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Abstract

While Bayesian functional mixed models have been shown effective to model func-
tional data with various complex structures, their application to extremely high-
dimensional data is limited due to computational challenges involved in posterior
sampling. We introduce a new computational framework that enables ultra-fast ap-
proximate inference for high-dimensional data in functional form. This framework
adopts parsimonious basis to represent functional observations, which facilitates ef-
ficient compression and parallel computing in basis space. Instead of performing
expensive Markov chain Monte Carlo sampling, we approximate the posterior dis-
tribution using variational Bayes and adopt a fast iterative algorithm to estimate
parameters of the approximate distribution. Our approach facilitates a fast multiple
testing procedure in basis space, which can be used to identify significant local regions
that reflect differences across groups of samples. We perform two simulation studies
to assess the performance of approximate inference, and demonstrate applications of
the proposed approach by using a proteomic mass spectrometry dataset and a brain
imaging dataset. Supplementary materials are available online.
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1 Introduction

Modern high-throughput technologies enable the collection of a special type of high-

dimensional data called functional data. The ideal observational units of functional data

are curves or surfaces defined on some continuous domain and sampled on a discrete grid

(Ferraty and Romain, 2018). Typical examples include longitudinal measurements, spectral

curves, engineering signals, brain images, and many other digital measurements. While

functional data often provide a rich source of information, they also pose extraordinary

challenges to statistical methodology, mostly due to the high dimensionality, high volume,

and complex data structures. It is not just desirable, but essential that analytical tools

should be scalable to the increasing size or dimensionality and flexible to accommodate

complex data structures. One motivating example is a brain imaging dataset which will be

considered in our real data analysis. The data consist of 3-D brain images with about 10

million pixels per subject, making knowledge discovery challenging.

Extensive research work has been done in the field of functional data analysis to pro-

cess and model functional data, among which the most studied area is functional data

regression. Functional data regression focuses on characterizing the relationship between

functional observations and other functional or non-functional variables. Notable work in-

cludes functional linear models (Cardot et al., 1999; Cuevas et al., 2002; Yao et al., 2005;

Hall et al., 2007; Yuan and Cai, 2010), generalized functional linear models (James, 2002;

Müller and Stadtmüller, 2005; Zhu and Cox, 2009), functional additive models (Fan et al.,

2015), etc. Comprehensive reviews can be found in Ramsay and Silverman (2005), Morris

(2015) and Wang et al. (2016).

Among existing models, functional mixed models (FMMs) provide a flexible functional

response regression framework that can accommodate numerous complex structures in-

duced by the experimental design. Compared with the frequentist counterpart (Guo,

2002), Bayesian functional mixed models (Morris and Carroll, 2006; Zhou et al., 2010)

have achieved a great deal of success due to several advantages. First, inference through

Markov chain Monte Carlo (MCMC) sampling is convenient; second, the variability from

estimating nuisance parameters or any other parameters in the model is propagated through
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the inference, which means that the final error bands account for all sources of variability.

Indeed, Bayesian FMMs have been widely applied to different applications including the

analysis of mass spectrometry data (Morris et al., 2008, 2011), accelerometer data (Morris

et al., 2006), acoustic signals (Martinez et al., 2013), and medical images (Lancia et al.,

2015; Zhu et al., 2018; Lee et al., 2019). Further extensions of Bayesian FMM have also been

made to allow robust regression (Zhu et al., 2011, 2012) and function-on-function regres-

sion (Meyer et al., 2015), to incorporate spatial correlations (Zhang et al., 2016; Zhu et al.,

2018) and multivariate functional responses (Zhu et al., 2017), to accommodate nonlinear

effects for scalar predictors (Lee et al., 2019), and to perform quantile functional regression

on distributions estimated from subject-specific data streams (Yang et al., 2020). These

methods constitute a suite of Bayesian FMM-based toolbox (Morris, 2017) that cover a

large scope of analysis involving high-dimensional, complex structured functional data. Its

use of general basis functions in a basis transform modeling approach make it well suited for

complex, high dimensional functional data with many observational points per function.

By basis transformation, we can effectively perform inference in basis space and transform

results back to data space for visualization and interpretation. This strategy brings nu-

merous conveniences such as enabling parallel modeling and dimension reduction, and for

suitably chosen basis, has the flexibility to capture global or local features of complex data.

Despite their effectiveness, Bayesian FMMs become computationally demanding for

data with extraordinary high volume and dimensionality. The computational challenges

primarily come from running Markov chain Monte Carlo (MCMC) sampling and the need

to store a large number of posterior samples. Various strategies have been suggested to

improve the computation scalability, for example, performing data compression in advance

to reduce dimension (Morris et al., 2011) or calculating good MCMC initial values for

MCMC (Zhu et al., 2012). Even with these strategies, the computation can still be a

challenging task for large scale data as it still requires running MCMC until convergence.

In this paper, we aim to develop an ultra-fast Bayesian FMM computational framework

that is suitable for large scale functional data, avoiding expensive MCMC sampling and

the hassle of storing posterior samples.
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Since large scale functional data are a special type of Big Data, it is natural to hope that

strategies for Big Data computation to be useful. For example, techniques such as divide-

and-conquer (Wang et al., 2016) lead to embarrassingly parallel algorithms (Wikipedia

contributors, 2019), and approximation is often effective to improve computation efficiency

(Sarlos, 2006; Minka, 2001; Ruli et al., 2016). Despite the progress in Big Data computation,

the fast computation of large-scale functional data has not received much attention.

In this paper, we propose a variational functional mixed model (VFMM) framework that

takes advantages of several attractive computational strategies in Big Data computation.

In particular, we adopt the divide-and-conquer strategy by first representing functional

observations by parsimonious basis and then performing statistical inference for each com-

ponent in basis space. The parsimonious basis representation enables efficient compression

and embarrassingly parallel computation. It also facilitates an efficient multiple testing

procedure in basis space which can be used to identify significant local regions in the origi-

nal data domain. Instead of performing MCMC sampling, we rely on approximate inference

(Sun, 2013). In particular, we approximate the posterior distribution by using variational

Bayes, a method from machine learning that approximates posterior distributions through

optimization (Blei et al., 2017). While this approximation sacrifices some of MCMC’s ac-

curacy, it provides large gains in terms of computational feasibility, especially in ultra-high

dimensional settings. We design a fast iterative algorithm to estimate parameters of the

approximated posterior distribution. Owing to its fast speed, our approach is ideal for ob-

taining quick initial estimate based on large scale data. If desired, it can be combined with

full MCMC schemes to achieve more accurate Bayesian inference to the exact posterior

distribution. We note that variational Bayes has already been applied in various regression

setups (Faes et al., 2011; Ormerod and Wand, 2012; Ormerod et al., 2017; Luts et al.,

2014; Luts and Wand, 2015; Hui et al., 2019; Zhang et al., 2019; Ray and Szabó, 2021) and

other applications (Serra et al., 2019). In functional data analysis, it has also been success-

fully applied to registration (Earls and Hooker, 2017b,a) and scalar-on-function regressions

including functional linear models (Goldsmith et al., 2011) and functional generalized ad-

ditive models (McLean et al., 2014, 2017). To our knowledge, the current paper is the first
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that deals with function-on-scalar regression with variational inference.

