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An Information-Theoretic Approach to
Unsupervised Feature Selection for
High-Dimensional Data

Shao-Lun Huang ~, Member, IEEE, Xiangxiang Xu

Abstract—In this paper, we propose an information-theoretic
approach to design the functional representations to extract the
hidden common structure shared by a set of random vari-
ables. The main idea is to measure the common information
between the random variables by Watanabe’s total correlation,
and then find the hidden attributes of these random variables
such that the common information is reduced the most given these
attributes. We show that these attributes can be characterized
by an exponential family specified by the eigen-decomposition
of some pairwise joint distribution matrix. Then, we adopt the
log-likelihood functions for estimating these attributes as the
desired functional representations of the random variables, and
show that such representations are informative to describe the
common structure. Moreover, we design both the multivariate
alternating conditional expectation (MACE) algorithm to com-
pute the proposed functional representations for discrete data,
and a novel neural network training approach for continuous or
high-dimensional data. Furthermore, we show that our approach
has deep connections to existing techniques, such as Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation, linear principal
component analysis (PCA), and consistent functional map, which
establishes insightful connections between information theory and
machine learning. Finally, the performances of our algorithms are
validated by numerical simulations.

Index Terms—Alternating conditional expectations algorithm,
information geometry, informative representation, total correla-
tion, unsupervised learning.

I. INTRODUCTION

IVEN a set of d discrete random variables X¢ =
(X1,...,Xg) with the (unknown) joint distribution
Pys, and a sequence of observed sample vectors x() =
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Fig. 1. The division of images into 8 x 8 = 64 overlapping subareas. Each
subarea has 6 x 6 pixels, and nearby subareas overlap with 3 pixels.

(xiz), e, x‘(f)) i.i.d. generated from this joint distribution, for
£ = 1,...,n, our goal in this paper is to efficiently and
effectively extract the hidden common information structure
(or simply called common structure) shared by these ran-
dom variables from the observed sample vectors. This is
a typical unsupervised learning problem, and such common
structures can be useful in many machine learning scenarios.
As a motivating example, in the MNIST digits recognition
problem [1], we often divide the images into overlapping sub-
images, such as in Fig. 1, and then train feature functions
on the sub-images for learning the digits. In this problem,
we can view each sub-image as a random variable X;, and
the training images as the observed data vectors. Since these
sub-images are constructed from the written digits, the digit
is the key common information shared by these sub-images.
Therefore, effectively mining the information of the shared
structure among these random variables can be helpful for
recognizing the digits.

In addition, the concept of extracting common structure
shared by multiple random variables or objects has also
appeared or implicitly posted in several disciplines. For
instance, linear principal component analysis (PCA) [2], the
most widely adopted unsupervised learning technique, can
be viewed as resolving a principal direction that conveys
the most common randomness among different dimensions
of data vectors. In addition, the consistent functional map
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network [3]-[5], a recently proposed effective approach in
computer vision, takes each X; as a shape, and aims to find
the shared components among different shapes. The main
issue behind these problems is: how to design good low-
dimensional functions of the random variables X¢, such that
these functional representations are effective to reveal the com-
mon structure among these random variables. This can also be
viewed as the unsupervised dimension reduction problem with
the particular focus on extracting the common information of
random variables. In this paper, our goal is to apply the ideas
from information theory to design good algorithms for finding
such useful functional representations.

Our approach can be delineated in the following steps.
Firstly, we want to identify the targeted random variable U
embedded in the random variables X with some joint distri-
bution P xa, such that U contains much information about the
common structure shared by X¢. For this purpose, we apply
the Watanabe’s total correlation (or simply called the total cor-
relation [6]) to measure the amount of information shared by
multiple random variables, and then find the optimal embed-
ded U such that the reduction of the total correlation given the
knowledge of U is maximized. To extract the effective low-
dimensional features, we restrict the information volume of U
about X1, ..., Xy to be small, so that we can concentrate on the
most “learnable” part of information about the common struc-
tures from the data. We show that in this small information rate
regime of U, the optimal embedded U can be characterized
by an exponential family induced by the largest eigenvector of
a pairwise joint distribution matrix. Then, we apply the log-
likelihood function of estimating U from X, ..., Xy in this
exponential family as the functional representation for extract-
ing the common structure. Since U is informative about the
common structure and the log-likelihood function is the suf-
ficient statistic of the observed data vectors about the target
U, such a functional representation is effective to extract the
common structure shared by these random variables. In addi-
tion, we extend this approach to searching for a sequence of
mutually independent random variables Uk = (Ui, ..., Uy,
such that the reduction of the total correlation is maximized.
It turns out that the log-likelihood functions for estimating U*
precisely correspond to the top k eigenvectors of the pairwise
joint distribution matrix, which establishes a decomposition of
the common information between multiple random variables
to principal modes of the pairwise joint distribution matrix.

