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RC-Struct: A Structure-Based Neural Network
Approach for MIMO-OFDM Detection
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Abstract— In this paper, we introduce a structure-based neural
network architecture, namely RC-Struct, for MIMO-OFDM
symbol detection. The RC-Struct exploits the temporal structure
of the MIMO-OFDM signals through reservoir computing (RC).
A binary classifier leverages the repetitive constellation structure
in the system to perform multi-class detection. The incorporation
of RC allows the RC-Struct to be learned in a purely online
fashion with extremely limited pilot symbols in each OFDM
subframe. The binary classifier enables the efficient utilization of
the precious online training symbols and allows an easy extension
to high-order modulations without a substantial increase in
complexity. Experiments show that the introduced RC-Struct
outperforms both the conventional model-based symbol detection
approaches and the state-of-the-art learning-based strategies in
terms of bit error rate (BER). The advantages of RC-Struct over
existing methods become more significant when rank and link
adaptation are adopted. The introduced RC-Struct sheds light
on combining communication domain knowledge and learning-
based receive processing for 5G/5G-Advanced and Beyond.

Index Terms— MIMO-OFDM receive processing, neural net-
works, structure knowledge, online learning, 5G, 5G-advanced
and QAM constellation.

I. INTRODUCTION

MULTIPLE input multiple output with orthogonal fre-
quency division multiplexing (MIMO-OFDM) is the

dominant waveform in modern wireless systems, such as 4G
(LTE-Advanced) and 5G New Radio (NR). The MIMO tech-
nology provides additional degrees of freedom in the spatial
domain, which can be exploited through spatial multiplexing
to increase the channel capacity. To realize MIMO capacity
gain, symbol detection is a crucial stage to recover multiple
transmitted data streams from multiple receive antennas.

MIMO-OFDM symbol detection approaches generally fall
into two categories: conventional model-based strategies and
learning-based methods. Conventional model-based symbol
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detection techniques usually rely on explicit modeling of
the underlying system from the transmitter to the receiver.
However, as wireless systems become more and more com-
plicated with non-linear device components (e.g., power
amplifier, low-resolution analog-to-digital converters), it is
difficult to analytically model such behaviors [2]. Further-
more, standard model-based approaches are usually built
on top of the estimated channel state information (CSI) at
the receiver. The inaccurate modeling and CSI estimation
may degrade the performance of such approaches, espe-
cially in the low signal-to-interference-plus-noise (SINR)
regime.

The recent advances of deep learning and machine learn-
ing (ML) have captured much attention on exploiting neural
networks (NN) to MIMO-OFDM symbol detection [3]–[6].
These learning-based approaches do not require explicit sys-
tem modeling, circumventing the above issues of model-based
methods. On the other hand, learning-based strategies have
their own challenges. One major challenge is that the avail-
able online over-the-air training set is extremely limited. For
example, in 3GPP LTE/LTE-Advanced and 5G NR systems,
the pilot overhead is constrained to be below 20% to secure
the spectral-efficiency [7]. The limited training data may lead
to the model overfitting problem for NNs and degrade the
performance.

Another challenge is that NNs are difficult to be trained
due to their large amount of model weights. On one hand,
a large number of model weights require more training data
to learn. On the other hand, the training process might be
challenging. For example, recurrent neural network (RNN),
owing to its ability to process temporal data, has been widely
explored in the symbol detection task [8]–[10]. However,
training RNNs suffer from high computational complexity
and training instability, such as the gradient vanishing and
exploding problem.

One way to address these issues is to use a special type
of RNN called reservoir computing (RC). The RC network
consists of a RNN-based reservoir with fixed weights and a
trainable output layer. The RNN-based reservoir and light-
weighted training equip RCs with the ability to process
temporal sequences and can be easily trained online. Many
recent works have been devoted to investigating the effective
way to utilize RC in the MIMO-OFDM symbol detection
task [11]–[16]. However, such RC-based NNs are still quite
generic without incorporating all available inherent struc-
tures of communication systems to realize the full potential
of RC.
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In this work, we introduce a new NN-based symbol detec-
tion method, RC-Struct, to leverage the inherent structural
knowledge available in MIMO-OFDM systems:

• the time domain convolution and superposition due to the
wireless channel;

• the time-frequency structure of the OFDM waveform;
• the repetitive structure of the modulation constellation.

In the time domain, we adopt RC to process sequential
input as previous RC-based approaches [11]–[16] allowing the
underlying NN to capture the temporal dynamics embedded in
the received signal and to decouple the multiple transmitted
data streams for MIMO operation. The main novelty of this
work comes from the incorporation of the other two struc-
ture knowledge. Specifically, we leverage the time-frequency
structure of the OFDM waveform to make full use of the
training data in these domains. An additional NN in the
frequency domain is designed to conduct symbol detection
based on the repetitive structure of the modulation constel-
lation enabling RC-Struct to conduct multi-class detection
with the basic binary classifier. Due to the incorporation of
the repetitive modulation structure, fewer training samples
are needed for RC-Struct as opposed to generically designed
NNs, significantly improving training sample efficiency. Fur-
thermore, RC-Struct is able to conduct symbol detection
completely online in a subframe-by-subframe fashion. In the
experiments, we demonstrate that RC-Struct can outperform
existing symbol detection methods for MIMO-OFDM systems
in various scenarios and can conduct receive processing in
a subframe-by-subframe fashion under link and rank adapta-
tion. The main contributions of the paper are summarized as
follows:

• We introduce RC-Struct for symbol detection in MIMO-
OFDM systems, which takes advantage of the inherent
structure knowledge of MIMO-OFDM systems. Different
from previous RC-based approaches that only utilize
RC in the time domain to capture the spatiotemporal
correlation of the MIMO-OFDM system, we leverage
the time-frequency structure of the OFDM waveform to
make full use of the available training data in different
domains. To be specific, a separate NN is introduced in
the frequency domain to conduct detection/classification
for transmitted symbols.

• The frequency domain NN takes into consideration of
the repetitive structure of the modulation constellation.
Specifically, the multi-class classification of the high
order modulation is converted into parallel binary clas-
sification tasks. The inherent modulation constellation
structure not only allows the NN to be easily adapted
to different modulation orders without re-training, but
also significantly improves the efficiency of utilizing the
limited number of training samples.

• RC-Struct has been designed to work in a completely
online fashion under dynamic rank and link adaptation on
a subframe basis for MIMO-OFDM systems. Extensive
experiments have been conducted to demonstrate the
effectiveness and advantage of our design that combines
inherent structure knowledge from time, frequency, and
constellation in realistic cellular environments. It provides

a promising NN-based receive processing technique for
5G/5G-Advanced and Beyond.

