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Abstract: A fully coupled three-dimensional (3D) thermo-hydro-mechanical (THM) model is 
developed for simulating the complex multiphysics process of permafrost thaw. The 3D 
formulation allows the analysis of thaw consolidation problems with complex geometry and 
boundary conditions. The thermal, hydraulic, and mechanical fields are coupled in this model. 
Governing equations are derived based on the laws of conservation of each field: conservation of 
energy for the thermal field, conservation of mass for the hydraulic field, and conservation of 
momentum for the mechanical field. Physical processes such as heat conduction, phase change, 
thermal convection, fluid flow due to pore water pressure, elevation, thermal gradients, and force 
equilibrium based on effective stress theory are considered in this model. The model is then applied 
to simulate the thaw consolidation of permafrost. The simulation results show that excess pore 
water pressure is generated in the soil during thawing. The soil then experiences a time-dependent 
settlement following the dissipation of excess pore water pressure. The results prove that the THM 
model adequately captures the thaw consolidation process of permafrost.  
 
1.   Introduction 
 
Degradation of permafrost, especially thaw consolidation, has caused severe damage to civil 
infrastructures, such as roads, buildings, pipelines, and powerlines (Nelson et al. 2001; Larsen et 
al. 2008; Melvin et al. 2016; Hjort et al. 2018; Liew et al. 2022b). It is therefore important to 
investigate the effects of permafrost degradation on civil infrastructure. One approach is the 
development of numerical models for predicting the long-term effects of thaw consolidation on 
foundations under various climate scenarios. Thaw consolidation is a complex multi-physics 
process that involves heat transfer, moisture transport, and stress-strain equilibrium. A model 
framework that is fully coupled with these three different physics is commonly known as the 
thermo-hydro-mechanical (THM) model.  
 Several complex thaw consolidation models were developed in recent years. Yao et al. 
(2012) formulated a three-dimensional large strain thaw consolidation theory using the Cauchy 
strain rate tensor and Jaumann stress rate. In this model, the thawing process was governed by 
thermal conduction and was calculated using the heat transfer equation. To couple the thermal and 
hydromechanical processes, Yao et al. (2012) adopted a two-step calculation with thermal 
calculation applied for the entire soil domain while the hydromechanical calculation is suppressed. 
The hydromechanical calculation was only then applied to the post-thawed domain after the 
thermal calculation converged. A smaller time step is also selected for the hydromechanical 
calculation. In the model by Dumais and Konrad (2018), a one-dimensional large strain 
consolidation theory is coupled with a heat transfer equation to simulate the thaw settlement of 
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frozen soil. The large strain functionality was achieved by formulating empirically derived 
compressibility and hydraulic conductivity as functions of void ratio. One of the major benefits of 
a large-strain thaw consolidation model is its capability to simulate excessive settlement in 
permafrost. This phenomenon is quite typical for thawing permafrost that is imposed by relatively 
high overburden stress or ice-rich permafrost undergoing degradation. On the other hand, a three-
dimensional model is well suited for thaw consolidation problems with complex boundary 
conditions such as a moving heat source and interactions between permafrost and a complex 
foundation system. Currently, there is no three-dimensional thaw consolidation model in which 
the three physical fields are fully coupled.  
 This paper focuses on the formulation of a three-dimensional fully coupled THM model 
for simulating the thaw consolidation of degrading permafrost. The physics of the thermal field 
considered in this model include heat conduction, phase change, and thermal convection. For the 
hydraulic field, fluid flow due to pore water pressure, elevation, and the thermal gradient is 
considered. In the mechanical field, the stress-strain relationship is formulated based on linear 
elastostatics and the effective stress principle. Since all three physical fields are fully coupled, the 
primary variables of this model are calculated at each time step simultaneously. This THM model 
with three-dimensional formulations can be applied to solving thaw consolidation problems with 
complex boundary conditions.  
 
2.   Theory  
 
Thaw consolidation can be simulated by coupling three physical fields: thermal, hydraulic, and 
mechanical fields. The three physical fields are governed by their respective laws of conservation: 
conservation of momentum for the mechanical field, conservation of energy for the thermal field, 
and conservation of mass for the hydraulic field. The primary variables of the mechanical field are 
the displacement vector (i.e., u, v, and w for a three-dimensional model); the primary variable of 
the thermal field is temperature, T; the primary variable of the hydraulic field is pore water pressure, 
p. The partial differential equations of the fully coupled three-dimensional thaw consolidation 
model are derived and presented in the following subsections.  