Moreover, we demonstrate that these functional representa-
tions can be directly computed from the observed data vectors
by a multivariate alternating conditional expectation (MACE)
algorithm, which generalizes the traditional alternating con-
ditional expectation (ACE) algorithm [7] to more than two
random variables. This offers an efficient and reliable way to
compute useful functional representations from discrete data
variables. Furthermore, for high-dimensional or continuous
data variables such that the conditional expectations are hardly
accurately estimated from the limited data samples, we show
that the functional representations can be computed through
neural networks by optimizing a pairwise correlation loss. This
offers a novel neural network training architecture for jointly
analyzing multi-modal data.

Fig. 2.

The random variables X, ..
generated from some hidden structure W.

., X4 are conditional independently

Finally, we show in Section IV that our approach shares
deep connections and can be viewed as generalizations to
several existing techniques, including the Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation [8], linear PCA, and con-
sistent functional map network. This combines the knowledge
from different domains, and offers a unified understanding for
disciplines in information theory, statistics, and machine learn-
ing. We would also like to mention that the idea of studying
the tradeoff between the total correlation and the common
information rate was also employed in [9], [10] for Gaussian
vectors in caching problems, while our works investigate
this tradeoff for general discrete random variables. Moreover,
the correlation explanation (CorEx) introduced by [11] also
applied the total correlation as the information criterion to
unsupervised learning. In particular, the authors in [11] solved
an optimization problem by restricting the cardinality of U,
and a rather complicated iterative algorithm for discrete data
samples was derived. On the other hand, in this paper we
restrict the information volume contained in U, which is a
more natural constraint in information theory, and we obtain
clean analytical solutions that can be computed on continuous
or high-dimensional data by simple and efficient algorithms.

In the rest of this paper, we introduce the details of
our information theoretic approach for extracting the com-
mon structure via functional representations, and present the
resulted algorithm design, as well as their applications to
practical problems.

II. THE INFORMATION THEORETIC APPROACH

Given discrete random variables X4 = X1, ..., Xz) with
the ranges XA X x ... x X and joint distribution Pya,
we model the common structure shared by these random vari-
ables as a high-dimensional latent variable W, in which the
random variables Xi,..., Xy are conditionally independent
given W, i.e., de‘W = H;.lzlPX”W, as depicted in Fig. 2.
Our goal is to learn this common structure from i.i.d. sam-
ple vectors generated from Pya. Since the correlation between
W and X;’s is generally complicated, it is difficult to directly
identify and learn the structures of W without the labels
and assumptions on the generating models of X;’s as in the
unsupervised learning scenarios. Therefore, instead of iden-
tifying the high-dimensional latent variable W, we focus on
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learning the low-dimensional random variable U that contains
much common information shared between X;’s, which can be
viewed as the informative attribute for the common structure.
To identify such variable, we apply the total correlation! [6]
to measure the amount of common information shared between
multiple random variables. Then, the amount of information
that an attribute U contains about the common structure shared
by the random variables X;’s is measured by the reduction of
the total correlation given the knowledge of U, defined as

LX!|U) £ D(PxallPx, - - Px,) — D(PxallPx, - - - Px,|U).

(D

Our goal is to identify the targeted random variable U with the
information rate constraint? [ (U, Xd) < §, for some given 4,
such that the reduction of the total correlation is maximized.
This can be formulated as the optimization problem:

max LX4|U) (2a)
Pyxd
subject to: I(U; Xd) <. (2b)

In particular, we would like to focus on the low-rate regime
of U, which assumes § to be small. This allows us to con-
centrate on the most representative low-dimensional attribute
for describing the common structure. In addition, we make an
extra constraint that

H}linPU(u) >y, 3

for some finite y > O irrelevant to §, which is natural
for many machine learning problems. While the optimization
problem (2) in general has no analytical solution, in the regime
of small &, it can be solved by a local information geometric
approach, in which the optimal solutions can be specified by
the eigen-decomposition of some pairwise joint distribution
matrix.

A. The Local Information Geometry

To delineate our approach and results, we define the matrix
B from the pairwise joint distributions as

Iy B2 B
By Ip - By

B=| . ) ) . 4
Bs Ba L

where I(;) are |X;| x |&;| identity matrices, for all i, and B;; are
(IX;| x |A&j])-dimensional matrices with the entry in the x;-th
row and x;-th column defined as, for all i # j,

Pxx; (xi, x})

VPx; (i) /P, ()

ISpeciﬁcally, for random variables X1, ..., Xy, the total correlation is
defined as the Kullback-Leibler (K-L) divergence D(Px,...x,lIPx, - Px,)
between the joint distribution and the product of the marginal distributions.

2Note that (U, Xd) measures the amount of information of U about the
whole X?, while E(XdlU) measures the amount of information only about
the common structure. The constraint I(U; Xd) < § allows us to focus on
low-dimensional attribute of W, in which we typically choose § to be small.

