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Abstract

We present and analyze a set of three-dimensional, global, general relativistic radiation magnetohydrodynamic
simulations of thin, radiation-pressure-dominated accretion disks surrounding a nonrotating, stellar-mass black
hole. The simulations are initialized using the Shakura–Sunyaev model with a mass accretion rate of
M L c3 Edd

2 = (corresponding to L= 0.17LEdd). Our previous work demonstrated that such disks are thermally
unstable when accretion is driven by an α-viscosity. In the present work, we test the hypothesis that strong
magnetic fields can both drive accretion through magnetorotational instability and restore stability to such disks.
We test four initial magnetic field configurations: (1) a zero-net-flux case with a single, radially extended set of
magnetic field loops (dipole), (2) a zero-net-flux case with two radially extended sets of magnetic field loops of
opposite polarity stacked vertically (quadrupole), (3) a zero-net-flux case with multiple radially concentric rings of
alternating polarity (multiloop), and (4) a net-flux, vertical magnetic field configuration (vertical). In all cases, the
fields are initially weak, with a gas-to-magnetic pressure ratio 100. Based on the results of these simulations, we
find that the dipole and multiloop configurations remain thermally unstable like their α-viscosity counterpart, in
our case collapsing vertically on the local thermal timescale and never fully recovering. The vertical case, on the
other hand, stabilizes and remains so for the duration of our tests (many thermal timescales). The quadrupole case
is intermediate, showing signs of both stability and instability. The key stabilizing factor is the ability of specific
field configurations to build up and sustain strong, Pmag 0.5Ptot, toroidal fields near the midplane of the disk. We
discuss the reasons why certain configurations are able to do this effectively and others are not. We then compare
our stable simulations to the standard Shakura–Sunyaev disk.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Compact radiation sources (289); General
relativity (641); Magnetohydrodynamical simulations (1966)

1. Introduction

From the earliest work on thin (H/R= 1) accretion disks
based on the α-viscosity prescription (Shakura &
Sunyaev 1973), there have been notable problems in region
“A,” where the vertical pressure support comes from radiation
and the opacity is dominated by electron scattering. Region A
covers radii ( )R r L L600g Edd

16 21 , where rg = GM/c2 is
the gravitational radius and LEdd= 1.2× 1038(M/Me) erg s−1

is the Eddington luminosity of a black hole of mass M. In this
region, the disk is predicted to be both thermally (Shakura &
Sunyaev 1976) and viscously (Lightman & Eardley 1974)
unstable. The thermal instability arises because the disk heating
rate per unit area, Q+, and cooling rate per unit area, Q−,
depend on different powers of the midplane pressure for a fixed
surface density, Σ, as
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such that small deviations in Prad,0 may lead to runaway heating
or cooling. The viscous instability, which typically acts on a
longer timescale than the thermal instability, arises due to an
inverse correlation between the vertically integrated stress,
WRf, and the surface density, Σ, which can cause the disk to
break up into rings of high and low surface density (Lightman
& Eardley 1974; Mishra et al. 2016). In region “B” (gas-
pressure supported, but still scattering dominated), by contrast,
which occurs at larger radii or sufficiently low luminosity, the
Shakura–Sunyaev solution is predicted to be stable.
Previous shearing box (Jiang et al. 2013; Ross et al. 2017)

and global simulations (Teresi et al. 2004; Mishra et al. 2016;
Fragile et al. 2018) have largely confirmed the thermal
instability of these disks. In Fragile et al. (2018), multiple α-
viscosity simulations that started on the radiation-pressure-
dominated (region A) branch underwent runaway cooling until
they collapsed down to the gas-pressure-dominated (region B)
branch of the thermal equilibrium (S-) curve. Only simulations
starting on that lower branch remained stable for more than a
thermal timescale. Curiously, we did not see any examples of
runaway heating, even in one case where the initial gas
temperature was perturbed upward by 50%. A similar
preference toward cooling and collapse was noted in Teresi
et al. (2004).
All of this is particularly puzzling in light of observations of

black hole X-ray binaries (BHXRBs), for which the spectra
look most disk like (soft, with a prominent thermal bump

The Astrophysical Journal, 939:31 (14pp), 2022 November 1 https://doi.org/10.3847/1538-4357/ac938b
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-5786-186X
https://orcid.org/0000-0002-5786-186X
https://orcid.org/0000-0002-5786-186X
https://orcid.org/0000-0002-0028-8054
https://orcid.org/0000-0002-0028-8054
https://orcid.org/0000-0002-0028-8054
https://orcid.org/0000-0003-3556-6568
https://orcid.org/0000-0003-3556-6568
https://orcid.org/0000-0003-3556-6568
https://orcid.org/0000-0002-2019-9438
https://orcid.org/0000-0002-2019-9438
https://orcid.org/0000-0002-2019-9438
mailto:mishra_b@lanl.gov
http://astrothesaurus.org/uat/159
http://astrothesaurus.org/uat/289
http://astrothesaurus.org/uat/641
http://astrothesaurus.org/uat/641
http://astrothesaurus.org/uat/1966
https://doi.org/10.3847/1538-4357/ac938b
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac938b&domain=pdf&date_stamp=2022-10-31
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac938b&domain=pdf&date_stamp=2022-10-31
http://creativecommons.org/licenses/by/4.0/


around 1 keV) and stable (rms variability 3%) whenever
L/LEdd= 0.1–0.2 (e.g., van der Klis 2004; Done et al. 2007). In
other words, there is no sign of the thermal or viscous
instabilities previously mentioned, precisely in the luminosity
range when such disks are predicted to be unstable. Two
possible exceptions are GRS 1915+105 (Belloni et al. 1997;
Neilsen et al. 2011) and IGR J17091–3624 (Altamirano et al.
2011; Zhang et al. 2014), which show evidence for limit-cycle
behavior that may be consistent with a thermal instability
(Honma et al. 1991; Szuszkiewicz & Miller 1998), although
this seems to be limited to when those sources are at their
highest (possibly super-Eddington) luminosity (Done et al.
2004).
One proposed solution to the dilemma of thermal instability

has been to invoke strong magnetic fields to provide the
additional support needed to stabilize the disk (Begelman &
Pringle 2007; Oda et al. 2009; Sadowski 2016a). This is
because, while the cooling rate is insensitive to the magnetic
pressure and still follows Equation (2), the heating rate is not.
Instead, the heating rate in a strongly magnetized disk scales as
(Sadowski 2016a)
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where βr= Ptot,0/Pmag,0, and we have ignored gas pressure.
This allows us to quantify how strong the magnetic field must
be, as 0.5r
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which restores stability. In this work, we set out to test the idea
of magnetic stabilization through a set of numerical
experiments.