The remainder of this paper is organized as follows: Sec. II
contains the related work and Sec. III briefly discusses the
structure of MIMO-OFDM systems. Sec. IV presents the
RC-Struct while Sec. V provides experimental evaluation.
Sec. VI concludes the paper.

Notations: In this paper, as we discuss the signal in both
the time domain and frequency domain, we use lowercase and
uppercase letters of x and y to differentiate the time domain
and frequency domain signals. Specifically, for x and y, we use
the non-bold letter for scalar and the bold letter for both vector
and matrix. For other letters, we follow the convention to use
the non-bold letter for the scalar, the bold lowercase letter for
the vector, and the bold uppercase letter for the matrix. Sets
get calligraphic letters. Special sets get denoted by blackboard
bold. For example, R represents the real number space and C
denotes the complex number space.

II. RELATED WORK

A. Deep Neural Network

Deep neural network (DNN) methods have been recently
applied to the symbol detection task in wireless systems. State-
of-the-art DNN symbol detection algorithms can be roughly
divided into three categories: (1) multi-layer perception (MLP)
based methods, (2) long short-term memory (LSTM) based
methods, and (3) generative adversarial network (GAN) based
methods, (4) convolution neural network (CNN) based meth-
ods [17], [18]. The first MLP-based approach, as discussed
in [3], adopted five fully-connected layers for symbol detection
in OFDM systems. Recent advances, such as DetNet [4],
OAMPNet [5], MMNet [6], and HyperMIMO [19], construct
MLP networks by incorporating trainable parameters from
conventional iterative algorithms. To capture the temporal
information, LSTM has been utilized to learn time-memory
characteristics within the data [8]–[10]. For GAN models,
recent efforts have been devoted to treating the time-frequency
channel matrix as a 2D image and estimating the channel
matrix and the transmit signals jointly [20]. More recently,
DeepRx [18] is introduced to directly predict log-likelihood
ratios (LLRs) of the sent bits with ResNet in the frequency
domain, which has been shown to match the performance of
the traditional linear minimum mean square error (LMMSE)
receiver with full channel knowledge. In [17], a complex-
valued network, DCCN, is adopted to directly estimate trans-
mitted bits from the time domain signal, achieving appealing
performance in different channel models.

While these DNN-based approaches achieve promising per-
formance, they usually require a large amount of training data,
making them difficult to be utilized in practice especially for
5G/5G-Advanced systems where the training is extremely lim-
ited. In some works, such as MMNet, perfect CSI is required to
train the network, which is difficult to be obtained in practice.
Different from the aforementioned DNN-based approaches,
we train the network on a subframe basis, instead of training
on multiple subframes, and only utilize the limited number of
pilot symbols in one subframe. Such an online learning scheme
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TABLE I

NOTATIONS APPEARING IN THE SYSTEM

makes RC-Struct a promising approach in 5G/5G-Advanced
and Beyond with dynamic transmission modes.

B. Reservoir Computing in MIMO-OFDM Symbol Detection

RC is a special type of RNN that suits temporal data
processing. Different from standard RNNs, RC can be learned
with limited training data and less computational effort. An RC
consists of a reservoir part and an output layer, where the
reservoir remains fixed during training and only the output
layer is updated, as shown in the time domain part of Fig. 2.
This simple and effective training approach equips RC with the
ability to efficiently learn with limited training data for sym-
bol detection [11]–[16]. In [11], RC has been demonstrated
to achieve compelling performance in online MIMO-OFDM
symbol detection with limited training data. The follow-up
RC-based works show that adding a sliding window to the
RC [12] and using a cascaded deep RC [13], [14] further
improve the performance. The most recent work has focused
on tracking the channel change between OFDM symbols with
scattered pilots for Wi-Fi systems and the associated hardware
implementation [15].

Our work shares similar spirits with these efforts as we also
build the NN based on RC to exploit the structural knowledge
of convolution and superposition operation of the wireless
channel in the time domain. However, the key difference lies in
the fact that we further leverage the time-frequency structure
of OFDM and the repetitive structure of the modulation con-
stellation in the frequency domain to construct the underlying
deep NN.

III. MIMO-OFDM SYSTEMS

In this section, we introduce the MIMO-OFDM system
architecture where the notations are summarized in Tab. I.

Fig. 1. OFDM subframe structure and pilot patterns.

In 4G/5G MIMO-OFDM systems, information is transmitted
subframe by subframe where each subframe lasts for one
millisecond. For simplicity, we assume each subframe contains
Np pilot symbols and Nd data symbols with N = Np + Nd

symbols in total, as shown in Fig. 1. Consider a MIMO-
OFDM system with Nt transmit antennas, Nr receive anten-
nas, and Nsc subcarriers. The nth OFDM symbol (n =
0, 1, . . . , N − 1) transmitted by the ith transmit antenna (i =
0, 1, . . . , Nt − 1) in the frequency domain can be written
as Xi

n !
[
X i

n(0),X i
n(1),. . .,X i

n(Nsc − 1)
]T

, where X i
n ∈

CNsc×1 and X i
n(k) is the symbol modulated by quadrature

amplitude modulation (QAM) at the kth subcarrier.
At the transmitter side, an inverse fast Fourier

transform (IFFT) and cyclic prefix (CP) addition
are applied to obtain the time domain transmission
signal xi

n !
[
xi

n(0),xi
n(1),. . .,xi

n(Nsc+Ncp−1)
]T

, where
xi

n ∈ C(Nsc+Ncp)×1, Ncp is the length of the CP, and xi
n(t)

is the tth sample of the nth OFDM symbol at the ith transmit
antenna in the time domain with t = 0, 1, . . . , Nsc + Ncp − 1.
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The received signal at the jth receive antenna (j =
0, 1, . . . , Nr) in the time domain can be expressed as

yj
n =

Nt−1∑

i=0

hj,i
n " φ(xi

n) + nj
n, (1)

where yj
n !

[
yj

n(0), yj
n(1), . . . , yj

n(Nsc + Ncp − 1)
]T ∈

C(Nsc+Ncp)×1, hj,i
n ∈ CLc is the channel impulse response

between jth receive antenna and ith transmit antenna with Lc

total number of delays; nj
n stands for the the additive white

gaussian noise (AWGN) at receiver j with zero mean and noise
variance σ2; " represents the circular convolution operation;
φ(·) is the non-linear operation such as power amplifier (PA).