Bij(xi; xj) =

The eigen-decomposition of the matrix B has the following
properties.

Lemma 1: Let the eigenvalues and eigenvectors of the
matrix B be 2@ > 2 > .. > )= apg
10(0), 1/1(1), ...,w(’"—l), respectively, where m £ Z?:l | X
is the dimensionality of B. In addition, let v; be the |Aj|-
dimensional vector such that v;(x;) = \/Px;(x;), then

1) B is a positive semidefinite matrix, i.e., Am=D >

2) The largest eigenvalue () = d with the corresponding

eigenvector 1/f(0) = ﬁ[v?, el vg]T.
3) The second largest eigenvalue A(D > 1.
4) The last d—1 eigenvalues A" ~4+D = ... = 1(m=D =,
and the subspace of the corresponding d— 1 eigenvectors
is spanned by the vectors ¥ = [alv]T, o ozdvg]T, such

that the scalars ¢;’s satisfy 27:1 a; =0.
5) For each 1 < ¢ < m—d, if we partition the correspond-
1n§ eigenvector 1ﬁ(£) into |Xj;|-dimensional subvectors

, such that

©
v
vO=1 5)
©
d

then 1/}1“) is orthogonal to v;, for all i.

Proof: See Appendix A. ~ |
It will also be convenient to define the matrix B:
- T
B2B-4. ,/,(O) (Wﬁ(O)) . 6)
Then from Lemma 1, the eigenvalues of B are A(D > 0>

Am=d) > — p(m=d+) — . — ) 0m) with the corresponding
eigenvectors 1/f(1), ...,1//(’"_1), w(o). Moreover, we define a

collection of functions fl-(l) X~ Ras

W,-(E) (x;)
VPx.(xi)

where wl@ is the i-th subvector of ¥® as defined in (5).
Then, it follows from Lemma 1 and (7) that £ (X;)’s are zero-
mean functions and Z?:l IE[(fi(e) (X;))?] = 1. In addition, these
functions induce an exponential family of joint distributions
for U, X4,

Definition 1: Let H be the set of functions 4 : U — R with
zero mean and unit variance. Then, an exponential family Pexp

on U, X4 is defined as

790 = for all i, £, )

pty = {Sruor(<)
h(u)

X exp( ot Zf(]) l)) :heH},

where Z is the normalizing factor.

Note that this also defines a family of random variables
U embedded in Xd corresponding to the collection of dis-
tributions in Pexp It turns out that this exponential family
characterizes the optimal solution of (2) in the regime of small
8, which is demonstrated as follows.
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Theorem 1: The optimal value of (2a) is

a(x(” —

which is attainable by the distributions in Pexp Moreover, for
any distribution Py ya achieving (8), there exists a distribution
13de € Pé%, such that for all (u, x4) € U x X4,

‘PUXd (u, xd> — ﬁUXd (u, xd)‘ = 0(\/3).

Proof: See Appendix B. [ |

From Theorem 1, the family of random variables U embed-
ded in X¢ defined by Péif) is the set of attributes that contain
the most amount of information about the common struc-
ture shared by X?. To extract such information from data, we
consider the log-likelihood function to estimate U from X

maxﬁ(XdlU) =

uxd

1) +0(), (8)

Py (x9) «/_h(u) OF
Pl = i Zf () +0(v5).

Although the log-likelihood functions for different U = u in
the exponential family Pe(il), may have different magnitudes due
to h(u), all of them are proportional to the functional represen-
tation Zle fi(l)(x,-) of the data vectors. This can be interpreted
as the 1-dimensional subspace of the functional space of X¢
that is the most informative about the shared structure. This
is similar to what linear PCA [2] aims to achieve in the space
of data, while we are searching for the optimal subspace of
the general functional space. Later on we will show that our
result is indeed a nonlinear generalization of linear PCA.

In addition, note that ¥V is the second largest eigenvec-
tor of B, which maximizes ¥ By over all unit vectors ¥
that are orthogonal to 1/I(O). This implies that the functions
fi(l) (X;) defined from (7) form the optimal solution of the joint
correlation optimization problem:

D fiXfi(X;)
Kz
subject to: E[f;(X;)] =0,

r d
E fo(X,)]:l, i=1,....d.

Li=1

i=1,...,d

Therefore, the functional representation fi(l)(X,-) essentially
searches for a 1-dimensional subspace for each functional
space of Xj, such that the joint correlation between these
subspaces is maximized. As a consequence, these subspaces
and the corresponding functional representations convey much
information about the common structure shared among these
random variables.

