP) estimation, i.e., ŷ = arg maxy2Y P̃Y|X(y|x). Specifically, when we make predictions
for samples in a test dataset, the proportion of samples with correct prediction (i.e., ŷ = y)
over all samples is called the test accuracy.

Entropy 2022, 24, 135 5 of 28

3. Results

3.1. Information-Theoretic Feature Selection
Suppose that, given random variables X, Y with joint distribution PXY, we want to infer

about an attribute V of Y from observed i.i.d. samples x1, . . . , xn of X. When the statistical
model PX|V is known, the optimal decision rule is the log-likelihood ratio test, where the
log-likelihood function can be viewed as the optimal feature for inference. However, in
many practical situations [18], it is hard to identify the model of the targeted attribute,
and it is necessary to select low-dimensional informative features of X for inference tasks
before knowing the model. An information-theoretic formulation of such feature selection
problem is the universal feature selection problem [24], which we formalize as follows.

To begin, for an attribute V, we refer to CY =
�
V, {PV(v), v 2 V}, {f

Y|V
v , v 2 V}

,

as the configuration of V, where f
Y|V
v $ PY|V(·|v) is the information vector specifying

the corresponding conditional distribution PY|V(·|v). The configuration of V models the
statistical correlation between V and Y. In the sequel, we focus on the local analysis regime,
for which we assume that all the attributes V of our interests to detect are e-attributes of Y.
As a result, the corresponding configuration satisfies

��f
Y|V
v
��  e, for all v 2 V. We refer to

such configurations as e-configurations. The configuration of V is unknown in advance but
assumed to be generated from a rotational invariant ensemble (RIE).

Definition 4 (RIE). Two configurations CY and C̃Y defined as

CY ,
�
V, {PV(v), v 2 V}, {f

Y|V
v , v 2 V}

,

C̃Y ,
�
V, {PV(v), v 2 V}, {f̃

Y|V
v , v 2 V}

are called rotationally equivalent, if there exists a unitary matrix Q such that f̃
Y|V
v = Q f

Y|V
v , for

all v 2 V. Moreover, a probability measure defined on a set of configurations is called an RIE, if all
rotationally equivalent configurations have the same measure.

The RIE can be interpreted as assigning a uniform measure to the attributes with the
same level of distinguishability. To infer about the attribute V, we construct a k-dimensional
feature vector hk = (h1, . . . , hk), for some 1  k  K � 1, of the form

hi =
1
n

n

Â
l=1

fi(xl), i = 1, . . . , k, (6)

for some choices of feature functions fi. Our goal is to determine the fi such that the
optimal decision rule based on hk achieves the smallest possible error probability, where
the performance is averaged over the possible CY generated from an RIE. In turn, we denote
xX

i $ fi as the corresponding information vector, and define the matrix XX , [xX
1 · · · xX

k].

Theorem 1 (Universal Feature Selection). For v, v0 2 V, let Ehk (v, v0) be the error exponent
associated with the pairwise error probability distinguishing v and v0 based on hk, then the expected
error exponent over a given RIE defined on the set of e-configurations is given by

E
⇥
Ehk (v, v0)

⇤
=

C0
2

·
����B̃XX��XX�T

XX�� 1
2

����
2

F
+ o(e2), (7)

where C0 , 1
4|Y| ·E

h��f
Y|V
v � f

Y|V
v0
��2
i

is independent of the choices of fi’s, and the expectations
E[·] are taken over this RIE.

Proof. See Appendix A.

Entropy 2022, 24, 135 6 of 28

As a result of (7), designing the xX
i as the singular vectors yX

i of B̃, for i = 1, . . . , k,
optimizes (7) for all RIEs, pairs of (v, v0), and e-configurations. Thus, the feature functions
corresponding to yX

i are universally optimal for inferring the unknown attribute V. More-

over, (7) naturally leads to an information metric
����B̃XX��XX�T

XX�� 1
2

����
2

F
for any feature

XX of X, measured by projecting the normalized XX through a linear projection B̃. This
information metric quantifies how informative a feature of X is when solving inference
problems with respect to Y and is optimized when designing features by singular vectors
of B̃. Thus, we can interpret the universal feature selection as solving the most informative
features for data inferences via the SVD of B̃, which also coincides with the maximally
correlated features in (3). Later, we will show that the feature selection in DNNs shares the
same information metric as universal feature selection in the local analysis regime.

3.2. Feature Extraction in Deep Neural Networks
3.2.1. Network with Ideal Expressive Power

For convenience of analysis, we first consider the ideal case where the neural network
can express any feature mapping s(·) as desired. While this assumption can be rather
strong, the existence of such ideal networks is guaranteed by the universal approximation
theorem [40]. In addition, one goal of practical network designs is to approximate the ideal
networks and obtain sufficient expressive power. For such networks, we will show that
when X, Y are e-dependent, the extracted feature s(x) and weights v(y) coincide with the
solutions of the universal feature selection.

To begin, we use PXY to denote the joint empirical distribution of the labeled samples
(xi, yi), i = 1, . . . , N, and PX , PY to denote the corresponding marginal distributions. Then,
the objective function of (5) is the empirical average of the log-likelihood function

1
N

N

Â
i=1

log P̃Y|X(yi|xi) = EPXY

h
log P̃Y|X(Y|X)

i
.

Therefore, maximizing this empirical average is equivalent as minimizing the
KL divergence:

(s⇤, v⇤, b⇤) = arg min
(s,v,b)

D(PXYkPX P̃(s,v,b)
Y|X). (8)

This can be interpreted as finding the best fitting to empirical joint distribution PXY by
distributions of the form PX P̃(s,v,b)

Y|X . In our development, it is more convenient to denote
the bias by d(y) = b(y)� log PY(y), for y 2 Y. Then, the following lemma illustrates the
explicit constraint on the problem (8) in the local analysis regime.

Lemma 2. If X, Y are e-dependent, then the optimal v, d for (8) satisfy

|ṽT(y)s(x) + d̃(y)| = O(e), for all x 2 X, y 2 Y. (9)

Proof. See Appendix B.

In turn, we take (9) as the constraint for solving the problem (8) in the local analysis
regime. Moreover, we define the information vectors for zero-mean vectors s̃, ṽ as xX(x) =p

PX(x) s̃(x), xY(y) =
p

PY(y) ṽ(y), and define matrices

XY ,
⇥
xY(1) · · · xY(|Y|)

⇤T, XX ,
⇥
xX(1) · · · xX(|X|)

⇤T.

Lemma 3. The KL divergence (8) in the local analysis regime (9) can be expressed as

D(PXYkPX P̃(s,v,b)
Y|X) =

1
2
��B̃ � XY�XX�T��2

F +
1
2

h(v,b)(s) + o(e2), (10)

Entropy 2022, 24, 135 7 of 28

where h(v,b)(s) , EPY

⇥
(µT

s ṽ(Y) + d̃(Y))2⇤.

Proof. See Appendix C.

Lemma 3 reveals key insights for feature selection in neural networks. To see this, we
consider the following two learning problems: learning the optimal weight v for given s
and learning the optimal feature s for given v.

For the case that s is fixed, we can optimize (10) with XX fixed and obtain the following
optimal weights:

Theorem 2. For fixed XX and µs, the optimal XY⇤ to minimize (10) is given by

XY⇤ = B̃ XX��XX�T
XX��1, (11)

and the optimal weights ṽ⇤ and bias d̃⇤ are

ṽ⇤(y) = EPX|Y

h
L�1

s̃(X) s̃(X)
��� Y = y

i
, d̃⇤(y) = �µT

s ṽ(Y). (12)

where Ls̃(X) denotes the covariance matrix of s̃(X).

Proof. See Appendix D.

Specifically, when s(x) = x, Theorem 2 gives the optimal weights for softmax regres-
sion. Note that Equation (11) can be viewed as a projection of the input feature s̃(x), to a
feature v(y) computable from the value of y, which is the most correlated feature to s̃(x).
The solution is given by the operation that left multiplies B̃ matrix, which we refer to as
forward feature projection.

Remark 1. While we assume the continuous input s(x) is a function of a discrete variable X, we
only need the labeled samples between s and Y to compute the weights and bias from the conditional
expectation (12), and the correlation between X and s is irrelevant. Thus, our analysis for weights
and bias can be applied to continuous input networks by just ignoring X and taking s as the real
input to network.

