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Abstract
We develop a newmethod that improves the efficiency of equation-by-equation homo-
topy continuation methods for solving polynomial systems. Our method is based on
a novel geometric construction and reduces the total number of homotopy paths that
must be numerically continued. These improvements may be applied to the basic
algorithms of numerical algebraic geometry in the settings of both projective and mul-
tiprojective varieties. Our computational experiments demonstrate significant savings
obtained on several benchmark systems. We also present an extended case study on
maximum likelihood estimation for rank-constrained symmetric n × n matrices, in
which multiprojective u-generation allows us to complete the list of ML degrees for
n ≤ 6.
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1 Introduction

1.1 History of equation-by-equation solvers

Variants of the equation-by-equation approach to polynomial system solving have
been developed in the context of both symbolic computation (see, e.g., [10]) and
numerical homotopy methods. It is far beyond the scope of this paper to evaluate
relative strengths and weaknesses when comparing these two broad categories. Our
sole aim is to improve one of the existing numerical methods, and we briefly review
the most relevant prior work.

The approach of [28] modifies polynomials in the system by adding linear terms in
a set of new slack variables, producing embedded systems. The resulting cascade of
homotopies may be considered the first practical equation-by-equation solver in the
framework of numerical algebraic geometry.

The algorithm of [30] also introduces new variables at each step of a different
equation-by-equation cascade based on diagonal homotopies. The number of addi-
tional variables in both thismethod and themethod of [28] equals at least the dimension
of the solution set.

The ingenuity of regeneration [16–18] stems from a realization that at each step
of the cascade, when considering a new polynomial of degree d, one can “replace” it
with a product of random d linear forms. This results in a two-stage procedure that,
first, precomputes d copies of witness sets corresponding to the linear factors and,
second, deforms the union of d hyperplanes into a hypersurface given by the original
polynomial.

The homotopy realizing this deformation describes a family of 0-dimensional vari-
eties in the projective space Pn —no new variables are introduced. For an overview of
regeneration, as implemented in the software package Bertini [2], we refer to [3, §5.4,
9.4], which also discusses computational examples highlighting its relative strengths.
An extension of this method to multiprojective varieties in a product of projective
spaces Pn1 × · · · × P

nk was given in [14].

Remark 1.1 We assume familiarity with basic notions from algebraic geometry. For
readerswho are less comfortablewith these notions,we suggest looking at Example 2.2
to understand our proposed method in its most basic form and for an explicit example
where the homotopy is written out completely in coordinates. The discussion at the
beginning of Section 3, up to and including Example 3.1, should provide motivation
and intuition for the more-complicated multiprojective homotopy.

For theoretical reasons, it is convenient to work with (multi)projective varieties
defined by (multi)homogeneous equations. For affine varieties defined by general
polynomial systems, various strategies enable a reduction to the homogeneous case.
For example, when computing witness sets as in Algorithm 3, points representing
these extraneous components at infinity may be discarded at any stage if only finite
solutions are of interest.
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1.2 Contributions and outline

Wedevelop a new one-stage procedure dubbed u-generation for a step in the equation-
by-equation cascade. The core is a geometric construction that relies on a homotopy in
P
n+1, thus introducing one new variable u. In fact, this new variable can be eliminated

when implementing themethod (seeRemark 2.6).With thismodification,u-generation
performs similarly to the second stage of regeneration, thus saving the cost of per-
forming the first stage.

The rest of the paper is outlined as follows. Section2 provides necessary background
on witness sets, introduces u-generation, and— for completeness— outlines a simple
algorithm for an equation-by-equation cascade. In Section3, we extend our approach,
albeit in a nontrivial way, to multihomogeneous systems: homotopies are transplanted
from P

n1 ×· · ·×P
nk to Pn1+1 ×· · ·×P

nk+1. Section4 describes the results of several
computational experiments, comparing u-generation to regeneration. In Section4.1,
we apply the methods of Section2 to several benchmark problems, demonstrating
potential savings brought by u-generation. In Section4.2, we demonstrate how u-
generation in the multiprojective setting may be applied to solve nontrivial problems
in maximum-likelihood estimation. Section5 provides a short conclusion.

Remark 1.2 One seeming complication for u-generation in a multiprojective case
is that, unlike for multiprojective regeneration in [14], the continuation paths may
emanate from a singular point. However, it turns out that, should there be a singularity
at the value of continuation parameter t = 0, one can analyze the behavior of the path
in its neighborhood and ensure a robust numerical tracking from a regular starting
point at t = ε as explained in Section3.2.

2 u-generation in P
n

2.1 The homotopy

Let X be a closed subvariety of complex projective spacePn .A straight-line homotopy
on X has the form

Ht = (1 − t)G0 + tG1, t ∈ [0, 1], (1)

where G0 and G1 consist of r -many homogeneous polynomials of matching degrees
in indeterminates [x0 : x1 : · · · : xn]. We abbreviate the straight-line homotopy (1)
by G0 � G1. Given that V(Ht ) ∩ X is a finite set, for t ∈ [0, 1], one may consider
homotopy paths emanating from start points V(G0) ∩ X . A typical application of
numerical homotopy continuation is to track these paths in an attempt to compute the
endpoints V(G1) ∩ X .1

For traditional equation-by-equation homotopies, the systemsG0 andG1 appearing
in (1) differ by exactly one equation, and the remaining equations define a curve in
some neighborhood of any given start point. Hence, we may assume that X is a curve

1 In this paper, we shall gloss over many details of how homotopy tracking is accomplished in practice and
issues arising from the need to use approximations of points. For this, we refer the reader to introductory
chapters of [31].
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which is a component or a union of one-dimensional components of V(F) ⊂ P
n .

Consider the cone X̃ ⊂ P
n+1 with coordinates [u : x] = [u : x0 : x1 : · · · : xn]. In

the chart u = 1, this is the affine cone over X , and

X̃ = {[u : x] | x ∈ X} = {[u : x] | x ∈ X} ∪ {[1 : 0 : · · · : 0]}. (2)

Given g1 ∈ C[x]d (homogeneous of degree d), we consider a homotopy

H̃t : (g0, �0) � (g1, u) on X̃ , (3)

where �0 ∈ C[x]1 and g0 ∈ C[u, x]d .
Proposition 2.1 For generic g0 ∈ C[u, x]d and �0 ∈ C[x]1, the cardinality of points
on X̃ satisfying H̃t is equal to d · deg X for t ∈ [0, 1), where deg X denotes the degree
of the projective variety X.

The start points of the homotopy H̃t are

V(H̃0) ∩ X̃ = {[u : x] | [x] ∈ X ∩ V(�0), and u satisfies g0(u, x) = 0}.

The endpoints of H̃t lie in the set

{[0 : x] | [x] ∈ X ∩ V(g1)}.

In the case when this set is finite, every point is reached.