The corresponding received signal Y j
n in the frequency

domain can be obtained by removing the CP and performing
a fast Fourier transform (FFT), which can be denoted as
Y j

n !
[
Y j

n (0), Y j
n (1), . . . , Y j

n (Nsc − 1)
]T ∈ CNsc×1, where

Y j
n (k) is the nth received symbol at the jth receiver and the

kth subcarrier.
For training the RC-Struct network, we need the pilot

symbols both in the time domain and frequency domain. For
ease of discussion, we denote

yn(t) !
[
y0

n(t), y1
n(t), . . . , yNr−1

n (t)
]T ∈ CNr×1,

xn(t) !
[
x0

n(t), x1
n(t), . . . , xNt−1

n (t)
]T ∈ CNt×1,

Y n(k) !
[
Y 0

n (k), Y 1
n (k), . . . , Y Nr−1

n (k)
]T ∈ CNr×1,

Xn(k) !
[
X0

n(k), X1
n(k), . . . , XNt−1

n (k)
]T ∈ CNt×1,

where xn(t) ∈ CNt×1 and yn(t) ∈ CNr×1 are the transmitted
and received tth sample of the nth OFDM symbol in the time
domain; Xn(k) ∈ CNt×1 and Y n(k) ∈ CNr×1 are the trans-
mitted and received nth OFDM symbol at the kth subcarrier
in the frequency domain. Then the corresponding matrix forms
are

yn ! [yn(0), yn(1),. . . ,yn(Nsc+Ncp−1)]∈CNr×(Nsc+Ncp),

xn ![xn(0), xn(1),. . . ,xn(Nsc+Ncp−1)]∈CNt×(Nsc+Ncp),

Y n ! [Y n(0), Y n(1), . . . , Y n(Nsc − 1)] ∈ CNr×Nsc ,

Xn ! [Xn(0), Xn(1), . . . , Xn(Nsc − 1)] ∈ CNt×Nsc ,

where xn ∈ CNt×(Nsc+Ncp) and yn ∈ CNr×(Nsc+Ncp) stand
for the transmitted and received nth OFDM symbol in the time
domain, and Xn ∈ CNt×Nsc and Y n ∈ CNr×Nsc represent
the nth OFDM symbol in the frequency domain.

The training dataset {Dn}Np−1
n=0 can be represented as

Dn !
(
{yn(t)}

Nsc+Ncp−1
t=0 , {xn(t)}Nsc+Ncp−1

t=0 , {Xn(k)}Nsc−1
k=0

)

= (yn, xn, Xn) , (2)

where {yn(t)}Nsc+Ncp−1
t=0 will be the input to the network;

{xn(t)}Nsc+Ncp−1
t=0 and {Xn(k)}Nsc−1

k=0 will be the target out-
put in the time domain and frequency domain respectively;
yn, and xn, Xn are the matrix form input and target.

IV. THE INTRODUCED APPROACH — RC-STRUCT

We introduce the RC-Struct method to exploit the properties
of OFDM signals in both the time and frequency domain

for symbol detection. The introduced method is composed of
two parts: RC-based time domain data-stream decoupling and
equalization as well as the structure-based frequency domain
NN classification. The received signal is first decoupled and
equalized by RC in the time domain and then classified by the
NN in the frequency domain. The architecture of the network
is shown in Fig. 2. We will first discuss the time domain RC
and then focus on our structured NN in the frequency domain.

A. Time Domain: Reservoir Computing

1) Introduction of Reservoir Computing: RNNs have been
broadly applied in temporal data processing, for their spe-
cial feedback and skip connections for generating history-
dependent features. However, training RNNs is inherently
difficult and time-consuming. RC is an alternative RNN-
based framework that has fast-learning capability on a vari-
ety of temporal recognition tasks. The Echo State Network
(ESN) [21], [22], as a specific type of RC model, consists of
the input layer, reservoir unit, and the output layer, as shown
in Fig. 3. Unlike conventional RNNs, the training of ESN
is simple and fast. Specifically, during training, only the
weights of the output layer are learned and updated, while
the weights for the input layer and the reservoir are randomly
initialized and fixed. To ensure the ESN works, the reservoir
should be appropriately designed. The RNN-based reservoir
should satisfy the echo state property so that the network
can asymptotically eliminate any information from the initial
condition [21], [23]. In [24], it is shown that the echo state
property can be satisfied if the spectral radius of the reservoir
transition matrix is smaller than unity. Thanks to the fast
and simple training process, RC now has achieved promis-
ing performance in many tasks, such as speech recognition
[25], [26], image detection [27], [28], wireless communication
[11]–[15], etc.

2) Reservoir Computing in RC-Struct: RC-Struct adopts
ESN in the time domain to decouple the received data streams
and equalize the received signals. The input to the reservoir is
the received signal yn(t) and the estimated output is x̂n(t),
which corresponds to the transmit signal xn(t). The training
dataset for RC in matrix form can be represented as

Drc !
([

y0, y1, . . . , yNp−1

]
,
[
x0, x1, . . . , xNp−1

])
. (3)

For an ESN with Nn neurons in the reservoir, the states and
the output are expressed by the following equations:

sn(t) = f(Wsn(t − 1) + W in yn(t)), (4)

x̂n(t) = fout(W out zn(t)), (5)

where sn(t) ∈ CNn×1 is the internal state estimated by the
reservoir with sn(−1) initialized as a zero vector, zn(t) =[
sn(t)T , yn(t)T

]T ∈ C(Nn+Nr)×1 is the concatenation of the
internal state and the input, W in ∈ CNn×Nr is the input
weight matrix, W ∈ CNn×Nn is the reservoir weight matrix,
W out ∈ CNt×(Nn+Nr) is the output weight matrix. The
f(·) and fout(·) are the activation functions for the internal
units and the output units respectively. In general, identity
transformation is used for the output activation function.

Authorized licensed use limited to: MIT Libraries. Downloaded on August 30,2023 at 17:32:34 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: RC-STRUCT: STRUCTURE-BASED NEURAL NETWORK APPROACH FOR MIMO-OFDM DETECTION 7185

Fig. 2. The architecture of RC-Struct network. For better visualization, we denote Nl = Nsc +Ncp − 1 in the figure. In the time domain, the fixed weights
are marked as blue and the trainable weights are colored with red. Note that all the W in’s share the same weights and all the W ’s share the same weights.
The arrows for processing yn(1) are highlighted in green to show how a specific yn(t) is processed.

Fig. 3. Echo State Network. The fixed weights are highlighted in blue. The
trainable weights are highlighted in red.

