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Abstract

While Bayesian functional mixed models have been shown effective to model func-
tional data with various complex structures, their application to extremely high-
dimensional data is limited due to computational challenges involved in posterior
sampling. We introduce a new computational framework that enables ultra-fast ap-
proximate inference for high-dimensional data in functional form. This framework
adopts parsimonious basis to represent functional observations, which facilitates ef-
ficient compression and parallel computing in basis space. Instead of performing
expensive Markov chain Monte Carlo sampling, we approximate the posterior dis-
tribution using variational Bayes and adopt a fast iterative algorithm to estimate
parameters of the approximate distribution. Our approach facilitates a fast multiple
testing procedure in basis space, which can be used to identify significant local regions
that reflect differences across groups of samples. We perform two simulation studies
to assess the performance of approximate inference, and demonstrate applications of
the proposed approach by using a proteomic mass spectrometry dataset and a brain
imaging dataset. Supplementary materials are available online.
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1 Introduction

Modern high-throughput technologies enable the collection of a special type of high-
dimensional data called functional data. The ideal observational units of functional data
are curves or surfaces defined on some continuous domain and sampled on a discrete grid
(Ferraty and Romain, 2018). Typical examples include longitudinal measurements, spectral
curves, engineering signals, brain images, and many other digital measurements. While
functional data often provide a rich source of information, they also pose extraordinary
challenges to statistical methodology, mostly due to the high dimensionality, high volume,
and complex data structures. It is not just desirable, but essential that analytical tools
should be scalable to the increasing size or dimensionality and flexible to accommodate
complex data structures. One motivating example is a brain imaging dataset which will be
considered in our real data analysis. The data consist of 3-D brain images with about 10
million pixels per subject, making knowledge discovery challenging.

Extensive research work has been done in the field of functional data analysis to pro-
cess and model functional data, among which the most studied area is functional data
regression. Functional data regression focuses on characterizing the relationship between
functional observations and other functional or non-functional variables. Notable work in-
cludes functional linear models (Cardot et al., 1999; Cuevas et al., 2002; Yao et al., 2005;
Hall et al., 2007; Yuan and Cai, 2010), generalized functional linear models (James, 2002;
Miiller and Stadtmiiller, 2005; Zhu and Cox, 2009), functional additive models (Fan et al.,
2015), etc. Comprehensive reviews can be found in Ramsay and Silverman (2005), Morris
(2015) and Wang et al. (2016).

Among existing models, functional mixed models (FMMs) provide a flexible functional
response regression framework that can accommodate numerous complex structures in-
duced by the experimental design. Compared with the frequentist counterpart (Guo,
2002), Bayesian functional mixed models (Morris and Carroll, 2006; Zhou et al., 2010)
have achieved a great deal of success due to several advantages. First, inference through
Markov chain Monte Carlo (MCMC) sampling is convenient; second, the variability from

estimating nuisance parameters or any other parameters in the model is propagated through



the inference, which means that the final error bands account for all sources of variability.
Indeed, Bayesian FMMs have been widely applied to different applications including the
analysis of mass spectrometry data (Morris et al., 2008, 2011), accelerometer data (Morris
et al., 2006), acoustic signals (Martinez et al., 2013), and medical images (Lancia et al.,
2015; Zhu et al., 2018; Lee et al., 2019). Further extensions of Bayesian FMM have also been
made to allow robust regression (Zhu et al., 2011, 2012) and function-on-function regres-
sion (Meyer et al., 2015), to incorporate spatial correlations (Zhang et al., 2016; Zhu et al.,
2018) and multivariate functional responses (Zhu et al., 2017), to accommodate nonlinear
effects for scalar predictors (Lee et al., 2019), and to perform quantile functional regression
on distributions estimated from subject-specific data streams (Yang et al., 2020). These
methods constitute a suite of Bayesian FMM-based toolbox (Morris, 2017) that cover a
large scope of analysis involving high-dimensional, complex structured functional data. Its
use of general basis functions in a basis transform modeling approach make it well suited for
complex, high dimensional functional data with many observational points per function.
By basis transformation, we can effectively perform inference in basis space and transform
results back to data space for visualization and interpretation. This strategy brings nu-
merous conveniences such as enabling parallel modeling and dimension reduction, and for
suitably chosen basis, has the flexibility to capture global or local features of complex data.

Despite their effectiveness, Bayesian FMMs become computationally demanding for
data with extraordinary high volume and dimensionality. The computational challenges
primarily come from running Markov chain Monte Carlo (MCMC) sampling and the need
to store a large number of posterior samples. Various strategies have been suggested to
improve the computation scalability, for example, performing data compression in advance
to reduce dimension (Morris et al., 2011) or calculating good MCMC initial values for
MCMC (Zhu et al., 2012). Even with these strategies, the computation can still be a
challenging task for large scale data as it still requires running MCMC until convergence.
In this paper, we aim to develop an ultra-fast Bayesian FMM computational framework
that is suitable for large scale functional data, avoiding expensive MCMC sampling and

the hassle of storing posterior samples.



Since large scale functional data are a special type of Big Data, it is natural to hope that
strategies for Big Data computation to be useful. For example, techniques such as divide-
and-conquer (Wang et al., 2016) lead to embarrassingly parallel algorithms (Wikipedia
contributors, 2019), and approximation is often effective to improve computation efficiency
(Sarlos, 2006; Minka, 2001; Ruli et al., 2016). Despite the progress in Big Data computation,
the fast computation of large-scale functional data has not received much attention.