We then consider the “backward feature projection” problem, which attempts to
find informative feature s⇤(X) to minimize the loss (10) with given weights and bias. In
particular, we can show that the solution of this backward feature projection is precisely
symmetric to the forward one.

Theorem 3. For fixed XY and d̃, the optimal XX⇤ to minimize (10) is given by

XX⇤ = B̃
T XY��XY�T

XY��1, (13)

and the optimal feature function s⇤, which are decomposed to s̃⇤ and µ⇤
s , is given by

s̃⇤(x) = EPY|X

h
L�1

ṽ(Y) ṽ(Y)
���X = x

i
,

µ⇤
s = �L�1

ṽ(Y) EPY

⇥
ṽ(Y) d̃(Y)

⇤
, (14)

where Lṽ(Y) denotes the covariance matrix of ṽ(Y).

Proof. See Appendix D.

Finally, when both s and (v, b) (and hence XX, XY, d) can be designed, the optimal
(XY, XX) corresponds to the low rank factorization of B̃, and the solutions coincide with
the universal feature selection.

Entropy 2022, 24, 135 8 of 28

Theorem 4. The optimal solutions for weights and bias to minimize (10) are given by d̃(y) =
�µT

s ṽ(y), and (XY, XX)⇤ chosen as the largest k left and right singular vectors of B̃.

Proof. See Appendix E.

Therefore, we conclude that the learning of neural networks, when both s and (v, b)
are designable, is to extract the most correlated aspects of the input data X and the label Y
that are informative features for data inferences from universal feature selection.

In the practical learning process of DNN, the BackProp updates the weights of the
softmax layer and those on the previous layer(s) in an iterative manner. As we have
illustrated in Lemma 3, such iterative updates will converge to the same solution as
the alternating between the forward feature projection (11) and the backward feature
projection (13), which is indeed the power method to solve the SVD for B̃ [41], also known
as the Alternating Conditional Expectation (ACE) algorithm [36].

Remark 2. From Theorem 4, for a neural network with sufficient expressive power, the trained
feature depends only on the distribution of input data rather than the training process. It is worth
mentioning that this result does not contradict the practice that trained weights in hidden layers
can be different during each training run. In fact, due to the over-parameterized nature of practical
network designs, there exist multiple choices of weights in hidden layers to express the same optimal
feature s(x).

3.2.2. Network with Restricted Expressive Power
The analysis of the previous section has considered neural networks with ideal ex-

pressive power, where the feature s(X) can be selected as any desired function. In general,
however, the form of feature functions that can be generalized is often limited by the net-
work structure. In the following, we consider networks with restricted expressive power to
characterize the impacts of network structure on the extracted feature.

For illustration, we consider the neural network with a hidden layer of k nodes, and a
zero-mean continuous input t = [t1 · · · tm]T 2 Rm to this hidden layer, where t is assumed
to be a function t(x) of some discrete variable X. Our goal is to analyze the weights and
bias in this layer with labeled samples (t(xi), yi). Assume the activation function of the
hidden layer is a generally smooth function s(·), then the output sz(X) of the z-th hidden
node is

sz(x) = s
⇣

wT(z)t(x) + c(z)
⌘

, for z = 1, . . . , k, x 2 X, (15)

where w(z) 2 Rm and c(z) 2 R are the weights and bias from input layer to hidden
layer as shown in Figure 2. We denote s = [s1 · · · sk]

T as the input vector to the output
classification layer.

Entropy 2022, 24, 135 9 of 28

X
Pre-

Proc.

...

t1

tm

...

s1

sk

Feature Mapping
Y = 1

Y = 2

...

Y = |Y|+1 +1

c(1)

c(k)

b(1)

b(2)

b(|Y|)

w(1)

w(k)

v(1)

v(2)

v(|Y|)

Figure 2. A multi-layer neural network, where the expressive power of the feature mapping s(·) is
restricted by the hidden representation t. All hidden layers previous to t are fixed, represented by the
“pre-processing” module.

To interpret the feature selection in hidden layers, we fix (v(y), b(y)) at the output
layer and consider the problem of designing (w(z), c(z)) to minimize the loss function (8)
at the output layer. Ideally, we should have picked w(z) and c(z) to generate s(x) to match
s⇤(x) from (14), which minimizes the loss. However, here we have the constraint that s(x)
must take the form of (15) and, intuitively, the network should select w(z), c(z) so that s(x)
is close to s⇤(x). Our goal is to quantify the notion of such closeness.

To develop insights on feature selection in hidden layers, we again focus on the local
analysis regime, where the weights and bias are assumed to satisfy the local constraint

��ṽT(y)s(x) + d̃(y)
�� = O(e),

��wT(z)t̃(x)
�� = O(e), 8x, y, z. (16)

Then, since t is zero-mean, we can express (15) as

sz(x) = s
⇣

wT(z)t(x) + c(z)
⌘
= wT(z)t̃(x) · s0(c(z)) + s(c(z)) + o(e), (17)

Moreover, we define a matrix B̃1 with the (z, x)th entry B̃1(z, x) =
p

PX(x)
s0(c(z)) s̃⇤z (x), which

can be interpreted as a generalized CDM for the hidden layer. Furthermore, we denote
xX

1 (x) =
p

PX(x) t̃(x) as the information vector of t̃(x) with the matrix XX
1 defined as

XX
1 ,

⇥
xX

1 (1) · · · xX
1 (|X|)

⇤T, and we also define

W ,
⇥
w(1) · · · w(k)

⇤T, (18)

J , diag{s0(c(1)), s0(c(2)), · · · , s0(c(k))}. (19)

The following theorem characterizes the loss (8).

Theorem 5. Given the weights and bias (v, b) at the output layer, and for any input feature s, we
denote L(s) as the loss (8) evaluated with respect to (v, b) and s. Then, with the constraints (16)

L(s)�L(s⇤) =
1
2
��QB̃1 � QW

�
XX

1
�T��2

F +
1
2

k(v,b)(s, s⇤) + o(e2), (20)

where Q , (
�
XY�T

XY)1/2
J, and the term k(v,b)(s, s⇤) = (µs � µs⇤)TLṽ(Y)(µs � µs⇤).

Proof. See Appendix F.

Entropy 2022, 24, 135 10 of 28

Equation (20) quantifies the closeness between s and s⇤ in terms of the loss (8). Then,
our goal is to minimize (20), which can be separated to two optimization problems:

W
⇤ = arg min

W

���QB̃1 � QW
�
XX

1
�T
���

2

F
, (21)

µ⇤
s = arg min

µs

k(v,b)(s, s⇤). (22)

Note that the optimization problem (21) is similar to the one that appeared in Lemma 3,
and the optimal solution is given by W

⇤ = B̃1XX
1
��

XX
1
�T

XX
1
��1. Therefore, solving the

optimal weights in the hidden layer can be interpreted as projecting s̃⇤(x) to the subspace
of feature functions spanned by t(x) to find the closest expressible function. In addition,
the problem (22) is to choose µs (and hence the bias c(z)) to minimize the quadratic term
similar to h(v,b)(s) in (10). Similar to the analyses of parameters in the last layer, we can
obtain analytical solutions for hidden layer parameters, e.g., µ⇤

s and w⇤, with detailed
discussions provided in Appendix G.

Overall, we observe the correspondence between (11), (14), and (21), (22), and in-
terpret both operations as feature projections. Our argument can be generalized to any
intermediate layer in a multi-layer network, with all the previous layers viewed as the
fixed pre-processing that specifies t(x), and all the layers after determining s⇤. Then, the
iterative procedure in back-propagation can be viewed as alternating projection finding the
fixed-point solution over the entire network. This final fixed-point solution, even under
the local assumption, might not be the SVD solution as in Theorem 4. This is because the
limited expressive power of the network often makes it impossible to generate the desired
feature function. In such cases, the concept of feature projection can be used to quantify
this gap, and thus to measure the quality of the selected features.

3.3. Scoring Neural Networks
Given a learning problem, it is useful to tell whether or not some extracted features are

informative [42]. Our previous development naturally gives rise to a performance metric.