Each of our simulations starts from the Shakura & Sunyaev
(1973) disk solution with M L c3 Edd

2 = , i.e., one on the
unstable branch and in the prescribed luminosity range
(L Mc Mc L0.057 0.172 2

Edd h= » = ). The question we want
to ask is: Can an initially weak magnetic field be amplified self-
consistently to the required strength to stabilize these disks in
this luminosity range?

We consider four different seed magnetic field configura-
tions, all with βmid,0= Pgas,0/Pmag,0 100, and, hence,

0.5r
1b- . In one, we consider a single poloidal field antinode

centered far from the black hole, giving a very radially
extended dipole field configuration. In a second case, we
consider two radially extended poloidal loops of opposite
polarity stacked vertically, one above the midplane and one
below. Both of these field configurations start out weak, though
they will be subject to strong shear amplification from the
orbital motion of the disk. Similar radially extended fields were
reported in Sadowski (2016a), with the dipole field deemed
unstable and the quadrupole deemed stable. However, it was
not entirely clear from that study why one configuration was
stable while the other was not. Hence, our decision to revisit
both. In a third case, the field consists of numerous small
poloidal loops of alternating polarity, with length scales
comparable to the local disk height, arranged in concentric
radial rings. For such a configuration, the field is unlikely to
amplify sufficiently to offer significant pressure support, and
therefore, we expect to see a thermal runaway analogous to our

previous simulations (Mishra et al. 2016). In the final case, we
consider a vertical magnetic field threading through the disk.
This field configuration is also subject to shear amplification
and can reach strengths sufficient to provide magnetic pressure
support, as shown in the shearing box (Salvesen et al. 2016)
and global Mishra et al. (2020) studies. However, ours is the
first three-dimensional, global, general relativistic, radiation
MHD simulation to consider this configuration.
We elected not to test a purely toroidal field configuration, as

we have already shown in Fragile & Sadowski (2017) that even
a strong toroidal field, on its own, is not enough to stabilize an
initially radiation-pressure-dominated disk. This is because
strong toroidal fields decay on roughly the local orbital
timescale due to magnetic buoyancy. However, in cases where
a radial or vertical seed field is present, such as in our dipole,
quadrupole, and vertical-field cases, the toroidal magnetic field
can be continually replenished by the Ω dynamo. As long as
this replenishment happens fast enough to keep the field strong,
this may be enough to stabilize the disk. Alternatively, if a
purely toroidal field is able to generate local net poloidal flux
through an α-Ω dynamo, as in the thick-disk simulations of
Liska et al. (2020), then perhaps such a field configuration
could yield a stable disk. We do not explore this possibility.
The remainder of our paper is organized as follows: In

Section 2, we describe the numerical procedures used in our
simulations; in Section 3, we present evidence regarding the
stability of each simulation; in Section 4 we describe the
vertical profiles of the disk; in Section 5, we compare the
properties of our stable simulations to the predictions of the
Shakura–Sunyaev model; in Section 6, we discuss how our
results fit in with previous, comparable simulations; and finally,
in Section 7, we present our conclusions. All of our simulations
assume a nonspinning black hole of mass M= 6.62Me;
therefore, our distance unit, GM/c2, is equal to 9.8 km, and our
time unit, GM/c3 is equal to 3.3× 10−5 s.

2. Numerical Setup

As stated previously, the simulations presented here start
from a Shakura–Sunyaev disk with M L c3 Edd

2 = . For the
hydrodynamic and radiation variables, we follow the initializa-
tion steps described in Fragile et al. (2018). In order to initialize
the Shakura–Sunyaev solution, we assume the viscosity
parameter, α, to be 0.02, based on previous similar simulations
(e.g., Mishra et al. 2016; Sadowski 2016a) and an adiabatic
equation of state with γ= 5/3. However, we emphasize that
the current simulations do not employ any form of explicit
viscosity. On top of this disk, we impose various initially weak
(βmid,0 100) seed magnetic field configurations. We choose
to start with weak magnetic fields to test whether the accretion
process itself can amplify them to the required strengths.
All simulations are carried out using the general relativistic,

radiation, magnetohydrodynamics (GRRMHD) code, Cosmos
++ (Anninos et al. 2005). We use the high-resolution shock-
capturing (HRSC) scheme described in Fragile et al. (2012) to
solve for the flux and gravitational source term of the gas and
radiation. Rather than evolving the magnetic fields directly, we
instead evolve the vector potential and recover the fields from it
as needed, as described in Fragile et al. (2019).
For the radiation, we use the M1 closure scheme described in

Fragile et al. (2014), which retains the first two moments of the
radiation intensity and (average) radiative flux. We use gray
(frequency-independent) opacities, which are captured in the
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radiation four-force density (coupling) term:
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K
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cgsk r= ´ - cm2 g−1 and

T7.6 10R
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K
7 2

cgsk r= ´ - cm2 g−1 are the Planck and
Rosseland mean opacities for free–free absorption, respec-
tively, κ s= 0.34 cm2 g−1 is the opacity due to electron
scattering, Rμ ν is the radiation stress tensor, uμ is the fluid
four-velocity, TK is the ideal gas temperature of the fluid in
Kelvin, and ρcgs is density in g cm−3. Thus, we are assuming
Kramers-type opacity laws, with the Rosseland mean also used
for the flux mean, F

a
R
ak k= , and the Planck mean used for the J

mean, J
a

P
ak k= . Since the simulations capture turbulence,

reconnection, and shock heating as well as radiative cooling
directly, we do not need to include any artificially imposed
heating or cooling terms.

To invert the conserved fields to the corresponding
primitives, we use the Cosmos++ 9D primitive solver, named
for the nine variables that make up the solution. This step uses
a Newton–Raphson iterative technique and linear matrix solver
to numerically invert the Jacobian matrix composed of
derivatives of the conserved fields with respect to the primitive
ones. It also simultaneously accomplishes the implicit forward
integration of the radiation source term (Equation (5)) and
produces a fully updated set of primitive fields. Details of this
procedure are provided in Fragile et al. (2014). In cases where
the primitive solver fails to converge or settles on a nonphysical
solution, the primitive values of the surrounding zones from the
previous time step are averaged and used to replace the failed
zone values. We also impose numerical floors and ceilings on
the primitive fields, such that the density, ρ, and internal energy
density, e, are not allowed to drop below 90% of their initial
background values, and the Lorentz factor is not allowed to
exceed 20. We also impose relative restrictions between the gas
and magnetic field properties, such that ρ� B2/100 and
Pgas� Pmag/25; these limits help with the stability of the code
in the relatively evacuated background region. Whenever mass
or energy is added to a cell because of these magnetization
limits, this is done in the drift frame according to Ressler et al.
(2017).