In this paper, we propose a variational functional mixed model (VFMM) framework that
takes advantages of several attractive computational strategies in Big Data computation.
In particular, we adopt the divide-and-conquer strategy by first representing functional
observations by parsimonious basis and then performing statistical inference for each com-
ponent in basis space. The parsimonious basis representation enables efficient compression
and embarrassingly parallel computation. It also facilitates an efficient multiple testing
procedure in basis space which can be used to identify significant local regions in the origi-
nal data domain. Instead of performing MCMC sampling, we rely on approximate inference
(Sun, 2013). In particular, we approximate the posterior distribution by using variational
Bayes, a method from machine learning that approximates posterior distributions through
optimization (Blei et al., 2017). While this approximation sacrifices some of MCMC’s ac-
curacy, it provides large gains in terms of computational feasibility, especially in ultra-high
dimensional settings. We design a fast iterative algorithm to estimate parameters of the
approximated posterior distribution. Owing to its fast speed, our approach is ideal for ob-
taining quick initial estimate based on large scale data. If desired, it can be combined with
full MCMC schemes to achieve more accurate Bayesian inference to the exact posterior
distribution. We note that variational Bayes has already been applied in various regression
setups (Faes et al., 2011; Ormerod and Wand, 2012; Ormerod et al., 2017; Luts et al.,
2014; Luts and Wand, 2015; Hui et al., 2019; Zhang et al., 2019; Ray and Szabd, 2021) and
other applications (Serra et al., 2019). In functional data analysis, it has also been success-
fully applied to registration (Earls and Hooker, 2017b,a) and scalar-on-function regressions
including functional linear models (Goldsmith et al., 2011) and functional generalized ad-
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that deals with function-on-scalar regression with variational inference.

Relative to existing functional regression approaches, our proposed VEMM approach
brings several advantages. (1) It enables distributed inference thus is scalable to large-
scale functional data; (2) it avoids the hassle of running MCMC and storing posterior
samples; (3) it facilitates the detection of significant local regions, and these regions can
be visualized directly in the original data domain; (4) it is directly applicable to FMM
with different basis choices as well as several of extensions of FMM, including function-
on-function regression (Meyer et al., 2015), FMM for multivariate functional responses
(Zhu et al., 2017), quantile functional regression (Yang et al., 2020), and semiparametric
FMM that accommodates nonlinear covariate effects (Lee et al., 2019). Our results for the
simulated and real data demonstrate the effectiveness of the proposed VFMM in estimating
parameters, detecting interesting regions, and saving computation time and storage space.

The outline for the rest of this paper is as follows. In Section 2, we start by reviewing
variational Bayes in Section 2.1, and introduce the proposed VFMMs in Section 2.2. An
approach to detect significant regions by performing basis space tests will be discussed in
Section 2.3. Estimation results and computational gains of VFMM are demonstrated by
simulations in Section 3 using both curves and three-dimensional brain images. Two case
studies are used to demonstrate the effectiveness of VFMM in Section 4. We provide a

final discussion in Section 5.

2 Variational Functional Mixed Models

2.1 An Overview of Variational Bayes

While MCMC sampling provides a standard way to estimate parameters of FMM, its
computation can be slow and its convergence can be difficult to diagnose especially in the
context of large-scale problems. We aim to develop a computational framework for FMM
that is faster and easier to scale-up to large datasets. The idea is to find a closed-form
approximation to the posterior distribution by using variational Bayes. Here, we briefly

review the basic idea of variational Bayes. A comprehensive review can be can be found



in Blei et al. (2017). Let 0 denote all model parameters and y denote the observed data.
Unlike MCMC sampling which provides a stochastic approximation of the exact posterior
p(f]y) using a set of samples, variational Bayes finds an analytical proxy ¢,(6) that is closest
to p(fly). In particular, one estimates the parameters v of ¢,(f) in order to minimize the

Kullback-Leibler divergence between ¢,(0) and p(6|y),

KL(q||p) = / q»(0) log 4.(0) do.

p(Oly)

Directly minimizing KL(q||p) is often difficult. Fortunately, one can decompose log p(y) as

q(0) p(y.0)

logp(y) = /qv 0) log d@—l—/qv 0) log de.
W AT s, @)
p(0,y)

= KLqp—FEv{log } 1
(allp) + By, {102 258 (1)

As logp(y) is a constant, minimizing KL(q||p) is equivalent to maximizing the second
term in (1), which is referred to as the evidence lower bound (ELBO). Thus, inference
with variational Bayes boils down to solving to a optimization problem. Often, ¢,(0) is
restricted to take a simpler form than p(f|y). One common restriction is through the
mean-field assumption, i.e., assuming that ¢ can be partitioned into independent blocks,
therefore the factorization ¢,(6) = [[; q, (#;) holds. Such simplification makes it possible to
calculate g, (6) analytically. Additionally, more convenient calculations can be induced with
assumptions about exponential family, i.e., assuming that (i) each conditional distribution
p(0; | 0—s),y) belongs to the exponential family, and (ii) the approximate distribution g,,(6;)
belongs to the same exponential family as p(6; | 6_;),y). In particular, write p(0; | 0(—s,y)
in canonical form p(6; | Oy,y) = exp {n;(0s,y)"t(0;) — A(n;)}, where n; (6, y) is
the natural parameter, then g, (6;) belongs to the same exponential family with natural
parameter n(v;) = Ey, {n:(0—s,y)}, where q; = ] iz Qv;(0;). Detailed derivations can
be found in Appendix A of Blei (2006). The exponential family assumptions transfer the
estimation of ¢,,(6;) to the estimation of natural parameters, making the calculations much

more straightforward.