In conventional RNNs, the input weights W in, the reservoir
weights W , and the output weights W out are all learned
through the backpropagation algorithm. Different from the
conventional RNNs, in RC, only the output weight matrix
W out is updated and all the other weights are fixed. More
importantly, the output weight matrix is learned through a
closed-form least-square solution. Specifically, RC is designed
to minimize the mean square error between the network
output signal x̂n(t) and the desired transmit signal xn(t). The
regression procedure can be described as

Ŵ out = arg min
W out

Np−1∑

n=0

Ncp+Nsc−1∑

t=0

‖x̂n(t)−xn(t)‖22

= arg min
W out

Np−1∑

n=0

‖x̂n−xn‖2F =arg min
W out

‖x̂−x‖2F , (6)

where x̂n = [x̂n(0), x̂n(1), . . . , x̂n(Nsc + Ncp − 1)] ∈
CNt×(Nsc+Ncp) is the matrix form of the output signal,
x̂ =

[
x̂0, x̂1, . . . , x̂Np−1

]
∈ CNt×Np(Nsc+Ncp) and x =[

x0, x1, . . . , xNp−1

]
∈ CNt×Np(Nsc+Ncp) are the concatena-

tion of the output signal matrices and target transmit signal
matrices, respectively. In the training period, the concatenated
vector zn(t) is recorded and forms the following matrix:

Zn = [zn(0),zn(1),. . .,zn(Ncp+Nsc − 1)]∈C(Nn+Nr)×(Ncp+Nsc),

(7)

Z =
[
Z0, Z1, . . . , ZNp−1

]
∈ C(Nn+Nr)×Np(Ncp+Nsc). (8)

If fout(·) is set as the identity function, the weights are updated
by the least square solution

Ŵ out = xZ†, (9)

where Z† is the Moore-Penrose pseudo inverse of Z.
At the training time, a delay parameter d will be learned to

compensate for the lag-effect caused by the feedback nature
of RC. The training dataset with delay d can be re-written as

D(d)
rc !

([
y0,y1,. . .,yNp−1,0Nr×d

]
,
[
0Nt×d,x0,x1,. . .,xNp−1

])
,

(10)

where 0 denotes the zero matrix. The objective function can
then be written as

d̂, Ŵ out = arg min
d

arg min
W out

‖x̂′ − x′‖2
F , (11)

where x′ is the target transmit signal with zero inserted, and
x̂′ stands for the RC output when reading in received signal
with zero inserted.

Following the training procedure in [14], the RC is trained
with different values of d in the range of [0, Ncp] with a step
size of p. The optimal delay d̂ is determined by finding the
value d that generates the minimal object value defined in
eq. (6). As discussed in [12], utilizing a sliding window when
processing the input signal can further increase the short-term
memory capacity of ESN. Following this work, we adopt a
sliding window with length Nw to process the input data.
Specifically, the input to the ESN includes both the current
tth sample and also the previous samples from t − Nw + 1
to t− 1. More detailed discussions have been provided in our
previous work [12], [14].

In summary, as shown in our previous work on symbol
detection for MIMO-OFDM systems, RC can effectively
decouple corresponding data streams and equalize the received
signals in the time domain [11]–[15].

B. Frequency Domain: Structure-Based Neural Network

The novel ingredient of RC-Struct comes in the frequency
domain. We introduce the structure-based NN, which leverages
the time-frequency structure of the OFDM waveform as well
as the repetitive structure of the modulation constellation.
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The RC in the time domain and the classifier in the
frequency domain are trained separately. The output weights
of RC are first learned through the closed-form least square
solution. After the training of RC, we obtain the RC output
x̂n by processing the time domain received signal yn with
the trained RC. The input to the frequency domain classifier
is X̂n ∈ CNt×Nsc , which is the FFT of the RC output x̂n. The
training data of the frequency domain network is the RC output
in the frequency domain X̂n and the transmitted symbols in
the frequency domain Xn.

As the introduced approach works the same for all the
transmitted symbols, we drop the index n in the following
analysis for ease of discussion. Since RC has decoupled the
data streams, the underlying relationship between the output
of RC and the transmitted symbols in the frequency domain
can be represented as

x̂nt,nsc = hnt,nscxnt,nsc + gnt,nsc , (12)

where x̂nt,nsc and xnt,nsc are the (nt, nsc)th entry of the X̂n

and Xn, respectively; hnt,nsc represents the effective channel
coefficients after RC-based time decoupling and equalization;
gnt,nsc is the additive noise after the processing of RC.
By transforming the complex values into real values, we have

int,nsc = h̃
nt,nsc

r ont,nsc
r + h̃

nt,nsc

im ont,nsc
im + g̃nt,nsc , (13)

where

int,nsc=
[
${̂xnt,nsc}
%{̂xnt,nsc}

]
, ont,nsc

r =${xnt,nsc}, ont,nsc
im =%{xnt,nsc},

and

h̃
nt,nsc

r =
[
${hnt,nsc}
%{hnt,nsc}

]
, h̃

nt,nsc

im =
[
−%{hnt,nsc}
${hnt,nsc}

]
.

Note that the value of ont,nsc
r and ont,nsc

im are in the set of C =
{−2K − 1,−2K + 1, . . . , +2K − 1, +2K + 1} for M -QAM
(M ∈ {4, 16, 64, . . .}), where K =

√
M−2
2 . Specifically,

for QPSK, the class set is {−1, +1}. The symbol detection
task can thus be formulated as a classification problem in
the frequency domain. For simplicity, we focus on discussing
the real-value part. But the same conclusion holds for the
imaginary part by replacing ônt,nsc

r with ônt,nsc
im and h̃

nt,nsc

r

with h̃
nt,nsc

im .
1) Network Architecture: Due to the repetitive structure of

the modulation constellation, we observe that

P{ônt,nsc
r = ont,nsc

r |int,nsc}
= P{ônt,nsc

r = +1|int,nsc + (−ont,nsc
r + 1)

·h̃
nt,nsc

r }, (14)

P{ônt,nsc
r = ont,nsc

r |int,nsc}
= P{ônt,nsc

r = −1|int,nsc + (−ont,nsc
r − 1)

·h̃
nt,nsc

r }, (15)

where ônt,nsc
r is the estimated real-value part of the transmitted

symbol. The observation indicates that the multi-class detec-
tion can be transformed into a binary classification between +1
and −1 by shifting int,nsc with either (−ont,nsc

r + 1) · h̃
nt,nsc

r

or (−ont,nsc
r − 1) · h̃

nt,nsc

r . We name the −ont,nsc
r + 1 and

−ont,nsc
r − 1 as the shifting parameter.

We leverage these properties to construct the network in
the frequency domain. Due to the repetitive structure of the
modulation constellation points, the multi-class classification
for M -QAM can be divided into several binary classification
processes through a shifting process. Thus, the network only
consists of a binary classifier. The shifting process is con-
ducted by utilizing the effective CSI between the RC processed
signal and transmit signal. Since the perfect CSI is unknown,
the effective channel is estimated through LMMSE, which
is denoted as ĥ

nt,nsc

r . In Fig. 2, we show an example when
the network is detecting the real-value part of the transmitted
symbols modulated in 16-QAM.