2.1   Mechanical Field 

The law of conservation of momentum states that the momentum of a system remains constant if 
there is no external force acting on the system.  The governing equation for the mechanical field 
can be stated as follows. 

, 0ij j ib + =  (1) 
where ,ij j  is the differentiation of the total stress tensor ij  with respect to jx , and ib  is the body 
force. Given the effective stress theory, total stress is the sum of effective stress ij   and pore water 
pressure p . The equation is expressed as    

ij ij ij p  = +  (2) 
where ij  is the Kronecker delta. Following the generalized Hooke’s law, the effective stress tensor 
is defined as 

ij ijkl klD 
 

 =  (3) 
where ijklD  is the elasticity matrix, and kl




  is the strain tensor due to effective stress. Assuming an 
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isotropic soil,  
( ) ( )ijkl ik jl il jk ij klD        = + +  (4) 

where   and   are Lamé’s first and second parameters, respectively. Their relationships to bulk 
modulus K  and shear modulus G  are given as follows.  

2
3

K G = −  (5) 

G =  (6) 
Given that elastic moduli of frozen soil are higher than the moduli of thawed soil (Liew et al. 
2022a), K  can be expressed as  

f zero

u zero

,  if 
, if 

K T T
K

K T T


= 


 (7) 

where fK is the frozen bulk modulus, and uK  is the unfrozen bulk modulus. zeroT  can be taken as 
273.15 K if assuming no freezing point depression. Similarly, G  can be expressed in terms of the 
frozen shear modulus fG  and unfrozen shear modulus uG .  

f zero

u zero

,  if 
, if 

G T T
G

G T T


= 


 (8) 

Considering that changes in soil temperature can lead to thermal expansion, the total strain tensor 
kl  is defined as the sum of the strain tensor induced by effective stress and the strain tensor 

induced by temperature change T
kl .  

T
kl kl kl


 


= +  (9) 

And T
kl  can be expressed as 

T
kl T kldT  =  (10) 

where T  is the coefficient of thermal expansion of soil, kl  is the Kronecker delta, and dT  is 
the temperature change. Assuming no thermal expansion below the freezing point of water, the 
following function can be adopted for T  and dT .  

,  if > 273.15 K
0, if 273.15 K

T
T

T
 T





= 


 (11) 

ref1dT T T= −  (12) 
where ref1T  is the reference temperature at which the soil starts to expand and can be taken as 
273.15 K. Substituting Eq. 2, 3, 9, and 10 into Eq. 1, the governing equation of the mechanical 
field coupled with the effects of the hydraulic and thermal fields can be written as  

( )
,

0ijkl kl T kl ij ij
D dT p b    − + + =   (13) 

where ib  in the 3x  direction can be expressed as  

3b g=  (14) 
where   is the overall density of the soil and can be calculated as the weighted average of the 
density of each soil constituent. 

W W I I S S      = + +  (15) 
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where   is the volumetric content;   is density; the subscripts, W, I, and S, represent water, ice, 
and soil grains, respectively.  
 In this model, a fully saturated soil is assumed. As such, the frozen soil consists of soil 
grains, ice, and water, while the thawed soil consists of only soil grains and water. The amount of 
each of these soil constituents can be calculated using their volumetric ratios. Here, W  is the ratio 
of the volume of water to the total volume of soil. Similarly, I  is the ratio of the volume of ice 
to the total volume of soil. Assuming that the soil is fully saturated, the sum of the volumetric ice 
content and the volumetric water content is equivalent to the soil porosity n  and is expressed as 

W In  = +  (16) 
Correspondingly, S  is the ratio of the volume of soil grains to the total volume of soil. 

S 1 n = −  (17) 
Substituting Eq. 16 and 17 into Eq. 15, the overall density of soil can be re-expressed as 

 ( ) ( )W W W I S1n n     = + − + −  (18) 
Following the infinitesimal strain theory, the strain tensor in Eq. 13 can be expressed as  

( )( , ) , ,
1
2ij i j i j j iu u u = = +  (19) 

where iu  is the displacement vector.   
 