2.2 Functional Mixed Models with Variational Bayes

We consider the Bayesian Functional Mixed Model (FMM) framework of Morris and
Carroll (2006) and demonstrate a variational Bayes approach for approximate inference.
Let Y (t) = (Yi(t),...,Yn(t))T denote a vector of functional data responses. The FMM

takes the form
Y(t) = XB(t) + ZU(t) + E(t), teT, (2)

where B(t) = (Bi(t),...,By(t))T is a vector of fixed effect coefficient functions associated
with a N x p design matrix X, U(t) = (Uy(t),...,Up(t))T is a vector of random effect coef-
ficient functions associated with a N x M design matrix Z, and E(t) = (E\(t),..., Ex(t))"
is the vector of random errors. Morris and Carroll (2006) assumed that both U (t) and
E(t) are mutually independent multivariate Gaussian processes. In particular, they used
E(t) ~ N(R,S) to denote that E(t) is a multivariate mean-zero Gaussian process with
a N x N between-function covariance matrix R and a within-function covariance surface
S(,-), thus cov{E;(t1), Ey(ta)} = R;#S(t1,t2), for 4,4 € {1,...,N} and t1,t5 € T. Simi-
larly, they assumed that U (t) ~ N (P, Q).

Following a similar idea of Morris and Carroll (2006), we adopt a parsimonious basis
representation to transform the FMM to basis space, which leads to divide-and-conquer
computation. Consider the general FMM in (2), we assume that the responses {Y;(t),i =
1,...,N} take values in L*(7), where T is a closed subset of R?, d > 1. Let {¢;}32,
denote a compactly supported, orthonormal basis of L?(7). We can expand Y;(t) by Y;(t) =
> ey dij;(t) where dij = (Y;, ¢;) = Jp Yi( t)dt. The coefficient sequence (d;y,d;o, . . .)
d? < oo} Note

lies in the space of square-summable sequences, denoted by 2 = {d S =1 45

that Morris and Carroll (2006) have used wavelet basis, in which case the basis functions
{¢;} have been indexed by (j, k) where j denotes the resolution level and k denotes location.
In this paper, we use a single index j to index all basis functions for simplicity. Since Y (¢)
is written as the linear combination of B(t), U(t) and E(¢), it is natural to assume that
these unobserved functional components also take values in the same L*(T) space. With
this assumption, all functional objects in FMM can be represented by a common basis.

Specifically, denote ® = (¢y, ¢o,...)T, then all basis expansions can be represented by
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linear operations: Y = D® B = B*®, U = U*®, and E = E*®. Model (2) becomes
D® = XB*® + ZU*® + E*®. Since ® preserves linear operation, the above model is

equivalent to the dual space model
D =XB"+ ZU* + E*, (3)

where rows of D, B*, U* and E* contain wavelet coefficients of entries in Y (¢), B(t), U(t)
and E(t), respectively. This transforms FMM from the functional space L?(T) to the dual
space (2.

In model (3), the random effects U* and the error E* are both zero-mean normal
matrices, denoted by U* ~ N(P,Q*), E* ~ N(R,S*), where Q*,S* denote covariances
between columns of U* and E*, respectively. For many choices of basis such as wavelets,
correlations between basis coefficients are substantially reduced (Fan, 2003). This enables
a simplified independence assumption for the covariance matrices Q* and S*, i.e., Q" =
diag({qj}), S* = diag({sj}). This further divides the dual space model (3) into many

independent vector-response mixed effect models. We denote the jth model by
d; = Xb} + Zu] + e}, (4)

where d;, b}, u} and e} denote the jth columns of D, B*, U* and E* respectively. While the
above divide-and-conquer strategy is suitable if using any orthonormal basis, we mainly fo-
cus on compactly supported orthonormal basis such as Haar wavelets, Daubechies Wavelets,
and spherical wavelets. These bases have the ability to capture local features of functional
data, enable parsimonious representation which allows further compression, and have dis-
crete transformation operators that facilitate fast computation. They are generally appli-
cable to curves, images, surfaces, etc. As we will explain in Section 2.3, using compactly
supported orthonormal basis allows us to identify interesting local regions by perform-
ing multiple testing in basis space, avoiding the need of drawing posterior samples and
inverse-transforming posterior samples back to the data domain.

Consider the jth model in (4), we denote d; = (dy,...,dn;)", b = (b ..., 05 )7,
W= (uj ... u,;)", and €5 = (ef ..., ey,;)". In FMM, Morris and Carroll (2006) set a

NE > g



“spike-slab” prior to each component of the fixed effect b}, i.e.,
sz ~ %-*JN(O, 7;.5) + (1 — ’}/Zj)(S(), 7@’*4' ~ Bernoulli(7; ;), (5)

where d¢ is a point mass at 0. The spike-slab prior (Ishwaran and Rao, 2005) encourages
sparsity in basis space, which induces adaptive regularization of the corresponding regres-
sion coefficient in function space (Morris, 2015). They further assumed P, R to be identity
matrices and set inverse-Gamma priors to the random effect and residual variances {q;'f},
{s3}. This leads to posterior inference via Markov chain Monte Carlo (MCMC) sampling.

To enable efficient variational Bayes computation, we slightly modify the priors in (5)

and random effect /residual distributions of FMM by setting

bz] ~ VZJN(Ov q;Tl,]) + (]' - ’7/:,])507 7:] ~ Bernoulh(wj)7

q; ~ IG(aj,bj), u;f ~ N(an; )7 e; ~ N(()?q;CJI)

Here, we have factored out the random effect variance ¢; from the prior variance of fixed
effect 0} ; and the residual variance. This new parameterization allows for convenient update
of the approximate distribution of ¢; details can be found in the supplementary materials.
Based on the above model setup, the joint posterior distribution of {;;},{;,} and ¢} can

be written as

p({0i ;1 i 4 | 4y, Gy Tigs 5)

P
o p(d; | {05}, a5, ) o) [ o5 17550 70) P75 | 05)
=1

We treat 7;,7; 5, (j, and (a;,b;) as hyperparameters and make mean-field assumptions for
the approximate distributions of {b};},{7;;}, and ¢j. This enables an efficient variational
EM algorithm. In particular, we assume that the approximate distribution can be factored

as follows:

p

a({vi, 3 Db @) = ala) T ai; 17 )a (i) (6)

i=1
As the conditional posterior of {b7,},{7;;}, and ¢ all fall in the exponential family, we

follow Blei (2006) by assuming that each factor in the above approximate distribution also
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falls in the same exponential family. Therefore, in the E-step, the estimation of the approx-
imate distribution boils down to the estimation of the natural parameters in exponential
family. This facilitates fast calculation of the approximate distributions. Specifically, we

get q(ﬁj =1)=m,, q(bz‘,j | Vi = 1) is the density of N (g, o7

+1), and ¢(gj) is the density

of IG(a;, b;), where 7, ;, (i, o7;) and (dj, b;) are variational parameters whose formulae
are derived in supplementary materials.