2) Training Process: Denote the shifting parameter as
snt,nsc

r . At the training time, the input to the classifier is
int,nsc +snt,nsc

r ĥ
nt,nsc

r , where snt,nsc
r is either −ont,nsc

r +1 or
−ont,nsc

r − 1. When snt,nsc
r = −ont,nsc

r + 1, the binary label
for the input is bnt,nsc

r = +1. When snt,nsc
r = −ont,nsc

r − 1,
the binary label for the input is bnt,nsc

r = −1. Due to
this unique process of generating training labels, one pair
of data (int,nsc , ont,nsc

r ) can be used to construct two binary
training samples, making the network exploit training data
more efficiently.

The binary classifier consists of two linear layers and
a non-linear function between the two layers. If the esti-
mated binary label is represented as b̂nt,nsc

r , then the func-
tion approximated by the binary classifier can be written as
fnt,nsc(b̂nt,nsc

r ; int,nsc + snt,nsc
r ĥ

nt,nsc

r ).
3) Testing Process: At the testing time, the input int,nsc

is tested with all the possible shifting parameters in the set
S = {−2K,−2K + 2, . . . , 2K − 2, 2K}. When transmitted
with QPSK, K = 0 and the set is S = {0}. Following the
eq. (14) and eq. (15), the estimated pairwise likelihood ratio
for classes in set C can be obtained by

Pnt,nsc{ônt,nsc
r = −2k + 1|int,nsc}

Pnt,nsc{ô
nt,nsc
r = −2k − 1|int,nsc}

=
fnt,nsc(b̂nt,nsc

r = +1; int,nsc + 2k · ĥ
nt,nsc

r )
fnt,nsc(b̂

nt,nsc
r = −1; int,nsc + 2k · ĥ

nt,nsc

r )
, (16)

where k = −K,−K+1, . . . , +K is the index of each shifting
parameter. For ease of discussion, we denote the likelihood
ratio as

L+−(int,nsc + 2k · ĥ
nt,nsc

r )

:=
fnt,nsc(ônt,nsc

r = +1; int,nsc + 2k · ĥ
nt,nsc

r )
fnt,nsc(ô

nt,nsc
r = −1; int,nsc + 2k · ĥ

nt,nsc

r )
. (17)

Then the eq. (16) can be expressed as

Pnt,nsc{ônt,nsc
r =−2k+1|int,nsc}

Pnt,nsc{ô
nt,nsc
r =−2k−1|int,nsc}

=L+−(int,nsc +2k · ĥ
nt,nsc

r ).
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TABLE II

COMPLEXITY COMPARISON

By collecting all the pairwise likelihood ratios, the posterior
marginal estimation of each class can be written as

P{ônt,nsc
r

=−2k+1|int,nsc}
= P{ônt,nsc

r =−2K−1|int,nsc}

×
K∏

k′=k

L+−(int,nsc+2k′ · ĥ
nt,nsc

r ), (18)

where we assume constant probability P{ônt,nsc
r = −2K −

1|int,nsc}. The final class is chosen as the class that has the
maximum probability.

C. Complexity Analysis

In our previous work [12], [14], [29], we have shown that
our RC-based approaches have less computation complexity
than the LMMSE method when the number of subcarriers is
large. As the complexity comparison with conventional meth-
ods has been detailed discussed in our previous work, we focus
on the complexity comparison between RCNet [14] and the
introduced RC-Struct. Since the costs for matrix addition
and element-wise operation are negligible compared with the
matrix multiplication and pseudo-inverse operation, we mainly
consider the computation cost of the matrix multiplication
and pseudo-inverse operation. Note that the complexity for
the multiplication of a m × n matrix and a n × k matrix is
O(mnk), and the complexity for pseudo-inverse of a m × n
matrix (m ≤ n) is O(mn2) when it is implemented by single
value decomposition.

Denote the number of training samples in the time domain
as Ntrain = (Ncp + Nsc)Np and the number of testing
samples in the time domain as Ntest = (Ncp + Nsc)Nd.
For simplicity, the complexity of the delay learning process
and the sliding window process are ignored here, as they
do not change the order of magnitude of the complexity.
The training complexity for RC is the sum of the state
update complexity O((Nn + Nr)NnNtrain) and Ŵ out esti-
mation complexity O(N2

train(Nn + Nr) + NtNtrain(Nn +
Nr)). Therefore, the training complexity for RC is O((Nn +
Ntrain + Nt)(Nn + Nr)Ntrain). At testing time, the forward
pass includes state update process in eq. (4) and the output
estimation process in eq. (5). Thus, the testing complexity
for RC is O((Nn + Nr)(NnNtest + Nt)). In RCNet, as V
layers of RC are cascaded, the total training and testing
complexity are O(V (Nn +Ntrain+Nt)(Nn +Nr)Ntrain) and
O(V (Nn + Nr)(NnNtest + Nt)).

As the RC-Struct builds on top of RCNet, it shares the same
complexity as RCNet in the time domain. In the frequency

domain, the binary classifier with two linear layers is adopted
for classification. Suppose the number of neurons in the first
layer is Nh. As the input size to the first layer is 2, the
complexity for passing the first layer is O(2Nh) per input
sample. As the classifier only has two classes, the number
of neurons in the second layer is 2. Then the complexity for
passing the second layer is also O(2Nh) per input sample.
Therefore, the complexity for inferring the binary classifier
is O(4Nh) per input sample. At training time, the number
of training samples is 2NtNscNp, as one pair of data can
construct two binary training samples. If the number of
training epochs is set as Nep, then the training complexity
is O(8NhNtNscNpNep). The number of testing samples is
NtNscNd. The testing complexity is O(4NhNtNscNd). The
total complexity of RC-Struct is calculated by the sum of the
complexity in the time domain and frequency domain.

In Tab. II, we summarized the training and testing com-
plexities for both methods. As shown in the table, RC-Struct
has higher training and testing complexity than RCNet due
to its extra network in the frequency domain. However, the
complexity of RC-Struct and RCNet are still in the same order
of magnitude.