Relative to existing functional regression approaches, our proposed VFMM approach

brings several advantages. (1) It enables distributed inference thus is scalable to large-

scale functional data; (2) it avoids the hassle of running MCMC and storing posterior

samples; (3) it facilitates the detection of significant local regions, and these regions can

be visualized directly in the original data domain; (4) it is directly applicable to FMM

with different basis choices as well as several of extensions of FMM, including function-

on-function regression (Meyer et al., 2015), FMM for multivariate functional responses

(Zhu et al., 2017), quantile functional regression (Yang et al., 2020), and semiparametric

FMM that accommodates nonlinear covariate effects (Lee et al., 2019). Our results for the

simulated and real data demonstrate the effectiveness of the proposed VFMM in estimating

parameters, detecting interesting regions, and saving computation time and storage space.

The outline for the rest of this paper is as follows. In Section 2, we start by reviewing

variational Bayes in Section 2.1, and introduce the proposed VFMMs in Section 2.2. An

approach to detect significant regions by performing basis space tests will be discussed in

Section 2.3. Estimation results and computational gains of VFMM are demonstrated by

simulations in Section 3 using both curves and three-dimensional brain images. Two case

studies are used to demonstrate the effectiveness of VFMM in Section 4. We provide a

final discussion in Section 5.

2 Variational Functional Mixed Models

2.1 An Overview of Variational Bayes

While MCMC sampling provides a standard way to estimate parameters of FMM, its

computation can be slow and its convergence can be difficult to diagnose especially in the

context of large-scale problems. We aim to develop a computational framework for FMM

that is faster and easier to scale-up to large datasets. The idea is to find a closed-form

approximation to the posterior distribution by using variational Bayes. Here, we briefly

review the basic idea of variational Bayes. A comprehensive review can be can be found
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in Blei et al. (2017). Let θ denote all model parameters and y denote the observed data.

Unlike MCMC sampling which provides a stochastic approximation of the exact posterior

p(θ|y) using a set of samples, variational Bayes finds an analytical proxy qv(θ) that is closest

to p(θ|y). In particular, one estimates the parameters v of qv(θ) in order to minimize the

Kullback-Leibler divergence between qv(θ) and p(θ|y),

KL(q||p) =

∫
qv(θ) log

qv(θ)

p(θ|y)
dθ.

Directly minimizing KL(q||p) is often difficult. Fortunately, one can decompose log p(y) as

log p(y) =

∫
qv(θ) log

qv(θ)

p(θ|y)
dθ +

∫
qv(θ) log

p(y, θ)

qv(θ)
dθ.

= KL(q||p) + Eqv

{
log

p(θ, y)

qv(θ)

}
. (1)

As log p(y) is a constant, minimizing KL(q||p) is equivalent to maximizing the second

term in (1), which is referred to as the evidence lower bound (ELBO). Thus, inference

with variational Bayes boils down to solving to a optimization problem. Often, qv(θ) is

restricted to take a simpler form than p(θ|y). One common restriction is through the

mean-field assumption, i.e., assuming that θ can be partitioned into independent blocks,

therefore the factorization qv(θ) =
∏

i qvi(θi) holds. Such simplification makes it possible to

calculate qv(θ) analytically. Additionally, more convenient calculations can be induced with

assumptions about exponential family, i.e., assuming that (i) each conditional distribution

p(θi | θ(−i), y) belongs to the exponential family, and (ii) the approximate distribution qvi(θi)

belongs to the same exponential family as p(θi | θ(−i), y). In particular, write p(θi | θ(−i), y)

in canonical form p(θi | θ(−i), y) = exp
{
ηi(θ(−i), y)T t(θi)− A(ηi)

}
, where ηi(θ(−i), y) is

the natural parameter, then qvi(θi) belongs to the same exponential family with natural

parameter η(vi) = Eq\i
{
ηi(θ(−i), y)

}
, where q\i =

∏
j 6=i qvj(θj). Detailed derivations can

be found in Appendix A of Blei (2006). The exponential family assumptions transfer the

estimation of qvi(θi) to the estimation of natural parameters, making the calculations much

more straightforward.
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2.2 Functional Mixed Models with Variational Bayes

We consider the Bayesian Functional Mixed Model (FMM) framework of Morris and

Carroll (2006) and demonstrate a variational Bayes approach for approximate inference.

Let Y (t) = (Y1(t), . . . , YN(t))T denote a vector of functional data responses. The FMM

takes the form

Y(t) = XB(t) + ZU(t) + E(t), t ∈ T , (2)

where B(t) = (B1(t), . . . , Bp(t))
T is a vector of fixed effect coefficient functions associated

with a N×p design matrix X, U (t) = (U1(t), . . . , UM(t))T is a vector of random effect coef-

ficient functions associated with a N×M design matrix Z, and E(t) = (E1(t), . . . , EN(t))T

is the vector of random errors. Morris and Carroll (2006) assumed that both U (t) and

E(t) are mutually independent multivariate Gaussian processes. In particular, they used

E(t) ∼ N (R, S) to denote that E(t) is a multivariate mean-zero Gaussian process with

a N × N between-function covariance matrix R and a within-function covariance surface

S(·, ·), thus cov{Ei(t1), Ei′(t2)} = Ri,i′S(t1, t2), for i, i′ ∈ {1, . . . , N} and t1, t2 ∈ T . Simi-

larly, they assumed that U (t) ∼ N (P, Q).

Following a similar idea of Morris and Carroll (2006), we adopt a parsimonious basis

representation to transform the FMM to basis space, which leads to divide-and-conquer

computation. Consider the general FMM in (2), we assume that the responses {Yi(t), i =

1, . . . , N} take values in L2(T ), where T is a closed subset of Rd, d ≥ 1. Let {φj}∞j=1

denote a compactly supported, orthonormal basis of L2(T ). We can expand Yi(t) by Yi(t) =∑∞
j=1 dijφj(t) where dij = 〈Yi, φj〉 =

∫
T
Yi(t)φj(t)dt. The coefficient sequence (di1, di2, . . .)

lies in the space of square-summable sequences, denoted by `2 =
{
dj :

∑∞
j=1 d

2
j <∞

}
. Note

that Morris and Carroll (2006) have used wavelet basis, in which case the basis functions

{φj} have been indexed by (j, k) where j denotes the resolution level and k denotes location.

In this paper, we use a single index j to index all basis functions for simplicity. Since Y(t)

is written as the linear combination of B(t), U(t) and E(t), it is natural to assume that

these unobserved functional components also take values in the same L2(T ) space. With

this assumption, all functional objects in FMM can be represented by a common basis.

Specifically, denote Φ = (φ1, φ2, . . . )
T , then all basis expansions can be represented by
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linear operations: Y = DΦ, B = B∗Φ, U = U∗Φ, and E = E∗Φ. Model (2) becomes

DΦ = XB∗Φ + ZU∗Φ + E∗Φ. Since Φ preserves linear operation, the above model is

equivalent to the dual space model

D = XB∗ + ZU∗ + E∗, (3)

where rows of D,B∗,U∗ and E∗ contain wavelet coefficients of entries in Y(t),B(t),U(t)

and E(t), respectively. This transforms FMM from the functional space L2(T ) to the dual

space `2.