Definition 5. Given a feature s(x) 2 Rk and weight v(y) 2 Rk with the corresponding informa-
tion matrices XX and XY, the H-score H(s, v) is defined as

H(s, v) , 1
2
��B̃

��2
F �

1
2
��B̃ � XY�XX�T��2

F = EPXY

h
s̃T(X) ṽ(Y)

i
� 1

2
tr
�
Ls̃(X)Lṽ(Y)

�
. (23)

In addition, for given s(x), we define the single-sided H-score H(s) as

H(s) , max
v

H(s, v) (24)

=
1
2
��B̃
��2

F �
1
2
��B̃ � B̃ XX��XX�T

XX��1�
XX�T��2

F (25)

=
1
2
��B̃XX��XX�T

XX�� 1
2
��2

F =
1
2
EPY

���EPX|Y

h
L�1/2

s̃(X) s̃(X)
��� Y
i���

2
�

. (26)

H-score can be used to measure the quality of features generated at any intermediate
layer of the network. It is related to (20) when choosing the optimal bias and Q as the
identity matrix. This can be understood as taking the output of this layer s(x) and directly
feeding it to a softmax output layer with v(y) used as the weights, and H(s, v) measures
the resulting performance. Note that v(y) here can be an arbitrary function of Y, not
necessarily the weights on the next layer computed by the network. When the optimal
v⇤(y) as defined in (12) is used, the resulting performance becomes the one-sided H-score
H(s), which measures the quality of s(x). In addition, by comparing (26) with (7), the
performance measure H(s) also coincides with the information metric (7), up to a scale
factor.

Entropy 2022, 24, 135 11 of 28

Specifically, for a given dataset and a feature extractor that generate s(·), the H-score
H(s) can be efficiently computed from the second equation of (26). In addition, when we
use H-score to compare the performance of different feature extractors (models), the model
complexity has to be taken into account to reduce overfitting. To this end, we adopt Akaike
information criterion (AIC) and define AIC-corrected H-score

HAIC(s) , H(s)�
np

ns
(27)

for comparing different models, where np and ns represent the number of parameters in
the model and the training sample size, respectively.

In current practice, the cross-entropy EPXY

⇥
log P̃(v,b)

Y|X
⇤

is often used as the performance
metric. One can, in principle, also use log-loss to measure the effectiveness of the selected
feature at the output of an intermediate layer [42]. However, one problem of this metric is
that, for a given problem, it is not clear what value of log-loss one should expect, as the
log-loss is generally unbounded. In contrast, the H-score can be directly computed from
the data samples and has a clear upper bound. Indeed, it follows from Lemma 1 that, for
k-dimensional feature s and weights v, we have the sequence of inequalities

H(s, v)  H(s)  1
2

k

Â
i=1

s2
i  k

2
, (28)

where si indicates the ith singular value of B̃.
In particular, the first “” follows from the definition (24), and the gap between H(s, v)

and H(v) measures the optimality of the weights v; the second “” follows from the first
equality of (26), and the gap between two sides characterizes the difference between the
chosen feature and the optimal solution, which is a useful measure of how restrictive (lack
of expressive power) the network structure is; the last “” follows from the fact that si  1
(cf. Lemma 1), which measures the dependency between data variable and label for the
given dataset. In Section 3.4.3, we validate this metric on real data.

3.4. Experiments
This section presents experiments for validating our theoretical characterizations,

with corresponding code available at https://github.com/XiangxiangXu/dnn (accessed
on 7 December 2021). Specifically, all DNN models used in Section 3.4.3 are available at
https://keras.io/applications/ (accessed on 7 December 2021).

3.4.1. Experimental Validation of Theorem 4
We first validate Theorem 4, the optimal feature extracted by network with ideal

expressive power. Here, we consider the discrete data with alphabet sizes, |X| = 8 and
|Y| = 6, and construct the network as shown in Figure 3. Specifically, the network input is
the one-hot encoding of X, i.e., [1X(1), . . . , 1X(|X|)]T, where 1X(x) takes one if and only if
X = x, and takes zero otherwise. Then, the feature s(X) is generated by a linear layer, with
sigmoid function used as the activation function. For ease of comparison and presentation,
we set feature dimension to k = 1, since otherwise the optimal feature (cf. Theorem 4) lies
in a subspace and is non-unique. It can be verified that this network has ideal expressive
power, i.e., with proper weights in the first layer, s(X) can express any desired function up
to scaling and shifting.

https://github.com/XiangxiangXu/dnn
https://keras.io/applications/
https://keras.io/applications/

Entropy 2022, 24, 135 12 of 28

...

1X(1)

1X(2)

1X(8)

s

Y = 1

Y = 2

...

Y = 6+1

b(1)

b(2)

b(6)

v(1)

v(2)

v(6)

Figure 3. A simple neural network with ideal expressive power, which can generate any k = 1
dimensional feature s of X by tuning the weights in the first layer.

To compare the result trained by the neural network and that in Theorem 4, we first
randomly generate a distribution PXY, and then draw independently n = 100,000 pairs
of (X, Y) samples. We then train the network using batch gradient descent, where we
have applied Nesterov momentum [43] with the momentum hyperparameter being 0.9. In
addition, we set the learning rate to 4 with a decay factor of 0.01 and clip gradients with
norm exceeding 0.5. After training, the learned values of s(x), v(y) and b(y) are shown in
Figure 4 and compared with theoretical results. From the figure, we can observe that the
training results match our theoretical analyses.

1 2 3 4 5 6 7 8
�3

�2

�1

0

1

x

s(x)

Training
Theoretic

1 2 3 4 5 6
�2

�1

0

1

y

v(y)

Training
Theoretic

1 2 3 4 5 6
�1.5

�1

�0.5

0

0.5

1

y

b(y)

Training
Theoretic

Figure 4. The trained feature s, weights v, and bias b of the network in Figure 3, which are compared
with the corresponding theoretical results to show their coincidences.

3.4.2. Experimental Validation of Theorem 5
In addition, we validate Theorem 5 by the neural network depicted in Figure 5, with

the same settings of X, Y. Specifically, the number of neurons in hidden layers are set to
m = 4 and k = 3, where t(X) is randomly generated from X, and we have chosen sigmoid
function as the activation function s(·) to generate s(x). We then fix the weights and bias
at the output layer and train the weights w(1), w(2), w(3) and bias c in the hidden layer to
optimize the log-loss. Specifically, we use the batch gradient descent with the Nesterov
momentum hyperparameter being 0.9. In addition, we set the learning rate to 4 with a
decay factor of 10�6 and clip gradients with norm exceeding 0.1. After training, Figure 6
shows the matching between the learned results and the corresponding theoretical values.

Entropy 2022, 24, 135 13 of 28

X
Pre-

Proc.

t1

t2

t3

t4

s1

s2

s3

Y = 1

Y = 2

...

Y = |Y|

+1

+1
c(1)

c(2)
c(3)

w(1)

w(2)

w(3)

Figure 5. The designed network for validating the impact of network structure on feature extraction,
with m = 4 and k = 3 neurons in two hidden layers. Our goal is to compare the learned weights
w(1), w(2), w(3) and bias c in the hidden layer with our theoretic characterizations in Section 3.2.2.

1 2 3 4

�1

�0.5

0

0.5

w(1)

Training
Theoretic

1 2 3 4
�1

�0.8

�0.6

�0.4

�0.2

w(2)

Training
Theoretic

1 2 3 4

�1

�0.5

0

0.5

w(3)

Training
Theoretic

1 2 3

�0.6

�0.4

�0.2

c

Training
Theoretic

Figure 6. The trained weights w and bias c of the network in Figure 5, which are compared with the
corresponding theoretical results to show their coincidences.

3.4.3. Experimental Validation of H-Score
To validate H-score as a performance measure for extracted features, we compare the

H-score and classification accuracy of DNNs on image classification tasks. Specifically, we
use the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [22] dataset
as the dataset and extract features using several deep neural networks with representative
architectures designs [44–49]. After training the feature extractors on the ILSVRC2012
training set, we then compute the H-score of the feature in the last hidden layer, as well
as the classification accuracies on ILSVRC2012 validation set (here, we use ILSVRC2012
validation set for testing, as the labels in ILSVRC2012 testing set have not been publicly
released). The results are summarized in Table 1, where HAIC(s) is the AIC-corrected H-
score as defined in (27), with np being the number of model parameters, and ns = 1,300,000
corresponding to the number of training samples in ImageNet. The AIC-corrected H-score
is consistent with the classification accuracy, which validates the effectiveness of H-score
as a measurement of neural networks.

Entropy 2022, 24, 135 14 of 28

Table 1. Classification accuracy and H-score for different DNN models on ImageNet dataset, where
“Paras” indicates the number of parameters (in millions) in the model and HAIC represents the
AIC-corrected H-score.