2.1. Simulation Setup

We only simulate the inner region of the Shakura–Sunyaev
disk model from r= 4GM/c2 to r= 160GM/c2, 0 to π in the θ
direction, and from 0 to π/2 in the f direction, making our
simulation domain a wedge shape. As these are very thin disks
(H/R 0.03), we use a variety of techniques to concentrate
resolution as much as possible toward their inner regions,
including a logarithmic radial coordinate, ( )x r r1 ln1 BH= + ,
a concentrated latitude coordinate,

( ) ( )x x0.35 sin 2 , 62 2q = +

and static mesh refinement. We start with a base mesh of
48× 48× 12 and add two or three levels of refinement focused
around the inner disk for an equivalent resolution of
384× 384× 96 for the highest-resolution, four-level

simulations. Even so, we only have approximately 6 (12)
zones per scale height of the disk initially for our three-(four-)
level simulations. The three-level grid, used for most of the
simulations, is shown in the top panel of Figure 1.
We apply outflow boundary conditions at both radial grid

boundaries, reflecting boundary conditions at the poles, and
periodic boundaries in the azimuthal direction. One change
from how we set the disk up in Fragile et al. (2018) is that here
we ignore the relativistic correction terms, ,  , ,  , and
that appear in the Novikov & Thorne (1973) form of the thin-
disk solution (see Equation (99) of Abramowicz & Fra-
gile 2013). Otherwise, the procedure is the same.

2.2. Magnetic Field Setup

The simulations are each seeded with one of four relatively
simple field geometries; the key is that each geometry is
qualitatively different in some way. In all four cases, the fields
are initially weak relative to the gas and radiation pressure
within the body of the disk. Finally, the fields are constructed
such that βmid,0 is approximately constant with radius.
The first geometry we consider is a zero-net-flux, single-

poloidal-loop case (second panel of Figure 1). This is the
standard dipole field configuration that has been used to
initialize many global MHD disk simulations; the one
difference is that our field is very elongated in the radial
direction, extending from near the inner radius of the disk all
the way to the outer boundary of our simulation domain. To
initialize this field, we first set the azimuthal component of the
vector potential to be

( ) ( )
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e
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where R r sin q= is the cylindrical radius, H is the local height
of the disk, r GM c30max

1.5 2= is the maximum radius of the
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where z r cos q= , ( )R R Rmax ,t ISCO= , and RISCO= 6GM/c2

is the usual ISCO5 radius. We then set the poloidal components
of the magnetic field as  Ar = -¶q f and  Ar= ¶q

f. These
choices keep the initial magnetic field confined within our very
thin initial disk. This field configuration is subject to a strong
radial shear amplification (leading to a growth of the f

component) due to the orbital motion of the disk (the so-called
Ω dynamo), along with MRI-driven amplification. However, a
common feature of all such dipole field configurations is that
they have a current sheet exactly at the midplane of this disk.
This turns out to be an important factor in determining the
subsequent evolution of this case.
Our second magnetic field configuration consists of two

poloidal field loops of opposite polarity stacked vertically, one
on top of the other, about the midplane of the disk (third panel
of Figure 1). To achieve this, we use the same vector potential
as the dipole field case (Equation (7)), except multiplied by an
extra factor of z to introduce the asymmetry across the
midplane. Again, we expect significant field amplification from
the orbital motion of the disk. Although this configuration

5 Innermost stable circular orbit
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introduces a second current sheet, neither is located in the
midplane of the disk, unlike the dipole case.

The third field configuration consists of multiple small
poloidal loops of alternating polarity distributed in concentric
rings moving outward through the disk midplane (fourth panel
of Figure 1). Each ring has a width comparable to the local disk
height. To achieve this, we start from the following vector
potential:

( ) ( )
( )

A R
e R H

e

sin 2 5

1
. 9

z H
2

2.5 2 2 p
µ

+
f

-

D

For such a configuration, we do not expect the field to amplify
sufficiently to offer significant pressure support. This is because
the narrow radial range of each magnetic cell prevents
significant radial shear. Also, this configuration lacks any sort
of underlying guide field that can replenish the field lost to
reconnection. Ultimately, any amplification of this field is
limited to the action of the magnetorotational instability (MRI),
which typically saturates at βr 10 for zero-net-flux config-
urations (Turner 2004; Hirose et al. 2009), and therefore, we
expect to see thermal runaway (either collapse or expansion)

analogous to our earlier simulations with a similar field
configuration (Mishra et al. 2016). Nevertheless, we run this
simulation as a control case.
For the final configuration, we consider a net-flux, vertical

field threading through the disk (bottom panel of Figure 1),
such that, again, β is reasonably uniform throughout the
midplane. Here the vector potential is simply

( )A R . 102µf

Such a field configuration is subject to amplification due to
both the shearing at the interface between the disk and
background medium and the MRI inside the disk. In
nonradiative, shearing box simulations, such a configuration
can reach saturation field strengths of
βmid= Pgas,0/Pmag,0≈ 0.25 even for initially weak fields (Bai
& Stone 2013; Salvesen et al. 2016). If similar saturation
strengths could be reached in radiation-pressure-dominated
cases, then this may be enough to stabilize the disk
(Sadowski 2016b).
At the start of all our simulations, the magnetic fields are

normalized to match a specific target value for βmid. In the

Figure 1. Pseudocolor plots of the logarithm of gas density. The top panel shows the three-level mesh used in most of the simulations. The remaining panels show the
different magnetic field configurations that we consider, with black and white lines showing the different magnetic field polarities: zero net flux, single loop, or dipole
(S3Ed, second panel); zero net flux, two loop, or quadrupole (S3Eq, third panel); zero net flux, multiloop (S3Em, fourth panel); and net flux, vertical field (S3Ev,
bottom panel). We have truncated the vertical extent of each panel to make the details of the disk more easily visible.
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dipole, quadrupole, and multiloop cases, βmid≈ 100, while for
the vertical field, βmid≈ 1000. Since all of our simulations start
from the same base disk configuration as the S3E simulation in
Fragile et al. (2018), we follow the same naming convention in
this paper. To distinguish the different field configurations, we
append to the base simulation name a “d” for the dipole case, a
“q” for the quadrupole case, an “m” for the multiloop case, and
a “v” for the vertical-field case. All of the simulations presented
in this work are summarized in Table 1. The first column shows
the model name (S3Ed:dipole, S3Eq:quadrupole, S3Em:multi-
loop, S3Ev:net-vertical field, and 4L for four level). The second
column shows the duration of each simulation. In the third and
fourth columns, we report the initial and late-time
(t= 20,000GM/c3) magnetic flux threading the disk. The
initial magnetic flux is computed through a sphere of radius
r= 15GM/c2 as

∣ ∣ ( )B r d dsin . 11r
0

2ò ò q q fF =

Since the dominant field component at late times is the toroidal
one, we calculate the late-time flux through a poloidal fan
covering 4� r/(GM/c2)� 15 and 0� θ� π as

∣ ∣ ( )B rdrd . 12t ò ò qF = f

The flux required to stabilize thin accretion disks such as ours
was estimated in Sadowski (2016b) to be roughly 2× 1023 G
cm2. Our initial fluxes are about four to six orders of magnitude
below this level, while at late times, models S3Eq and S3Ev
reach fluxes within one to two orders of magnitude of this
level. Interestingly, some of our fluxes approach those required
for a magnetically arrested disk (∼ 1022 G cm2;
Sadowski 2016b), though most of that flux is in the toroidal
component. The poloidal flux threading our inner boundary
remains well below the MAD limit in all cases. The last column
in Table 1 shows the eventual fate of each model.