In model (3), the random effects U∗ and the error E∗ are both zero-mean normal

matrices, denoted by U∗ ∼ N(P,Q∗), E∗ ∼ N(R,S∗), where Q∗,S∗ denote covariances

between columns of U∗ and E∗, respectively. For many choices of basis such as wavelets,

correlations between basis coefficients are substantially reduced (Fan, 2003). This enables

a simplified independence assumption for the covariance matrices Q∗ and S∗, i.e., Q∗ =

diag({q∗j}), S∗ = diag({s∗j}). This further divides the dual space model (3) into many

independent vector-response mixed effect models. We denote the jth model by

dj = Xb∗j + Zu∗j + e∗j , (4)

where dj, b∗j , u∗j and e∗j denote the jth columns of D,B∗,U∗ and E∗ respectively. While the

above divide-and-conquer strategy is suitable if using any orthonormal basis, we mainly fo-

cus on compactly supported orthonormal basis such as Haar wavelets, Daubechies Wavelets,

and spherical wavelets. These bases have the ability to capture local features of functional

data, enable parsimonious representation which allows further compression, and have dis-

crete transformation operators that facilitate fast computation. They are generally appli-

cable to curves, images, surfaces, etc. As we will explain in Section 2.3, using compactly

supported orthonormal basis allows us to identify interesting local regions by perform-

ing multiple testing in basis space, avoiding the need of drawing posterior samples and

inverse-transforming posterior samples back to the data domain.

Consider the jth model in (4), we denote dj = (d1,j, . . . , dN,j)
T , b∗j = (b∗1,j, . . . , b

∗
p,j)

T ,

u∗j = (u∗1,j, . . . , u
∗
m,j)

T , and e∗j = (e∗1,j, . . . , e
∗
N,j)

T . In FMM, Morris and Carroll (2006) set a
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“spike-slab” prior to each component of the fixed effect b∗j , i.e.,

b∗i,j ∼ γ∗i,jN(0, τi,j) + (1− γ∗i,j)δ0, γ∗i,j ∼ Bernoulli(πi,j), (5)

where δ0 is a point mass at 0. The spike-slab prior (Ishwaran and Rao, 2005) encourages

sparsity in basis space, which induces adaptive regularization of the corresponding regres-

sion coefficient in function space (Morris, 2015). They further assumed P, R to be identity

matrices and set inverse-Gamma priors to the random effect and residual variances {q∗j},

{s∗j}. This leads to posterior inference via Markov chain Monte Carlo (MCMC) sampling.

To enable efficient variational Bayes computation, we slightly modify the priors in (5)

and random effect/residual distributions of FMM by setting

b∗i,j ∼ γ∗i,jN(0, q∗j τi,j) + (1− γ∗i,j)δ0, γ∗i,j ∼ Bernoulli(πj),

q∗j ∼ IG(aj, bj), u∗j ∼ N(0, q∗j I), e∗j ∼ N(0, q∗j ζjI).

Here, we have factored out the random effect variance q∗j from the prior variance of fixed

effect b∗i,j and the residual variance. This new parameterization allows for convenient update

of the approximate distribution of q∗j ; details can be found in the supplementary materials.

Based on the above model setup, the joint posterior distribution of {b∗i,j}, {γ∗i,j} and q∗j can

be written as

p({b∗i,j}, {γ∗i,j}, q∗j | dj, ζj, τi,j, πj)

∝ p(dj | {b∗i,j}, q∗j , ζj) p(q∗j )
p∏
i=1

p(b∗i,j | γ∗i,j, τi,j) p(γ∗i,j | πj)

We treat πj, τi,j, ζj, and (aj, bj) as hyperparameters and make mean-field assumptions for

the approximate distributions of {b∗i,j},{γ∗i,j}, and q∗j . This enables an efficient variational

EM algorithm. In particular, we assume that the approximate distribution can be factored

as follows:

q({b∗i,j}, {γ∗i,j}, q∗j ) = q(q∗j )

p∏
i=1

q(b∗i,j | γ∗i,j)q(γ∗i,j). (6)

As the conditional posterior of {b∗i,j},{γ∗i,j}, and q∗j all fall in the exponential family, we

follow Blei (2006) by assuming that each factor in the above approximate distribution also
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falls in the same exponential family. Therefore, in the E-step, the estimation of the approx-

imate distribution boils down to the estimation of the natural parameters in exponential

family. This facilitates fast calculation of the approximate distributions. Specifically, we

get q(γ∗i,j = 1) = π̃i,j, q(b
∗
i,j | γ∗i,j = 1) is the density of N (µ̃i,j, σ̃

2
i,j), and q(q∗j ) is the density

of IG(ãj, b̃j), where π̃i,j, (µ̃i,j, σ̃
2
i,j) and (ãj, b̃j) are variational parameters whose formulae

are derived in supplementary materials.

In the M-step, conditional on the estimation of the approximate distributions, we update

values of the hyperparameters πj, τi,j and ζj by directly maximizing the ELBO. Specifically,

we are able to analytically solve the values of πj and τi,j by setting the first derivative of

ELBO to zero. The value of ζj, however, needs to be searched by using an optimization

algorithm. In general, the calculation of ELBO involves computing the determinant and

inverse of an N by N covariance matrice, which can be slow. However, as shown in our

derivation in supplementary materials, if the design matrix Z is blockwise, we can speed

up the calculation of ELBO substantially. The values of the hyperparameters (aj, bj) are

determined by matching the mean of the inverse-Gamma prior with the initial estimate of

q∗j while setting the prior variance to be fairly large (e.g., 103).

We list steps of the VFMM algorithm in Algorithm 1. To ensure fast convergence, we

adopt Henderson’s mixed model equations (Searle et al., 1992, pages 275-286) to initialize

parameters. More technical details about Algorithm 1 and the initialization algorithm are

available supplementary materials. While options for more parameter settings and detailed

tuning are available, the only required inputs are the observed data Y and the design

matrices X, Z. As mentioned earlier, the FMM (and VFMM) framework is based on a

simplified independence assumption in basis space, which divides the basis space model into

many independent vector-response mixed effect models. This strategy make it possible to

enjoy the computational benefit of parallelization while still accommodate autocorrelation

within the function. For this reason, in VFMM, calculation are performed independently

across the index j, and Algorithm 1 can either be performed by using vector-wise calculation

or be distributed to multi-core computational units. Vector-wise calculation is suitable for

small to median scale calculations, for example, the basis space model with dimension less
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than O(104). For higher dimensions, one may split the basis space model (3) across the

index j (i.e., across the columns) into a few sub-models and perform vector-wise calculation

in parallel. This is indeed what we did in the real data application on 3-D brain images.

Algorithm 1: The VFMM algorithm. The formulae (S1)-(S8) for calculating

π̃i,j, (µ̃i,j, σ̃
2
i,j), (ãj, b̃j) and ELBO are in section 1 of supplementary materials.