DNN Model Paras [⇥10
6
] H(s) HAIC(s) Accuracy [%]

VGG16 [44] 138.4 148.3 41.9 64.2
VGG19 [44] 143.7 152.7 42.2 64.7

MobileNet [45] 4.3 45.9 42.6 68.4
DenseNet121 [46] 8.1 59.5 53.3 71.4
DenseNet169 [46] 14.3 81.2 70.2 73.6
DenseNet201 [46] 20.2 89.1 73.5 74.4

Xception [47] 22.9 179.8 162.2 77.5
InceptionV3 [48] 23.9 181.2 162.9 76.3

InceptionResNetV2 [49] 55.9 241.1 198.1 79.1

4. Discussion

Our characterization gives an information-theoretic interpretation of the feature ex-
traction process in DNNs, which also provides a practical performance measure for scoring
neural networks. Different from empirical studies focusing on specific datasets [7], our
development is based on the probability distribution space, which is more general and can
also provide theoretic insights. Moreover, the information-theoretic framework allows us
to obtain direct operational meaning and better interpretations for the solutions, compared
with optimization-based theoretical characterizations, e.g., [11,13].

As a first step in establishing a rigorous framework for DNN analysis, the present
work can be extended in both theoretical and practical aspects. From the theoretical
perspective, one extension is to investigate the analytical properties for general DNNs,
using the theoretic insights obtained from local analysis regime. For example, it was shown
in [50] that the symmetry between feature and weights in DNNs established in the local
analysis regime (cf. Section 3.2.1) also holds for general probability distributions. Another
extension is to apply the framework to investigate the optimal feature for structured data
or network, e.g., data with sparsity structure [51].

From the practical perspective, in addition to the demonstrated example of evaluating
existing DNN models (cf. Section 3.4.3), the H-score can also be used as an objective
function in designing learning algorithms. In particular, such usages have been illustrated
in multi-modal learning [52] and transfer learning [53] tasks.

5. Conclusions

In this paper, we apply the local information geometric analysis and provide an
information-theoretic interpretation to the feature extraction scheme in DNNs. We first es-
tablish an information metric for features in inference tasks by formalizing the information-
theoretic feature selection problem. In addition, we demonstrate that the features extracted
by DNNs coincide with the information-theoretically optimal feature, with the same metric
measuring the performance of features, called H-score. Furthermore, we discuss the usage
of the H-score for measuring the effectiveness of DNNs. Our framework demonstrates a
connection between the practical deep learning implementations and information-theoretic
characterizations, which can provide theoretical insights for DNN analysis and learning
algorithm designs.

Author Contributions: X.X., S.-L.H., L.Z. and G.W.W. contributed to the conceptualization, method-
ology, and writing of this paper. All authors have read and agreed to the published version of
the manuscript.

Funding: The work of S.-L. Huang was supported in part by the National Natural Science Foundation
of China under Grant 61807021 and the Shenzhen Science and Technology Program under Grant
KQTD20170810150821146. The work of L. Zheng was supported in part by the National Science

Entropy 2022, 24, 135 15 of 28

Foundation (NSF) under Award CNS-2002908 and the Office of Naval Research (ONR) under Grant
N00014-19-1-2621.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Proof of Theorem 1

We commence with the characterization of the error exponent.

Lemma A1. Given a reference distribution PX 2 relint(PX), a constant e > 0 and integers
n and k, let x1, . . . , xn denote i.i.d. samples from one of P1 or P2, where P1, P2 2 NX

e (PX). To
decide whether P1 or P2 is the generating distribution, a sequence of k-dimensional statistics
hk = (h1, . . . , hk) is constructed as

hi =
1
n

n

Â
l=1

fi(xl), i = 1, . . . , k, (A1)

where (f1(X), . . . , fk(X)) are zero mean, unit-variance, and uncorrelated with respect to PX, i.e.,

EPX [fi(X)] = 0, i 2 {1, . . . , k} (A2)
EPX

⇥
fi(X) f j(X)

⇤
= dij, i, j 2 {1, . . . , k}. (A3)

Then, the error probability of the decision based on hk decays exponentially in n as n ! •,
with (Chernoff) exponent

lim
n!•

� log pe
n

, Ehk =
k

Â
i=1

Ehi , (A4)

where
Ehi =

1
8
hf1 � f2, xii2 + o(e2), (A5)

and f1 $ P1, f2 $ P2, xi $ fi(X), i 2 {1, . . . , k} are the corresponding information vectors.

Proof of Lemma A1. Since the rule is to decide based on comparing the projection

k

Â
i=1

hi
�
EP1 [fi(X)]�EP2 [fi(X)]

�

to a threshold, via Cramér’s theorem [54], the error exponent under Pj (j = 1, 2) is

Ej(l) = min
P2S(l)

D(PkPj), (A6)

where

S(l) ,
n

P 2 PX : EP
⇥

f k(X)
⇤
= lEP1

⇥
f k(X)

⇤
+ (1 � l)EP2

⇥
f k(X)

⇤o
. (A7)

Now, since (A2) holds, we obtain

EPj [fi(X)] = Â
x2X

Pj(x) fi(x)

= Â
x2X

PX(x) fi(x) + Â
x2X

(Pj(x)� PX(x)) fi(x)

= EPX [fi(X)] + Â
x2X

q
PX(x) fj(x) · xi(x)p

PX(x)

= Â
x2X

fj(x) xi(x)

Entropy 2022, 24, 135 16 of 28

= hfj, xii, j = 1, 2 and i = 1, . . . , k, (A8)

which we express compactly as

EPj

⇥
f k(X)

⇤
= hfj, xki, j = 1, 2

with xk , (x1, . . . , xk).
Hence, the constraint (A7) is expressed in information vectors as

hf, xii = hl f1 + (1 � l) f2, xii, i = 1, · · · , k,

i.e., ⌦
f, xk↵ =

⌦
l f1 + (1 � l) f2, xk↵. (A9)

In turn, the optimal P in (A6), which we denoted by P⇤, lies in the exponential family
through Pj with natural statistic f k(x), i.e., the k-dimensional family whose members are
of the form

log P̃qk (x) =
k

Â
i=1

qi fi(x) + log Pj(x)� a
�
qk�,

for which the associated information vector is

f̃qk (x) =
k

Â
i=1

qixi(x) + fj(x)� a(qk)
q

PX(x) + o(e), (A10)

where we have used the fact that

log QX(x) = log PX(x) + log
QX(x)
PX(x)

= log PX(x) + log

1 +

1p
PX(x)

f(x)

!

= log PX(x) +
1p

PX(x)
f(x) + o(e)

for all QX 2 NX
e (PX) with the information vector f $ QX . As a result,

hf̃qk , xii = qi + hfj, xii+ o(e),

where we have used (A3). Hence, via (A9), we obtain that the intersection with the linear
family (A7) is at P⇤ = Pqk⇤ with

q⇤i = hlf1 + (1 � l)f2 � fj, xii+ o(e)

and thus

Ej(l) = D(P⇤kPj)

=
1
2
��f̃qk � fj

��2
+ o(e2) (A11)

=
1
2

�����

k

Â
i=1

q⇤i xi

�����

2

+
1
2

a
�
qk⇤�2

+ o(e2) (A12)

=
1
2

k

Â
i=1

(q⇤i)
2 +

1
2

a
�
qk⇤�2

+ o(e2) (A13)

=
1
2

k

Â
i=1

hlf1 + (1 � l)f2 � fj, xii2 + o(e2), (A14)

Entropy 2022, 24, 135 17 of 28

where to obtain (A11) we have exploited the local approximation of KL divergence [18], to
obtain (A12) we have exploited (A10), to obtain (A13) we have again exploited (A3), and
to obtain (A14) we have used that

a
�
qk⇤� = o(e2)

since qk⇤ = O(e) and

a(0) = 0, and ra(0) = EPj

⇥
f k(X)

⇤
= hfj, xki = O(e).

Finally, E1(l) = E2(l) when l = 1/2, so the overall error probability has expo-
nent (A5).

Then, the following lemma demonstrates a property of information vectors in a
Markov chain.

Lemma A2. Given the Markov relation X $ Y $ V and any v 2 V, let f
X|V
v and f

Y|V
v denote

the associated information vectors for PX|V(·|v) and PY|V(·|v), then we have

f
X|V
v = B̃

Tf
Y|V
v . (A15)

Proof of Lemma A2. From the Markov relation we have

PX(x) = Â
y2Y

PX|Y(x|y)PY(y)

and

PX|V(x|v) = Â
y2Y

PX|Y,V(x|y, v)PY|V(y|v) = Â
y2Y

PX|Y(x|y)PY|V(y|v).