Proof Consider the exceptional set

� = {(g, �) ∈ C[u, x]d × C[u, x]1 | |X̃ ∩ V(g, �)| �= d · deg X}

in the affine space of all coefficients of pairs of polynomials in C[u, x]d × C[u, x]1.
Genericity of �0 implies X∩V(�0) contains deg X points, and so long as the coefficients
of g0 lie outside of (deg X)-many hypersurfaces in C

N , we have (g0, �0) /∈ �. It
follows by the usual argument [31, Lemma 7.12] that the real segment (1−t)(g0, �0)+
t(g1, u) for all t ∈ [0, 1) is also disjoint from �. The description of the start points
and where the endpoints lie is clear from the definition of H̃t .

Our last claim follows from the parameter continuation theorem [31, Theorem
7.1.6]. We give an alternative elementary self-contained proof below.

Consider the incidence correspondence

� = {((g, �), [ũ : x̃]) ⊂ C[u, x]d × C[u, x]1 × X̃ | g([ũ : x̃]) = �([ũ : x̃]) = 0},

equipped with the projection π : � → C[u, x]d ×C[u, x]1. The map π is a branched
covering: restricted to the preimage of the complement of�, it is a topological covering
map both in the usual (complex) and Zariski topology.

Suppose the fiber π−1(g1, u) is finite. Consider a point

p = ((g1, u), [0 : x]) ∈ π−1(g1, u)
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and let V be an open neighborhood of p in � (with the usual topology) containing no
other points of π−1(g1, u) in its closure. Notice that

dim V = dim � = dim (C[u, x]d × C[u, x]1)

and U = π(V ) \ � is a nonempty open subset of C[u, x]d × C[u, x]1 with π(p) in
the interior ofU . The map π restricted to π−1(U )∩V is a biholomorphism ontoU ..2

Since π(p) = (g1, u) is in the interior of U , the segment (1 − t)(g0, �0) + t(g1, u)

intersects U for values of t arbitrarily close to 1. Let (gt , �t ) → (g1, u) along the
set of points where this segment intersects U . Lifting to π−1(U ) ∩ V , we obtain
((gt , �t ), [ũt : x̃t ]) → ((g1, u), [ũ : x̃]) ∈ π−1(g1, u). Since [ũ : x̃] is an endpoint
of H̃t , we must have ũ = 0. Moreover, since π−1(g1, u) ∩ V = {p}, we must have
[ũ : x̃] = [0 : x].
Example 2.2 Fig. 1 illustrates the homotopy H̃t (3) for a simple case: intersecting two
parabolas in the plane. We intersect X = V(F) ⊂ P

2, where

F(x) = x21 − x0x2 − 2x20 ,

with V(g1) ⊂ P
2, where

g1(x) = 2x20 + x1x0 − x22 .

Choosing �0(x) = x2 and g0(u, x) = x20 − u2 (cf. Remark 2.5), the genericity
conditions required in Proposition 2.1 are satisfied. The start points are the four points
in V(F) ∩ V(g0) ∩ V(�0) = {[±1 : 1 : ±2 : 0]} ⊂ P

3. The four endpoints of H̃t in
P
3 are given in homogeneous coordinates [u : x0 : x1 : x2] as below.

u x0 x1 x2
0 1 −1 −1
0 1 2 2
0 1 −φ φ − 1
0 1 φ − 1 −φ

(Here, φ = (1+ √
5)/2.) The coordinates [x0 : x1 : x2] in the table above give us the

four points of intersection in V(F) ∩ V(g1).
In practice, we may write down a concrete realization of the geometrically defined

homotopy H̃t by working in coordinates on the affine cone over the parabola X .
Specifically, we may seek implicit functions (x(t), u(t)) ∈ C

3 × C of t ∈ [0, 1]
satisfying

(1 − t)

⎡
⎢⎢⎣

F(x)
g0(u, x)
�0(x)
�aff(x)

⎤
⎥⎥⎦ + t

⎡
⎢⎢⎣

F(x)
g1(x)
u

�aff(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ , (4)

where
�aff(x) = a0x0 + a1x1 + a2x3 + a3 = 0, a3 �= 0 (5)

2 Here, we use the fact that π is an open map, which follows from [27, 3.10].
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Fig. 1 Illustration of Example 2.2 in the affine chart x0 = 1. The homotopy H̃t deforms a union of planes
V(g0) ⊂ P

3 into the cone over the target hypersurface g1, and the plane V(�1) into V(u). In the plane P2,
this allows us to obtain V(F) ∩ V(g1) from V(F) ∩ V(�0)

defines a sufficiently generic affine chart on P2. Intuitively, (5) removes the ambiguity
of scale, since [x0 : x1 : x2] = [λx0 : λx1 : λx2] inP2 for all nonzero scalarsλ.For this
particular example, the choice �aff(x) = x0−1 turns out to be sufficiently generic.With
this choice, there exist four solution curves (x(t), u(t)) defined for all t ∈ [0, 1],which
are uniquely determined by the initial conditions (u(0), x(0))) = (±1, (1,±2, 0)) .

Computing numerical approximations of these solution curves over a discretization of
[0, 1] now reduces to numerical integration—see [3, Ch. 1]. This is the fundamental
operation performed by any numerical continuation software.

For more complicated examples, to ensure the genericity assumptions are satis-
fied, the linear polynomials �0, �aff appearing in the homotopy (4) should be chosen
generically, from which we may determine a suitable g0 by Remark 2.5. Additional
randomization may also be useful in practice, e.g., to avoid nearly-singular situations.

2.2 Witness sets

In numerical algebraic geometry, algebraic varieties are represented by witness sets.
In this subsection, we review witness sets and show how they relate to the start and
endpoints of our homotopy (3).

An equidimensional variety X ⊂ P
n is a finite union of irreducible varieties of

the same dimension. It is represented by a witness set w := (F, L,W ), a triple
consisting of

• polynomials F defining X such that it is a union of irreducible components of
V(F);
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• general 3 linear polynomials L defining a codimension dim(X) linear space, infor-
mally called a slice of Pn ;

• the set of points W = X ∩ V(L).

Witness sets may be used to test if a point is in an irreducible component of a
variety [31, Chapter 15.1] and describe a wide class of varieties including closures of
images of a rational maps [14] and subvarieties of products of projective spaces [13,
15] or Grassmannians [32].

Example 2.3 Suppose X ⊂ P
n is a finite set of points. A witness set for X has the

form w = (F, ∅, X) where each point of X is an isolated point in V(F).

When X is a finite set of points (i.e., dim X = 0), computing the intersection of X
with a hypersurface is straightforward: X ∩ V (h) = {x ∈ X : h(x) = 0}. For X of
arbitrary dimension, Algorithm 2 shows how to obtain a witness set for the intersection
of X with a hypersurface from a witness set for X . This can be done by reduction to
the case of a curve and applying Proposition 2.1. First, we interpret the homotopy H̃t

in the language of witness sets in Example 2.4.

Example 2.4 Recall from equation (3) that X is a curve, g0 ∈ C[x]d is general, and
the intersection X̃ ∩ V (g0) is a degree deg(X) · d curve. Let w0 denote a witness
set for X̃ ∩ V (g0). Then, the witness points of w0 are a set of start points for our
homotopy (3). Similarly, the isolated endpoints of the homotopy H̃t are witness points
for X̃ ∩ V(g1), and projection from u gives witness points for X ∩ V(g1).