In the M-step, conditional on the estimation of the approximate distributions, we update
values of the hyperparameters 7;, 7; ; and ¢; by directly maximizing the ELBO. Specifically,
we are able to analytically solve the values of m; and 7;; by setting the first derivative of
ELBO to zero. The value of (;, however, needs to be searched by using an optimization
algorithm. In general, the calculation of ELBO involves computing the determinant and
inverse of an N by N covariance matrice, which can be slow. However, as shown in our
derivation in supplementary materials, if the design matrix Z is blockwise, we can speed
up the calculation of ELBO substantially. The values of the hyperparameters (a;, b;) are
determined by matching the mean of the inverse-Gamma prior with the initial estimate of
q; while setting the prior variance to be fairly large (e.g., 103).

We list steps of the VFMM algorithm in Algorithm 1. To ensure fast convergence, we
adopt Henderson’s mixed model equations (Searle et al., 1992, pages 275-286) to initialize
parameters. More technical details about Algorithm 1 and the initialization algorithm are
available supplementary materials. While options for more parameter settings and detailed
tuning are available, the only required inputs are the observed data Y and the design
matrices X, Z. As mentioned earlier, the FMM (and VFMM) framework is based on a
simplified independence assumption in basis space, which divides the basis space model into
many independent vector-response mixed effect models. This strategy make it possible to
enjoy the computational benefit of parallelization while still accommodate autocorrelation
within the function. For this reason, in VFMM, calculation are performed independently
across the index j, and Algorithm 1 can either be performed by using vector-wise calculation
or be distributed to multi-core computational units. Vector-wise calculation is suitable for

small to median scale calculations, for example, the basis space model with dimension less
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than O(10*). For higher dimensions, one may split the basis space model (3) across the
index j (i.e., across the columns) into a few sub-models and perform vector-wise calculation

in parallel. This is indeed what we did in the real data application on 3-D brain images.
Algorithm 1: The VFMM algorithm. The formulae (S1)-(S8) for calculating

Tig» (Hig: 055), (@5,b;) and ELBO are in section 1 of supplementary materials.

1 Initialize all parameters;

2 while ELBOY — ELBO®Y > tolerance do

3 for all j do

4 Update ¢(v;; = 1) = Bernoulli(7; ;) based on log odds in (S1);

s || Update a(bi i, = 1) = NG 5%,) following (S2)-(83); a(bi, i, = 0) = b
6 Update ¢(q) = IG(@,, b;) following (S4)-(S5);

7 Update ELBOW following (S6)-(S8);

8 Update 7; = 30, % /p and 7; = 6;(5%, + 7i2,) /by;

9 Update ¢; by hill-climbing heuristic research;

10 Update ELBO® again following (S6)-(S8).

11 end
12 end

2.3 Region Detection via Basis Space Testing

In addition to estimating unknown parameters, another key inferential objective is
to identify local regions that reflect significant differences across groups of samples. In
Bayesian FMM, since posterior samples are available, detection of local regions can be
achieved by controlling family-wise error rate or Bayesian expected false discovery rate
across a grid of 7 in data domain as done by Morris et al. (2008) and Meyer et al. (2015).
In the VFMM framework, since we are targeting at avoiding posterior sampling in order to
improve computational efficiency, we propose a new basis-space testing strategy to detect
local regions.

Let C(t) denote a contrast effect of interest. For example, C(t) = Bi(t) — Ba(t) rep-

resents the contrast effect between groups 1 and 2 if By(t) and Bs(t) are the respective
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group means. We focus on detecting regions on which |C(t)| > § for a prespecified thresh-
old . To achieve this, we assume that C(¢) can be represented by the basis expansion
C(t) = 3272, ¢j¢;(t). Instead of performing multiple testing on a grid of T, we aim to
obtain a region identifier C(t) = > o1 Cilyle;>e1@4(t), where € is a small positive thresh-
old. We see that 5(25) — C(t), as € — 0 for all . The component ¢l >} represents
significantly nonzero component. When using a compactly supported basis, we expect a
subset of {¢;} to be zero (i.e., {Hy; : ¢; = 0} holds for some j) if C(t) contains zero regions.
Therefore, we will identify nonzero components in basis space by performing a sequence
of basis space testing {Ho; : |c;j| > e vs. Hyj : |¢;| <€ ;7 =1,..., K} while controlling
the Bayesian false discovery rate across all j. Here, we have assumed that there exists a
finite truncation at K such that all Hy; will not be rejected beyond K. This is a reason-
able assumption as for most smooth functions, higher K corresponds to high frequency
components which are usually predominantly noise. After all, numerical calculation has
to be performed in a finite dimensional manner even though the theoretical representation
is infinite. The parameter K can be determined by performing a truncation to the basis
expansion by controlling the percentage of total energy retained. We propose a testing

procedure which consists of the following steps:

1. For each component 7 = 1,..., K in basis space, estimate a probability discovery
function p(j) = pr{|c;| > €| Data} by p.(j) based on the approximate distributions
q(b; ;177;). Specifically, since (b} ;|v;; = 1) is normal, the approximate distribution

of ¢; can be fully derived, based on which p.(j) can be calculated.

2. Sort {pe(j)} in descending order to obtain the order statistics {pe,),l =1,..., K}.

3. Set ¢q = Pe,(s), where s = max{l* : (I*)~! Z§:1{1 — Dy} < o}

4. Suppose J C {1 : K} are the indices that are significant. We reconstruct é’(t) by
Ctt) = > ics ¢i94(t) and flag regions on which ICH(t)] > 6.