As a result,

PX|V(x|v)� PX(x) = Â
y2Y

PX|Y(x|y)[PY|V(y|v)� PY(y)],

from which we obtain the corresponding information vector

f
X|V
v (x) =

1p
PX(x) Â

y2Y
PX|Y(x|y)

q
PY(y)f

Y|V
v (y)

= Â
y2Y


B̃(y, x) +

q
PX(x)PY(y)

�
f

Y|V
v (y)

= Â
y2Y

B̃(y, x)fY|V
v (y), (A16)

where the last equality follows from the fact that

Â
y2Y

q
PY(y)f

Y|V
v (y) = Â

y2Y
[PY|V(y|v)� PY(y)] = 0.

Finally, rewrite (A16) in the matrix form and we obtain (A15).

In addition, the following lemma is useful for dealing with the expectation over
an RIE.

Entropy 2022, 24, 135 18 of 28

Lemma A3. Let z be a spherically symmetric random vector of dimension M, i.e., for any orthogo-
nal Q we have z

d
= Qz. If A is a fixed matrix of compatible dimensions, then

E
h
kz

T
Ak2

i
=

1
M

E
h
kzk2

i
kAk2

F. (A17)

Proof of Lemma A3. By definition we have Lz = QLzQ
T for any orthogonal Q; hence,

Lz is diagonal. Suppose Lz = l I, then from

tr(Lz) = E
h
kzk2

i
= lM

we obtain
l =

1
M

tr(Lz).

As a result, we have

E
h
kz

T
Ak2

i
= tr

⇣
A

TLzA

⌘
= l tr

⇣
A

T
A

⌘
=

1
M

E
h
kzk2

i
kAk2

F.

Proceeding to our proof of Theorem 1, by definition of feature functions, we have
EPX

⇥
fi(X)

⇤
= 0, i = 1, . . . , k. Suppose f is the vector representation of f k and denote by

f̃ , L�1/2
f

f the normalized f , with L1/2
f

denoting any square root matrix of L f . Then, the
corresponding statistics f̃ k = (f̃1, . . . , f̃k) satisfy the constraints (A2) and (A3). In addition,
we construct the statistic h̃k = (h̃1, . . . , h̃k) as [cf. (A1)]

h̃i =
1
n

n

Â
l=1

f̃i(xl), i = 1, . . . , k. (A18)

Then, from Lemma A1, the error exponent of distinguishing v and v0 based on h̃k is

Eh̃k (v, v0) =
1
8

k

Â
i=1

h�
f

X|V
v � f

X|V
v0
�T

x̃X
i

i2
+ o(e2)

=
1
8

���
�
f

X|V
v � f

X|V
v0
�T

X̃X
���

2
+ o(e2),

where f
X|V
v denotes the associated information vector for PX|V(·|v), x̃X

i denotes the infor-
mation vectors of f̃i, and X̃X , [x̃X

1 , . . . , x̃X
k]. Since the optimal decision rule is linear, the

error exponent is invariant with linear transformations of statistics, i.e.,

Ehk (v, v0) = Eh̃k (v, v0) =
1
8

���
�
f

X|V
v � f

X|V
v0
�T

X̃X
���

2
+ o(e2)

=
1
8

���
�
f

Y|V
v � f

Y|V
v0
�T

B̃X̃X
���

2
+ o(e2), (A19)

where the last equality follows from Lemma A2.
As a result, taking the expectation of (A19) over a given RIE yields

E
⇥
Ehk (v, v0)

⇤
=

1
8
E
���
�
f

Y|V
v � f

Y|V
v0
�T

B̃X̃X
���

2
�
+ o(e2)

=
E
h��f

Y|V
v � f

Y|V
v0
��2
i

8|Y|
��B̃X̃X��2

F + o(e2),

Entropy 2022, 24, 135 19 of 28

where we have exploited Lemma A3. Finally, the error exponent (7) can be obtained via
noting from the definition of f̃ k that

X̃X = XX��XX�T
XX�� 1

2 .

Appendix B. Proof of Lemma 2

We first prove two useful lemmas.

Lemma A4. For distributions P 2 relint(PX), Q, R 2 PX, and sufficiently small e, if D(PkQ) 
e2 and D(PkR)  e2, then there exists a constant C > 0 independent of e, such that D(QkR)  Ce2.

Proof of Lemma A4. Denote by k · k1 the `1-distance between distributions, i.e., kP �
Qk1 , Âx2X |P(x)� Q(x)|, then from Pinsker’s inequality [14], we have

kP � Qk1 
q

2D(PkQ) <
p

2e, (A20)

kP � Rk1 
q

2D(PkR) <
p

2e, (A21)

which implies

kQ � Rk1  kP � Qk1 + kP � Rk1  2
p

2e. (A22)

In addition, with pmin , minx2X P(x), for all x 2 X we have

R(x) > P(x)� |P(x)� R(x)| (A23)

> min
x2X

P(x)�
p

2e (A24)

= pmin �
p

2e, (A25)

where to obtain (A24) we have used (A21). Note that since P 2 relint(PX) we have
pmin > 0, and thus R(x) > pmin/2 for sufficiently small e. As a result,

D(QkR)  Â
x2X

(Q(x)� R(x))2

R(x)
(A26)

 2
pmin

Â
x2X

[Q(x)� R(x)]2 (A27)


2kQ � Rk2

1
pmin

(A28)

 16
pmin

e2, (A29)

where to obtain (A26) we have used the fact that KL divergence is upper bounded by
corresponding c2-divergence [55], and to obtain (A29) we have used (A22).

Lemma A5. For all (x, y) 2 X⇥ Y, we have

D(PXPYkPX P̃(s,v,b)
Y|X) � PX(x) log


PY(y)et(x,y) + (1 � PY(y))e

� PY (y)
1�PY (y) t(x,y)

�

where P̃(s,v,b)
Y|X is as defined in (4), and where we have defined t(x, y) , ṽT(y)s(x) + d̃(y).

Entropy 2022, 24, 135 20 of 28

Proof of Lemma A5. First, we can rewrite the conditional distribution P̃(s,v,b)
Y|X (y|x) as

P̃(s,v,b)
Y|X (y|x) = evT(y)s(x)+b(y)

Ây02Y evT(y0)s(x)+b(y0) =
PY(y)evT(y)s(x)+d(y)

Ây02Y PY(y0)evT(y0)s(x)+d(y0)

=
PY(y)eṽT(y)s(x)+d̃(y)

Ây02Y PY(y0)eṽT(y0)s(x)+d̃(y0)

=
PY(y)et(x,y)

Ây02Y PY(y0)et(x,y0) . (A30)

Then, the KL divergence D(PXPYkPX P̃(s,v,b)
Y|X) can be expressed as

D(PX PYkPX P̃(s,v,b)
Y|X) = Â

(x,y)2X⇥Y

PX(x)PY(y) log
Ây02Y PY(y0)et(x,y0)

et(x,y)

= Â
x2X

PX(x) log

"

Â
y02Y

PY(y0)et(x,y0)

#
�EPX PY [t(X, Y)]

= Â
x2X

PX(x) log

"

Â
y02Y

PY(y0)et(x,y0)

#
, (A31)

where to obtain the last equality we have used the fact EPX PY [t(X, Y)] = 0. As a result,
we have

D(PXPYkPX P̃(s,v,b)
Y|X) � PX(x) log

"

Â
y02Y

PY(y0)et(x,y0)

#
(A32)

� PX(x) log


PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)
�

, (A33)

where the last inequality follows from Jensen’s inequality:

Â
y02Y

PY(y0)et(x,y0) = PY(y)et(x,y) + (1 � PY(y)) Â
y0 6=y

PY(y0)
1 � PY(y)

et(x,y0)

� PY(y)et(x,y) + (1 � PY(y)) exp

1

1 � PY(y)
Â

y0 6=y
PY(y0)t(x, y0)

!

= PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)
.

Proceeding to our proof of Lemma 2, first note that when v = d = 0, we have
P̃(s,v,b)

Y|X = PY. As a result, the optimal v, d for (8) satisfy

D(PXYkPX P̃(s,v,b)
Y|X)  D(PXYkPXPY)

 Â
(x,y)2X⇥Y

[PX,Y(x, y)� PX(x)PY(y)]
2

PX(x)PY(y)

 e2,

(A34)

where to obtain the second inequality we have again exploited c2-divergence as an upper
bound of KL divergence [55], and to obtain the last inequality we have used the definition
of e-dependency.