2.2   Hydraulic Field  
 
The law of conservation of mass states that the difference between the mass moving into a control 
volume and the mass leaving is equivalent to the mass change in the control volume. The governing 
equation of the hydraulic field can therefore be stated as   

, W W I 0i iv dV m m + + =  (20) 
where iv  is the Darcy’s velocity; W  is the density of water; dV is the infinitesimal change of 
control volume; Wm  and Im  are the rates of change of water mass and ice mass in the soil system, 
respectively. According to Darcy’s law,  

,
H

i ij jv k h= −  (21) 
where H

ijk  is the hydraulic conductivity tensor, and , jh  is the hydraulic gradient. Darcy’s 
velocity iv  can be expressed in terms of the pore water pressure totalp  as  

total,
W

H
ij

i j

k
v p

g
= −  (22) 

where W  is the density of water, and g  is the acceleration due to gravity.    
 Fluid flow in degrading permafrost is governed by pore water movement due to (1) pore 
water pressure, (2) elevation difference, and (3) temperature gradient (Thomas et al. 2009). The 
water movement induced by temperature gradient is derived using the Clapeyron equation 
following works by Thomas et al. (2009). The Clapeyron equation states that  

T T
W I

W I ref2

lnp p TL
T 

− =  (23) 
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where T
Wp  and T

Ip  are the water and ice pressure induced by temperature gradient, respectively; 
L  is the latent heat of fusion; ref2T  is the reference temperature, which is set as 273.15 K. As 

presented in Eq. 23, the temperature gradient is responsible for the pore water movement, i.e., pore 
water moves from the active layer towards the permafrost table. Re-arranging and simplifying Eq. 
23, cryogenic suction TP  can be expressed as the difference between T

Wp  and T
Ip . 

ref2
T I

ref2

T TP L
T


−

  (24) 

The total pore water pressure totalp  is therefore the sum of those three components (Thomas et al. 
2009).  

ref2
total W elev I

ref2

T Tp p gh L
T

 
−

= + +  (25) 

where elevh  is the elevation, which is the distance between the free water surface and datum. The 
datum can be set at any depths where the soil temperature is seasonally invariant. For the 
simulation of in situ permafrost degradation, the midpoint of permafrost layer can be taken as the 
datum. For the simulation of a laboratory test, the bottom surface of the soil column can be taken 
as the datum. Substituting Eq. 25 into Eq. 22, iv  can be re-expressed as  

H
ref2

W elev I
ref2 ,

ij
i

W j

k T Tv p gh L
g T

 


 −
= − + + 

 
 (26) 

 The second and third terms in Eq. 20 can be respectively expressed in terms of volumetric 
ratios as  

W W Wm dV =  (27) 
and 

 I I Im dV =  (28) 
In Eq. 27 and 28, since dV  (i.e., the total infinitesimal volume of the frozen soil) is not a constant, 
it can be redefined as  

( ) S1dV e dV= +  (29) 
where e  is the void ratio of the soil, and SdV  is the volume of the soil grains. Differentiating Wm  
and Im  with respect to time yields 

W W S W W( (1 ) )m dV e e  = + +  (30) 
and  

I I S I I( (1 ) )m dV e e  = + +  (31) 
Substituting Eq. 26, 30, and 31 into the original governing equation of the hydraulic field (Eq. 20), 
the final governing equation of the hydraulic field becomes 

( ) ( )

( ) ( )
( )

W
W W I W I W I ,

ref2 ,H H H
, W elev, I, ,

ref2 ,

1 1 0

ii T

j
ij j ij j iji i

i

T

T T
k p k h L k

g g T

        

 

− + + −

− 
− − − = 

 
 

 (32) 

where ii  is the volumetric strain rate; W
,T is the differentiation of W with respect to temperature; 



6 
 

T is the rate of change of temperature. 
 Unfrozen water content exists in permafrost even when the temperature is below the 
freezing point of water (Liew et al. 2022a). The unfrozen water content of a soil can be expressed 
as a function of temperature following the empirical equation by Anderson and Tice (1972). 
However, the THM model uses volumetric unfrozen water content W , while Anderson and Tice 
(1972) used gravimetric water content. So, the soil-dependent parameters   and   need to be 
fitted using volumetric data points instead. Then, W  is modified to include n  as follows.  

( ) zeroW

zero

273.15 ,

1,

T T T
n

n T T





− 

= 
 

 (33) 

If an isotropic fluid flow is assumed,  
H

Hij ijk k=  (34) 
where ij is the Kronecker delta, and Hk is the hydraulic conductivity. Since the hydraulic 
conductivity of soil varies with temperature (Liew et al. 2022a), the following function is adopted 
for Hk .  