V. PERFORMANCE EVALUATION

A. Experimental Setting

This section conducts the performance evaluation of the
introduced RC-Struct for symbol detection in MIMO-OFDM
systems. A typical MIMO-OFDM system with Nt = 4
transmit antennas and Nr = 4 receive antennas will be
investigated. Without adaptation in the transmission mode, the
system will conduct a fixed rank 4 transmission with a fixed
modulation of 16-QAM. Gray coding is adopted for constella-
tion mapping. This is the typical evaluation scenario that has
been conducted in the majority of NN-based symbol detec-
tion papers. However, it is important to note that in reality,
5G/5G-Advanced systems adopt a much more dynamic trans-
mission operation where link adaptation and rank adaptation
are done on a millisecond basis [30]. Other system parameters
in the evaluation are configured as Nsc = 1024, Ncp =
160, Np = 4, Nd = 16, N = 20. The training overhead of
the underlying system is 20% as opposed to other learning-
based methods that require a prohibitively large training set.
Meanwhile, it also complies with the pilot occupancy require-
ment specified in the 3GPP LTE/LTE-Advanced and 5G NR
systems [7]. For simplicity, the first Np OFDM symbols of
each subframe are set to be pilot symbols, while the rest
Nd OFDM symbols are set to be data symbols, as shown in
Fig. 1. The pilot symbols are randomly chosen from the QAM
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constellation. It is important to note that similar to our previous
work [12], RC-Struct can be readily extended to scattered
pilot patterns where the training overhead can be significantly
reduced. The channel coefficients are generated using the
QuaDRiGa channel simulator [31] following the 3GPP 3D
MIMO model defined in [32]. In this paper, we focus on the
scenario when users are in low mobilities. To be specific, the
user speed for generating the channel is set as 5 km/h. Our
work on high mobility users can be found in [33].

The RC used in the experiments has Nn = 16 neurons
and the input window length is Nw = 128. The step size for
searching the optimal delay parameter is set as p = 5. Follow-
ing RCNet, two cascaded RC are adopted in the time domain.
In the frequency domain, the binary classifier consists of two
linear layers, each of which has 128 neurons. The two layers
are connected with hyperbolic tangent non-linear function.
The weights of the hidden layers are initialized with Xavier
weight initialization [34]. The network is updated with SGD
methods with the learning rate of 0.01 and the momentum
of 0.001. The underlying network is trained for 800 epochs.
During training, seven resource block groups (RBGs), each
of which consists of 12 subcarriers, are combined together
to train a single classification network in order to reduce the
computation complexity.

In our experiments, we compare our RC-Struct with
state-of-the-art learning algorithms: RCNet and MMNet.
For conventional model-based signal processing strategies,
we focus on the popular LMMSE-based and sphere decoding-
based algorithms. Overall, the compared schemes include:
(1) LMMSE+LMMSE-CSI : The linear decoder that exploits
the LMMSE-based symbol detector with the LMMSE-based
estimated CSI; (2) SD+LMMSE-CSI : The sphere decoding-
based method for symbol detection using the LMMSE-
based estimated CSI [35]; (3) MMNet: The MMNet network
designed for symbol detection under arbitrary channel matrices
using the LMMSE-based estimated CSI [6]. To achieve the
best performance, we adopt the offline setting in [6] and
train the network for each subcarrier with 500 iterations.
Note that the network for each subcarrier has trained for
1000 iterations in [6]. However, as we have 1024 subcarriers,
it is time-consuming to train the network for each subcarrier
with 1000 iterations. Moreover, we observe that the training
BER does not change anymore after 500 iterations and thus
choose to train for 500 iterations to avoid possible overfitting;
(4) RCNet: The RC-based approach with 2 cascaded RC in
time domain [14]. All the parameters are set the same as the
time domain RC in RC-Struct; (5) RC-Struct: The introduced
method with LMMSE-based estimated shifting parameters.
We notice that initializing MMNet with pre-trained offline
weights can lead to better performance than training from
scratch. However, when dynamic link adaptation and/or rank
adaptation are adopted, it is almost impossible to initialize
the network with pre-trained weights due to the underly-
ing model mismatch. Since this paper focuses on realistic
5G/5G-Advanced transmission operations with dynamic rank
and link adaptation, we do not incorporate the results for
MMNet with pre-trained weights.

Fig. 4. Comparison of BER in the linear region.

B. Key Performance Indicators (KPI) / Performance Metrics

In this paper, we use BER as the key performance indicator
(KPI) / evaluation metric when no adaptation is applied.
When link and rank adaptations are adopted, BER along
is not suitable as the KPI since it neglects the order of
different modulation as well as the rank of the transmission.
Accordingly, we adopt the RawBER as the KPI / metric to
evaluate the underlying system performance [36] so that data
streams with different modulation orders will be factored in
the performance evaluation. To be specific, the RawBER is
defined as

RawBER =
∑Nds

j=1 bjBERj
∑Nds

j=1 bj

, (19)

where Nds is the number of data streams, bj is the number
of bits per symbol and BERj is the BER of the detector on
the jth data stream. Note that RawBER is equivalent to BER
if all streams are modulated with the same modulation order.
The performance evaluation is discussed with the plot of BER
or RawBER versus signal to noise ratio in terms of Eb/No

in the dB scale, where each BER point or RawBER point is
tested with 100 subframes.

C. Comparison With the State-of-Art Detection Strategies

To evaluate the performance under the task of symbol detec-
tion, we first compare RC-Struct with different approaches in
terms of the BER without transmission adaptation.

In Fig. 4, we show the BER as a function of Eb/No

for various symbol detection methods. As indicated from
the results, both RC-based methods achieve better symbol
detection performance compared with conventional model-
based methods, which highlights the effectiveness of RC-based
schemes in the linear region of the channel. As the inaccurate
LMMSE channel estimation in the low Eb/No regime affects
the performance of SD, the SD method is shown to have close
performance with the LMMSE detection approach. In addition,
RC-Struct is shown to outperform RCNet across all evaluated
Eb/No values. This is because the equalization after RC works
as the nearest neighbor detector. RC-Struct, instead, works as
a non-linear detector, making it better to classify the data.
We will discuss this with more details in Section V-E.
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Fig. 5. Comparison of BER in the non-linear region.

While MMNet has shown impressive performance in [6],
it is noteworthy that 500 pilot symbols with perfect CSIs are
utilized for the underlying training, which is different from the
online setup used in this paper. In this paper, we conduct the
detection subframe by subframe, which is an online over-the-
air scenario. The number of pilot symbols is set as 4 per
subframe, which is far less than the setting in [6]. Note that
the total number of trainable parameters in MMNet is around
40K, while the number of trainable parameters in RC-Struct
is around 7K. As MMNet has more learnable weights, it is
shown to be less effective than RC-Struct when learned with
only a limited number of training data, as shown in Fig. 4.
In addition, the BER of MMNet does not improve much as
Eb/No increases. As a large number of weights need to be
learned, the MMNet is more likely to suffer from overfitting
in the high Eb/No regime when the training data is limited.