To compute w0 and thereby the start points of H̃t , assume we are given a witness
set w = (F, �,W ) for X . For each point x∗ in W , the set

{[u : x∗] ∈ P
n+1 : g0(u, x∗) = 0}

has deg(g0) points in X̃ ∩ V(g0). All together, by solving deg(X) univariate degree
deg(g0) polynomials, we have

w0 = (F ∪ {g0}), �, {[u : x∗] ∈ P
n+1 : g0(u, x∗) = 0, x∗ ∈ W }.

We summarize this process in Algorithm 1.

One important fact to recall about intersecting an irreducible projective variety X
with a hypersurface V(h) is that it leads to one of two cases: either X ∩V(h) = X or
X∩V(h) is equidimensional with dimension dim(X)−1. The former case only occurs
when X is contained in the hypersurface. In the latter case, the dimension decreases
by one. Moreover, the degree of the intersection is bounded above by deg(h) ·deg(X).

More generally, if we drop the irreducibility hypothesis and only assume X is
equidimensional, then the intersection X ∩ V(h) consists of two equidimensional

3 We use “general” throughout this article to mean “avoiding some proper Zariski closed set.” Here, this
exceptional set has a simple description:V(L) needs to be outside the set of subspaces in the Grassmannian
Gr(n−c, n) that do not intersect X regularly. However, the randomized methods of homotopy continuation
do not rely on knowing the exceptional set description: we use “general” without aiming to provide such a
description later on (e.g., in Remark 2.5).
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Algorithm 1 uStartPoints(w, g0)
Input : A witness set w = (F, �,W ) for a curve X ⊂ P

n ;
a general homogeneous polynomial g0 ∈ C[u, x] of degree d.

Output : A witness set w0 representing X̃ ∩ V(g0) ⊂ P
n+1.

1 Compute
S0 ← {[u : x] | x ∈ W and g0(u, x) = 0},

which requires solving a univariate polynomial equation for each x ∈ W .
2 Let w0 ← (

F ∪ {g0}, {�}, S0
)
. // Here F and � (which do not depend on u) should be seen as

elements of C[u, x].

components: the union of all irreducible components of X that are also contained
V(h), and (X \ V(h)) ∩ V(h). The first equidimensional component has the same
dimension as X , and the second has dimension dim(X) − 1.

As an immediate consequence of these facts, the results in the previous sections,
and these examples, we have Algorithm 2.

Algorithm 2 IntersectionWithHypersurface(w, g1)
Input : A homogeneous polynomial g1 ∈ C[x], and a witness set w = (F, L,W ) for a pure

r -dimensional variety X ⊂ P
n .

Output : Witness sets for the equidimensional components of X ∩ V(g1).
1 Record the witness set

w(r) ← (F, L,W ∩ V (g1))

for the union of irreducible components of X contained in V (g1).
2 if r ≥ 1 then
3 Let � denote a linear polynomial in L .

4 For the curve Z := (X \ V(g1)) ∩ V (L \ {�}), form the witness set

wZ ← (F ∪ L \ {�}, {�}, W \ V(g1)).

5 Choose g0 ∈ C[u, x]deg g1 (e.g., as in Remark 2.5) to form the homotopy

H̃t : (g0, �) � (g1, u) on Z̃ . (6)

6 Follow |W \ V(g1)| · deg(g1) homotopy paths starting (at t = 0) from the witness set for

Z̃ ∩ V(g0) returned by uStartPoints(wZ , g0) to obtain endpoints E = Z̃ ∩ V(g1, u) at
t = 1.

7 Record the witness set

w(r−1) ← (F ∪ {g1}, L \ {�}, πx(E)),

where πx is the projection that drops the u-coordinate, which represents (X \ V(g1))∩V(g1).

8 return {w(r), w(r−1)}
9 else

10 return {w(r)}

Remark 2.5 When implementing Algorithm 2 and subsequent algorithms, the poly-
nomial g0 should be chosen in a sufficiently random fashion. At the same time, it
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is desirable to have a low evaluation cost for both the values of g0 and the roots of
g0(u, x) = 0 when x is fixed.

One good candidate is g0 = γ (ud − �d0) where d = deg(g0), the linear form
�0 ∈ C[x]1 does not vanish on the start points, and γ ∈ C is generic4. This is akin
to the so-called γ -trick [31, pp. 94–95, 120–122]. Often, for practical purposes, γ is
chosen randomly on the unit circle. In this case, only finitely many points on the circle
are exceptional.

One other important detail for a reader who intends to implement Algorithm 2 is
in the following remark.

Remark 2.6 A typical implementation of a homotopy tracking algorithm would intro-
duce an affine chart on P

n+1 by imposing an additional affine linear equation in u
and x. One can eliminate u in two ways: (a) using the chart equation or (b) using the
equation (1 − t)� + tu = 0 from homotopy (3). This results in going back to the
original ambient dimension. Note that solving (b) for u is not possible when t = 0.

2.3 Equation-by-equation cascade

Algorithm 3 uses the methods in Section2.1 to compute the witness set(s) for the
intersection of a variety with a hypersurface.

Algorithm 3 Equation-by-equation cascade
Input: F = ( f1, . . . , fc), fi ∈ C[x]
Output: A collection C of witness sets describing equidimensional pieces

of V(F).
1 Let w = (∅, {�1, . . . , �n},V(�1, . . . , �n)), a witness set of a point,
describing P

n .
2 Initialize C ← {w}.
3 for i from 1 to c do
4 C ′ ← ∅
5 for each w ∈ C do
6 C ′ ← C ′ ∪ IntersectionWithHypersurface(w, fi )

7 C ← EliminateRedundantComponents(C ′), a routine that erases
components contained in other components.

The correctness of the equation-by-equation cascade outlined Algorithm 3 hinges
mainly on Algorithm 2. However, an implementer of the cascade must pay significant
attention to details with a view to practical efficiency. For instance, “pruning” of the
current collection of witness sets done via EliminateRedundantComponents
after each step could be replaced by a potentially more efficient en route bookkeeping
procedure; see [17].

Remark 2.7 Our description of homotopies is geometric: we consider homotopies on a
variety X (or the cone X̃ ). However, the algebraic representation of X as a component

4 The constant γ needs to avoid a real hypersurface (in fact, a union lines through the origin) in R
2 ∼= C

containing “bad” choices: a choice of γ is “bad” if the homotopy paths of (3) cross.
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of V(F) may not be reduced, i.e., F may be singular at some points of X . A common
way to address this issue in an implementation is deflation, which is a technique of
replacing F with a system of polynomials (potentially in more variables) that are
regular at a generic point: see [31, §13.3.2] and [25].

3 u-generation in products of projective spaces

In this section, we generalize the homotopy H̃t to work in a product of projective
spaces Pn1 × · · · × P

nk . This is an analogue of regeneration in a product of projective
spaces, also known asmultiregeneration [14, Section 4]. To ease exposition, we restrict
the discussion to the case where k = 2, a product of two projective spaces. All results
extend to an arbitrary number of factors. In Section4.2, we study an example with
k = 3 factors in detail.