B. The Informative k-Dimensional Attributes

In addition to the largest eigenvector 1/r(1), the rest eigenvec-
tors of B essentially lead to functional representations, which
correspond to informative k-dimensional attributes for the
common structure. To show that, we consider the optimization

problem3 for k-dimensional attribute U¥ = Wy, ..., Up):

max £(Xd|Uk), (10)

Pykxd
where £(X?|U¥) is as defined in (1), and the maximization
is over all joint distributions Py« such that the constituent
variables U; with ranges U;, for i = 1, ..., k, satisfy: 1) § >

I(U;; X9 > > I(Ui: X%); 2) mingqy, Py,(wi) > y
for all i = 1,...,d and some constant y > 0 indepen-
dent of §; 3) Uy, ..., Uy are mutually independent variables;
4) Uy, ..., Uy are conditionally independent variables given

x4,
To solve the optimization problem (10), we define the
following exponential family for k-dimensional attributes.
Definition 2: Let H; be the set of functions &; : U; —> R
with zero mean and umt variance, for i = 1, , k. Then, an
exponential family Pexp ¢ on Uk, x4 is deﬁned as

k
PY = Zik HPU,.(W) de(xd)
=
qu o)
X exp x/_Zhg(ug)Z Zf (i)
=1

: hﬁ € HZ» Q = [qij]koxkov QTQ = Iko y

where fi@ (x;) is as defined in (7), Z is the normalizing factor,
ko = min{k, k*} and
[ max{i AL 1}.

Then, the exponential family Péil))) ¢ Characterizes the
optimal solutions of (10).
Theorem 2: The optimal value of (10) is

ko
max L(Xd|U"> =53 20—k | +0d). (D

Pykxd =1
which is attainable by the distributions in P(s) Moreover,

for any distribution Py« achieving (11), there ex1sts a distri-
bution Pkad € PGXI)) > such that for all (uk, xd) el x -+ X
U x X d

‘PUkXd (uk, xd> - f’UkXd (uk, xd)’ = 0(\/5).

Proof: See Appendix C. |
Note that from Definition 2 and Theorem 2, when k > k*,
the optimal solution is to design P+ ya to follow the distribu-
tions in Pexp > and let the last k—k* attributes Ugs41, ..., Ug

3For comparison, CorEx [11] selected the attributes (Uy,..., Up)
by considering the optimization problem for given cardinalities of U;
(see [11, eq. (4)]):

k
max Z E(XG IU,)
XG PUi‘XG i=l1,..., izl !
where {Xg,, ..., Xg, } is required to form a partition of {Xp, ..., Xa}.
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be independent of X¢. This implies that only the top k*
attributes can effectively reduce the total conditional corre-
lation, which leads to an intrinsic criterion for designing the
dimensionality k of the attributes.

Moreover from Definition 2, the log-likelihood functions for
the optimal attributes correspond to the functional representa-
tions Zflzl fi(e)(xi), for £ =1, ..., k. This generalizes (9) for
providing the informative k-dimensional representations about
the common structure shared by Xi, ..., Xy. Furthermore, it
is shown in Appendix D that the functions fi(e) as defined
in (7) form the optimal solution of the following optimization
problem:

max E ToxX)Hf.(X; 12a
f. 0 XioRE, i=1,...d ;Z’( I)ZJ( ) (122)
subject to : E[j_fl,(X,-)] —0, foralli  (12b)

d
E[Z[@)ﬁ(&)} =L. (12)
i=1

where Iy is the k-dimensional identity matrix. Therefore for
1,...,d, the functional representations f,.(()(Xl-),E =
1,...,k, form the k-dimensional functional subspace of X;,
such that the joint correlation between these subspaces for
different X;’s is maximized.

Example 1 (Common Bits Patterns Extraction):
Suppose that b1, ..., b, € {1, —1} are mutually independent
Bern(%) bits, and each random variable X; = b7, = (bj)jez; 1s
a subset of these random bits, where Z; C {1, ..., r} denotes
the index set. Then, our information theoretic approach
essentially extracts the bit patterns that appear the most
among the random variables X¢. To show that, we define
w(Z) as the number of sets Z; (i = 1, ..., d) that include Z,
ie

I =

d
w@) £ ) ez (13)
i=1
In addition, we denote & = Jy, ..., Jor—1 as the 2" subsets
of {1, ..., r} with the decreasing order d = w(Jp) > w(J1) >
- > w(J2r—1). Then, it is shown in Appendix E that the
eigenvalues for the corresponding matrix B are

A =w(T), €=0,....m—1. (14)

where m = Zfl: 1 2%l s the dimensionality of B. Therefore,
the eigenvalue A(©) of the matrix B essentially counts the num-
ber of times the corresponding bits pattern b 7, appears among
the random variables X¢, and the largest eigenvalue indicates
the most appeared bits pattern. Moreover for A() > 0, the
corresponding functions fl-(g)(X,-) (i =1,...,d) as defined
in (7) are

1 . '
%) = l Nows) [lieg, b if Je C I
l
0

otherwise.