1 Initialize all parameters;

2 while ELBO(t) − ELBO(t−1) > tolerance do

3 for all j do

4 Update q(γ∗i,j = 1) = Bernoulli(π̃i,j) based on log odds in (S1);

5 Update q(b∗i,j|γ∗i,j = 1) = N(µ̃i,j, σ̃
2
i,j) following (S2)-(S3); q(b∗i,j|γ∗i,j = 0) = δ0;

6 Update q(q∗j ) = IG(ãj, b̃j) following (S4)-(S5);

7 Update ELBO(t) following (S6)-(S8);

8 Update πj =
∑p

i=1 π̃i,j/p and τi,j = ãj(σ̃
2
i,j + µ̃2

i,j)/b̃j;

9 Update ζj by hill-climbing heuristic research;

10 Update ELBO(t) again following (S6)-(S8).

11 end

12 end

2.3 Region Detection via Basis Space Testing

In addition to estimating unknown parameters, another key inferential objective is

to identify local regions that reflect significant differences across groups of samples. In

Bayesian FMM, since posterior samples are available, detection of local regions can be

achieved by controlling family-wise error rate or Bayesian expected false discovery rate

across a grid of T in data domain as done by Morris et al. (2008) and Meyer et al. (2015).

In the VFMM framework, since we are targeting at avoiding posterior sampling in order to

improve computational efficiency, we propose a new basis-space testing strategy to detect

local regions.

Let C(t) denote a contrast effect of interest. For example, C(t) = B1(t) − B2(t) rep-

resents the contrast effect between groups 1 and 2 if B1(t) and B2(t) are the respective
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group means. We focus on detecting regions on which |C(t)| > δ for a prespecified thresh-

old δ. To achieve this, we assume that C(t) can be represented by the basis expansion

C(t) =
∑∞

j=1 cjφj(t). Instead of performing multiple testing on a grid of T , we aim to

obtain a region identifier C̃(t) =
∑∞

j=1 cj1{|cj |>ε}φj(t), where ε is a small positive thresh-

old. We see that C̃(t) → C(t), as ε → 0 for all t. The component cj1{|cj |>ε} represents

significantly nonzero component. When using a compactly supported basis, we expect a

subset of {cj} to be zero (i.e., {H0j : cj = 0} holds for some j) if C(t) contains zero regions.

Therefore, we will identify nonzero components in basis space by performing a sequence

of basis space testing {H0j : |cj| > ε vs. Haj : |cj| ≤ ε ; j = 1, . . . , K} while controlling

the Bayesian false discovery rate across all j. Here, we have assumed that there exists a

finite truncation at K such that all H0j will not be rejected beyond K. This is a reason-

able assumption as for most smooth functions, higher K corresponds to high frequency

components which are usually predominantly noise. After all, numerical calculation has

to be performed in a finite dimensional manner even though the theoretical representation

is infinite. The parameter K can be determined by performing a truncation to the basis

expansion by controlling the percentage of total energy retained. We propose a testing

procedure which consists of the following steps:

1. For each component j = 1, . . . , K in basis space, estimate a probability discovery

function pε(j) = pr{|cj| > ε |Data} by p̂ε(j) based on the approximate distributions

q(b∗i,j|γ∗i,j). Specifically, since q(b∗i,j|γ∗i,j = 1) is normal, the approximate distribution

of cj can be fully derived, based on which p̂ε(j) can be calculated.

2. Sort {p̂ε(j)} in descending order to obtain the order statistics {p̂ε,(l), l = 1, . . . , K}.

3. Set φα = p̂ε,(s), where s = max{l∗ : (l∗)−1
∑l∗

l=1{1− p̂ε,(l)} ≤ α}.

4. Suppose J ⊂ {1 : K} are the indices that are significant. We reconstruct C̃(t) by

C̃†(t) =
∑

j∈J cjφj(t) and flag regions on which |C̃†(t)| > δ.

The above method of determining the Bayesian expected FDR threshold φα is sketched

in a diagram in Figure 1, where the solid decreasing line denotes the ordered p̂ε(j). The

areas marked by A, B, C, D are the estimated proportions for true positives, false positives,
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Figure 1: A diagram for determining the Bayesian FDR threshold φα.

false negatives and true negatives respectively. The threshold φα is indeed determined by

constraining B/(A+B) ≤ α. The set of locations ψ = {l : p̂ε,(l) > φα} corresponds to the set

of discoveries. The threshold φα is a cut-point on the estimated posterior probabilities that

correspond to an expected Bayesian FDR of α. In addition to the Bayesian expected FDR

calculated by B/(A + B), one can further calculate the corresponding Bayesian expected

false negative rate (FNR) by C/(C +D), sensitivity (SEN) by A/(A+ C), and specificity

(SPEC) by D/(B + D). The Bayesian expected statistics yield estimates of the statistics

FDR, FNR, SEN, SPEC in basis space without knowing the true underlying function B(t)

and its basis space counterpart B∗. In simulations when we know the true function B(t)

and B∗, we can also compute the true FDR, FNR, SEN, and SPEC statistics; details

are provided in Section 3.2. We call statistics computed using the true B(t) the “realized”

quantities. We note that these statistics are calculated in basis space which does not require

posterior samples; similar statistics can also be calculated in the data domain if we draw

posterior samples from the approximate distribution, inverse-transform the samples back

to the data domain, and follow the Bayesian FDR control procedure used in Morris et al.

(2008).
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3 Simulation Study

3.1 Simulation Setup

We designed a simulation study to assess the computational benefit of VFMM and

evaluated the potential loss of accuracy when using approximate inference in VFMM. To

mimic realistic inter- and intra-function correlations, we generated simulated data by re-

sembling two real datasets described in Section 4—the cancer organ-by-cell-line proteomics

data and the Tensor-based morphometry (TBM) brain imaging data. The first dataset

provides an example of functional data observed on a one-dimensional domain, which we

refer to as the 1-D case; and the second dataset represents functional data measured on a

three-dimensional domain, which we refer to as the 3-D case. More details of the reference

datasets are available in Section 4.

In the 1-D case, we simulated data by first fitting Baysian FMM to the reference dataset,

from where we obtained posterior means of several key parameters in basis space, including

the fixed effects {b∗j}, the random effect variances {q∗j}, and the residual variances {s∗j}.

We then simulated data treating these estimated parameters as the underlying truth. The

simulation involves generating random effects and residuals from multivariate normal distri-

butions, and generating the responses {dj} in basis space following model (4). Functional

responses were finally obtained by applying inverse wavelet transform to {dj}. A total of

128 functional responses were simulated, four functions from each of the 32 “animals”, with

each function sampled on an equally spaced grid of 512.

In the 3-D case, we generated brain images on a 128 × 128 × 128 grid following the

reference data. We mimicked the cell mean design in the reference data by assuming that

there are four groups, 25 subjects in each group. Therefore, the design matrix X is a 100

by 4 binary matrix, in which a one in the (i, j)th position indicates that the ith sample

belongs to the jth group. Under this design, the fixed effect B(t) contains the four group

means. We set the value of B(t) by adding different artificial shapes to different local

regions of a template image. The artificial shapes include a cube with staircase intensity,

a ball with highest intensity in center, a ball with linear intensity change, and a diamond
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shape. The template image was chosen to be the minimal deformation template of the

TBM data, created based on Magnetic Resonance (MR) scans of 40 randomly selected

normal subjects. To simulate the random effect, we assume that the 100 brain images

come form 25 independent batches, four in each batch, so the design matrix for the random

effect is I ⊗ 1, where I is a 25 × 25 identity matrix and 1 is a 4 × 1 vector of ones. We

simulated the 25 random batch effect functions using Karhunen–Loéve expansion with the

first three components, where eigenvalues were fixed and eigen-functions were generated

from a zero-mean random Gaussian process with the squared exponential kernel.