D. Comparison of Strategies Under System Non-Linearity

To investigate the performance of the approaches under
system non-linearity, we incorporate the following PA model
in the evaluation [37]:

φ(x) =
x

[
1 +

(
|x|
xsat

)2ρ
]0.5ρ , (20)

where x is the input transmission signal, ρ represents the
smoothing parameter, and xsat measures the saturation level.
The function indicates that when |x| ( xsat, the φ(x) is
approximately equal to x, which forms the linear region
without distortion. When it comes to the region where x
approximates xsat, the function becomes non-linear and the
input signal is distorted. In a nutshell, the distortion occurs
when the peak-to-average-power-ratio (PAPR) of the input
signal is higher than the input back-off (IBO), where the IBO
is the ratio between PA’s saturation power to the input power.
In this paper, the parameters are set as xsat = 1 and ρ = 3.
As PAPR is controlled in the range of 6 dB to 9 dB, the non-
linear region is chosen by setting IBO smaller than 6.5 dB.

In Fig. 5, we compare BER for different approaches when
PA non-linear distortion occurs. Fig. 5 demonstrates that the
RC-based approaches can effectively combat the non-linearity
of the PA. The RC-Struct continues showing advantages over
all other methods. In the low IBO regime, the performance

Fig. 6. Constellation classification for the RC processed received symbols
at Eb/No = 15 dB with 16-QAM modulation. (a) Colored with ground
truth labels (b) Colored with RC equalized labels (c) Colored with RC-Struct
predicted labels.

gap between RC-Struct and RCNet becomes smaller. This is
because the low IBO makes the transmitted signal severely
distorted, which affects the LMMSE-based shifting parame-
ter and results in the poor performance of RC-Struct. The
MMNet collapses as it models system without non-linearity
and is affected by inaccurate LMMSE-based CSI in non-linear
region.

E. Effectiveness of Structure-Based Neural Network

In this section, we discuss the effectiveness of the clas-
sification network in the frequency domain and analyze the
performance comparison with more details. For ease of dis-
cussion, we choose to analyze the classification results with
16-QAM modulation at 15 dB and 5 dB Eb/No for the 4× 4
MIMO-OFDM system without rank and link adaptation. Note
that RCNet processes the received signals with the RC-based
time domain data-stream decoupling and equalization, follow-
ing with a frequency domain nearest-neighbor classification.
RC-Struct replaces the nearest-neighbor classification with a
frequency domain structure-based NN.

In Fig. 6 (a), we show the signal constellation of the fre-
quency domain received symbols after RC-based time domain
data-stream decoupling and equalization. Each color in the
plot represents a particular constellation class (16 constellation
classes in total) and the cross-marks represent the original
position of the transmitted signal constellation point. Fig. 6 (b)
shows the frequency domain decision boundary of RCNet after
RC-based decoupling and equalization in the time domain
and nearest-neighbor classifier in the frequency domain. The
nearest-neighbor method classifies the received signal constel-
lation to the closest transmitted signal constellation. Compar-
ing Fig. 6 (a) and (b), we can see that the ground truth labels
for the received symbols are not necessarily scattered in the
nearest region of the corresponding transmitted constellation
point and there are still noise within the received symbols.
By applying the frequency domain NN, RC-Struct introduces
non-linear decision boundaries in the classification processes,
as shown in Fig. 6 (c). Although the decision boundaries
are still not perfectly aligned with the ground truth decision
boundaries, introducing more non-linearity in the classifier has
made the decision boundaries closer to the ground truth ones.

When the Eb/No decreases to 5 dB, the equalized received
signals are noisier as shown in Fig. 7 (a). It is clear that
received symbols cannot be well separated by the linear
boundaries, leading to a poor performance of RCNet where
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Fig. 7. Constellation classification for the RC processed received symbols
at Eb/No = 5 dB with 16-QAM modulation. (a) Colored with ground
truth labels (b) Colored with RC equalized labels (c) Colored with RC-Struct
predicted labels.

Fig. 8. Histogram of channel condition number. (a) before rank adaptation.
(b) after rank adaptation.

the decision boundary between classes is linear. As exhibited
in Fig. 7 (c), RC-Struct learns more noise-tolerable boundary
lines to separate data and is shown to be more effective
than the linear separation of RCNet in Fig. 4. However, both
methods are affected by the noise in the low Eb/No regime,
resulting in high BER performance.

F. Performance Comparison With Transmission Adaptation

Due to the channel variation and user mobility, the con-
dition number of the underlying MIMO channel in a mobile
broadband network such as 4G and 5G/5G-Advanced is also
changing rapidly. Transmitting with full rank and fixed mod-
ulation constellations will result in poor system performance.
In Fig. 8, we show the channel condition numbers before and
after rank adaptation for a duration of 100 milliseconds of
a 3GPP 3D MIMO channel [32]. Without rank adaptation,
the condition number is calculated as the ratio of the largest
singular value of the MIMO channel in the frequency domain
to its smallest singular value. With rank adaptation, the con-
dition number is calculated based on the effective MIMO
channel after precoding. As shown in Fig. 8, without rank
adaptation, most of the MIMO channels have a relatively
high condition number. However, after rank adaptation, the
underlying effective MIMO channels have much smaller con-
dition numbers. This is the reason why all detection strategies
presented in Fig. 4 are shown to have higher BERs, when
MIMO transmission adaptation is not adopted. In fact, this is
also why link adaptation and rank adaptation are introduced
in 4G and 5G/5G-Advanced networks as important features to
support MIMO communications [30].

In this section, we analyze the performance of various
symbol detection methods under link and rank adaptation.
It is important to note that this is a critical step to evaluate

the promise of NN-based symbol detection in realistic and
meaningful mobile broadband networks. To demonstrate the
effectiveness of link adaptation and rank adaptation, we pro-
vide performance analysis when link adaptation and rank
adaptation are utilized separately. We can show that our
RC-based approaches preserve their advantages in all cases as
they do not rely on explicit system modeling. The procedures
of link and rank adaptation are detailed in the Appendix.

In the experiments, we follow current 4G/5G standards to
conduct the corresponding link and rank adaptation. Specif-
ically, the link adaptation will modulate the data streams
using either QPSK, 16-QAM, or 64-QAM following 4G/5G
standards [7]. The modulation order is adjusted in a wide-
band fashion and the reference SINR is referred to [38].
For the rank adaptation, the precoding matrix is obtained by
conducting the singular value decomposition (SVD) of the
LMMSE estimated channel matrix. The rank of the MIMO
transmission is adjusted across all the subcarriers complying
with the wideband-based rank indicator (RI) feedback [39],
and the precoding matrix is applied in a group of subcarri-
ers following the procedure of the subband-based precoding
matrix indicator (PMI) feedback [39]. The sub-band size is set
as 84 subcarriers, which is 7 RBGs. The detailed procedure is
described in the Appendix.