5)

4We adopt the Kronecker notation

]lA:!l A is true

0 otherwise.

Thus, the ¢-th optimal functional representation of X? (see
Section II-B) is

d

SO = Vwdo [ by

i=1 jeJe
which depends only on the bits indexed by ;. For instance,
if r=d =3, and X| = {b1, b2}, Xs = {by, b3}, and X3 =
{b1, b3}, then for all subsets of {1, 2,3}, the values for the
function w(-) as defined in (13) are
w(@) =3, w({lh =w({2}) =w{3} =2,
w({l,2}) =w({2,3) =w({3,1) =1, w({l,2,3}) =0.

Therefore, the corresponding eigenvalues of B are

A =@ =3 — 2,
1D =o.

A0 =3,
A@ =G =6 1,
Moreover, the corresponding fi(g) (X;)’s satisfy

3
Y FOX) =V2b, £=1,2,3,

i=1

and
3 , biby £=4
YAy = babs £=5
i=1 b3b1 {=6.

III. THE ALGORITHM TO COMPUTE THE FUNCTIONAL
REPRESENTATION FROM DATA

While our information theoretic approach provides a guid-
ance for searching informative functional representations, it
remains to derive the algorithm to compute these functions
from observed data vectors. Intuitively, one can first estimate
the empirical distribution between Xi, ..., Xy from the data
samples, and then construct the matrix B to solve the eigen-
decomposition. However, this is often not feasible in practice
due to: (1) there may not be enough number of samples to esti-
mate the joint distribution accurately, (2) the dimensionality of
B may be extremely high especially for big data applications,
so that the singular value decomposition (SVD) can not be
computed directly.

A. The Multivariate Alternating Conditional Expectation
(MACE) Algorithm

Alternatively, it is well-known that eigenvectors of a matrix
can be efficiently computed by the power method [12]. The
power method iteratively multiplies the matrix to an initial vec-
tor, and if all the eigenvalues are nonnegative, it converges to
the eigenvector with respect to the largest eigenvalue with an
exponential convergence rate. To apply the power method for
computing the second largest eigenvector of B, we choose an
initial vector ¥ = [y ¥T1", such that ¥; is orthog-
onal to v;, for all i. This forces ¥ to be orthogonal to 1#(0), and
since B is positive semidefinite, the power iteration will con-
verge to the second largest eigenvector if ¥ is not orthogonal
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Algorithm 1 The Multivariate ACE (MACE) Algorithm

Require: The data samples x(© = (xﬁe),...,xt(f)), L =
1,...,n of variables X1, ..., X .
1. Initialization: randomly pick zero-mean functions f =
(frs - fa)-
repeat:

2. The alternating conditional operation: f;(X;) <« fi(X;) +
E[Zj#ﬁ(&)fx
3. The

£/ [E[ XL 200 |
until: The E[Zi#jﬁ(Xi)ﬁ(Xj)] stops increasing.

normalization step: fiX) <~

to ¥D. Then, the algorithm iteratively computes the matrix
multiplication ¥ <« By, or equivalently

¥~ ¥+ ) By,
J#i
for all i. Note that if we write f;j(x;) = ¥:(x;)//Px;(xi), then

as shown in [13], the step (16) is equivalent to a conditional
expectation operation on functions:

(16)

fiX) < fiX) +E| D [X)|X |, (17)
J#

Therefore, the power method can be transferred to an
algorithm based on the alternating conditional expectation
(ACE) [7] algorithm as shown in Algorithm 1, which computes
the optimal functional representation derived in Section II.
Note that the choice of ¥; to be orthogonal to v; is transferred
to the zero-mean choice of functions in the initialization step
of the algorithm.

B. Finding k Functional Representations From
Eigen-Decomposition

The Algorithm 1 can be further extended to compute the
top k eigenvectors v ¢y®, and the corresponding func-
tional representations. To design the algorithm for computing
these functions, we denote the ¢-th functional representation
as fO = (F19, .., £19), where f*) is as defined in (7). Then,
since lﬁ(k) is orthogonal to WII(Z) for £ < k — 1, the k-th
functional representation f f® can be computed by the power
method similar to the first functional representation f (1) but
with extra orthogonality constraints

(/2(0 (k)) ZE[ (“(X)f(")(X)]

for £ < k — 1 to maintain the orthogonality to the first k — 1
functional representations. Therefore, f(k) can be computed
by the power method as in Algorithm 1 with the extra step
of Gram-Schmidt procedure to guarantee the orthogonality,
which is illustrated in Algorithm 2. Note that the computation
complexities of Algorithm 1 and Algorithm 2 are both linear
to the size of the dataset, which is often much more efficient
than the singular value decomposition of the matrix B.