3. Stability Results

In order to fully evaluate the stability of each field
configuration, we run each simulation until either the disk
clearly collapses (or expands) or until many thermal timescales
have passed. In this study, we take the thermal timescale to be
tth= 0.1(αΩ)−1, where Ω is the local orbital frequency. To
standardize our plots, we take α= 0.02, which is based on our

expectations for the dipole and multipole cases. We expect α to
be higher and the true tth to be correspondingly shorter in the
quadrupole and vertical cases. This estimate of tth is a factor of
10 shorter than the estimate we used in Fragile et al. (2018).
The reason is that, without an explicit viscosity in these
simulations, there is initially very little heating in the disk.
Thus, the thermal energy content is smaller at early times than
in the simulations in Fragile et al. (2018). This reduced thermal
energy content reduces the time needed for heat to diffuse out
(the thermal timescale). For simulations that are able to
stabilize themselves, with heating and cooling balancing out
and a higher thermal energy content present in the disk, the
thermal timescale probably returns to something closer to
(αΩ)−1. For all purported stable simulations, we run them for
up to 30,000GM/c3, which is over 300 orbits and dozens of
(initial) thermal timescales at the ISCO. A big caveat, though,
is that this only covers about one viscous timescale,
tvis= r2/ν= r2/(αcsH), at that same radius. Another caution
is that previous work has shown that the onset of thermal
instability can sometimes be delayed for periods of up to
hundreds of orbits (Jiang et al. 2013; Ross et al. 2017), so it is
possible that one or more of our stable configurations could
turn out to be unstable if they were allowed to run indefinitely.

3.1. Zero-net-flux, Dipole Field Case (S3Ed)

It should be of little surprise that all of our simulated disks
undergo an initial period of collapse (over roughly a thermal
timescale). Remember, they all start off supported by radiation
pressure, and since it takes the MRI a few orbital periods to
reach saturation, there is a stretch at the beginning of each
simulation when there is minimal turbulence, hence little
energy dissipation, and heating and magnetic pressures are low.
As radiation leaks out of the disk and is not replaced during this
period (roughly the first thermal timescale), the vertical support
declines and the disk height shrinks. In our analysis, the disk
height is calculated using a density-squared weighting as

( ) ( )H R
z dV

dV
, 13

2 2

2

ò
ò

r

r
=

r

where the integrals are carried out over each radial shell and dV
is the proper volume of a computational shell. Spacetime plots
of the scale height (H/R) are provided in Figure 2 for the
dipole, quadrupole, and vertical cases.
The difference between our simulations is the degree to

which the disk recovers from this initial collapse. In the case of
the dipole configuration, shown in the left panel of Figure 2, the
disk marginally recovers. While the MRI attempts to heat the
disk, this heating rate is not quite sufficient to balance the
cooling rate, especially at small radii. Figure 3 shows the ratio
of heating, Q+, to cooling, Q−, demonstrating the slight
dominance of the latter for the dipole case (left panel). The net
heating rate per unit surface area is computed as

( ) ( )ˆ ˆQ R V W d
3

2
, 14rò q= f

f f
+

where the integration is carried out within the limits of the
effective photosphere and the integrand is azimuthally
averaged, with Vf≈Ω the azimuthal component of the fluid
three velocity and ˆ ˆWrf the covariant r–f component of the
MHD stress tensor in the comoving frame. The radiative

Table 1
Simulation Models

Sim tstop
a Φ0

b Φt
c Fate

(GM/c3) (G cm2) (G cm2)

S3Ed 30,000 1.4 × 1018 1.1 × 1020 Unstable
S3Ed4L 11,076 Unstable
S3Eq 30,000 5.6 × 1017 4.8 × 1021 Stable(?)
S3Eq4L 18,645 Stable(?)
S3Em 23,988 1.0 × 1017 3.6 × 1020 Unstable
S3Ev 25,000 1.6 × 1019 8.3 × 1021 Stable

Notes.
a Duration of each run.
b Initial radial magnetic flux through a shell at r = 15 GM/c2.
c Toroidal magnetic flux at t = 20,000 GM/c3 through a poloidal fan covering
4 � r/(GM/c2) � 15 and 0 � θ � π.
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cooling is computed by tracking the radiative flux through the
photosphere at each radius:

( ) ( ) ( ) ( )Q R F R F R , 15photo photo= á ñ - á ñq
f

q
f

-
+ -

where ( ) ( )F R E u u4 3 R R R tphoto = -q q
 is the flux escaping

through the top or bottom photosphere. As advective cooling
is not important in these simulations, we ignore its contribution
to Q−. Also ignored is the contribution of the radial component
of the radiative flux to cooling, which is appreciable only close
to the ISCO.

Additionally, the magnetic pressure in the S3Ed model fails
to reach the stability threshold, Pmag> 0.5Ptot, except maybe
very close to the disk midplane as shown in Figure 4 (left
panel). The S3Ed configuration takes longer to amplify the
magnetic field compared to other runs (particularly S3Eq and
S3Ev) and ultimately is unable to fully compensate for the lost
thermal and radiative support. Instead, the S3Ed disk is
effectively “frozen” and settles down to a new solution at a
lower mass accretion rate and luminosity (Figure 5). However,
if the outer parts of the disk are still supplying material at the

original, higher rate, as they would be in a real disk or in a
much larger and longer simulation, then matter must begin to
pool somewhere in the disk. Eventually, this excess material
must be accreted, likely in a rapid burst, after which the cycle
would likely repeat (Cannizzo et al. 1995). As this type of
limit-cycle behavior is not seen in most BHXRBs, this argues
against such disks having a predominantly dipole field
configuration.
Finally, we find an interesting anticorrelation between the

scale height of the disk (Figure 2) and the effective viscosity,
defined here as the density-weighted, height-averaged ratio of
the covariant r̂ -f̂ component of the stress tensor to the total
pressure, i.e., ^̂⟨ ⟩W Pr tot/a º f r. A spacetime diagram of this
quantity is shown in Figure 6. It appears there may even be a
threshold value of α> 0.01 associated with stability.