H_f zero
H

H_u zero

,  if 
, if 

k T T
k

k T T


= 


 (35) 

 
2.3   Thermal Field  
 
The law of conservation of energy states that the difference between the heat energy flowing into 
a control volume and the heat energy flowing out from the control volume is equivalent to the 
energy change. The governing equation can be stated as  

, 0i iE q dV+ =  (36) 
where E  is rate of change of internal heat energy, iq is heat flux, and dV  is the infinitesimal 
control volume. The change in internal heat energy E  can be expressed in terms of the phase 
change and temperature change as follows.  

ref3 W( )E mc T T m L= − +  (37) 
where m  is the total soil mass, c  is the overall specific heat capacity, T  is temperature (i.e., the 
primary variable of the thermal field), Wm  is the mass of moisture, and L  is the latent heat of 
fusion. ref3T  is equivalent to the initial temperature of the soil domain and can be set by users 
depending on the problems to be solved. Re-expressing Eq. 37 in terms of dV , 

ref3 W W( )E c T T dV LdV = − +  (38) 
where   is the overall density of the soil, and W  is the density of water.  
 The overall specific heat capacity c  of the soil domain can be defined as a weighted 
function of the specific heat capacities of the soil constituents.  

W W W I I I S S Sc c c c      = + +  (39) 
Variations of the specific heat capacity and density of each soil constituents with temperature are 
assumed to be negligible. Substituting Eq. 16, 17, and 39 into Eq. 38, the equation becomes 
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( ) ( )( ) ( ) ( )

( ) ( )

W W I I S W ref3 I I S ref3

S S S ref3 I S W W

1E c c dV e T T c dV e T T

c dV T T dV L n en e

   

   

= − + − + −

+ − − − + −
 (40) 

Differentiating Eq. 40,  
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

W W I I S ref3 W W W I I S W ref3

W W I I S W I I S ref3

I I S S S S I S W W

1

1

1 1

E c c dV e T T c c dV T T e

c c dV e T c dV e T T

c dV eT c dV T dV L e e

     

   

    

= − + − + − −

+ − + + −

 + + − − − + 

 (41) 

 The second term of Eq. 36 can be expressed in terms of heat conduction (i.e., the first term 
on the right-hand side of the equation) and convection (i.e., the second term on the right-hand side 
of the equation) as follows.  

( ) ( )( )T
, , W W ref3 ,,i i ij j i ii

q dV k T dV c v T T dV= − + −  (42) 

where T
ijk is the thermal conductivity tensor of soil, and iv  is the seepage velocity. Assuming an 

isotropic soil, T
ijk  is defined as  

T
Tij ijk k=  (43) 

where Tk  can be expressed as the volume-weighted average of the thermal conductivity of water, 
ice, and soil grains as in Eq. 44.  

( ) ( )T W W W I S1k k n k n k = + − + −  (44) 
 Finally, the governing equation of the thermal field coupled with the effects of mechanical 
and hydraulic fields can be re-expressed as Eq. 45. 

( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( )( )

W W
W W I I ref3 , I , W W I I W I I S S

W W W ref3 I I W ref3 I W

T H HW
, ref3 , W W ref3 elev,, , ,

HW I
ref3 ref2 , ,

ref2

1
1 1

1 1

T T

ii

ij j ij j ij ji i i

ij j

ec c T T L c c c c T
e e

c T T c T T L

ck T T T k p c T T k h
g

c L T T k T T
gT

         

      





 
− − + + − + + + + 

+ − + − − − −  

− − − − −

− − − 0
i
=

 (45) 

The void ratio in Eq. 45 is calculated as  
( )( )0 01 iie e e = + +  (46) 

where 0e  is the initial void ratio, and ii  is the volumetric strain.  
 
3.   Simulation of Thaw Consolidation of Degrading Permafrost 
 
The THM model is applied to study the thaw consolidation of a three-dimensional soil column. 
The height of the rectangular soil column is 100 mm, and its cross-section is 10 mm by 10 mm. 
The bottom boundary of the soil column is fixed, and its side boundaries are laterally confined. 
All boundaries of the soil column are impermeable, except for the top boundary, which is a free-
drainage boundary. The soil column has an initial temperature of 272.15 K. Then, an overburden 
stress of 50 kPa was applied on the top boundary and the temperature of the top boundary was 
increased to 293.15 K for 18 hours. The soil is silty clay with a dry unit weight of 17.8 kN/m3 and 
a total moisture content of 19%. Other model input parameters are presented in Table 1.  



8 
 

 
Table 1. Model input parameters. 