3.2 Evaluation Criteria

We applied VFMM to the two simulated datasets and compared its performance with

that of the Bayesian FMM. Several summary statistics are defined to evaluate the perfor-

mance in estimation and in identifying significant local regions. Specifically, we defined

two summary statistics to assess the estimation performance of B∗, including the aver-

aged mean square error (AMSE) and the averaged posterior variability (APVar). Let B∗a

denote the ath row of B∗; a = 1, . . . , p. We define AMSE by AMSE = p−1
∑p

a=1 ||B̂∗a −

B∗a||2/||B∗a||2, where B̂∗a denotes the posterior mean of B∗a. AMSE summarizes the variabil-

ity of posterior mean relative to the truth. Furthermore, we defined APVar by APVar =

(pG)−1
∑p

a=1

∑G
g=1 ||B

(g)
a − B̂∗a||2/||B∗a||2, where {B(g)

a , g = 1, . . . , G} denotes the posterior

samples of B̂∗a. APVar summarizes the posterior variability relative to the posterior mean.

To assess the estimation performance of random effects, we defined two statistics for the ran-

dom effect variances {q∗j}: MSE=
∑

j(q̂
∗
j − q∗j )2/

∑
j(q
∗
j )

2 and PVar=1/G
∑G

g=1{
∑

j(q
∗
j
(g) −

q̂∗j )
2/
∑

j(q
∗
j )

2} where q̂∗j denotes the posterior mean of q∗j . Note that for general inference,

VFMM does not require any posterior sampling. In this simulation, in order to create a

fair comparison with FMM, we drew posterior samples from the approximate distribution

and used the samples to calculate the above statistics.

To evaluate the performance of region detection, we also calculated the true FDR, FNR,

SEN and SPEC statistics in data domain by assuming that B(t) is known. These statistics,

also called “realized” statistics as noted in Section 2.3, measure the proportion of regions
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that are correctly or incorrectly identified under different considerations. For example, if

we use the criterion |C̃†(t)| > δ to flag locations on a grid of T , FDR is calculated through

dividing the number of grid points that are falsely detected by the total number of grid

points detected; SEN is obtained by calculating the proportion of correctly detected grid

points among all grid points that truly satisfies |C(t)| > δ; FNR is calculated by finding

that, among those non-detected grid points, which proportion truly satisfies |C(t)| > δ; and

SPEC is obtained by calculating that, among all grid points that truly satisfies |C(t)| ≤ δ,

which proportion is correctly non-detected.

3.3 Results

We repeated each of the 1-D and 3-D simulations 50 times to mitigate the Monte

Carlo variability in the data generation process. In each simulation, we applied both

VFMM and Bayesian FMM, and compared their performance on estimation and region

detection. When fitting both VFMM and FMM, we adopted wavelet transformation by

using Daubechies wavelets with six resolution levels. In the 3-D simulation case, wavelet

compression was performed before applying both models; the truncation parameter was

chosen so that the remaining components retain at least 80% of the total energy (sum of

squared wavelet coefficients), which reduced the dimension from around 10.8 million to

49, 152 after compression. When applying Bayesian FMM, we ran 5000 MCMC iterations

and treated the first 3000 iterations as the burnin period. In Table 1, we reported the

mean and standard deviation (in parentheses) of each summary statistic, calculated across

the 50 repetitions. Note that for the 3-D case, the MSE statistic for {q∗j} is not available

since the true values of {q∗j} are unknown, owing to the fact that the random effect U(t)

was simulated directly in data domain.

When performing region detection, in the 1-D case, we focused on detecting regions

with absolute values greater than δ = log2(1.5) on the cell line effect, organ effect, organ-

cell-line interaction effect and the mean effect; in the 3-D case, we focused on detecting

regions with pairwise contrast effect greater than δ = 5. In the 1-D case, to better compare

VFMM with FMM, we flagged regions directly in the data domain by directly controlling
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Table 1: Simulation results on estimation and region detection for 1-D and 3-D cases.

Estimation Time

B∗ {q∗j}

Data Model AMSE APVar MSE PVar (hrs)

1-D FMM .0109 (.0016) .0108 (7.1e-04) .0010 (8.1e-05) .0981 (.0202) .4700 (.0024)

VFMM .0107 (.0017) .0069 (3.6e-04) .0012 (6.8e-05) .0032 (6.1e-04) .0226 (.0014)

3-D FMM .1020 (.0056) .0014 (6.4e-03) — .0960 (.0340) 7.530 (.0058)

VFMM .1440 (.0053) .0002 (4.8e-03) — .0056 (7.4e-03) .3500 (.0002)

Region Detection

FDR FNR SEN SPEC

1-D FMM .066 (.022) .076 (.016) .864 (.033) .964 (.014)

VFMM .086 (.025) .064 (.016) .889 (.032) .951 (.017)

3-D FMM .028 (0.027) .065 (0.015) .918 (0.045) .993 (0.011)

VFMM .032 (0.029) .067 (0.016) .921 (0.041) .992 (0.013)

Bayesian expected FDR on a grid of T following the approach of Morris et al. (2008);

“realized” statistics were calculated by comparing flagged regions with the ground truth in

data domain. Note that this approach requires using posterior samples of the fixed effects

for both FMM and VFMM. In the 3-D case, since storing posterior samples and performing

inverse wavelet transforms of them are both computationally expensive, we performed basis-

space testing described in Section 2.3. This testing procedure does not require generating

posterior samples in the VFMM case. In this testing procedure, we set thresholds ε = 0.07

and δ = 5. We evaluated the performance of region detection in data domain by using

“realized” statistics. For both 1-D and 3-D simulation, we controlled the overall Bayesian

expected FDR across all contrast effects to be less than the significance level α = 0.05. In

addition to estimation and region detection, Table 1 also listed computation time in hours.

From Table 1, we see that for the estimation of B∗, in the 1-D case, VFMM resulted in
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similar AMSE (.0107 vs. .0109) and lower APVar (.0069 vs. .0108) than FMM; and in the

3-D case, VFMM resulted in higher AMSE (0.1440 vs. 0.0990) and lower APVar (.0002 vs.

.0014) than FMM. The pattern on estimating {q∗j} is similar with that of B∗. The lower

APVar statistic of VFMM reflects the effects of using mean-field assumption in the posterior

approximation—assuming independence across different components of the joint posterior

usually results in underestimates of posterior variance, a well-known problem of variational

inference (Giordano et al., 2015; Blei et al., 2017). For region detection, we see that for

the 1-D case, VFMM resulted in higher false discovery rate (0.086 vs. 0.066), lower false

negative rate (0.064 vs. 0.076), with slightly higher sensitivity (0.889 vs. 0.864) and lower

specificity (0.951 vs. 0.964). These results indicate that, with narrower credible bands,

VFMM tends to flag more locations, leading to higher false discoveries and sensitivity.