3.2. Zero-net-flux, Quadrupole Field Case (S3Eq)

Unlike the dipole configuration, which seems to quickly
collapse to a different configuration, the quadrupole simulation
recovers from its initial collapse to reinflate back to a height

Figure 2. Spacetime (R − t) plots of the density-squared-weighted scale heights of the disks for the dipole (S3Ed; left), quadrupole (S3Eq; middle), and vertical
(S3Ev; right) simulations, showing a vertical collapse for the dipole case and a collapse followed by recovery for the quadrupole and vertical cases. The solid white
curves show the estimated thermal timescale.

Figure 3. Spacetime (R−t) plots of the ratios of the heating rates, Q+, to the cooling rates, Q− for the S3Ed (left), S3Eq (middle), and S3Ev (right) simulations,
showing that cooling dominates, especially at smaller radii in S3Ed; heating and cooling balance fairly well in S3Eq; and heating seems to mostly dominate, especially
in the outer regions in S3Ev. Inside of ≈10 GM/c2, the plots are white because the disk is effectively optically thin in those regions, and our heating and cooling
formulae do not apply. Beyond that radius, the occasional white patches correspond to locations where the cooling rate takes on negative values, which happens when
the flux measured at the photosphere points toward the disk midplane, rather than away. The solid white curves show the estimated thermal timescale.
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comparable to its original profile, as shown in Figure 2 (middle
panel). Later (t> 12,000GM/c3), the disk even “bounces” a
few times (shown by alternating increases and decreases in
height at a given radius).

The notably different behavior of simulation S3Eq compared
to S3Ed can best be understood by comparing the left and
middle panels of Figure 4. As mentioned previously, the dipole
simulation is plagued by a midplane current sheet at early times
that prevents the magnetic pressure from building up
sufficiently over the bulk of the disk. The quadrupole
simulation, by contrast, does not have a midplane current
sheet. In fact, during the initial period of collapse, the midplane
value of r

1b- actually increases because more magnetic field is
being squeezed into a given volume. Without a current sheet to
dissipate this energy, the disk is able to store it, and even
amplify it, in order to use it later to restore the disk back to
something close to its original configuration. More quantita-
tively, we can see from Figure 4 that simulation S3Eq achieves
and sustains the required 0.5r

1b-  (−0.3 on the logarithmic
color bar of Figure 4), at least until t≈ 14,000GM/c3.

However, we see evidence in Figure 7 that, beginning
around 6000GM/c3 for case S3Ed (left panel) and
12,000GM/c3 for case S3Eq (middle panel), the toroidal
magnetic field starts buoyantly rising out of the disk. At the
same time, the coherent, extended, radial field component,
which is crucial for replenishing the toroidal field, begins to
break up due to turbulent motions of the MRI. Therefore, the
toroidal field is no longer being replaced as fast as it is being
lost and r

1b- drops. In our higher-resolution studies, we found
that these same changes occurred, but about 50% later in time,
so the timing of this transition from stability to instability is
apparently not fully resolved yet.

Interestingly, there remain periods during the evolution of
S3Eq and to some extent S3Ed when a strong radial field
component is able to reestablish itself near the midplane,
although not always of the same polarity as the initial field.
This revived radial field is able to generate sufficiently strong
toroidal fields to briefly allow r

1b- to again approach the
stability limit, but these periods are relatively short and the
fields localized; thus, they are not enough to truly restore
stability. As a result, S3Eq appears to undergo multiple
instability cycles, with the disk expanding and contracting
vertically on roughly the local thermal timescale. Similar

oscillations between stability and instability are suggested in
the figures of Sadowski (2016a), though the author makes no
specific mention of this.
It is interesting that it is only after simulation S3Eq loses its

magnetic pressure support and begins to oscillate in height that
it reaches a fairly steady state in terms of mass accretion rate
and luminosity (Figure 5), with values very close to the targets
for this study. During this same period, simulation S3Eq
reestablishes a rough thermal equilibrium (Q+≈Q−), as shown
in Figure 3 (middle panel). An initial period of cooling
domination (t� 2500GM/c3) and a later period of heating
domination (10,000� t� 15,000) are also noticeable. We will
make a more detailed comparison of this simulation with the
Shakura–Sunyaev model in Section 5.

3.3. Zero-net-flux, Multiloop Case (S3Em)

The zero-net-flux, multiloop simulation is qualitatively very
similar to the simulations we reported in Mishra et al. (2016). It
is also the case where the disk is least likely to stabilize, as
zero-net-flux MRI turbulence saturates at a field strength of
βr 10 (Turner 2004; Hirose et al. 2009) and there is no global
field component for the Ω dynamo to amplify. Not surprisingly,
we see this disk collapse on the local thermal timescale until it
becomes too poorly resolved to sustain MRI turbulence.
Because of this, we choose not to present any figures
specifically for this simulation, although it is included in
Figure 5. The solid black curve in Figure 5 shows that this
model remains underluminous and also maintains a low mass
accretion rate. Our results, plus Mishra et al. (2016), support
our conclusion that this field configuration is unstable to
thermal collapse in this mass accretion range.

3.4. Net-flux, Vertical-field Case (S3Ev)

The net-flux, vertical magnetic field configuration leads to
our only fully stable disk configuration, in this case by
producing the strongest magnetic pressure support among all
the models we simulated. It quickly satisfies 0.5r

1b-  (right
panel of Figure 4) and has a heating rate that matches, or even
exceeds, its cooling rate (right panel of Figure 3) and hence
causes the disk to elevate (right panel of Figure 2).
The strong magnetic pressure support in this case happens

despite the presence of a midplane current sheet (seen in the

Figure 4. Time–space (t−z) plots of r
1b- (ratio of azimuthally averaged magnetic pressure to total pressure, Ptot = 〈Pmag〉f + 〈Pgas〉f + 〈Prad〉f) as a function of height

in the disks for the S3Ed (left), S3Eq (middle), and S3Ev (right) simulations, evaluated at r = 15 GM/c2.
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right panel of Figure 7). This is owing to the very strong
magnetic pressure gradients found just above and below the
disk midplane, as we will show in the next section.

Another interesting feature of this particular configuration is
that it hits the target mass accretion rate and luminosity pretty
much right from the beginning (green, dotted–dashed curves in
Figure 5). This is in contrast to the S3Eq case, which also
achieves the target values, but only after r

1b- drops below 0.5.
This suggests that a net-flux, vertical-field configuration does
not need to wait for the MRI to develop to begin driving
accretion. In fact, the subsequent development of the MRI does
not appear to appreciably affect the luminosity. This finding is
consistent with previous Newtonian global MHD models
reported in Mishra et al. (2020), where the dominant accretion
on the surface was driven by the coherent, rather than turbulent,
component of the Maxwell stress.