When rank adaptation is conducted, the RawBER for all the
methods decreases compared with the case without utilizing
adaptation, as shown in Fig. 9 (a). Note that in this case,
RawBER is equivalent to BER since link adaptation is not
utilized. RC-Struct continues demonstrating its advantage over
all other methods. These results clearly underline the effective-
ness of RC-Struct in both good and bad channel conditions.
For LMMSE, SD, and MMNet, the RawBER at 3 dB Eb/No is
lower than 6 dB Eb/No. As illustrated in Fig. 10, the channels
at 0 dB and 3 dB Eb/No are all adapted to rank 2, while
those at 6 dB have a high percentage to be adapted to rank 3.
Therefore, the RawBER curve for these three methods from
0 dB to 3 dB Eb/No is decreasing since the adapted rank is the
same, while the curve increases from 3 dB to 6 dB Eb/No as
the channels have a higher percentage to be adapted to higher
ranks. When link adaptation is applied, RC-Struct preserves
its advantage over the other methods, as shown in Fig. 9 (b).

When employing both link and rank adaptation in the
system, the performance of all the methods has been improved,
as shown in Fig. 9 (c). The performance improvement is
because the transmission rank and modulation order are
dynamically adapted, as presented in Fig. 10. The dynamically
adapted rank and modulation order, on the other hand, leads
to the zigzag pattern of the performance curve, as lower
transmission rank and modulation order may be adopted in
lower Eb/No regimes. RC-Struct still achieves the best per-
formance among all the compared methods and demonstrates
its ability to be applied with dynamic transmission modes.
Furthermore, we conducted an experiment when LDPC coding
is adopted with link and rank adaptation at 15 dB Eb/No.
In 3GPP 5G NR [40], the code rate ranges from 0.0762 to
0.9258. In our experiment, the code rate for LDPC coding
is set as 0.3125. Tab. III shows that the BER is 1.84% and
BLER is 6.45% after LDPC. This result demonstrates that

Authorized licensed use limited to: MIT Libraries. Downloaded on August 30,2023 at 17:32:34 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: RC-STRUCT: STRUCTURE-BASED NEURAL NETWORK APPROACH FOR MIMO-OFDM DETECTION 7191

Fig. 9. Comparison of RawBER with adaptation. (a) rank adaptation only. (b) link adaptation only. (c) rank and link adaptation.

Fig. 10. Percentage of adapted rank and capacity for all the tested channels.

TABLE III

PERFORMANCE WHEN ADOPTED LDPC CHANNEL
CODING AT 15 DB Eb/No

RC-Struct can meet the target BLER of 10% as specified in
3GPP 5G NR [40].

Here are the summaries and takeaways for the experiments.
• When no adaptation is applied, RC-Struct outperforms

all existing methods. It is shown to have lower BER than
RCNet, due to its ability to handle non-linear boundaries
in the frequency domain.

• For systems with unknown PA non-linearity, RC-Struct
and RCNet shows relatively large performance gains over
other methods. In the low IBO regime, the performance
gap between RC-Struct and RCNet becomes smaller
since the severely distorted signal negatively affects the
estimation of the shifting parameter.

• When rank adaptation and link adaptation are conducted,
RC-Struct and RCNet can effectively conduct online
learning with extremely limited training symbols to
adjust detection strategies on a subframe-by-subframe
basis. Meanwhile, RC-Struct continues showing advan-
tages over other methods including RCNet. When LDPC
coding is adopted, RC-Struct has a BLER of 6.45%,
which is lower than the target BLER specified in [40].

VI. CONCLUSION

In this paper, we introduced an NN-based symbol detector
for MIMO-OFDM systems, which incorporates the structural

knowledge of the systems, including the temporal dynamics
within the data, the time-frequency structure of the OFDM
waveform, and the repetitive structure of the modulation
constellation. The temporal information is captured by the RC
network in the time domain, while the constellation symmetry
is leveraged by the classifier in the frequency domain. The
network architecture allows the network to be learned with
significantly reduced training overhead and can be applied
with rank adaptation and link adaptation of the underlying
MIMO transmissions. Experiments indicate the effectiveness
of the introduced RC-Struct network and demonstrate the
advantages of incorporating the structure information into the
network under MIMO channels with time-dynamic transmis-
sion modes. Due to the ability to be applied in practical
MIMO operations, RC-Struct provides a promising symbol
detection approach for the MIMO-OFDM system in the
5G/5G-Advanced and Beyond networks.

APPENDIX A
RANK ADAPTATION AND LINK ADAPTATION

A. Rank Adaptation

A key premise of 5G/5G-Advanced system is its ability
to dynamically switch between different ranks to efficiently
exploit the bandwidth for a given channel condition and
improve the performance of the system, since there is no
single mode that works best in all channel conditions [41].
The number of transmitted data streams is referred to as
the transmission rank. We focus on the capacity based rank
adaptation to adjust the rank of the wireless channel.

The precoding process for L data streams transmission can
be represented as Xn(k) = Qn(k)Sn(k), where Qn(k) ∈
CNt×L is the unitary precoding matrix and Sn(k) ∈ CL×1

is the effective transmitted symbols. Suppose the precoding
matrix is Qn(k) = V L

n(k), where V L
n(k) is first L columns

from the unitary matrix V n(k) in the SVD Hn(k) =
Un(k)Λn(k)V n(k)H . The throughput of L data streams
transmission can be written as [42]

CL =
L∑

l=1

log2

(
1 +

Pt

Lσ2
λ2

l

)
, (21)

where Pt is the total transmit power and λl is the lth sin-
gular value in the SVD of Hn(k) with the order of
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λmax = λ1 ≥ · · · ≥ λmin ≥ 0. The rank is adapted to
take the maximum throughput among all the possible L values
(L ≤ Nt).

B. Link Adaptation

In 5G wireless communication network, multiple modula-
tion and coding schemes (MCS) are enabled to transmit with
higher data rates and reliability. The transmitter is expected
to transmit data with a proper MCS according to the channel
conditions. Link adaptation techniques select MCS for wireless
transmission based on the channel quality indicator (CQI)
feedback. In a simple case, the base station (BS) transmits
pilot signals to user equipment (UE) at given OFDM subcar-
rier positions. The UE measures the SINR at each OFDM
subcarrier and calculates an effective SINR using techniques
such as effective exponential SNR mapping (EESM) [43].

The EESM approach has been widely applied to the OFDM
link layers. It maps individual subcarrier SINRs to an effective
SINR with the following equation:

SINReff = −βln

[
1
S

S∑

n=1

e−
SINRn

β

]
, (22)

where SINRn is the nth subcarrier SINR and S represents the
size of the subband. The parameter β is empirically obtained
and is calibrated to fit the model for different MCS level.
The effective SINR is compared with the reference SINR
value and mapped to a CQI value, which indicates the highest
modulation order and code rate for keeping a Packet Error
Rate (PER) below 10% [38]. Once the CQIs are collected by
the base station, it allocates resources for each user.
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