3.1 Setting up the homotopy

We define the double cone of a biprojective variety X ⊂ P
m × P

n as

X̃ = {([u : x], [v : y]) ∈ Pm+1 × Pn+1 | (x, y) ∈ X}.

The construction of the double cone X̃ when X is a single point already illustrates the
main ideas needed to extend the homotopyof the previous section to themultiprojective
case. For a projective curve X , we lift each witness point on X to d start points in X̃ ,
where d is the degree of the intersecting hypersurface g1. In the case of a biprojective
curve X ⊂ P

m × P
n, a witness point (x
, y
) satisfies either �x(x
, y
) = 0 or

�y(x
, y
) = 0. Suppose that, in either case, we lift the witness point to a point
([u : x], [v : y]) in the double cone X̃ now requiring both �x and �y to vanish. This
forces either x or y to be zero. However, if we deform the linear equations in the u and
v directions, this will deform the lifted point so that both x and y are nonzero. This
provides some intuition behind the construction of the multiprojective homotopy H̃t

in (7) below.

Example 3.1 [Intersecting the double cone over a point] For a point P = (x
, y
) ∈
P
m × P

n , the double cone P̃ is a two-dimensional plane spanned by four points in
P
m+1 × P

n+1,

P̃=〈([1 : x
], [1 : y
]), ([0 : x
], [1 : y
]), ([1 : x
], [0 : y
]), ([0 : x
], [0 : y
])〉.

Consider the set of d points in the intersection P̃ ∩V(g, Lε), where the hypersurface
V(g) is given by general g ∈ C[{u, x}, {v, y}](d,e) and the family of hyperplanes
defined by Lε := εv − (1 − ε)� where � ∈ C[ y]1 is general. This set of points may
be recovered in two easy steps:

1. Solve Lε( y
, v) = 0 to obtain v
 = ε�( y
)/(1 − ε).
2. Compute the d roots u


1, . . . , u


d of the univariate polynomial g(u, x
, v
, y
).
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Projecting a general affine piece of P̃ to the affine uv-planeC2
uv is a surjection. The

intersection P̃ ∩V(g, Lε) can be visualized as the intersection of a line V(Lε(v, y
))

with the plane curve defined by g(u, x
, v, y
) = 0. Fig. 2 illustrates a case where
(d, e) = (2, 1). In the limit as ε → 0, v
 tends toward infinity, while the roots
u

1, . . . , u



d tend towards the d vertical asymptotes of the curve given by g. If we write

g(u, x
, v, y
) = f (u) vd +additional terms, these asymptotes cross the u-axis at the
points where u is a root of f .

Now, we consider the double cone over a curve X ⊂ P
m × P

n and state how they
share some of the same degree information. Following the conventions in [13], the
bidegree of a curve X in Pm × P

n with coordinate ring C[x, y] is

(degx(X), deg y(X)) := (deg(X ∩ V(�x)), deg(X ∩ V(� y)))

where �x ∈ C[x]1, � y ∈ C[ y]1 are general. Let �u,x ∈ C[u, x]1 and �v, y ∈ C[v, y]1
be general. Then, the bidegrees of the curves X ⊂ P

m × P
n and X̃ ∩ V(�u,x, �v, y) ⊂

P
m+1 × P

n+1 coincide.

Remark 3.2 A polynomial h ∈ C[x, y](d,e) is defined to have bidegree (d, e). When
(m, n) = (1, 1), the polynomial h defines a curve V(h) ⊂ P

1 × P
1. The bide-

gree of V(h) and bidegree of the polynomial h are related by a transposition:
(degx(V(h)), deg y(V(h))) = (e, d).

The following proposition is a multiprojective analogue of Proposition 2.1. Anal-
ogously to the homotopy in Eq.3, for given g1 ∈ C[x, y]d,e, we define

H̃t := (g0, �x, � y) � (g1, u, v) on X̃ , (7)

where g0 ∈ C[{u, x}, {v, y}]d,e is generic.

Fig. 2 Intersecting the double cone over a point P̃ with V(g, Lε) produces points (u

1, v


), (u

2, v


) in the

affine plane plane C2
uv
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Proposition 3.3 For generic �x ∈ C[x]1, � y ∈ C[ y]1, g0 ∈ C[{u, x}, {v, y}]d,e, the
cardinality of the set of points on X̃ satisfying H̃t equals, for all t ∈ (0, 1),

d · degx(X) + e · deg y(X).

The endpoints of H̃t lie in the set

{
([0 : x], [0 : y]) ∈ P

m+1 × P
n+1 | (x, y) ∈ X ∩ V(g1)

}
.

In case this set is finite, every point is reached.

Proof The homotopy H̃t is given by

gt := (1 − t)g0 + tg1 = 0, (1 − t)�x + tu = 0, (1 − t)� y + tv = 0 (8)

For t ∈ (0, 1), the intersection

Zt := X̃ ∩ V((1 − t)�x + tu, (1 − t)� y + tv). (9)

is a curve in Pm+1 × P
n+1 with the same bidegree as X ⊂ P

m × P
n , i.e.,

degx(X) = degu,x(Zt ) and deg y(X) = degv, y(Zt ).

since the last two equations give u and v as a linear functions of x and y, respectively,
when t ∈ (0, 1).

Since g0 is generic, so is gt . Hence, for t ∈ (0, 1), we get that Zt ∩ V (gt ) has
d · degu,x(Zt ) + e · degv, y(Zt ) points of intersection. This proves the first part of the
proposition.

The proof of the second part is similar to the proof of the second part of Proposition
2.1 concluding that a point [x1 : x2] ∈ X ∩ V (g1) corresponds to an endpoint
([0 : x1], [0 : x2]) of the homotopy.

Remark 3.4 If X is a general bidegree (dx, d y) curve inPm×P
n , then Z0, as defined in

(9), is a union of two linear spaces with multiplicity d and e, respectively. Specifically,

Z0 = {([u : x], [1 : 0]) ∈ X̃ : �x(x) = 0} ∪
{([1 : 0], [v : y]) ∈ X̃ : � y( y) = 0}.

On the other hand, the homotopy H̃t of (7) converges to

V(H0) ∩ X̃ = {([u : x], [1 : 0]) |
x ∈ πx(X ∩ V(�x)), and u satisfies g0(u, x, 1, 0) = 0}

∪ {([1 : 0], [v : y]) |
y ∈ π y(X ∩ V(� y)), and v satisfies g0(1, 0, v, y) = 0}

(10)

when t → 0. Thus, multiple paths may tend to the same point as t → 0.
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3.2 Points for the homotopy at t = "

In view of Remark 3.4 (see also Remark 3.5), we need to step away from t = 0 and
find a way to produce a set of start points for the homotopy for t = ε > 0 for a small
ε.