4. Disk Profiles

We now carefully compare the spatial profiles of the dipole
(S3Ed), quadrupole (S3Eq), and vertical (S3Ev) field simula-
tions, focusing mostly on the quadrupole and vertical-field
cases, since those are the ones we found to be stabilized by
strong magnetic pressure support. Figure 8 shows azimuthally
averaged profiles of mass density (top panel), mass flux
(second panel), and the three magnetic field components
(bottom three panels) for each of the three field configurations
at t = 20,000GM/c3. Note that we do not show time-averaged
profiles due to the previously mentioned field reversals
observed for case S3Eq (middle panel of Figure 7). Time
averaging, especially of the toroidal field, would lead to an
incorrect conclusion about its strength.
The density profiles (top panels) for both S3Eq and S3Ev

show a puffy structure with a reduced disk midplane density

Figure 5. Mass accretion rate measured near the ISCO, scaled to the Eddington luminosity, i.e., m Mc L2
Edd = (upper panel); luminosity through a radial shell at

r ≈ 15 GM/c2 (middle-left panel) and r ≈ 20 GM/c2 (lower-left panel), scaled to the Eddington luminosity; and the radiative efficiency, ( )L Mc L L m2
Edd h = =

at each radius (rightmost panels). The horizontal thin, dashed black lines show the target values of m 3 = , L/LEdd = 0.17, and η = 0.057, respectively. Because the
unstable simulations (S3Ed and S3Em) have collapsed to a different disk solution, they settle to a lower m and L. Note that for these plots we employ moving window
averages with window widths equal to three consecutive data to smooth them.
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compared to its initial value, a trait that is more obvious at
larger radii (R> 15GM/c2). Although our models cannot scale
to a supermassive black hole, such a decrease in the disk
midplane density (purely an effect of magnetic pressure
increase) could play a role in stabilizing active galactic nucleus
(AGN) disks against gravitational instability (Shlosman &
Begelman 1987; Riols & Latter 2018).

In each model reported here, the scattering photosphere
(dashed, white curves) is quite thick (only visible in the upper-
and lower-left corners of the top panels). The effective
photosphere (dotted–dashed, white curves) lies inside the disk
height (solid, blue curves) at small radii (R 12GM/c2) but
flares out beyond that radius. Since these simulations have not
run long enough to reach an equilibrium state much beyond
that radius, the flaring could just be a transient feature. Finally,
the absorption photosphere (solid, green curves) lies inside the
disk height at all radii.

The profiles of mass flux, 〈ρ〉f〈V
r〉f (second row), show

that, within R� 15GM/c2, all of the simulations accrete
primarily through the disk midplane, though S3Ed and S3Ev
also exhibit significant accretion along the disk surface. The
surface accretion is associated with regions of extended radial
field coherence seen in the 〈Br〉f plot (third row). For S3Ev,
these are regions where the magnetic field doubles back on

itself (if you were to follow a single “vertical” magnetic field
line from the disk midplane to larger heights, you would sees it
first bend radially inward and then outward), as noted in
previous Newtonian MHD simulations (Zhu & Stone 2018;
Mishra et al. 2020). Despite such an irregular profile of 〈Br〉f,
〈Bf〉f maintains a strong (two orders of magnitude larger
amplitude compared to 〈Br〉f), coherent field structure (fifth
row, right panel). The S3Eq model also has a strong toroidal
field, but with a polarity switch at R≈ 12GM/c2. This is
interesting because the initial field configuration has its radial
component pointing outwards near the midplane, which should
lead to a negative component of the toroidal magnetic field (as
it does for large radii). However, in the inner region
(R 12GM/c2), the disk rearranges the magnetic field, leading
to a positive toroidal field. This could be better understood by
reminding ourselves of the toroidal field reversals seen in the
middle panel of Figure 7. The S3Ev case, on the other hand,
has its dominant polarity change roughly in the disk midplane,
with a stronger 〈Bf〉f overall compared to model S3Eq. The
vertical-field component, 〈B θ〉f (fourth row), has a more
complicated, turbulent structure compared to the radial and
toroidal field components.
Continuing our analysis, in Figure 9 we present azimuthally

averaged vertical profiles of a number of key disk parameters,

Figure 6. Spacetime (R−t) plots of the density-weighted, shell-averaged viscosity parameter, α, for the dipole (S3Ed; left), quadrupole (S3Eq; middle), and vertical
(S3Ev; right) simulations.

Figure 7. Time–space (t−z) plots of the azimuthally averaged toroidal component of magnetic field at r = 15 GM/c2. From left to right are models S3Ed, S3Eq, and
S3Ev, respectively. Models S3Ed and S3Ev show a current sheet at the midplane, whereas S3Eq does not. Both the S3Ed and S3Eq models show field reversals
starting at t  104 GM/c3.
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all measured at a radius of R= 15GM/c2 and at time
t= 20,000GM/c3 for the same three field configurations:
dipole, quadrupole, and vertical. In panel (1), the density
profile shows that model S3Ed exhibits a much thinner, denser
slab profile, whereas the stable configurations, S3Eq and S3Ev,
show an enhanced density at higher altitudes, with a
corresponding decrease in their midplane values. In panels
(2) and (3), we show radial velocity and mass accretion rate
plots.

The azimuthally averaged magnetic pressure (panel 4) shows
one of the key differences between models S3Eq and S3Ev. In
the case of S3Eq, the magnetic pressure is highest close to the
disk midplane and tapers off from there, whereas the midplane
magnetic pressure is relatively low in the case of S3Ev because
of the current sheet there. But on either side of the midplane,

the magnetic pressure is quite high. In fact, it is perhaps a bit
surprising that such different magnetic pressure profiles could
yield relatively similar density profiles (panel (1)). This is
explained by the fact that the radiation pressure is still a major
contributor and has a roughly similar profile in both cases (not
plotted).
In panels (5) and (6), we show the radial and azimuthal

magnetic field components. The radial magnetic field shows a
complicated structure with multiple reversals in the S3Eq and
S3Ev cases. The azimuthal magnetic field is two orders of
magnitude larger in amplitude and maintains a coherent
structure showing no field reversals over this height in the
S3Eq case and only one field reversal at the disk midplane in
the S3Ev case.

Figure 8. Profiles of density (top), mass flux (second from top), Br (middle), B θ (second from bottom), and Bf (bottom) for the dipole (left), quadrupole (center), and
vertical (right) field cases at time t = 20,000 GM/c3. Overlaid on the density profiles are curves representing the time-averaged disk height (solid, blue), and the
absorption (solid, green), effective (dotted–dashed, white), and scattering (dashed, white) photospheres. The dashed, black, vertical line corresponds to R = 15 GM/c2

(the radius at which we extract Figures 4, 7, and 9).
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In panel (7), we show T B BM
rrá ñ = -á ñ á ñf

f f
f
f, which is the

coherent component of the Maxwell stress tensor. Near the disk
midplane, all the models show very little coherent field. This
suggests that the disk region is turbulent, which hinders the
development of coherence. The S3Ev model, however,
develops a coherent magnetic field at higher altitudes, though
the sign of the stress reverses multiple times. No such behavior
is seen in the other two models. In panel (8), we show the
vertical component of the coherent stress, which is again very
small for cases S3Ed and S3Eq, whereas S3Ev again exhibits
large fluctuations at higher altitudes.