The above method of determining the Bayesian expected FDR threshold ¢, is sketched
in a diagram in Figure 1, where the solid decreasing line denotes the ordered p.(j). The

areas marked by A, B, C, D are the estimated proportions for true positives, false positives,
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Figure 1: A diagram for determining the Bayesian FDR threshold ¢,,.

false negatives and true negatives respectively. The threshold ¢, is indeed determined by
constraining B/(A+B) < a. The set of locations 1) = {l : P, 1) > ¢a } corresponds to the set
of discoveries. The threshold ¢, is a cut-point on the estimated posterior probabilities that
correspond to an expected Bayesian FDR of «. In addition to the Bayesian expected FDR
calculated by B/(A + B), one can further calculate the corresponding Bayesian expected
false negative rate (FNR) by C'/(C + D), sensitivity (SEN) by A/(A + C), and specificity
(SPEC) by D/(B + D). The Bayesian expected statistics yield estimates of the statistics
FDR, FNR, SEN, SPEC in basis space without knowing the true underlying function B(t)
and its basis space counterpart B*. In simulations when we know the true function B(%)
and B*, we can also compute the true FDR, FNR, SEN, and SPEC statistics; details
are provided in Section 3.2. We call statistics computed using the true B(t) the “realized”
quantities. We note that these statistics are calculated in basis space which does not require
posterior samples; similar statistics can also be calculated in the data domain if we draw
posterior samples from the approximate distribution, inverse-transform the samples back
to the data domain, and follow the Bayesian FDR control procedure used in Morris et al.

(2008).

13



3 Simulation Study

3.1 Simulation Setup

We designed a simulation study to assess the computational benefit of VFMM and
evaluated the potential loss of accuracy when using approximate inference in VFMM. To
mimic realistic inter- and intra-function correlations, we generated simulated data by re-
sembling two real datasets described in Section 4—the cancer organ-by-cell-line proteomics
data and the Tensor-based morphometry (TBM) brain imaging data. The first dataset
provides an example of functional data observed on a one-dimensional domain, which we
refer to as the 1-D case; and the second dataset represents functional data measured on a
three-dimensional domain, which we refer to as the 3-D case. More details of the reference
datasets are available in Section 4.

In the 1-D case, we simulated data by first fitting Baysian FMM to the reference dataset,
from where we obtained posterior means of several key parameters in basis space, including
the fixed effects {b}}, the random effect variances {¢}}, and the residual variances {s}}.
We then simulated data treating these estimated parameters as the underlying truth. The
simulation involves generating random effects and residuals from multivariate normal distri-
butions, and generating the responses {d;} in basis space following model (4). Functional
responses were finally obtained by applying inverse wavelet transform to {d;}. A total of
128 functional responses were simulated, four functions from each of the 32 “animals”, with
each function sampled on an equally spaced grid of 512.

In the 3-D case, we generated brain images on a 128 x 128 x 128 grid following the
reference data. We mimicked the cell mean design in the reference data by assuming that
there are four groups, 25 subjects in each group. Therefore, the design matrix X is a 100
by 4 binary matrix, in which a one in the (7, j)th position indicates that the ith sample
belongs to the jth group. Under this design, the fixed effect B(t) contains the four group
means. We set the value of B(¢) by adding different artificial shapes to different local
regions of a template image. The artificial shapes include a cube with staircase intensity,

a ball with highest intensity in center, a ball with linear intensity change, and a diamond
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shape. The template image was chosen to be the minimal deformation template of the
TBM data, created based on Magnetic Resonance (MR) scans of 40 randomly selected
normal subjects. To simulate the random effect, we assume that the 100 brain images
come form 25 independent batches, four in each batch, so the design matrix for the random
effect is I ® 1, where I is a 25 x 25 identity matrix and 1 is a 4 x 1 vector of ones. We
simulated the 25 random batch effect functions using Karhunen—Loéve expansion with the
first three components, where eigenvalues were fixed and eigen-functions were generated

from a zero-mean random Gaussian process with the squared exponential kernel.

3.2 Evaluation Criteria

We applied VEMM to the two simulated datasets and compared its performance with
that of the Bayesian FMM. Several summary statistics are defined to evaluate the perfor-
mance in estimation and in identifying significant local regions. Specifically, we defined
two summary statistics to assess the estimation performance of B*, including the aver-
aged mean square error (AMSE) and the averaged posterior variability (APVar). Let B}
denote the ath row of B*; a = 1,...,p. We define AMSE by AMSE = p~*3*_| |Bx —
B:|?/]IB|)?, where EABZ denotes the posterior mean of B. AMSE summarizes the variabil-
ity of posterior mean relative to the truth. Furthermore, we defined APVar by APVar =
(pG)~t>7P_, 25:1 IBY — B¥|[2/||B:|[2, where {BY¥, g = 1,..., G} denotes the posterior
samples of ﬁz APVar summarizes the posterior variability relative to the posterior mean.
To assess the estimation performance of random effects, we defined two statistics for the ran-
dom effect variances {¢}}: MSE=3_(q; —¢;)?/ >_,(¢;)? and PVar=1/G Zle{zj(q;f(g) —
@;)?/ >2;(q;)?} where g denotes the posterior mean of ¢j. Note that for general inference,
VFMM does not require any posterior sampling. In this simulation, in order to create a
fair comparison with FMM, we drew posterior samples from the approximate distribution
and used the samples to calculate the above statistics.