Fix an affine chart on P
m+1 × P

n+1; e.g., take x0 = y0 = 1. Without loss of
generality, we may assume x0 and y0 do not vanish on any of the witness points.
Consider a continuation path that tends to the point of the form ([u∗ : x∗], [1 : 0])
as t → 0 (a point that is not in the fixed chart) in a small punctured neighborhood of
t = 0.

View the coordinates (u(t), x(t), v(t), y(t)) of this path as (convergent in the punc-
tured neighborhood) Puiseux series where u(t), x(t), y(t) have a (nonzero) constant
leading term while v(t) diverges as t → 0. Note that the constant terms of x(t), y(t)
are given by a witness point [x∗ : y∗] ∈ X ∩ V(�x) (with x0 = y0 = 1).

First, we note that since the path converges in Pm+1 × P
n+1 to a point ([u∗ : x∗] :

[1 : 0]), the leading term of u(t) is a constant term. Plug u(t) in the second equation
in (8),

(1 − t)�x + tu = 0

and consider it on X (not X̃ ). It defines a continuous family of (transverse) x-slices
of X which limit at V(�x) showing that x(t) and y(t) tend to x∗ �= 0 and y∗ �= 0 as
t → 0.

Recall that the end of the path has [1 : 0] for [v(t) : y(t)]; therefore, v(t) has to
diverge as t → 0. Since (1 − t)� y + tv = 0, we have

v(t) = (1 − t−1)� y( y(t)).

Thus, the leading term of v(t) is −� y( y∗)t−1.
In summary, for a small ε, one may take (u(ε), x(ε), v(ε), y(ε)) ≈ (u∗, x∗, v∗, y∗)

where v∗ = −ε−1� y(y∗). Another asymptotically equivalent choice, which would
satisfy the last equation, is v∗ = (1 − ε−1)� y(y∗).

An analogous argument holds if one reverses the roles of (u, x) and (v, y). Knowing
the asymptotics of continuation paths as t → 0 results in Algorithm 4 written in a
chart-free form.

We conclude our discussion of computing start points with four remarks discussing
issues relevant for implementation. In particular, Remarks 3.5 and 3.8 emphasize
some pitfalls not encountered by the projective u-generation method of Section2 due
to singular start points. The heuristic approach of Algorithm 4, although sufficient for
carrying out the experiments of Section4.2, leaves something to be desired. It is quite
possible that more sophisticated methods of function approximation (e.g., [34] and the
references therein) could help to give multiprojective u-generation more of an edge
over multiregeneration.

Remark 3.5 Note that, in Algorithm 4, starting at t = ε > 0 may be necessary not
only due to several paths converging to the same point at t = 0 as pointed out in
Remark 3.4, but also for the following reason that is bound to play a role in a practical
implementation.
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Algorithm 4 uMultiprojectiveStartPoints(wx, w y, g0, ε)

Input: A biprojective curve X ⊂ P
m × P

n represented by two witness sets:
wx = (F, �x ,Wx) where �x ∈ C[x]1 and w y = (F, � y,W y) where � y ∈ C[ y]1;
a general bihomogeneous polynomial g0 ∈ C[{u, x}, {v, y}](d,e);
a number ε > 0.

Output: A set of points that approximates V(H̃ε) for the homotopy (7).
1 Initialize S ← ∅.
2 Let gx ∈ C[u, x] be defined as gx(u, x) = g0(u, x, 1, 0).
3 for P ∈ Wx do
4 Update S ← S ∪ P̃ ∩ V(gx , (1 − ε)� y + εv)

5 Let gy ∈ C[v, y] be defined as gy(v, y) = g0(1, 0, v, y).
6 for Q ∈ W y do
7 Update S ← S ∪ Q̃ ∩ V(gy, (1 − ε)�x + εu)

8 return S

Let F ⊂ C[x, y] be polynomials that cut out the curve X ⊂ P
m × P

n , i.e., X
is a component of V(F). The double cone X̃ is a component of V(F̃) where F̃ ⊂
C[u, x, v, y] are polynomials F recast in a new ring. While this description of X̃ is
practical and retains properties essential to our approach (as explained in Proposition
3.3), the varietyV(F̃)may possess extraneous components that contain points of (10)
(even if they are regular points for H̃t ).

Remark 3.6 When g0 = g1, the homotopy (7) used in Algorithm 4 can be visualized
in terms of intersecting double cones over a point with a hyperplane and hypersurface
as in Fig. 2. Namely, we take the double cone over each point P in Wx (analogously
for Q in W y) and intersect it with V

(
g0, (1 − ε)� y + εv

)
as ε varies between 0 and

1.

Remark 3.7 The homotopy H̃t depends on the choice of sufficiently generic g0. For
implementation purposes, one may pick (use γ -type tricks if necessary)

1. g0 = (ud − �dx)(v
e − �ey), where �x ∈ C[x]1, � y ∈ C[ y]1 are general linear

polynomials (similar to Remark 2.5), or
2. g0 = ∏d

i=1(u−�x,i )
∏e

j=1(v−� y, j )where �x,i ∈ C[x]1, � y, j ∈ C[ y]1 are general
linear polynomials.

As mentioned in the beginning of this section, the results generalize straightfor-
wardly to a curve X in a product of k projective spaces in any dimensions.

Remark 3.8 In u-generation for multihomogeneous systems, one may eliminate the
additional variables (u and v in the case of two projective factors), as in Remark 2.6
when using generic affine charts in the projective factors.

However, there is a caveat: the conditioning of the resulting homotopy paths
becomes much worse at t = ε, for small ε, in both cases (a) and (b) of Remark
2.6. In a practical implementation, one should eliminate additional variables only
when the path tracking routine moves sufficiently far from t = 0.
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3.3 Beyond curves

In the projective case, we show in Algorithm 2 how to apply u-generation for inter-
secting a d-dimensional projective variety with a hypersurface. Some additional work
is required to extend these observations to the multiprojective setting. The variety X
must now be represented by a multiprojective witness collection [14, Definition 1.2].

Example 3.9 The witness collection of an irreducible 3-fold X = V(F) in P
3 × P

1

has a collection of witness point sets:

w3,0 := V(F) ∩ V(�x,1, �x,2, �x,3), w2,1 := V(F) ∩ V(�x,1, �x,2, � y,1),

w1,2 := V(F) ∩ V(�x,1, � y,1, � y,2), w0,3 := V(F) ∩ V(� y,1, � y,2, � y,3).

Note that wa,b with a > 3 or b > 1 is necessarily empty.
To describe the two dimensional variety V(F) ∩ V(g), we need to obtain the col-

lection of witness points for Y := V(F) ∩ V(g):

w2,0(Y ) := Y ∩ V(�x,1, �x,2),

w1,1(Y ) := Y ∩ V(�x,1, � y,1),

w0,2(Y ) := Y ∩ V(� y,1, � y,2).

To obtain wa,b(Y ), for a + b = 2, we run u-generation for the curve V(F) ∩V(L)

where L = {�x,1, . . . , �x,a, � y,1, . . . , � y,b} using start points obtained byAlgorithm 4
with (F ∪ L, �a+1, wa+1,b) and (F ∪ L, �b+1, wa,b+1) playing the role of wx and w y.