In panel (9), we show the vertical profile of the heating rate.
Interestingly, the S3Eq and S3Ev cases have nearly identical
heating rates in the disk midplane. At higher altitudes (around
z≈± 2.5GM/c2), the S3Ev case has about an order of
magnitude larger heating compared to S3Eq and S3Ed. These
results inform the longstanding question of where the
maximum dissipation occurs within a disk. Standard accretion
disk theory assumes that disk heating is primarily confined to
the disk midplane, as exhibited by our S3Eq case. This is
consistent with its magnetic pressure profile. Contrarily, the

S3Ev model shows the least heating in the disk midplane (yet
still equal to the S3Eq case), but greatly enhanced heating in
the region 1 |z|/(GM/c2) 4. If we compare panels (6) and
(9), we see that the enhanced heating rate correlates roughly
with the amplitude of the toroidal magnetic field. In the S3Eq
case, the strongest toroidal magnetic field is confined within the
disk region with a maximum at the disk midplane, whereas in
the S3Ev case, the toroidal magnetic field has a local minimum
at the disk midplane (due to the current sheet there), while it is
larger at higher altitudes. Although these are ideal GRMHD
models, the heating due to magnetic energy dissipation still
scales with the available magnetic energy in a given region.
The enhanced magnetic energy in the S3Ev case means there is
more available energy to cascade down, hence, the enhanced
heating in this case. This enhanced heating may be compen-
sated by extra cooling due to outflows (some of which are seen
in the second row of Figure 8) that help maintain thermal
stability (Li & Begelman 2014).

Figure 9. Vertical profiles of various disk parameters at r = 15 GM/c2 for the S3Ed (dashed red), S3Eq (solid yellow), and S3Ev (dotted–dashed green) simulations at
t = 20,000 GM/c3. All quantities are azimuthally averaged.
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5. Comparing Our Stable Solutions to Shakura–Sunyaev

We find that, despite their different magnetic field setups and
evolution, both the S3Eq and S3Ev configurations can lead to
stable disks supported primarily by magnetic pressure, though
the S3Eq model seems to fluctuate between stability and
instability. Both cases achieve mass accretion rates and
luminosities close to what would be expected based on our
starting Shakura–Sunyaev model. We now compare how well
our simulated disks match other predicted properties of the
Shakura–Sunyaev model. Since the Shakura–Sunyaev model is
a one-dimensional, vertically integrated model without explicit
turbulence, we consider time-averaged, radial profiles of our
simulations to be the closest proxy. Three key properties to
focus on are the disk height, temperature, and surface density.

In Figure 10, we provide azimuthally and time-averaged
radial profiles of the mass accretion rate, m; disk height, H,
defined as in Equation (13); disk gas temperature, Tgas, defined
as

( ) ( )T R
TdV

dV
; 16gas

ò
ò

r

r
=

r

and disk surface density,

( )
d

rdr
. 17ò

r q
S =

á ñf

From the plot of m , we can see that each simulation has
achieved a steady state out to about R≈ 15GM/c2, with S3Eq
and S3Ev closely straddling the target value. The S3Ed and

S3Em models show lower accretion rates, consistent with their
collapse. The upper-right panel compares the disk scale height
with the standard disk model (black dashed curve). We can see
that both of the stable disk configurations (S3Eq and S3Ev)
achieve heights much larger than the standard disk model, with
a disk scale height of H/R≈ 0.03 at R= 15GM/c2, which is
nearly a factor of two larger than predicted by the Shakura–
Sunyaev model (although the higher-resolution, four-level
model, S3Eq4L, is somewhat thinner). This thickened structure
is in agreement with previous GRRMHD simulations of black
hole accretion disks at comparable accretion rates (e.g.,
Sadowski 2016a; Lančová et al. 2019; Wielgus et al. 2022).
S3Ed (and even more so S3Em), on the other hand, has
collapsed below the expected disk scale height. The lower-left
and -right panels show profiles of Tgas and Σ. We notice that all
our disk configurations have temperature profiles nearly the
same as the Shakura–Sunyaev model. The profiles of Σ, by
contrast, show elevated surface densities (factors of 3–10)
compared to the standard model.

6. Comparison to Previous Simulations

We already mentioned that our zero-net-flux, multiloop
simulation, S3Em, is very similar to the simulations we
presented in Mishra et al. (2016). The biggest difference is in
the initial setup of the disk. In Mishra et al. (2016), we
initialized the disk as a constant height slab of gas, orbiting
everywhere at the Keplerian frequency. As such, the simulation
was in some ways more akin to a radially extended shearing

Figure 10. Comparisons of the Shakura–Sunyaev disk model (black dashed lines) with profiles from the simulations for the mass accretion rate (upper left), disk
height (upper right), gas temperature (lower left), and surface density (lower right), time-averaged over the period t = 18,000 GM/c3 to the final time of each
simulation as reported in Table 1. Our stable disk models, S3Eq and S3Ev, show a height profile somewhat thicker than the model prediction. The temperature remains
nearly the same as what we started with, while the surface density finishes slightly higher than its initial configuration. Note that the dashed black curves are computed
using the initial disk profiles from the numerical model.
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box simulation than a traditional global one. A negative
consequence of that choice was that the disk did not start on the
thermal equilibrium curve for a standard disk. This made it
more difficult to assess the true nature of the instabilities we
witnessed, though a thermal collapse was clearly evident. This
is fixed in the current paper by starting from the Shakura–
Sunyaev solution, which, by construction, begins on the
thermal equilibrium curve. Despite the differences, both sets
of simulations reach the same conclusion: that a zero-net-flux,
multiloop magnetic field configuration is unable to stabilize
itself in the radiation-pressure-dominated regime.

A couple of other simulations we performed share some
basic properties with simulations presented in Sadowski
(2016a). Specifically, our zero-net-flux, dipole case, S3Ed, is
very similar to simulation “D” of that paper, and our zero-net-
flux, quadrupole case, S3Eq, is very similar to their simulation
“Q.” The biggest difference is that Sadowski (2016a) started
each simulation from a torus of gas initially located far
(R 40GM/c2) from the black hole. With the build up of MRI
turbulence, that torus spreads out into a flatter, wider disk.
Although this is a popular starting configuration, it does have
its shortcomings when it comes to the goals of studying thermal
stability. One is that it is nearly impossible, a priori, to know
what mass accretion rate one will get from such simulations; it
is a matter of trial and error. Another is that the mass accretion
rate usually decays over longer timescales, as the torus
eventually depletes of mass. Finally, this configuration can
only achieve inflow equilibrium inside of roughly the initial
midradius of the torus. To avoid these issues, and to more
directly compare with theoretical predictions, we chose instead
to initialize our simulations from the Shakura–Sunyaev disk
solution (Shakura & Sunyaev 1973), with weak magnetic fields
added. This gets us around the shortcomings of the torus
configuration in that we set the mass accretion rate as one of
our input parameters, matter can be continually fed in from the
outer boundary of the simulation domain, and an inflow
equilibrium can, in principle, be reached over most of the grid.