Entropy 2022, 24, 135 21 of 28

As PXY 2 relint(PX⇥Y), from Lemma A4, there exist C > 0 and e1 > 0 such that
D(PXPYkPX P̃(s,v,b)

Y|X) < Ce2 for all e < e1. Furthermore, from Lemma A5, for all (x, y) 2
X⇥ Y and e 2 (0, e1), we have

Ce2 � PX(x) log
h

PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)i
. (A35)

Note that the right-hand side of (A35) satisfies

log
h

PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)i
=

PY(y)
2(1 � PY(y))

t2(x, y) + o(t2(x, y)).

Therefore, there exists d > 0 independent of e1, such that for all |t(x, y)|  d, we have

log


PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)
�
>

PY(y)
2

t2(x, y). (A36)

In addition, if |t(x, y)| > d, we have

log


PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)
�

� min
⇢

log


PY(y)ed + (1 � PY(y))e
� PY (y)

1�PY (y) d
�

, log


PY(y)e�d + (1 � PY(y))e
PY (y)

1�PY (y) d
��

� PY(y)
2

d2,

where to obtain the second inequality we have exploited the monotonicity of function t 7!

PY(y)et + (1 � PY(y))e
� PY (y)

1�PY (y) t
, and to obtain the third inequality we have exploited (A36).

As a result, we have

log


PY(y)et(x,y) + (1 � PY(y))e
� PY (y)

1�PY (y) t(x,y)
�
>

PY(y)
2

· min{d2, t2(x, y)}. (A37)

Hence, (A35) becomes

Ce2 � PX(x)PY(y)
2

· min{d2, t2(x, y)}, (A38)

from which we can obtain t(x, y) = O(e). To see this, let

e2 , dp
2C

· min
(x,y)2X⇥Y

q
PX(x)PY(y), e0 , min{e1, e2}.

Then, for all e < e0, we have

Ce2 <
PX(x)PY(y)

2
· d2,

and (A38) implies |t(x, y)| < C0e with C0 =
q

2C
PX(x)PY(y)

.

Appendix C. Proof of Lemma 3

Proof. From Lemma 2, there exists C0 > 0 such that for all (x, y) 2 X⇥ Y, we have

|ṽT(y)s(x) + d̃(y)| < C0e, (A39)

Entropy 2022, 24, 135 22 of 28

which implies

|µT
s ṽ(y) + d̃(y)| < Ce, (A40)

|ṽT(y)s̃(x)| < 2Ce, (A41)

with C = max{C0, 1}.
From (A30), we can assume EPY [v(Y)] = EPY [d(Y)] = 0 without loss of generality.

Then, (4) can be rewritten as

P̃(s,v,b)
Y|X (y|x) = PY(y)eṽT(y)s(x)+d̃(y)

Ây02Y PY(y0)eṽT(y0)s(x)+d̃(y0)
, (A42)

and the numerator can be written as

PY(y)eṽT(y)s(x)+d̃(y) = PY(y)
⇣

1 + ṽT(y)s(x) + d̃(y) + o(e)
⌘

= PY(y)
⇣

1 + ṽT(y)s(x) + d̃(y)
⌘
+ o(e),

where we have used (A39). Similarly, from

Â
y02Y

PY(y)eṽT(y)s(x)+d̃(y) = Â
y02Y

PY(y)
⇣

1 + ṽT(y)s(x) + d̃(y)
⌘
+ o(e)

= 1 +EPY

h
ṽT(Y)s(x)

i
+EPY

⇥
d̃(y)

⇤
+ o(e)

= 1 + o(e)

we obtain
1

Ây02Y PY(y)eṽT(y)s(x)+d̃(y)
=

1
1 + o(e)

= 1 + o(e).

As a result, (A42) can be written as

P̃(s,v,b)
Y|X (y|x) =

h
PY(y)

⇣
1 + ṽT(y)s(x) + d̃(y)

⌘
+ o(e)

i
[1 + o(e)]

= PY(y)
⇣

1 + ṽT(y)s(x) + d̃(y)
⌘
+ o(e),

(A43)

which implies PX P̃(v,b)
Y|X 2 NX⇥Y

Ce (PXPY) for sufficiently small e. In addition, the local

assumption of distributions implies that PXY 2 NX⇥Y
e (PXPY) ⇢ NX⇥Y

Ce (PXPY). Again,
from the local approximation of KL divergence [18]

D(P1kP2) =
1
2
kf1 � f2k2 + o

�
e2�, (A44)

we have

D(PY,XkPX P̃(s,v,b)
Y|X)

=
1
2 Â

x2X,y2Y

h
PY,X(y, x)� P̃(s,v,b)

Y|X (y|x)PX(x)
i2

PY(y)PX(x)
+ o(e2)

=
1
2 Â

x2X,y2Y

"
PY,X(y, x)p
PY(y)PX(x)

�
q

PY(y)PX(x)

�
q

PY(y)PX(x)
⇣

ṽT(y)s(x) + d̃(y) + o(e)
⌘�2

+ o(e2)

Entropy 2022, 24, 135 23 of 28

=
1
2 Â

x2X,y2Y


B̃(y, x)�

q
PY(y)PX(x)ṽT(y)s̃(x)

�
q

PY(y)PX(x)
⇣

d̃(y) + µT
s ṽ(y)

⌘
�
q

PY(y)PX(x)o(e)
�2

+ o(e2)

(⇤)
=

1
2 Â

x2X,y2Y


B̃(y, x)�

q
PY(y)PX(x)ṽT(y)s̃(x)

�2

+
1
2 Â

x2X,y2Y

q
PY(y)PX(x)

⇣
d̃(y) + µT

s ṽ(y)
⌘�2

+ o(e2)

=
1
2 Â

x2X,y2Y

h
B̃(y, x)�

�
xY(y)

�T
xX(x)

i2
+

1
2
EPY

h
(d̃(y) + µT

s ṽ(y))2
i
+ o(e2)

=
1
2
kB̃ � XY�XX�Tk2

F +
1
2

h(v,b)(s) + o(e2),

where to obtain (⇤), we have used (A40) and (A41) together with the fact |B̃(y, x)| < e,
and that

Â
x2X,y2Y

B̃(y, x)
q

PY(y)PX(x)
⇣

d̃(y) + µT
s ṽ(y)

⌘
= 0,

Â
x2X,y2Y

PY(y)PX(x)ṽT(y)s̃(x)
⇣

d̃(y) + µT
s ṽ(y)

⌘
= 0,

since E
⇥
d̃(Y)

⇤
= 0,E[s̃(X)] = E[ṽ(Y)] = 0.

Appendix D. Proofs of Theorems 2 and 3

Theorems 2 and 3 can be proved based on Lemma 3.

Proofs of Theorems 2 and 3. Note that the value of d(·) only affects the second term of
the KL divergence; hence, we can always choose d(·) such that d̃(y) + µT

s ṽ(y) = 0. Then,
the (XY, XX) pair should be chosen as

(XY, XX)⇤ = arg min
(XY ,XX)

��B̃ � XY�XX�T��2
F. (A45)

Set the derivative (we use the denominator-layout notation of matrix calculus where
the scalar-by-matrix derivative will have the same dimension as the matrix)

∂

∂XY kB̃ � XY�XX�Tk2
F = 2(XY�XX�T

XX � B̃XX) (A46)

to zero, and the optimal XY for fixed XX is (here, we assume the matrix
�
XX�T

XX = Ls̃(X)

is invertible; for the case where
�
XX�T

XX is singular, we can obtain a similar result with
ordinary matrix inverse replaced by the Moore–Penrose inverse)

XY⇤ = B̃XX(
�
XX�T

XX)�1. (A47)

As 1
Tp

PY B̃ = 0, we have 1
Tp

PY XY⇤ = 0, which demonstrates that XY⇤ is a valid
matrix for a zero-mean feature vector.