In Example 3.9, we used three instances of reducing to the curve case to obtain
wa,b(Y )with a+b = 2, a ≤ 3 and b ≤ 1. In a product of k projective Pn1 ×· · ·×P

nk ,
for a b+1-dimensional variety X and a hypersurface H not containing any irreducible
component of X , to describe the intersection Y = X ∩ H one needs to obtain witness
sets wb1,...,bk (Y ) with b1 + · · · + bk = b and 0 ≤ bi ≤ ni . Each nonempty wb1,...,bk
is indexed by a lattice point (b1, . . . , bk) in a polymatroid base polytope associated
to Y—see [13, §2.1] for details. Thus, the number of curves needed is the number
of lattice points in this polytope, which is bounded above by the number of weak
compositions of b with k parts and the i th part being less than ni . If b ≤ ni for
all i , then there

(b+k−1
k−1

)
weak compositions of b with exactly k parts. This bound is

exponential in k, or of polynomial order O(bk) when k is fixed. For the projective
case, k = 1 and

(b+k−1
k

) = 1 as expected.
In the previous section, u-generation and regeneration can both be used inside

of the equation-by-equation cascade of Algorithm 3 based on intersection with a
hypersurface in projective space. The analogue in a product of projective spaces is
known as multiregeneration [14, Section 4]. A variant based on u-generation may be
developed using the ideas outlined above.

Finally, we note that systems encountered in practice may have different possible
variable groupings. The upper bounds discussed above showwemay need many more
curves if k > 1 variable groups are used; however, there are potential savings in the
size of each individual witness set. How to best negotiate the trade-off between the
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number of witness sets and the total number of witnes points depends heavily on the
problem at hand. On the other hand, for any fixed grouping, multiregeneration and
multiprojective u-generation work with the exact same number of curves. Thus, when
comparing the twomethods on a given problem, it is reasonable to work with whatever
variable grouping is most natural.

4 Computational experiments

In this section, we report the computational results using our initial implemen-
tation of u-generation. For a fair comparison, we also implement regeneration
in a similar fashion, using the same homotopy tracking toolkit provided by the
package NumericalAlgebraicGeometry [24] in Macaulay2 [11]. Default
path-tracker settings for the method trackHomotopy are used, except where noted.
All computations were performed using a 2012 iMac with 16GB, working at 1.6GHz.

Once again, we point out that these experiments serve only as a proof-of-concept.
Our modest aim is to convince the practitioner that u-generation is competitive against
regeneration, and that the initial successes of our implementation motivate further
investigation and more refined heuristics.

4.1 Intersecting with a hypersurface in projective space

The u-generation-based Algorithm 2 for computing X ∩ V(g1) requires tracking
deg(g1) deg(X)-many paths. Regeneration also requires tracking this many paths,
plus an additional (deg(g1)−1) deg(X) paths during the preparation stage. In a rough
analysis where we assume all paths have the same cost, we would expect that

tu-gen
tprep + tregen

≈ deg(g1) deg(X)

2 deg(g1) deg(X) − deg(X)
= 1

2 − 1/ deg(g1)
, (11)

where tprep, tregen, and tugen denote the total time spent tracking paths during prepa-
ration, regeneration, or u-generation, respectively. This analysis would then suggest
that u-generation has ≈ 33.3% savings over regeneration when deg(g1) = 2, and an
asymptotic 50% savings when deg(g1) is large.

The assumption that paths tracked during preparation cost the same as other paths
does not hold in practice. This is partly because homotopy functions involved in the
preparation stage are simpler and also due to the fact we do not expect any paths to
diverge during this stage. It is therefore worth investigating to what extent, if any, our
proposed method may actually deliver any savings. To that end, we considered two
well-studied families of benchmark polynomial systems and performed the following
experiment for each:

1. Drop an equation g1 from the homogenized system, and compute a projective
witness set for the projective curve X defined by the remaining equations.
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2. Run Algorithm 2 to solve the original system.
3. Similarly to the previous step, use regeneration to solve the original system.

For all systems considered in this subsection, the witness set for X is computed
using a total-degree homotopy. The timings we report for Steps 2 and 3 above do not
reflect the full cost of solving these systems from scratch with equation-by-equation
methods. Nevertheless, this experiment is sufficient to make a meaningful comparison
between regeneration and u-generation.

The first of the benchmark systems studied is the Katsura-n family, which arose
originally in the study of magnetism [22]. For a given n, this is a system of inhomo-
geneous equations in n + 1 unknowns x0, . . . , xn : writing x−i = xi ,

n∑
i=−n

xi = 1,

n∑
i=−n

xl xm−l = xm, m ∈ {−n + 1,−n, .., n − 1}.

For this family, the Bézout bound on the number of roots 2n−1 is tight. In our
experiments, the dropped equation g1 is one of the n quadratic equations. We also
considered the classic cyclic n-roots problem [1]:

n∑
i=1

xi · xi+1 · · · x(i+m)%n = 0, m ∈ {1, . . . , n − 1},

x0 · x1 · · · xn−1 − 1 = 0.

This system has infinitely many solutions when n is not squarefree. For small,
squarefree values of n, this system has been observed to have all isolated solutions,
their numbermatching the polyhedral bound ofBernstein’s theorem [4].As a result, the
polyhedral homotopy [19] and its various implementations [5, 7, 35] are better-suited
for this problem than equation-by-equation methods. We include it in our experiments
as a further point of comparison between regeneration and u-generation. Based on the
naive analysis, we might expect substantial savings when dropping the equation with
deg(g1) = n.

In Fig. 3, we display the results of our experiment on these benchmark problems.
Timings for each of the methods were averaged over 100 iterations. For cyclic-7, we
observed multiple path failures for both methods with the default tracker settings, so
we used a more permissive minimum stepsize of 10−8 for this case. We observe in
all cases that u-generation outperforms regeneration in terms of runtime. Contrary to
what the naive analysis would predict, typical savings are in the range of 10–15% for
both the Katsura and cyclic benchmarks.

To further investigate the nature of potential savings of u-generation over regen-
eration, we considered the following family of banded quadrics. Fixing integers
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Fig. 3 Timing Algorithm 2 for benchmark polynomial systems

2 ≤ k ≤ n, this is a homogeneous system f1, . . . , fn ∈ C[x] where f1 is linear
and f2, . . . , fn have the form

fi (x) = [
xi · · · x(i+k mod n)

]
⎡
⎢⎣
ci,1,1 · · · ci,1,k

...
. . .

...

ci,k,1 · · · ci,k,k

⎤
⎥⎦

⎡
⎢⎣

xi
...

x(i+k mod n)

⎤
⎥⎦ .

Here, the real and imaginary parts of the parameters ci, j,k are drawn randomly from
the interval [0, 1]. We apply the same experiment from before to the homogeneous
system, using a projective witness set for the projective curve V( f1, . . . , fn−1) to
compute the intersection V( f1, . . . , fn−1) ∩ V( fn). Timings for n = 12 are given
in Fig. 4.