Algorithm 2 The Computation of ;‘(k)

Require: The data samples x) = (x(l) (i)) i=1,
of variables X, ..., Xg, and the prev10usly computed func-
tionsf(l),.. f(k 1)
1. Initialization: randomly pick zero-mean functions f(k) =
k k
AR )
repeat:
2. Run step 2 and 3 of Algorithm 1 for f o,
3. The Gram-Schmidt procedure: f Fb
YkLFO foy . FO
until: The ]E[Zi#fi(k) (Xi)fj(k) (Xj)] stops increasing.

—

C. Generating Informative Functional Representations for
High-Dimensional Data

While the Algorithm 2 generally requires less training sam-
ples than estimating the joint distribution and the matrix B (or
ﬁ), in order to obtain an acceptable estimation for the con-
ditional expectation step (17), it is still necessary to acquire
training samples in the size comparable to the cardinality of the
random variable X;. This is often difficult for high-dimensional
or continuous random variables in practice. In such cases, we
propose a neural network based approach to generate the infor-
mative functional representations by deep neural networks.
The key idea is to note that by Eckart-Young-Mirsky theo-
rem [14], the top k < m eigenvectors of B can be computed
from the low-rank approximation problem:

V' = min |B—wwT|] (18)

W cRmxk
where the columns of ¥* are the top k eigenvectors of B. The
unconstrained optimization problem (18) leads to a training
loss for generating informative functions by neural networks.

Proposztzon I1: Let W¥; be |A&;] x k matrlces for i =
,d, such that ¥ = [\IIT \IIT] s and define k-
d1mens1onal functions f X = RN D= ,d, as

[ = vl (x)/\/Px, (xl) where W;(x;) denotes the Xi- th row
of the matrix ¥;. Then, it follows that

|B—ww™|2 = |B|; - 2H(J_f1 X1), ... ,]:d(Xd)), (19)
where

LX) 2 ifH( £,060.£,(%))

i=1 j=1
and H()_‘i(Xi),]_‘j(X/)) is defined as, for all i, j,

H(f (X0, £, (X))
£ sster, ()] - (E[ro0]) B[, ()]
- Etr{ [t e oo B[, ()T () ).

where tr{-} denotes the trace of its matrix argument.
Proof: See Appendix F. |
Note that H (f (XD, f (Xj)) coincides with the H-score [15]

when the means of the functions are zero, hence we term

H(f, (X)), ...
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H(f,(X0), .

T

MH-score Estimator

f (X))

£, (X1) £,(X2) [ (Xa)
NN1 NN2 NNd
T T T
X1 X5 X4

Fig. 3. The network architecture to estimate optimal functional representa-
tions, where each NN; is a neural network to extract feature ]jl.(X,-) from the
i-th input X;.

H(f X1),. f (Xy)) the multivariate H-score (MH-score).
Then from (19) the optimization problem (18) is equivalent
to the functional optimization problem

H(J_fl(xl),

max (20)

f,‘:){,‘}—)Rk, i=1,....d

LX),

for solving the informative functional representations for the
common structure. Moreover, since the H-score can be effi-
ciently estimated from data samples (via, e.g., [16, Alg. 1]),
the MH-score can also be effectively computed using sam-
ples. Then, the optimization problem (20) leads to a neural
network training strategy. Specifically, given the training sam-
ples of Xi, ..., Xy, we design d neural networks, where the
i-th neural network NN; takes X; as the input and generates
the representations f (X;). Then, the weights of these neural
networks are trained to minimize the negative MH-score as
the loss function. Finally, the informative functional represen-
tations are generated by the trained d neural networks that
attempt to optimize (20), as illustrated in Fig. 3.

IV. CONNECTIONS TO EXISTING TECHNIQUES

In this section, we demonstrate the relationship between
our functional representations and the Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation [8], linear PCA [2], and
the consistent functional map [3]. This demonstrates the deep
connections between our approach and existing techniques,
while offering novel information theoretic interpretations to
machine learning algorithms.

A. The HGR Maximal Correlation

The HGR maximal correlation is a variational generaliza-
tion of the well-known Pearson correlation coefficient, and
was originally introduced as a normalized measure of the
dependence between two random variables [8].

Definition 3 (Maximal Correlation): For jointly distributed
random variables X and Y, with discete ranges X and )Y
respectively, the maximal correlation between X and Y is
defined as:

p(X;Y) £ max

X—R, gYV—R

E[f(X)g(1)]

where the maximum is taken over zero-mean and unit-variance
functions f(X) and g(Y).

The HGR maximal correlation has been shown use-
ful not only as a statistical measurement, but also in
designing machine learning algorithms for regression prob-
lems [13], [17], [18]. To draw the connection, note that in
the bivariate case d = 2, the functions derived in Section II
are precisely the maximal correlation functions for two ran-
dom variables. In addition, our functional representation for
general cases essentially defines a generalized version of the
maximal correlation [see (12)].