To evaluate the performance of region detection, we also calculated the true FDR, FNR,
SEN and SPEC statistics in data domain by assuming that B(¢) is known. These statistics,

also called “realized” statistics as noted in Section 2.3, measure the proportion of regions
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that are correctly or incorrectly identified under different considerations. For example, if
we use the criterion |CT(¢)| > d to flag locations on a grid of 7, FDR is calculated through
dividing the number of grid points that are falsely detected by the total number of grid
points detected; SEN is obtained by calculating the proportion of correctly detected grid
points among all grid points that truly satisfies |C(t)| > ¢; FNR is calculated by finding
that, among those non-detected grid points, which proportion truly satisfies |C(¢)| > d; and
SPEC is obtained by calculating that, among all grid points that truly satisfies |C'(¢)| < 9,

which proportion is correctly non-detected.

3.3 Results

We repeated each of the 1-D and 3-D simulations 50 times to mitigate the Monte
Carlo variability in the data generation process. In each simulation, we applied both
VFMM and Bayesian FMM, and compared their performance on estimation and region
detection. When fitting both VFMM and FMM, we adopted wavelet transformation by
using Daubechies wavelets with six resolution levels. In the 3-D simulation case, wavelet
compression was performed before applying both models; the truncation parameter was
chosen so that the remaining components retain at least 80% of the total energy (sum of
squared wavelet coefficients), which reduced the dimension from around 10.8 million to
49,152 after compression. When applying Bayesian FMM, we ran 5000 MCMC iterations
and treated the first 3000 iterations as the burnin period. In Table 1, we reported the
mean and standard deviation (in parentheses) of each summary statistic, calculated across
the 50 repetitions. Note that for the 3-D case, the MSE statistic for {¢}} is not available
since the true values of {¢;} are unknown, owing to the fact that the random effect U(t)
was simulated directly in data domain.

When performing region detection, in the 1-D case, we focused on detecting regions
with absolute values greater than § = log,(1.5) on the cell line effect, organ effect, organ-
cell-line interaction effect and the mean effect; in the 3-D case, we focused on detecting
regions with pairwise contrast effect greater than 6 = 5. In the 1-D case, to better compare

VFMM with FMM, we flagged regions directly in the data domain by directly controlling
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Table 1: Simulation results on estimation and region detection for 1-D and 3-D cases.

Estimation Time
B* {q7}

Data Model AMSE APVar MSE PVar (hrs)
1-D  FMM  .0109 (.0016) .0108 (7.1e-04) .0010 (8.1e-05) .0981 (.0202) 4700 (.0024)

VFMM .0107 (.0017) .0069 (3.6e-04) 0012 (6.8e-05) .0032 (6.1e-04) .0226 (.0014)
3-D  FMM  .1020 (.0056) .0014 (6.4e-03) — .0960 (.0340)  7.530 (.0058)

VFMM  .1440 (.0053) .0002 (4.8e-03) — 0056 (7.4e-03) .3500 (.0002)

Region Detection
FDR FNR SEN SPEC

1-D  FMM  .066 (.022) .076 (.016) .864 (.033) .964 (.014)

VFMM .086 (.025) .064 (.016) .889 (.032) 951 (.017)
3-D FMM  .028 (0.027) .065 (0.015) 918 (0.045) 993 (0.011)

VFMM .032 (0.029) .067 (0.016) 921 (0.041) 992 (0.013)

Bayesian expected FDR on a grid of T following the approach of Morris et al. (2008);

“realized” statistics were calculated by comparing flagged regions with the ground truth in

data domain. Note that this approach requires using posterior samples of the fixed effects

for both FMM and VFMM. In the 3-D case, since storing posterior samples and performing

inverse wavelet transforms of them are both computationally expensive, we performed basis-

space testing described in Section 2.3. This testing procedure does not require generating

posterior samples in the VEFMM case. In this testing procedure, we set thresholds ¢ = 0.07

and 0 = 5. We evaluated the performance of region detection in data domain by using

“realized” statistics. For both 1-D and 3-D simulation, we controlled the overall Bayesian

expected FDR across all contrast effects to be less than the significance level o = 0.05. In

addition to estimation and region detection, Table 1 also listed computation time in hours.

From Table 1, we see that for the estimation of B*, in the 1-D case, VEMM resulted in
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similar AMSE (.0107 vs. .0109) and lower APVar (.0069 vs. .0108) than FMM; and in the
3-D case, VFMM resulted in higher AMSE (0.1440 vs. 0.0990) and lower APVar (.0002 vs.
.0014) than FMM. The pattern on estimating {q}} is similar with that of B*. The lower
APVar statistic of VEMM reflects the effects of using mean-field assumption in the posterior
approximation—assuming independence across different components of the joint posterior
usually results in underestimates of posterior variance, a well-known problem of variational
inference (Giordano et al., 2015; Blei et al., 2017). For region detection, we see that for
the 1-D case, VFMM resulted in higher false discovery rate (0.086 vs. 0.066), lower false
negative rate (0.064 vs. 0.076), with slightly higher sensitivity (0.889 vs. 0.864) and lower
specificity (0.951 vs. 0.964). These results indicate that, with narrower credible bands,
VFMM tends to flag more locations, leading to higher false discoveries and sensitivity.
Statistics for the 3-D case show similar patterns as in the 1-D case.

Regarding computation time, Table 1 demonstrates a clear advantage of VEMM relative
to FMM. The 1-D simulations are performed on a mac laptop with 2.2 GHz Intel Core i7
CPU and 16 GB of RAM. All 3-D simulations are performed on a CPU cluster equipped
with 190 nodes, 32 cores per node, and each core consists of two Intel Broadwell E5-2683v4
@ 2.1GHz processors with 128 GB of RAM. For the FMM, the computation time required
for running 5000 MCMC iterations increases from 0.47 hours in the 1-D case to 7.53 hours
in the 3-D case. The VFMM, on the other hand, requires only 0.0226 hours (1.356 minutes)
for the 1-D cases and 0.35 hours for the 3-D case. In addition to shorter computation time,
the storage space required for VEMM is substantially reduced as it does not require drawing
posterior samples. Specifically, the storage space required for FMM to save 2000 posterior
samples increases from 257 megabytes in the 1-D case to 4.94 gigabytes in the 3-D case,
whereas VEMM only requires 1.38 megabyte in the 1-D case and 3.64 megabyte in the 3-D
case. These computation benefits make VFMM attractive for large-scale data.