To express XY⇤ of (A47) in the form of s and v, we can make use of the correspondence
between feature and information vectors. We can show that, for a zero-mean feature
function f (X) with corresponding information vector f, we have the correspondence

Entropy 2022, 24, 135 24 of 28

EPX|Y [f (X)|Y] $ B̃f. To see this, note that the y-th element of information vector B̃f is
given by

Â
x2X

B̃(y, x)f(x) = Â
x2X

PXY(x, y)� PX(x)PY(y)p
PX(x)PY(y)

f (x)
q

PX(x)

=
1p

PY(y)
Â

x2X
PXY(x, y) f (x)

=
1p

PY(y)
EPX|Y [f (X)|Y = y].

Using similar methods, we can verify that Ls̃(X) =
�
XX�T

XX. As a result, (A47) is
equivalent to

ṽ⇤(y) = EPX|Y

h
L�1

s̃(X) s̃(X)
��� Y = y

i
. (A48)

By a symmetry argument, we can also obtain the first two equations of Theorem 3.
To obtain the third equations of these two theorems, we need to minimize h(v,b)(s) =
EPY

⇥
(µT

s ṽ(Y) + d̃(Y))2⇤. For given ṽ and µs, the optimal d̃ is

d̃⇤(y) = �µT
s ṽ(Y), (A49)

and the corresponding h(v,b)(s) = 0.
In addition, for given d̃ and ṽ, we have

h(v,b)(s) = EPY

h
(µT

s ṽ(Y) + d̃(Y))2
i

= µT
s Lṽ(Y) µs + 2µT

s EPY

⇥
ṽ(Y)d̃(Y)

⇤
+ var(d̃(Y)).

(A50)

Set ∂
∂µs

h(v,b)(s) = 0 and we obtain

µ⇤
s = �L�1

ṽ(Y)EPY

⇥
ṽ(Y)d̃(Y)

⇤
. (A51)

Appendix E. Proof of Theorem 4

Proof. From Lemma 3, choosing the optimal (XY, XX) is equivalent to solving the matrix
factorization problem of B̃. Since both XY and XX have rank no greater than k, from the
Eckart–Young–Mirsky theorem [56], the optimal choice of XY�XX�T should be the truncated
singular value decomposition of B̃ with top k singular values. As a result, (XY, XX)⇤ are
the left and right singular vectors of B̃ corresponding to the largest k singular values.

The optimality of bias d̃(y) = �µT
s ṽ(y) has already been shown in Appendix D.

Appendix F. Proof of Theorem 5

The following lemma is useful to prove Theorem 5.

Lemma A6 (Pythagorean theorem). Let XX⇤ be the optimal matrix for given XY as defined
in (13). Then,

��B̃ � XY�XX�T��2
F �

��B̃ � XY�XX⇤�T��2
F =

��XY�XX⇤�T � XY�XX�T��2
F. (A52)

Entropy 2022, 24, 135 25 of 28

Proof of Lemma A6. Denote by hU, Vi the Frobenius inner product of matrices U and V,
i.e., hU, Vi , tr(UT

V), and we have
D

B̃ � XY�XX⇤�T, XY�XX�T
E
= tr

⇣
B̃XX�XY�T

⌘
� tr

⇣
XX⇤�XY�T

XY�XX�T
⌘

= tr
⇣

B̃XX�XY�T
⌘
� tr

⇣
B̃

TXY�XX�T
⌘

= 0.

As a result, we obtain
��B̃ � XY�XX�T��2

F =
��B̃ � XY�XX⇤�T

+
�
XY�XX⇤�T � XY�XX�T���2

F

=
��B̃ � XY�XX⇤�T��

F +
��XY�XX⇤�T � XY�XX�T��2

F

+ 2
D

B̃ � XY�XX⇤�T, XY(
�
XX⇤�T �

�
XX�T

)
E

=
��B̃ � XY�XX⇤�T��

F + kXY�XX⇤�T � XY�XX�Tk2
F,

which finishes the proof.

Proceeding to our proof of Theorem 5, from Lemma A6 we have

L(s)�L(s⇤)

=
1
2

h
kB̃ � XY�XX�Tk2

F � kB̃ � XY�XX⇤�Tk2
F

i
+

1
2

h
h(v,b)(s)� h(v,b)(s⇤)

i
+ o(e2)

=
1
2
kXY�XX⇤�T � XY�XX�Tk2

F +
1
2

k(v,b)(s, s⇤) + o(e2),

where k(v,b)(s, s⇤) , h(v,b)(s)� h(v,b)(s⇤). We then optimize kXY�XX⇤�T �XY�XX�Tk2
F and

k(v,b)(s, s⇤) separately.
For the first term, we need to express XX in terms of W and XX

1 . From (17), we obtain

E[sz(X)] = s(c(z)) + o(e), (A53)

s̃z(x) = wT(z)t̃(x) · s0(c(z)) + o(e), (A54)

which can be expressed in information vectors as

XX = XX
1 W

T
J + o(e). (A55)

From Theorem 3, we have

XX⇤ = B̃
T XY ��XY�T

XY��1. (A56)

As a result, we have

��XY�XX⇤�T � XY�XX�T��2
F =

����XY�T
XY�1/2

(
�
XX⇤�T �

�
XX�T

)
��2

F

=
���
��

XY�T
XY�1/2 ·

⇣�
XX⇤�T � JW

�
XX

1
�T � o(e)

⌘���
2

F

=
���
��

XY�T
XY�1/2 ·

⇣�
XX⇤�T � JW

�
XX

1
�T
⌘���

2

F
+ o(e2)

=
���
��

XY�T
XY�1/2

J ·
⇣

J
�1�XX⇤�T � W

�
XX

1
�T
⌘���

2

F
+ o(e2)

=
��QB̃1 � QW

�
XX

1
�T��2

F + o(e2), (A57)

where the third equality follows from the fact that [cf. (A41)] s̃(x) = O(e) and ṽ(y) = O(1),
and the last equality follows from the definitions B̃1 , J

�1�XX⇤�T and Q , (
�
XY�T

XY)1/2
J.

Entropy 2022, 24, 135 26 of 28

For the second term, from (A50) and (A51), we have

k(v,b)(s, s⇤) = [(µs � µs⇤) + µs⇤]
TLṽ(Y)

⇥
(µs � µs⇤) + µs⇤

⇤

� µT
s⇤ Lṽ(Y)µs⇤ + 2(µs � µs⇤)

TEPY

⇥
ṽ(Y)d̃(Y)

⇤

= (µs � µs⇤)
TLṽ(Y)

�
µs � µs⇤

�
+ 2(µs � µs⇤)

T
⇣

Lṽ(Y)µs⇤ +EPY

⇥
ṽ(Y)d̃(Y)

⇤⌘

= (µs � µs⇤)
TLṽ(Y)

�
µs � µs⇤

�
. (A58)

Combining (A57) and (A58) finishes the proof.

Appendix G. Analyses of Hidden Layer Parameters

First, from (A53), the bias c(z) of hidden layer is (when µt 6= 0, the formula should be
modified as c(z) = s�1(µ⇤

s (z))� µT
t w + o(e).)

c(z) = s�1(µ⇤
s (z)) + o(e).

To obtain µ⇤
s , let us define smin , infx s(x), smax , supx s(x). Then, the optimal µs is

the solution of
minimize

µs
(µs � µs⇤)

TLṽ(Y)
�
µs � µs⇤

�

subject to smin � µs � smax.
(A59)

If µs⇤ satisfies the constraint of (A59), then it is the optimal solution. Otherwise, some
elements of µ⇤

s will become either smin or smax, known as the saturation phenomenon [21].
To obtain W

⇤, let

B̃
0
1 , QB̃1 =

��
XY�T

XY��1/2 �
XY�T

B̃,

W
0 , QW =

��
XY�T

XY�1/2
JW.

Then, the optimal W
0 is given by

W
0⇤ = arg min

W0
kB̃1

0 � W
0�XX

1
�Tk2

F = B̃1
0XX

1 (
�
XX

1
�T

XX
1)

�1. (A60)

Hence, W
⇤ is given by

W
⇤ = Q�1

W
0⇤ = Q�1

B̃
0
1XX

1 (
�
XX

1
�T

XX
1)

�1

= B̃1XX
1 (
�
XX

1
�T

XX
1)

�1

= J
�1 · [XY(

�
XY�T

XY)�1]TB̃ XX
1 (
�
XX

1
�T

XX
1)

�1,

where the term B̃ XX
1 (
�
XX

1
�T

XX
1)

�1 corresponds to a feature projection of t̃(X):

B̃ XX
1
��

XX
1
�T

XX
1
��1 $ EPX|Y

h
L�1

t̃(X)
t̃(X)

��� Y
i
. (A61)

As a consequence, this multi-layer neural network conducts a generalized feature
projection between features extracted from different layers. Note that the projected feature
EPt̃|Y

h
L�1

t̃ t̃
���Y
i

depends only on the distribution Pt̃|Y and does not depend on the distribu-
tion PX|Y. Therefore, the above computations can be accomplished without knowing the
hidden random variable X and can be applied to general cases.