Definition 4: The generalized maximal correlation for
jointly distributed random variables Xi, ..., X; with discrete
ranges &;, fori=1,...,d, is defined as

prX1, ..., Xa) & E| Y AX0fiX) | @D

i
for the functions f; : A; — R, with the constraints E[f;(X;)] =
0, E[Y %, f2(X)]1 = 1, for all i.

It is easy to verify that 0 < p*(X1,...,Xy) < 1, and
p*X1,...,Xy) = 0 if and only if Xy, ..., X, are pairwise
independent.

Note that there are some other generalizations to maximal
correlations to multiple random variables. For example, the
network maximal correlation (NMC) proposed in [19] defined
a correlation measurement in the same way as (21) but with a
slightly different constraint: E[f;(X;)] = 0, E[fiz(Xi)] =1, for
all i. In addition, [20] proposed a maximally correlated princi-
pal component analysis (MCPCA) and demonstrated that (see
[20, Th. 5]) the solution of MCPCA coincides with the top sin-
gular vector of B in some special case. However, our approach
and results essentially offer the information theoretic justifi-
cation of generalizing the maximal correlation as extracting
common structures shared among random variables, and also
provide the guidance to algorithm designs.

max
d—

B. Linear PCA

It turns out that the functional representation derived in
Section II is a nonlinear generalization to the linear PCA [2].
To see that, consider a sequence of data vectors g“) =
(x(K) R xgz)) e RY for¢ =1,...,n, where the sample mean
and variance for each dimension are zero and one, respectively,
e, Yy xl@ =0, and % Zzzl(xgz)f = 1, for all i. Then, the
linear PCA aims to find the principal vector w = (wq, ..., wg)
with unit norm such that Y 7_;(w, x?)? is maximized; or
equivalently, to maximize

L3 () () = | S - | 2

=1 i#j i#]
subject to the constraint

1:%@:%@%@1
i=1 i=1

where the expectations in (22) and (23) are taking over
the empirical distributions PX,.XJ. and Py, from the data vec-
tors. Comparing to the Definition 4, we can see that our

(23)
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functional representation generalizes the linear PCA to non-
linear functional spaces of data. We would like to emphasize
that [13] also provides a nonlinear generalization to PCA for
the Gaussian distributed data vectors by the local geometric
approach. Our approach presented in this paper essentially
offers another generalization for general discrete data vectors.

C. Consistent Functional Map

In computer vision, a typical question is to find the shared
components among a collection of shapes, for example, the
legs of chairs, when some noisy maps between these shapes are
given. An effective approach to extract such shared structure
between shape collections, called consistent functional map
network, is recently proposed in [3]-[5]. The main idea of the
consistent functional map network is to formulate the shared
components as low-dimensional subspaces of the functional
spaces of these shapes, and the given noisy maps between
these shapes are formulated as the transition maps between
these functional spaces. Then, the goal of the consistent func-
tional map network is to find a low-dimensional subspace
of the functional space of each shape, such that under a
cycle of transition maps between shapes, this low-dimensional
subspace remains the same.

Note that this idea is similar to the functional representation
we derived in this paper, except that the consistent functional
map network considers the transition maps between shapes
that are deterministic maps, while we consider stochastic maps
between random variables. In fact, it is shown in [3] that if we
write the noisy maps between shapes i and j as M;; (see the
X; of [3, eq. (8)]), then such subspaces can be solved by the
eigen-decomposition of a matrix by replacing the stochastic
transition map B;; of B in (4) into the noisy (deterministic)
maps M;; between shapes. Therefore, the functional represen-
tation presented in this paper can be viewed as an extension
of the consistent functional map network to general stochastic
object, which can essentially be applied to a wider range of
problems.

V. THE NUMERICAL SIMULATIONS

The functional representations of the data can be viewed
as low-dimensional feature functions selected from the hidden
common structure. In this section, we show that such selected
low-dimensional feature functions can practically be useful by
verifying the performance in the MNIST handwritten digit
database [1] for digits recognition. In the MNIST database,
there are n = 60000 images contained in the training sets,
and each image has a label that represents the digits “0” to
“9”. The images in this database are consisted of 28 x 28 pix-
els, where each image pixel takes the value ranging from 0
to 255. While this is a supervised learning problem, we will
show that both Algorithm 2 and the low-rank approximation
method described in Section III-C can be applied to select fea-
tures from images directly without the knowledge of labels,
and these features, although selected in an unsupervised way,
have good performance in handwritten digit recognition.

To begin, we need to identify the random variables X; in
the MNIST problem. For this purpose, we divide each image

Algorithm 3 Quantizing Alphabets to Reduce the Cardinality

Require: training samples {xl@ l=1,..., n}
Initialize: set the alphabet X; <— &.
For{=1:n

If 3x € A}, such that dH(x, xl(e)> < 3.