Statistics for the 3-D case show similar patterns as in the 1-D case.

Regarding computation time, Table 1 demonstrates a clear advantage of VFMM relative

to FMM. The 1-D simulations are performed on a mac laptop with 2.2 GHz Intel Core i7

CPU and 16 GB of RAM. All 3-D simulations are performed on a CPU cluster equipped

with 190 nodes, 32 cores per node, and each core consists of two Intel Broadwell E5-2683v4

@ 2.1GHz processors with 128 GB of RAM. For the FMM, the computation time required

for running 5000 MCMC iterations increases from 0.47 hours in the 1-D case to 7.53 hours

in the 3-D case. The VFMM, on the other hand, requires only 0.0226 hours (1.356 minutes)

for the 1-D cases and 0.35 hours for the 3-D case. In addition to shorter computation time,

the storage space required for VFMM is substantially reduced as it does not require drawing

posterior samples. Specifically, the storage space required for FMM to save 2000 posterior

samples increases from 257 megabytes in the 1-D case to 4.94 gigabytes in the 3-D case,

whereas VFMM only requires 1.38 megabyte in the 1-D case and 3.64 megabyte in the 3-D

case. These computation benefits make VFMM attractive for large-scale data.

In addition to summary statistics shown in Table 1, in Figures 2 and 3, we also plot

the estimation and region detection results for selected contrast effects. Figure 2 shows the

results of the cell line effect C(t) = (B1(t)−B2(t) +B3(t)−B4(t))/2. Green and blue lines

mark the posterior means of VFMM and FMM respectively. The yellow line shows the true
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Figure 2: The 1-D simulation case: estimation and region detection results for the simulated

cell line effect.

value of C(t). The 95% percent credible bands were shown by shaded gray area for VFMM

and by red dash lines for FMM. Here, the 95% percent credible bands were calculated by

finding the (0.025, 0.975) percentiles pointwisely on a grid of T based on posterior samples

of C(t). Detected regions are flagged by magenta and cyan dots at the bottom of the plot.

From Figure 2, we see that while VFMM and FMM resulted in very close mean estimates,

VFMM produced slightly narrower credible bands and more flagged locations than FMM,

a result that is consistent with the higher FDR and sensitivity observed in Table 1. This

indicates that VFMM is more aggressive than FMM on region detection, a potential issue

of mean-field variational inference. More plots for the 1-D simulated case are available in

the supplementary materials.

Figure 3 shows the flagged regions by VFMM and FMM for the contrast effect B1(t)−

B2(t) in the 3-D simulated case, along with the truth. For demonstration convenience, only

one a 2-D slice of the 3-D image is shown. White areas are regions that are not flagged.

Colors represent estimated values. For this contrast effect, we expect two significant lo-

cal regions to be flagged—one corresponds to a cube with staircase intensity, the other

corresponds to a ball with the highest intensity in the center. From Figure 3, we see that

VFMM and FMM perform similarly in identifying the two regions. Both VFMM and FMM

estimated the ball shape very well and identified the staircase pattern with less accuracy

on the boundary. More plots for the 3-D simulated case are available in the supplementary
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Figure 3: The 3-D simulation case: region detection results for the contrast effects B1(t)−

B2(t) along with the truth. Only one 2-D slice of the the 3-D image is plotted. White

areas are regions that are not flagged. Colors represent estimated values. Left, middle and

right figures correspond to results of VFMM, FMM and the truth respectively.

materials.

4 Real Data Applications

We demonstrate the applications of VFMM by analyzing two real datasets, a 1-D cancer

proteomics dataset and a 3-D brain imaging dataset. Performance of VFMM is compared

with Bayesian FMM.

4.1 Analysis of the 1-D Cancer Proteomics Data

In this analysis, we study the proteomic spectra collected from a MALDI-TOF mass

spectrometer during a cancer cell line study. During this study, a tumor from one of

two cancer cell lines was implanted into either the brains or lungs of 16 nude mice. The

cell lines were A375P, a human melanoma cancer cell line with low metastatic potential,

and PC3MM2, a highly metastatic human prostate cancer cell line. The goal was to

find blood serum proteins that are differentially expressed between organ implant sites,

implanted cell line types, or the organ-by-cell line interaction. Data were collected by

drawing a blood serum sample from each animal and run it through a MALDI-TOF mass
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spectrometer. This produces a proteomic spectrum y(t) that is a function supported on

a 1-D domain. The proteomic spectrum consists of many peaks; a peak at a location t

corresponds to a protein/peptide in the sample with molecular mass of t Daltons. The

spectral intensity y(t) provides a rough estimate of the corresponding protein abundance.

During the experiment, we obtained two spectra for each mouse, one using a low laser

intensity and one using a high laser intensity. Here, we consider the part of the spectrum

between t = 2, 000 and t = 14, 000 Daltons, a range that includes T = 7, 985 points per

spectrum. Preprocessing steps, include background correction, normalization of the mass

spectra, and a log2 transformation of the intensities were performed before applying VFMM

and FMM. More details of preprocessing can be found in Morris et al. (2005).

We applied both VFMM and FMM to the preprocessed dataset by adopting the same

basis transformations and design matrices. In particular, we applied a discrete wavelet

transform to each spectrum by using the Daubechies wavelets with eight vanishing mo-

ments, periodic boundary extension mode, and nine resolution levels. We set the fix effect

design matrix X by using the cell mean model for the factorial design with an additional

column for the laser intensity effect, so that X is a 32× 5 matrix. Columns one to four in-

dicates four treatment groups: brain-A375P, brain-PC3MM2, lung-A375P, lung-PC3MM2,

respectively, while column five indicated whether the observations were from high (coded

as 1) or low (coded as -1) laser intensity. The random effect design matrix Z was a 32

×16 binary matrix with Zib = 1 indicating that spectrum i came from the bth animal.

Based on estimation of the fixed effects, we detected nonzero regions on three contrast

effects: the organ effect C1(t) = (B1(t) + B2(t) − B3(t) − B4(t))/2, the cell-line effect

C2(t) = (B1(t) − B2(t) + B3(t) − B4(t))/2, and the organ-by-cell line interaction effect

C3(t) = (B1(t) − B2(t) − B3(t) + B4(t))/2. Results of region detection were compared

between VFMM and FMM.