One possible conclusion to draw from this experiment is that we may expect more
savings from u-generation when the equations involved are more sparse. This is plau-
sible for the case of banded quadrics when the value of k is small in comparison to n,

in which case the cost of tracking a path in the preparation stage is more comparable
to the cost for the paths in the second stage of regeneration. On the other hand, we
still observe in this experiment a steady 10 % savings as k approaches n.

Fig. 4 Timing Algorithm 2 for banded quadrics with the number of variables fixed by n = 12. Each system
is dehomogenized with a random chart, giving a system in 13 unknowns
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4.2 Maximum likelihood estimation for matrices with rank constraints

Consider a probabilistic experiment where we flip two coins. Each of the coins may
be biased, but we model them with the same binary probability distribution. Let p11
denote the probability of obtaining two heads, p22 the probability of two tails, and
p12 = p21 the probability of one head and one tail in either order. The individual coin
flips are independent if and only if

rank

[
2p11 p12
p12 2p22

]
≤ 1. (12)

Similarly, the independence of two identically distributed n-ary random variables
is modeled by a n × n symmetric matrix of rank 1. More generally, rank constraints

rank

⎡
⎢⎢⎢⎣

2p1n p12 . . . p1n
p12 2p22 p2n
...

. . .
...

p1n p2n . . . 2pnn

⎤
⎥⎥⎥⎦ ≤ r (13)

must be satisfied for all points in the symmetric rank-constrainedmodel. This statistical
model is defined as the set of all points in the probability simplex

{(p11, . . . , pnn) ∈ R
(n2+n)/2 |

∑
1≤i≤ j≤n

pi j = 1, pi j ≥ 0}

which satisfy the rank constraints (13). It is an algebraic relaxation of an associated
r -th mixture model [12, 23].

Ifwe are given a n×n symmetricmatrixU counting several samples from this statis-
tical model, it is of interest to recover the underlying model parameters (pi j )1≤i≤ j≤n .

A popular approach in statistical inference is maximum likelihood estimation. In our
case of interest, this means computing a global maximum of the likelihood function

�U (p11, . . . , pnn) =
∏

i≤ j p
ui j
i j( ∑

i≤ j pi j
)∑

i≤ j ui j
(14)

restricted to the symmetric rank-constrainedmodel. Local optimization heuristics such
as the EM algorithm or gradient ascent are popular methods for maximum-likelihood
estimation, but are susceptible to local maxima. For genericU , the number of critical
points of �U on the set of complex matrices satisfying (13) is the ML degree of the
symmetric rank-constrained model. For statistical models in general, theML degree is
an important measure of complexity and a well-studied quantity in algebraic statistics
(see [33, Ch. 7]).

Previous work of Hauenstein, the third author, and Sturmfels [12] demonstrates that
homotopy continuation methods are a powerful technique for computing the critical
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points of �U . In [12, Theorem 2.3], a table of ML degrees for the symmetric rank-
constrained model for n ≤ 6 was obtained using the software Bertini [2]. In that
table, ML degrees for (n, r) ∈ {(6, 2), (6, 3)} were excluded. We provide the missing
entries of that table in Fig. 5.

The symmetry in each column of the table of ML degrees is explained by a duality
result of Draisma and the third author [8, Theorem 11], establishing a remarkable
bijection between the critical points for the rank-r and rank-(n− r +1) models. Thus,
to complete the table, it suffices to compute the ML degree for (n, r) = (6, 3), which
we report to be 68774. We managed to verify the ML degrees in this table using
several different techniques: equation-by-equation methods, monodromy [9, 26], and
several combinations thereof. We focus our discussion of computational results on the
equation-by-equation methods, which we hope may serve as a useful starting point
for future benchmarking studies.

To make computing the ML degrees more amenable to equation-by-equation
approach, we use a symmetric local kernel formulation of the problem, which is a
square polynomial system in

(n+1
2

)
unknowns [12, Eq 2.13]. The unknowns are the

entries of three auxiliary matrices,

P1 :=

⎡
⎢⎢⎢⎣

2p12 p12 . . . p1r
p12 2p22 p2r
...

. . .
...

p1r p2r . . . 2prr

⎤
⎥⎥⎥⎦ , L1 :=

⎡
⎢⎣

�1,1 . . . �1,r
...

. . .
...

�n−r ,1 . . . �n−r ,r

⎤
⎥⎦ ,

� :=

⎡
⎢⎢⎢⎣

λ11 λ12 . . . λ1,n−r

λ12 λ22 λ2,n−r
...

. . .
...

λ1,n−r λ2,n−r . . . λr ,n−r

⎤
⎥⎥⎥⎦ .

Fig. 5 ML degrees for the symmetric rank-constrained model, for n × n symmetric matrices of rank ≤ r ,
for all 1 ≤ r ≤ n ≤ 6
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The equations which make up this square system are the column sums and the
entries above the diagonal in the n × n symmetric matrix

[
P1 P1LT

1
L1P1 L1P1LT

1

]
�

[
LT
1 �L1 �L1
L1� �

]
+

∑
i≤ j

ui j

[
P1 P1LT

1
L1P1 L1P1LT

1

]
− 2In �U , (15)

where� denotes the Hadamard product. There are three natural variable groups given
by the auxiliarymatrices P1, L1, and�. Dropping a single equation g1 from our square
system gives equations which vanish on an affine patch of an irreducible curve

X ⊂ P
r×r × P

(n−r)×r × P
(n−r+1)×(n−r)/2.

Slicing in each of the three projective factors, wemay compute three sets of witness
points WP1 ,WL1 ,W� for X using monodromy. These witness points can be used
to compute start points for both regeneration and u-generation. In our experiments,
the dropped equation g1 is the (1, n)-th entry of the matrix (15), which has degree
(1, 2, 1). Thus, there are #WP1 +2#WL1 +#W�1 start points for both methods, and an
additional #WL1 pathsmust be tracked in the preparation phase for regeneration. For u-
generation, the start points were obtained using the heuristic proposed in Algorithm 4
with ε = 10−5. We do not eliminate the three u-variables corresponding to each
factor—see Remark 2.6.

We use two non-default path-tracker tolerances: a minimum stepsize of 10−14 by
setting tStepMin=>1e-14 and a maximum of 2 Newton iterations for every pre-
dictor step by setting maxCorrSteps=>2. The latter option is more conservative
than the default of ≤ 3 Newton steps, which increases the chances of path-jumping.
With fewer corrector steps, a smaller timestep may be needed to track paths suc-
cessfully. We note that comparable tolerances are the defaults used in Bertini [3,
Appendix E.4.4, E.4.7].

Figure6 and 8 show that the ML degrees are significantly smaller than the number
of start points. This implies that many endpoints will lie at the hyperplane at infinity
in one of the projective factors. We declare an endpoint to be finite when its three
homogeneous coordinates exceed 10−6 in magnitude.