Parameters Value Unit 
Shear modulus of frozen soil, fG  1.4×106 Pa 
Bulk modulus of frozen soil, fK  3.0×106 Pa 
Shear modulus of unfrozen soil, uG  2.0×105 Pa 
Bulk modulus of unfrozen soil, uK  4.3×105 Pa 
Coefficient of thermal expansion, T  0 1/K 
Density of water, W  1000 kg/m3 

Density of ice, I  918 kg/m3 
Density of soil grain, S  2650 kg/m3 
Gravimetric specific heat capacity of water, wc  4184 J/kg/K 
Gravimetric specific heat capacity of ice, Ic  2100 J/kg/K 
Gravimetric specific heat capacity of soil grain, Sc  800 J/kg/K 
Thermal conductivity of water, Wk  0.613 J/m/s/K 
Thermal conductivity of ice, Ik  2.31 J/m/s/K 
Thermal conductivity of soil grain, Sk  1.10 J/m/s/K 
Hydraulic conductivity of unfrozen soil, H_uk  1×10−8 m/s 
Hydraulic conductivity of frozen soil, H_fk  1×10−12 m/s 
Acceleration due to gravity, g  9.81 m/s2 

Latent heat of fusion, L  333500 J/kg 
Initial void ratio, 0e  0.23 Unitless 
Reference temperature 1, ref1T  273.15 K 
Reference temperature 2, ref2T  273.15 K 
Reference temperature 3, ref3 initialT T=  272.15 K 
Parameter 1 for calculating water content,   0.08 Unitless 
Parameter 2 for calculating water content,   −0.5 Unitless 

  
 Figure 1 shows how the three primary variables (i.e., temperature, pore water pressure, and 
displacement) vary with depth over time at the centerline of the soil column. The top boundary of 
the soil column is at the height of 0.1 m; the bottom boundary is at 0 m. As shown in Figure 1a, 
the temperatures of the top and bottom boundaries are fixed at 293.15 K and 272.15 K, respectively. 
At 0.20 hour, the sharp reduction of temperature at height of 0.088 m is due to the phase change 
of ice to water. Since heat energy is used for phase change, the soil temperature remains relatively 
the same at the initial temperature (i.e., 272.15 K) from the depth of 0 m to 0.088 m. Similarly, at 
0.50 hour, the sharp reduction of temperature occurs at 0.062 m indicating that the soil at this depth 
is experiencing phase change. As time increases, the soil temperature gradually increases, creating 
a thermal equilibrium between the top and bottom boundaries.       
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  As temperature and consequently the unfrozen water content increase, the overburden 
stress imposed on the top surface of the soil column is transferred from the ice matrix to pore water 
in the soil. As a result, as shown in Figure 1b, pore water pressure has the highest value near the 
beginning of the simulation and gradually dissipates with time. Since unfrozen water exists in 
permafrost, the pore water pressure of the soil column below the melting point of ice is not zero 
but follows the hydrostatic pressure profile of the soil. Meanwhile, the pore water pressure at the 
top surface (i.e., the height of 0.1 m) is zero at all time given that water can freely drain through 
the top surface. The consolidation process of degrading permafrost is illustrated in Figures 1b and 
1c. As pore water pressure dissipates, the soil column experiences settlement. The settlement of 
the soil column is indicated by the increase in the magnitude of the vertical displacement at the top 
boundary over time as presented in Figure 1c. The vertical displacement at the bottom boundary 
is zero at all times since this boundary is fixed. 
 

 

Figure 1. Model simulation profiles of (a) temperature, (b) pore water pressure, and (c) vertical 
displacement over time at the centerline of the soil column. 
 
4.   Conclusions 
 
This paper presents a fully coupled three-dimensional THM model for simulating the thaw 
consolidation of permafrost. The model is implemented using the finite element method. The 
following physical processes are considered: heat conduction, thermal convection, phase change, 
pore water pressure generation and dissipation, volumetric expansion due to phase change and 
temperature change, and deformation due to drainage and dissipation of pore water pressure. By 
defining different values for the compressibility and hydraulic conductivity of thawed and frozen 
regions, the proposed model can simulate the hydromechanical behaviors of thawing permafrost. 
However, soil behaviors at the ice-water interface cannot be captured under current formulations. 
Since the THM model is fully coupled, the thaw penetration depth of the degrading permafrost is 

H
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m
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calculated by solving the three governing equations; the ice melting temperature effectively 
indicates the boundary between the thawed and frozen layers. The model simulations show that as 
heat transfers into the soil system, the soil temperature increases, and ice changes into water, 
generating excess pore water pressure. The soil column settles as pore water dissipates with time. 
The results also show that the pore water pressure follows the profile of hydrostatic pressure when 
the soil temperature is below the freezing point of water since unfrozen water exists in permafrost 
even below this temperature.  
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