Then set xl@

Else X, < X, U {x,@}
End

<~ X.

into 8 x 8 = 64 overlapping subareas, where each sub-image
has 6 x 6 pixels, and two nearby subareas are overlapped with
3 pixels. Fig. 1 illustrates this division of images.

The purpose of dividing entire image into subareas is
to reduce the complexity of training joint feature functions
among image pixels, while capturing the correlations between
nearby pixels. Then, each sub-image i of the 64 subareas
can be viewed as a random variable X;, for i = 1,...,64.
Therefore, if we denote xl@ as the value of the sub-image i
of the ¢-th image of the MNIST database, then each random
variable X; has n training samples xl(l) S ,x(")

1

A. Apply the MACE Algorithm to MNIST

To apply the MACE Algorithm 2, we further quantize each
image pixel into binary signals “0” and “1” with the quan-
tization threshold 40. Note that each xl(e) is essentially a
36-dimensional binary vector, thus the cardinality of the alpha-
bet |X;| = 236 To reduce the cardinality, for each subarea i, we
go through n training images to find all possible binary vectors
in {0, 1}%6, and then map these binary vectors into a smaller
alphabet set, such that two binary vectors with Hamming dis-
tance no greater than three are mapped into the same alphabet.
This quantization procedure is illustrated in Algorithm 3.

After this pre-processing, 64 random variables X; are spec-
ified, and each image ¢ can be viewed as a 64-dimensional
data vector (xgz), el xéi)), for ¢ = 1,...,n. Then, we
apgly Algorithm 2 to compute k feature functions J_‘; =
(; ), R fi(k)) for each random variable X;. These feature
functions map the pre-processed training image ¢ into a
(64k)-dimensional score vector

S50 = (ﬁ(xﬁ“), e ,J?64(xgi))),

which extracts non-linear features of the image. Note that in
this step, we select the feature functions only from the image
pixels but without the knowledge of the labels.

With the score vectors computed, at the second step we
apply the linear support vector machine (SVM) [21] to classify

the vectors S¢, for £ = 1, ..., n into ten groups with respect to
the labels z,. This results in a linear classifier that associates
a label Z; € {0, ..., 9} to each score vector s¢, and the label

represents the recognized digit of the image corresponding to
the score vector.

To test the performance of this linear classifier in the set
of test images, we first conduct the same pre-processing to
the test images, and map the pre-processed test images into
(64k)-dimensional score vectors by the feature functions f;.
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k-dimensional
Output: f (X;)

Fully Connected

T
Flatten

T
Dropout (0.25)

| T |

Max Pooling: 2 x 2
T
Conv: 2 x 2 x 32

T
Conv: 2 x 2 x 16

Input Image X;: 6 x 6

Fig. 4. The architecture of the i-th neural network NN; that extracts feature
_L.(X,‘) from the input X;.

Then, the linear classifier is applied to recognize the digits
in the test images, and the error probabilities of recognizing
the digits via the score vectors with different values of k are
demonstrated in the following table.

k 4 8 12 16 20 24
Error rate (%) | 4.74 | 244 | 2.36 | 2.21 | 2.15 | 2.08

Note that our approach can be viewed as mapping the
image pixels to the feature space by one layer of informa-
tive score functions and then apply the linear classification.
It turns out that the error rate of our approach is comparable
to the neural networks with two layers of feature mapping by
the sigmoid functions (the error rate is 2.95% for a 3-layer
fully-connected neural network with 500 and 150 units in two
hidden layers [1], [22]). Moreover, the neural networks select
the features with the aid of labels, while the feature functions
in our approach are selected without the knowledge of label
but from the shared structure between subareas. This essen-
tially shows how the information from shared structures can
be applied to practical problems by our algorithms.

B. Finding Functional Representations by Neural Networks

As illustrated in Section III-C, we first use 64 neu-
ral networks NNj,...,NNgs to generate representations
f 1(X]), ot o4 (X64) from images, where each neural network
NN; consists of two convolutional layers, as shown in Fig. 4.
Using the negative MH-score —H(]_‘] XD, ... ,[64(X64)) as the
loss function, we then train these 64 neural networks to obtain
the optimal functional representations.

With the functional representations trained from the training
set, we again adopt the linear SVM for the classification task
and use this linear classifier to recognize the test images. The

following table shows the classification error with different
values of k.

k 4 8 12 16 20 24
Error rate (%) | 3.46 | 1.73 | 143 | 1.17 | 1.15 | 1.11

Compared with the results from the MACE algorithm
(Algorithm 2), the neural network approximation method has
better performance. This performance gain is mainly from
directly processing the subareas of images by the CNNs
without the information loss in the quantization step. In addi-
tion, the features extracted in this unsupervised approach can
achieve the performance comparable to the CNN-based super-
vised learning algorithms, such as LeNet-4, which has an error
rate of 1.1% [22].
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