In Fig. 6, we list timings for computing the previously-known ML degrees. We see
that the number of additional paths required by regeneration is rather small in com-
parison with the ML degree. Thus, we should not expect to see much of an advantage

Fig. 6 Timings of regeneration and u-generation for computing previously-known ML degrees
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of u-generation over regeneration. Indeed, although the timings of both methods are
competitive, regeneration is the clear winner. Although tregen and tu−gen time the same
number of path-tracks, we see that tu-gen is consistently larger. One explanation is
that u-generation uses an extra three variables here, increasing costs associated with
repeated function evaluation and numerical linear algebra.

Remark 4.1 The heuristic for computing start points in Algorithm 4 imposes an addi-
tional overhead for the multiprojective u-generation. This routine is implemented in
the top-level language of Macaulay2 and currently takes a significant portion of
the runtime. Since this heuristic may be improved in future work, we did not pur-
sue a low-level implementation, which would dramatically reduce the runtime of this
routine making it negligible in comparison to the other parts.

For the previously-unknown ML degree when (n, r) = (6, 3), we conducted an
experiment where we ran each of the two equation-by-equation methods four times
and used the union of all finite endpoints to estimate the ML degree. The four runs
are not identical because the homotopies are randomized using the γ -trick. Timings
are shown in Fig. 7. The variability of the timings is not so surprising, since paths
are randomized according to γ -type tricks and also due to the permissive step-size
of 10−14; if there are many ill-conditioned paths, the adaptively-chosen stepsize for
each of them may shrink and remain small throughout path-tracking. Ultimately, both
methods yield the same root count, which u-generation attains by the third iteration.
We also note that the total timing for regeneration and u-generation turn out to be very
close, though this might well be an anomaly.

Onemight reasonably be concerned thatmultiple runs of both equation-by-equation
methods were needed to compute theML degree for (n, r) = (6, 3). In theory, both are
probability-onemethods. In practice,most implementations of homotopy continuation
will miss some solutions when presented with a sufficiently difficult problem. One
well-known practical issue is path-jumping, whichmay lead in some cases to duplicate
endpoints. The existence of many solutions at infinity, which are often highly-singular,
presents another obstacle. This obstacle would be even more of a concern if we were
to consider other homotopy continuation methods. We note, for instance, the number
of paths tracked by the celebrated polyhedral homotopy may be prohibitive for the
(n, r) = (6, 3) case. Using [5] and [20], which both implement the mixed volume
algorithm described in [21], we determined that the polyhedral root count for the
symmetric local kernel formulation is 27174865—three orders of magnitude over the
ML degree, and two over the number of paths tracked in our experiments.

Figure8 displays the results of another experiment where we ran each equation-by-
equation method exactly once and collected any missed solutions using a monodromy
loop. A similar strategy for dealing with failed solutions is outlined in [6, Sec. 3.2].
This experiment gives us more confidence in the reported root count of 68774. For

Fig. 7 Timings t1, t2, t3, t4 of four runs of regeneration and u-generation for computing the ML degree of
68774 for (n, r) = (6, 3)
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Fig. 8 Regeneration and u-generation followed by a monodromy loop

(n, r) = (6, 3), the total runtime compares favorably to Fig. 7, suggesting another
strategy the practitioner may keep in mind. We point out that such strategies may be
of interest in numerical irreducible decomposition, where the monodromy breakup
algorithm [29] is run following the cascade of Algorithm 3.

We close with a concrete numerical example of maximum-likelihood estimation,
where the target system and its solutions resulting from u-generation may now serve
as the start-system for a parameter homotopy [31, Ch. 7].

Example 4.1 Consider the matrix of counts

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 4 2 4 4 4
4 2 2 6 6 6
2 2 1 2 2 2
4 6 2 3 6 6
4 6 2 6 3 6
4 6 2 6 6 3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let Pemp denote the empirical P-matrix

Pemp = 1∑
i≤ j ui j

⎡
⎢⎢⎢⎣

2u11 u12 · · · u16
u12 2u22 · · · u26
...

...
. . .

...

u16 u26 · · · 2u66

⎤
⎥⎥⎥⎦

This matrix has rank 4. To compute a maximum-likelihood estimate given U , we
use a parameter homotopy with 68774 start points furnished by u-generation. Among
the approximate endpoints of this parameter homotopy are 1082 labeled as failed paths,
which have large and non-real coordinates. Among the successful endpoints, there are
4108 real solutions. However, only three are statistically valid in the sense that the
rank-constrained P-matrix has non-negative entries. This matrix may be recovered
with the formula

P =
[

P1 P1LT
1

L1P1 L1P1LT
1

]
.

We list the P-matrices and likelihood values for the three statistically valid critical
points, along with the empirical P-matrix (which does not lie on the rank-constrained
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model):

P(1) ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

.046 .053 .03 .054 .054 .054

.053 .053 .026 .079 .079 .079

.030 .026 .024 .026 .026 .026

.054 .079 .026 .079 .079 .079

.054 .079 .026 .079 .079 .079

.054 .079 .026 .079 .079 .079

⎞
⎟⎟⎟⎟⎟⎟⎠

, log �U (P(1)) = −223.264,

P(2) ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

.053 .051 .026 .053 .053 .053

.051 .069 .026 .074 .074 .074

.026 .026 .026 .026 .026 .026

.053 .074 .026 .080 .080 .080

.053 .074 .026 .080 .080 .080

.053 .074 .026 .080 .080 .080

⎞
⎟⎟⎟⎟⎟⎟⎠

, log �U (P(2)) = −222.979,

P(3) ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

.048 .054 .020 .056 .056 .056

.054 .052 .029 .077 .077 .077

.020 .029 .014 .032 .032 .032

.056 .077 .032 .077 .077 .077

.056 .077 .032 .077 .077 .077

.056 .077 .032 .077 .077 .077

⎞
⎟⎟⎟⎟⎟⎟⎠

, log �U (P(3)) = −222.901,

Pemp ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

.053 .053 .026 .053 .053 .053

.053 .053 .026 .079 .079 .079

.026 .026 .026 .026 .026 .026

.053 .079 .026 .079 .079 .079

.053 .079 .026 .079 .079 .079

.053 .079 .026 .079 .079 .079

⎞
⎟⎟⎟⎟⎟⎟⎠

, log �U (Pe) = −222.860.

The matrix P(3) is a good candidate for the maximum likelihood estimate.

5 Conclusion

We propose u-generation as a novel equation-by-equation homotopy continuation
method for solving polynomial systems. The main theoretical merits of this method
are that it works in both projective and multiprojective settings and requires tracking
fewer total paths than regeneration. Furthermore, our setup is easily implementable.
Computational experiments show that themethod is promising and can be used to solve
nontrivial problems, although we do not observe a decisive advantage of u-generation
over regeneration. More specifically, our proof-of-concept implementation achieves
modest, but notable, savings in terms of computational time on several examples.
Furthermore, we show that multiprojective u-generation is a viable method for solving
structured polynomial systems arising in maximum-likelihood estimation, including
one previously unsolved case.

As a future direction, we point out that more thorough experimentation with
heuristics such as Algorithm 4 might lead to a more robust implementation of u-
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generation. Further exploration in both projective and multiprojective settings is
warranted, particularly in the context of numerical irreducible decomposition, where
equation-by-equation methods play a vital role.
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