In addition to summary statistics shown in Table 1, in Figures 2 and 3, we also plot
the estimation and region detection results for selected contrast effects. Figure 2 shows the
results of the cell line effect C(t) = (By(t) — Ba(t) + Bs(t) — B4(t))/2. Green and blue lines
mark the posterior means of VEMM and FMM respectively. The yellow line shows the true
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Figure 2: The 1-D simulation case: estimation and region detection results for the simulated

cell line effect.

value of C(t). The 95% percent credible bands were shown by shaded gray area for VEMM
and by red dash lines for FMM. Here, the 95% percent credible bands were calculated by
finding the (0.025,0.975) percentiles pointwisely on a grid of 7 based on posterior samples
of C(t). Detected regions are flagged by magenta and cyan dots at the bottom of the plot.
From Figure 2, we see that while VFMM and FMM resulted in very close mean estimates,
VFMM produced slightly narrower credible bands and more flagged locations than FMM,
a result that is consistent with the higher FDR and sensitivity observed in Table 1. This
indicates that VEMM is more aggressive than FMM on region detection, a potential issue
of mean-field variational inference. More plots for the 1-D simulated case are available in
the supplementary materials.

Figure 3 shows the flagged regions by VEMM and FMM for the contrast effect By (t) —
Bs(t) in the 3-D simulated case, along with the truth. For demonstration convenience, only
one a 2-D slice of the 3-D image is shown. White areas are regions that are not flagged.
Colors represent estimated values. For this contrast effect, we expect two significant lo-
cal regions to be flagged—one corresponds to a cube with staircase intensity, the other
corresponds to a ball with the highest intensity in the center. From Figure 3, we see that
VFMM and FMM perform similarly in identifying the two regions. Both VFMM and FMM
estimated the ball shape very well and identified the staircase pattern with less accuracy

on the boundary. More plots for the 3-D simulated case are available in the supplementary
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Figure 3: The 3-D simulation case: region detection results for the contrast effects By (t) —
By(t) along with the truth. Only one 2-D slice of the the 3-D image is plotted. White
areas are regions that are not flagged. Colors represent estimated values. Left, middle and

right figures correspond to results of VEMM, FMM and the truth respectively.

materials.

4 Real Data Applications

We demonstrate the applications of VEFMM by analyzing two real datasets, a 1-D cancer
proteomics dataset and a 3-D brain imaging dataset. Performance of VEMM is compared

with Bayesian FMM.

4.1 Analysis of the 1-D Cancer Proteomics Data

In this analysis, we study the proteomic spectra collected from a MALDI-TOF mass
spectrometer during a cancer cell line study. During this study, a tumor from one of
two cancer cell lines was implanted into either the brains or lungs of 16 nude mice. The
cell lines were A375P, a human melanoma cancer cell line with low metastatic potential,
and PC3MM2, a highly metastatic human prostate cancer cell line. The goal was to
find blood serum proteins that are differentially expressed between organ implant sites,
implanted cell line types, or the organ-by-cell line interaction. Data were collected by

drawing a blood serum sample from each animal and run it through a MALDI-TOF mass
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spectrometer. This produces a proteomic spectrum y(¢) that is a function supported on
a 1-D domain. The proteomic spectrum consists of many peaks; a peak at a location t
corresponds to a protein/peptide in the sample with molecular mass of ¢ Daltons. The
spectral intensity y(t) provides a rough estimate of the corresponding protein abundance.
During the experiment, we obtained two spectra for each mouse, one using a low laser
intensity and one using a high laser intensity. Here, we consider the part of the spectrum
between t = 2,000 and ¢ = 14,000 Daltons, a range that includes T' = 7,985 points per
spectrum. Preprocessing steps, include background correction, normalization of the mass
spectra, and a log, transformation of the intensities were performed before applying VFMM
and FMM. More details of preprocessing can be found in Morris et al. (2005).

We applied both VEFMM and FMM to the preprocessed dataset by adopting the same
basis transformations and design matrices. In particular, we applied a discrete wavelet
transform to each spectrum by using the Daubechies wavelets with eight vanishing mo-
ments, periodic boundary extension mode, and nine resolution levels. We set the fix effect
design matrix X by using the cell mean model for the factorial design with an additional
column for the laser intensity effect, so that X is a 32 x 5 matrix. Columns one to four in-
dicates four treatment groups: brain-A375P, brain-PC3MM2, lung-A375P, lung-PC3MM2,
respectively, while column five indicated whether the observations were from high (coded
as 1) or low (coded as -1) laser intensity. The random effect design matrix Z was a 32
x 16 binary matrix with Z; = 1 indicating that spectrum ¢ came from the bth animal.
Based on estimation of the fixed effects, we detected nonzero regions on three contrast
effects: the organ effect C)(t) = (Bi(t) + Ba(t) — Bs(t) — Ba(t))/2, the cell-line effect
Cy(t) = (Bi(t) — Ba(t) + Bs(t) — B4(t))/2, and the organ-by-cell line interaction effect
Cs(t) = (Bi(t) — Ba(t) — Bs(t) + Ba(t))/2. Results of region detection were compared
between VFMM and FMM.