It is noteworthy then, that despite these differences in the
setup, we reach essentially the same conclusions as Sadowski
(2016a), namely that the dipole configuration is unstable, while
the quadrupole one is marginally stable. Sadowski (2016a)
concluded that the dipole configuration was unstable based
upon (1) a very thin profile (low H) of the disk, (2) a
dominance of cooling over heating, (3) a lack of magnetic
pressure support, and (4) a drop in m—the same points we
made in Section 3.1. Conversely, Sadowski (2016a) concluded
that the quadrupole configuration was stable based upon (1) a
balance of heating and cooling, (2) magnetic pressure
domination, 0.5r

1b-  , and (3) a steady m—the same points
we made in Section 3.2.

These same two simulations, S3Ed and S3Eq, also bear some
similarities to the two simulations presented in Jiang et al.
(2019), in that one of the Jiang et al. (2019) simulations,
AGN0.2, started with a dipole field configuration, while the
other, AGN0.07, used a quadrupole. Both were initialized from
a torus configuration similar to Sadowski (2016a), although the
Jiang et al. (2019) simulations were tuned to AGN parameters
(e.g., M= 5× 108Me). Nevertheless, they cover ranges of
mass accretion rate and luminosity similar to our simulations
and are, thus, relevant to a discussion of thin-disk stability.
Although Jiang et al. (2019) claim that both of their simulations
are thermally stable, there are hints in Figures 1 and 2 that their

AGN0.2 (dipole) model undergoes a transition around
40,000GM/c2, where M and L increase (by a factor of 2 in
the case of L), the midplane density jumps up (by an order of
magnitude), and the gas temperature inside the disk drops (also
by about an order of magnitude). All of this happens around the
same time Bf undergoes a major field reversal. Most of this is
reminiscent of the transition we see in our S3Eq simulation
around 12,000GM/c3, which we associate with a transition
from stability to instability. Interestingly, the quadrupole
simulation in Jiang et al. (2019) appears to remain stable until
at least 45,000GM/c3, nearly 4 times longer than our S3Eq
simulation and about 2.5 times longer than S3Eq4L. Since the
Jiang et al. (2019) simulations were done at a higher effective
resolution than ours, this could just be an extension of the effect
we noticed that higher-resolution simulations remain stable
longer. Or it could be a product of other differences, such as
how the radiation is handled in each case.
In addition to S3Ed and S3Eq, we also modeled an initial

magnetic field configuration with net-vertical magnetic flux
(S3Ev). Such net-flux configurations have been receiving
increasing interest in recent years because they produce higher
effective viscosities (Hawley et al. 1995; Bai & Stone 2013;
Salvesen et al. 2016) and feed dynamically important magnetic
fields toward the central object (Igumenshchev 2008; Beckwith
et al. 2009; Cao 2011). Due to numerical challenges in
simulating such a magnetic field configuration, there are very
few reported global simulations of them, especially involving
thin disks; a couple of examples are Zhu & Stone (2018) and
Mishra et al. (2020). Our S3Ev model shows rapid magnetic
field amplification and surface accretion with weak outflows
along the disk midplane, similar to those reported in Mishra
et al. (2020).

7. Discussion and Conclusions

We performed four simulations of Shakura–Sunyaev thin
disks threaded with different magnetic field configurations to
evaluate their thermal stability and confront these models with
observations of stable disks. Our zero-net-flux quadrupole and
net-flux vertical-field configurations seem to have achieved the
desired stability (at least for some period). Both evolve to a
late-time accretion rate of≈3LEdd/c

2 and luminosity
of≈0.17LEdd. The properties of these simulated disks are
broadly consistent with the Shakura–Sunyaev model, with
turbulent heating largely matching radiative cooling inside a
magnetic-pressure-supported thin disk. As mentioned pre-
viously, it could be that the thermal instability would manifest
itself on longer timescales (hundreds of orbital periods and
many thermal timescales). However, we have confirmed that
our stable configurations can reach 0.5r

1b-  , which should
remove the instability.
One limitation of our simulations is that they only cover a

quarter of the azimuthal domain. This prevents us from
capturing low-order azimuthal structures such as the spiral
features seen in Mishra et al. (2020). These could substantially
alter the density profile of the disk and hence their radiative
properties.
Another issue is that all of our simulations undergo an initial

thermal collapse before some of them recover. In order to
prevent this initial transient feature, we could have started our
simulations from an already turbulent disk to overcome the
initial imbalance between heating and cooling. However, it is
unlikely in our opinion that this would have changed the
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outcomes of any of the models. The key to stabilizing these
disks is their ability to rapidly build up and sustain a large
magnetic pressure. Simulations without a substantial radial or
vertical magnetic flux are unlikely to ever achieve a
dynamically significant magnetic pressure, whether via the
MRI or Ω dynamo. This statement appears to have recently
gained additional support from the reported thermal collapse of
simulated thin disks threaded only by toroidal magnetic fields
(Liska et al. 2022).
There are many plausible magnetic field topologies for

accretion disks; here we have only considered four very
simplified ones. It could be that in real astrophysical systems
there may be a few preferred topologies. Recent EHT
polarization measurements of M87 suggested an organized
poloidal field component in the near-horizon region (Event
Horizon Telescope Collaboration et al. 2021a, 2021b).
Sadowski (2016b) gave an estimate for how strong such fields
would need to be to stabilize the disks in particular X-ray
binaries. Although he argued that it is reasonable for such field
strengths to be provided by the companion star, he left open the
question of how the fields might reach the inner accretion disk
regions where thermal stability is a question. We, too, have
dodged this important question for now.

One thing our work adds to this debate is that a net magnetic
flux may not be necessary for thermal stability. In most
accretion flows, the toroidal magnetic component will dominate
due to the Ω dynamo, even in so-called MAD disks (Begelman
et al. 2022). This component can provide quite high magnetic
pressure, even while supporting the MRI (Wielgus et al. 2015).
The question is really how this toroidal component sustains
itself. This is where either a background vertical or extended
radial field becomes crucial, as it will allow the toroidal
component to be continually regenerated. One possible new
requirement from our current work is that in order to achieve
the strengths required to stabilize radiation-pressure-dominated
disks, a radial field configuration must not be strongly affected
by a midplane current sheet.
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