To detect significant regions on contrast effects, for both models, we applied the Bayesian

expected FDR control with δ = 1 on the measurement grid in data domain following Morris

et al. (2008). Note that this requires posterior samples for the fixed effects; for VFMM

we have sampled from the estimated posterior distributions to get posterior samples. For
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both models, we detected regions by controlling the overall Bayesian expected FDR across

all contrast effects. The significant level for both approaches was set to be α = 0.05. In

Figure 4, we compared significant regions flagged by FMM and VFMM on the cell line

effect (top pane) together with a zoom-in plot on the [2950, 3070] kilodaltons region (bot-

tom pane). The flagged regions were marked on the mean cell line effect obtained by

VFMM. We use different colors to denote whether the locations were flagged by VFMM

only, FMM only, or both VFMM and FMM. From Figure 4, we observe that for the cell line

effect, a total of 9 regions were flagged by both models. For the common flagged regions,

VFMM usually flagged wider intervals than FMM. Besides regions that were flagged by

both approaches, there were three extra regions with more than 10 contiguous grid points

that were flagged by VFMM but not by FMM; these regions include intervals [2587, 2602],

[3809, 3837], [3856, 3876] kilodaltons. There is one contiguous region flagged by FMM,

[2214, 2300] kilodaltons, which VFMM flagged as [2203, 2279] and [2286, 2302]. Similar

patterns were observed for the organ effect and organ-by-cell-line interaction effect. For

the organ effect, 16 regions were flagged by both models and two extra regions were flagged

by VFMM but not by FMM. For the organ-by-cell-line interaction effect, seven regions were

flagged by both models and four regions were flagged by VFMM but not by FMM. Again,

we shall interpret the additional flagging cautiously due to the possible higher FDR asso-

ciated with VFMM. Figures on region detection for the organ effect and organ-by-cell-line

interaction effect are available in supplementary materials.

In addition to the plot in Figure 4, we also calculated the Bayesian expected SEN,

FNR and SPEC following the approach described in Section 2.3. For the 1-D cancer

proteomics data case, since posterior samples were obtained for both FMM and VFMM,

we have calculated these statistics in data domain. For the 3-D brain imaging data case,

the statistics were calculated in the compressed wavelet domain. Results are listed in Table

2. The statistics reported in Table 2 are based on controlling the Bayesian expected FDR

across all wavelet components and all three contrast effects in basis space. The significant

level for the BFDR control was chosen to be α = 0.05. From Table 2, we see that for the 1-

D cancer proteomic data, VFMM achieves higher sensitivity (0.720 vs. 0.612), comparable
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Figure 4: Cancer proteomics data analysis. Top pane: significant nonzero regions flagged

by VFMM and FMM on the cell line effect; bottom pane: a zoom-in plot on the [2950,

3070] kilodaltons region. Regions were flagged on the mean estimate obtained by VFMM.

Red, blue, and green colors denote locations flagged by VFMM only, FMM only, or both

VFMM and FMM, respectively.

specificity (0.980 vs. 0.981), and lower FNR (0.129 vs. 0.187) than FMM. Table 2 also

reported computation time. For the 1-D data, FMM takes around 6.2 hours to perform 4000

MCMC iterations, whereas it only takes 0.55 hours for VFMM to converge. The regions we

discovered by using both VFMM and FMM, together with the Bayesian expected statistics,

provide statistical evidence about which proteins/peptides are differential expressed across

organs, cell-lines, and their interactions. These proteins/peptides may serve as potential

biomarkers for the assessment, diagnosis, and treatment of cancer.

4.2 Analysis of the 3-D Brain Imaging Data

In this analysis, we consider the 3-D brain imaging data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). ADNI is a multisite study that aims to develop clini-

cal, imaging, genetic, and biochemical biomarkers for the early detection and tracking of
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Alzheimer’s disease (AD). We will analyze the preprocessed 3-D Tensor-based morphom-

etry (TBM) data shared by the Laboratory of Neuro Imaging at University of California,

Los Angeles School of Medicine. This dataset can be downloaded from the ADNI website

http://adni.loni.usc.edu/. TBM is an image analysis technique that measures brain

structural differences relative to a common anatomical template Frackowiak et al. (2003).

To generate TBM images, a minimal deformation template (MDT) was first created based

on Magnetic Resonance (MR) scans of 40 randomly selected normal subjects. All other

brain MR images were aligned to the MDT using a nonlinear inverse-consistent elastic

intensity-based registration algorithm Stein et al. (2010). For each brain image, a Jacobian

matrix field was derived based on the gradients of the deformation field that warped the

brain image to the MDT. Volumetric tissue differences were then assessed at each voxel

by calculating the determinant of the Jacobian matrix. The determinant value encodes

local volume excess or deficit relative to the MDT. The pre-processing TBM data consist

of 816 subjects, among which 228 were healthy elderly controls (118 Male, 110 Female),

396 were diagnosed with mild cognitive impairment (MCI; 255 Male, 141 Female), and 192

were diagnosed as Alzheimer’s disease (AD; 101 Male, 91 Female). Each TBM image was

measured on a common 220×220×220 grid in 3-D.

By analyzing the TBM data, we aim to estimate the contrast effects between groups

(i.e., the differences between group means) and detect local brain regions with systematic

volumetric expansion or compression across patient groups with different diagnostic status

or genders. We adopt the cell mean design by setting X to be a 816 × 6 binary matrix,

with 1’s in every row indicating the diagnosis stage and the subject’s gender. In particu-

lar, columns 1-6 of X correspond to subgroups Normal-Male, Normal-Female, MCI-Male,

MCI-Female, AD-Male, AD-Female respectively. Under this design, the contrast effect

between AD and Normal can be calculated by pre-multiplying (−1/2,−1/2, 0, 0, 1/2, 1/2)

to the fixed effects B (or B∗) and the gender effects can be calculated by pre-multiplying

(1/3,−1/3, 1/3,−1/3, 1/3,−1/3). Since there is only one image per subject, no random

effect was modeled. We applied VFMM and FMM by adopting the same basis transfor-

mations and design matrix. In particular, we applied a 3-D discrete wavelet transform
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Table 2: Real data application results: Bayesian expected sensitivity, false negative rate

and specificity for region detection, calculated in wavelet domain.

Region Detection Time

Data Model FNR SEN SPEC (hrs)

1-D
FMM 0.187 0.612 0.981 6.2

VFMM 0.129 0.720 0.980 0.55

3-D
FMM 0.030 0.980 0.928 13.9

VFMM 0.028 0.981 0.929 1.19

to each image by using the Daubechies wavelets with four vanishing moments, periodic

boundary extension mode and four resolution levels. To further reduce the dimension, in

wavelet domain we applied an efficient wavelet compression algorithm, which reduces the

dimension from 10, 657, 241 to 22, 096 while retaining 96% of the total energy.

Based on group means obtained from VFMM and FMM in wavelet domain, we cal-

culated pair-wise contrast effects between the AD (N=192), MCI (N=396), and normal

(N=228) groups as well as the contrast effect between male and female groups. To identify

local regions on these contrast effects, we performed basis-space testing in the compressed

wavelet domain by following the procedure proposed in Section 2.3. For both VFMM and

FMM models, we set ε = 0.5 and controlled the overall Bayesian expected FDR across

all compressed wavelet components and all four contrast effects at the significant level

α = 0.05. Significant local regions were flagged in data domain by using threshold δ = 20.

In Figure 5, we demonstrate regions flagged by VFMM for each of the four contrast effects

by using sliced 2D plots. The flagged regions (colored by red or blue) were plotted on

top of the MDT background image (the gray scale image). For each contrast effect, we

showed the flagged regions via three views: the axial, sagittal and coronal views, sliced in

the middle of the 3D brain along three directions. Similar 2D plots for FMM are available

in supplementary materials. In addition to the 2D plots, we also produced interactive plots

in three views for each contrast effect, which allows users to visualize the flagged regions
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for all slices by using scroll bars.