Entropy 2022, 24, 135 27 of 28

References

1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

2. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 3–5 June 2019; Volume 1 (Long and Short Papers); Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186.

3. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 1877–1901.

4. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]

5. Arulkumaran, K.; Cully, A.; Togelius, J. Alphastar: An evolutionary computation perspective. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; pp. 314–315.

6. MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003;
ISBN 9780521642989.

7. Zintgraf, L.M.; Cohen, T.S.; Adel, T.; Welling, M. Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. In
Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

8. Papyan, V.; Han, X.; Donoho, D.L. Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl.
Acad. Sci. USA 2020, 117, 24652–24663. [CrossRef]

9. Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps. In Advances in Neural
Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

10. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box
models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [CrossRef]

11. Jacot, A.; Gabriel, F.; Hongler, C. Neural Tangent Kernel: Convergence and Generalization in Neural Networks. In Advances in
Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.;
Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

12. Mei, S.; Montanari, A.; Nguyen, P.M. A mean field view of the landscape of two-layer neural networks. Proc. Natl. Acad. Sci.
USA 2018, 115, E7665–E7671. [CrossRef]

13. Arora, S.; Du, S.; Hu, W.; Li, Z.; Wang, R. Fine-grained analysis of optimization and generalization for overparameterized
two-layer neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA,
9–15 June 2019; pp. 322–332.

14. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
15. Huang, S.L.; Xu, X.; Zheng, L.; Wornell, G.W. An information theoretic interpretation to deep neural networks. In Proceedings of

the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1984–1988.
16. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the Information Theory

Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.
17. Goldfeld, Z.; Polyanskiy, Y. The information bottleneck problem and its applications in machine learning. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 19–38. [CrossRef]
18. Huang, S.L.; Makur, A.; Zheng, L.; Wornell, G.W. An information-theoretic approach to universal feature selection in high-

dimensional inference. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany,
25–30 June 2017; pp. 1336–1340.

19. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 214–223.

20. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of
deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]

21. Goodfellow, I.; Bengio, J.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017.
22. Olga, R.; Jia, D.; Hao, S.; Jonathan, K.; Sanjeev, S.; Sean, M.; Zhiheng, H.; Andrej, K.; Aditya, K.; Michael, B.; et al. ImageNet Large

Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
23. Huang, S.L.; Zheng, L. Linear information coupling problems. In Proceedings of the 2012 IEEE International Symposium on

Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1029–1033.
24. Huang, S.L.; Makur, A.; Wornell, G.W.; Zheng, L. On universal features for high-dimensional learning and inference. arXiv 2019,

arXiv:1911.09105.
25. Hirschfeld, H.O. A connection between correlation and contingency. Proc. Camb. Phil. Soc. 1935, 31, 520–524. [CrossRef]
26. Gebelein, H. Das statistische problem der Korrelation als variations-und Eigenwertproblem und sein Zusammenhang mit der

Ausgleichungsrechnung. Z. Angew. Math. Mech. 1941, 21, 364–379. [CrossRef]
27. Rényi, A. On Measures of Dependence. Acta Math. Acad. Sci. Hung. 1959, 10, 441–451. [CrossRef]

http://doi.org/10.1038/nature16961
http://dx.doi.org/10.1073/pnas.2015509117
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.1073/pnas.1806579115
http://dx.doi.org/10.1109/JSAIT.2020.2991561
http://dx.doi.org/10.1088/1742-5468/ab3985
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1017/S0305004100013517
http://dx.doi.org/10.1002/zamm.19410210604
http://dx.doi.org/10.1007/BF02024507

Entropy 2022, 24, 135 28 of 28

28. du Pin Calmon, F.; Makhdoumi, A.; Médard, M.; Varia, M.; Christiansen, M.; Duffy, K.R. Principal inertia components and
applications. IEEE Trans. Inf. Theory 2017, 63, 5011–5038. [CrossRef]

29. Hsu, H.; Asoodeh, S.; Salamatian, S.; Calmon, F.P. Generalizing bottleneck problems. In Proceedings of the 2018 IEEE International
Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 531–535.

30. Hsu, H.; Salamatian, S.; Calmon, F.P. Correspondence analysis using neural networks. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics, PMLR, Okinawa, Japan, 16–18 April 2019; pp. 2671–2680.

31. Anantharam, V.; Gohari, A.; Kamath, S.; Nair, C. On hypercontractivity and a data processing inequality. In Proceedings of the
2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 3022–3026.

32. Raginsky, M. Strong data processing inequalities and F-Sobolev inequalities for discrete channels. IEEE Trans. Inf. Theory 2016,
62, 3355–3389. [CrossRef]

33. Polyanskiy, Y.; Wu, Y. Strong data-processing inequalities for channels and Bayesian networks. In Convexity and Concentration;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–249.

34. Greenacre, M.J. Theory and Applications Of Correspondence Analysis; Academic Press: London, UK, 1984.
35. Wang, H.; Vo, L.; Calmon, F.P.; Médard, M.; Duffy, K.R.; Varia, M. Privacy with estimation guarantees. IEEE Trans. Inf. Theory

2019, 65, 8025–8042. [CrossRef]
36. Breiman, L.; Friedman, J.H. Estimating Optimal Transformations for Multiple Regression and Correlation. J. Am. Stat. Assoc.

1985, 80, 614–619.
37. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in

Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.
38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
39. Hastie, T.; Tibshirani, R.; Friedman, J. Neural Networks. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: New York, NY, USA, 2009; pp. 389–416. [CrossRef]
40. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
41. Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013;

Volume 12.
42. Alain, G.; Bengio, Y. Understanding intermediate layers using linear classifier probes. In Proceedings of the 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.
43. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings

of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1139–1147.
44. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y.,
Eds.; Conference Track Proceedings.

45. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

46. Huang, G.; Liu, Z.; Weinberger, K.Q.; van der Maaten, L. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–29 July 2017; Volume 1, p. 3.

47. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–29 July 2017; pp. 1251–1258.

48. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826.

49. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Proceedings of the AAAI, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

50. Xu, X.; Huang, S.L.; Zheng, L.; Zhang, L. The geometric structure of generalized softmax learning. In Proceedings of the 2018
IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5.

51. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. Adv. Neural Inf. Process. Syst.
2016, 29, 2074–2082.

52. Wang, L.; Wu, J.; Huang, S.L.; Zheng, L.; Xu, X.; Zhang, L.; Huang, J. An efficient approach to informative feature extraction from
multimodal data. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 5281–5288.

53. Lee, J.; Sattigeri, P.; Wornell, G. Learning new tricks from old dogs: Multi-source transfer learning from pre-trained networks.
Adv. Neural Inf. Process. Syst. 2019, 32, 4370–4380.

54. Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications; Corrected Reprint of the Second (1998) Edition; Stochastic
Modelling and Applied Probability; Springer: Berlin/Heidelberg, Germany, 2010; p. 38.

55. Sason, I.; Verdú, S. f -divergence Inequalities. IEEE Trans. Inf. Theory 2016, 62, 5973–6006. [CrossRef]
56. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [CrossRef]

http://dx.doi.org/10.1109/TIT.2017.2700857
http://dx.doi.org/10.1109/TIT.2016.2549542
http://dx.doi.org/10.1109/TIT.2019.2934414
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-0-387-84858-7_11
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1109/TIT.2016.2603151
http://dx.doi.org/10.1007/BF02288367

	Introduction
	Preliminaries and Methods
	Methodological Background
	Notations
	Local Information Geometry
	Modal Decomposition
	Deep Neural Networks

	Results
	Information-Theoretic Feature Selection
	Feature Extraction in Deep Neural Networks
	Network with Ideal Expressive Power
	Network with Restricted Expressive Power

	Scoring Neural Networks
	Experiments
	Experimental Validation of Theorem 4
	Experimental Validation of Theorem 5
	Experimental Validation of H-Score

	Discussion
	Conclusions
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proofs of Theorems 2 and 3
	Proof of Theorem 4
	Proof of Theorem 5
	Analyses of Hidden Layer Parameters
	References