Flagged regions on contrast effects reveal local volumetric tissue change for one group

relative to another group. From Figure 5 and the interactive plots, we observe that, on

the AD-Normal contrast effect, there is a profound positive contrast effect in the lateral

ventricle region, which indicates cerebrospinal fluid (CSF) inflation in AD patients. In

addition, positive contrast effects are also seen in the circular sulcus of the insula bilaterally,

suggesting brain volume expansions in these regions. Furthermore, we observe negative

contrast effects in the temporal and parietal regions and the hippocampus, which suggests

brain atrophy in these regions in AD patients. The contrast effects for AD-MCI and MCI-

Normal show similar patterns but with lower values and smaller regions. This indicates

graduate volumetric tissue changes from Normal to MCI and from MCI to AD.

On the Male-Female contrast effect, we observe positive contrast effects in the lateral

ventricle region, which indicates more CSF inflation for males relative to females. Addi-

tionally, we also observe positive contrast effects on the top portion of the frontal region.

This suggests higher brain volume (i.e., less tissue loss) for males in this region. Finally,

we observe negative contrast effects in the pariental and temporal regions, indicating lower

brain volume (i.e., more brain atrophy) for males in these regions. Results of FMM are

similar to VFMM; the 2D and interactive plots are shown in supplementary materials. In

addition to plots, in the bottom section of Table 2, we also listed Bayesian expected SEN,

FNR and SPEC, calculated just as in the 1-D case described in section 4.1. These results

demonstrate that VFMM achieves Bayesian expected statistics very close to FMM. Re-

garding computation, we have split the wavelet components to three blocks and performed

posterior calculation in parallel for both VFMM and FMM. It took 13.9 hours for FMM

to finish 10, 000 MCMC iterations with a burnin period of 5000 iterations, whereas it only

took 71 minutes for VFMM to converge. Additionally, FMM took 5.1 gigabytes to store

5000 posterior samples and the posterior results for VFMM only took 6.9 megabytes of

storage space.
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Figure 5: TBM brain imaging data analysis: plots of regions detected for four contrast

effects: (A) AD-Normal; (B) AD-MCI; (C) MCI-Normal; (D) Male-Female. Each row

illustrates three 2D images according to three views—the axial (sliced at z = 110), sagittal

(sliced at x = 110), and coronal (sliced at y = 110) views, from left to right.
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5 Discussion

To improve computational efficiency of Bayesian FMM, we have proposed VFMM, a

new computational approach that enables ultra-fast approximate inference. This novel

framework approximates the posterior distribution in wavelet domain by using variational

Bayes, avoiding expensive MCMC sampling and the need to store posterior samples. Our

approach leads to an automated, efficient algorithm suitable for a large family of high-

dimensional functional data. In order to detect interesting local regions, we proposed a

fast basis-space testing approach that does not require posterior samples. Our applications

to the 1-D cancer proteomics data and 3-D brain imaging data demonstrate comparable

Bayesian expected sensitivity and specificity relative to Bayesian FMM.

A key contribution of VFMM is its computational advantage. As shown by our sim-

ulation and real data analysis, VFMM can accomplish Bayesian estimation in minutes

whereas MCMC-based Bayesian FMM may require days to finish a few thousand MCMC

iterations. Additionally, VFMM only takes very little storage space to store the estimated

model parameters, whereas MCMC-based FMM may need gigabytes of storage to save

posterior samples. Finally, the algorithm of VFMM can be easily implemented in parallel

on manycore CPUs or multicore GPUs, making it suitable for extremely high-dimensional

computational tasks.

We have focused on wavelet basis in the proposed VFMM due to its nice whitening

properties and several appealing characteristics, such as the multi-resolution representa-

tion, the choice of compact supported wavelets, and the ability to perform efficient com-

pression. However, as emphasized by several works (Morris et al., 2011; Meyer et al., 2015;

Zhang et al., 2016), the Bayesian FMM framework is not limited to wavelet bases; it can

be used with other lossless or near lossless basis functions that have whitening (decorrela-

tion) property. While other basis functions can be generally applied to VFMM just as in

FMM, compactly supported bases are desirable in order to detect local regions by using

our proposed basis-space testing approach. Examples include a family of wavelets (e.g.,

Daubechies, spherical wavelets) and orthogonal splines (Mason et al., 1993).

We have assumed Gaussian process distributions for the random effect and residual
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functions. As we have highlighted in Section 1, the current framework can be directly

applied to FMM under different basis choices as well as several extensions of FMM without

any major modifications. For other extensions, such as the robust FMM with heavier tailed

distributions (Zhu et al., 2011) and FMM with spatial-temporal correlations in residuals

(Zhang et al., 2016; Zhu et al., 2018), modifications are needed in order to estimate pa-

rameters induced by assuming heavier-tailed distribution or between-function correlation.

Extension to the former case should be straightforward as the conditional posteriors are

still in the exponential family. Extension to the latter case may involve applying search

algorithms to numerically optimize the ELBO, which can be computationally more chal-

lenging.

Both FMM and VFMM assume spike-slab priors for fixed effects in basis space. We

could easily use other sparsity-inducing priors such as Bayesian Lasso (Park and Casella,

2008), scale mixtures of normals (Griffin and Brown, 2005), horse shoe (Carvalho et al.,

2010), and non-local priors (Johnson and Rossell, 2010). In our experience, these choices

produce similar results in terms of regularization. Nevertheless, both models could be

extended by including other alternative priors which is left to future work. Notable works

on variational Bayes approaches to variable selection include Ormerod et al. (2017), Serra

et al. (2019), and Ray and Szabó (2021), etc.

The VFMM is based on variational Bayes. A well known issue of variational Bayes is the

approximation error caused by the mean-field assumption. Our simulations demonstrate

that VFMM tends to provide narrower credible intervals in fixed and random effects, which

often leads to higher sensitivity and sometimes higher false discovery rate or lower specificity

in region detection. However, following our observation in simulations, we conjecture that

the effect of reduced specificity should not be a big concern if the number of true positive

components in basis space is small relative to the total number of components, which is

usually true if one adopts sparse basis such as wavelets. After all, given its computational

benefits, the proposed VFMM provides an ideal option for producing fast initial results. If

desired, full Bayesian analysis can still be performed by using outputs of VFMM as initial

values.
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Finally, we have adopted mean-field variational inference. Alternatively, stochastic

variational inference (Hoffman et al., 2013) has been proposed which offers better scalability

for data with large sample size. However, in VFMM, we are often dealing high-dimensional

functional data with relatively small/moderate sample size; for example, our brain imaging

data contain images with O(106) measurement points with sample size 816. This is the

typical situation in most medical and genomics applications since collecting large samples is

usually expensive. Thus, in these cases, the subsampling strategy of stochastic variational

inference is not needed. Nevertheless, it remains a promising solution if the sample size

becomes large.

Supplementary Materials

The supplementary materials contain details of the VFMM algorithm, Henderson’s mixed

model equations, ELBO under a block design, and additional simulation and real data

results. Demonstration code written in Matlab is available.
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