To detect significant regions on contrast effects, for both models, we applied the Bayesian
expected FDR control with = 1 on the measurement grid in data domain following Morris
et al. (2008). Note that this requires posterior samples for the fixed effects; for VFMM

we have sampled from the estimated posterior distributions to get posterior samples. For
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both models, we detected regions by controlling the overall Bayesian expected FDR across
all contrast effects. The significant level for both approaches was set to be a = 0.05. In
Figure 4, we compared significant regions flagged by FMM and VFMM on the cell line
effect (top pane) together with a zoom-in plot on the [2950, 3070] kilodaltons region (bot-
tom pane). The flagged regions were marked on the mean cell line effect obtained by
VFMM. We use different colors to denote whether the locations were flagged by VEMM
only, FMM only, or both VFMM and FMM. From Figure 4, we observe that for the cell line
effect, a total of 9 regions were flagged by both models. For the common flagged regions,
VFMM usually flagged wider intervals than FMM. Besides regions that were flagged by
both approaches, there were three extra regions with more than 10 contiguous grid points
that were flagged by VEMM but not by FMM; these regions include intervals [2587,2602],
(3809, 3837], [3856,3876] kilodaltons. There is one contiguous region flagged by FMM,
(2214, 2300] kilodaltons, which VEMM flagged as [2203,2279] and [2286,2302]. Similar
patterns were observed for the organ effect and organ-by-cell-line interaction effect. For
the organ effect, 16 regions were flagged by both models and two extra regions were flagged
by VEMM but not by FMM. For the organ-by-cell-line interaction effect, seven regions were
flagged by both models and four regions were flagged by VEMM but not by FMM. Again,
we shall interpret the additional flagging cautiously due to the possible higher FDR asso-
ciated with VEMM. Figures on region detection for the organ effect and organ-by-cell-line
interaction effect are available in supplementary materials.

In addition to the plot in Figure 4, we also calculated the Bayesian expected SEN,
FNR and SPEC following the approach described in Section 2.3. For the 1-D cancer
proteomics data case, since posterior samples were obtained for both FMM and VFMM,
we have calculated these statistics in data domain. For the 3-D brain imaging data case,
the statistics were calculated in the compressed wavelet domain. Results are listed in Table
2. The statistics reported in Table 2 are based on controlling the Bayesian expected FDR
across all wavelet components and all three contrast effects in basis space. The significant
level for the BFDR control was chosen to be a = 0.05. From Table 2, we see that for the 1-

D cancer proteomic data, VEMM achieves higher sensitivity (0.720 vs. 0.612), comparable
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Figure 4: Cancer proteomics data analysis. Top pane: significant nonzero regions flagged
by VFMM and FMM on the cell line effect; bottom pane: a zoom-in plot on the [2950,
3070] kilodaltons region. Regions were flagged on the mean estimate obtained by VFMM.
Red, blue, and green colors denote locations flagged by VFMM only, FMM only, or both
VFMM and FMM, respectively.

specificity (0.980 vs. 0.981), and lower FNR (0.129 vs. 0.187) than FMM. Table 2 also
reported computation time. For the 1-D data, FMM takes around 6.2 hours to perform 4000
MCMC iterations, whereas it only takes 0.55 hours for VEMM to converge. The regions we
discovered by using both VEFMM and FMM, together with the Bayesian expected statistics,
provide statistical evidence about which proteins/peptides are differential expressed across
organs, cell-lines, and their interactions. These proteins/peptides may serve as potential

biomarkers for the assessment, diagnosis, and treatment of cancer.

4.2 Analysis of the 3-D Brain Imaging Data

In this analysis, we consider the 3-D brain imaging data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). ADNI is a multisite study that aims to develop clini-

cal, imaging, genetic, and biochemical biomarkers for the early detection and tracking of
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Alzheimer’s disease (AD). We will analyze the preprocessed 3-D Tensor-based morphom-
etry (TBM) data shared by the Laboratory of Neuro Imaging at University of California,
Los Angeles School of Medicine. This dataset can be downloaded from the ADNI website
http://adni.loni.usc.edu/. TBM is an image analysis technique that measures brain
structural differences relative to a common anatomical template Frackowiak et al. (2003).
To generate TBM images, a minimal deformation template (MDT) was first created based
on Magnetic Resonance (MR) scans of 40 randomly selected normal subjects. All other
brain MR images were aligned to the MDT using a nonlinear inverse-consistent elastic
intensity-based registration algorithm Stein et al. (2010). For each brain image, a Jacobian
matrix field was derived based on the gradients of the deformation field that warped the
brain image to the MDT. Volumetric tissue differences were then assessed at each voxel
by calculating the determinant of the Jacobian matrix. The determinant value encodes
local volume excess or deficit relative to the MDT. The pre-processing TBM data consist
of 816 subjects, among which 228 were healthy elderly controls (118 Male, 110 Female),
396 were diagnosed with mild cognitive impairment (MCI; 255 Male, 141 Female), and 192
were diagnosed as Alzheimer’s disease (AD; 101 Male, 91 Female). Each TBM image was
measured on a common 220x220x220 grid in 3-D.

By analyzing the TBM data, we aim to estimate the contrast effects between groups
(i.e., the differences between group means) and detect local brain regions with systematic
volumetric expansion or compression across patient groups with different diagnostic status
or genders. We adopt the cell mean design by setting X to be a 816 x 6 binary matrix,
with 1’s in every row indicating the diagnosis stage and the subject’s gender. In particu-
lar; columns 1-6 of X correspond to subgroups Normal-Male, Normal-Female, MCI-Male,
MCI-Female, AD-Male, AD-Female respectively. Under this design, the contrast effect
between AD and Normal can be calculated by pre-multiplying (—1/2,—-1/2,0,0,1/2,1/2)
to the fixed effects B (or B*) and the gender effects can be calculated by pre-multiplying
(1/3,—-1/3,1/3,—1/3,1/3,—1/3). Since there is only one image per subject, no random
effect was modeled. We applied VFMM and FMM by adopting the same basis transfor-

mations and design matrix. In particular, we applied a 3-D discrete wavelet transform
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Table 2: Real data application results: Bayesian expected sensitivity, false negative rate

and specificity for region detection, calculated in wavelet domain.

Region Detection Time

Data Model FNR SEN SPEC (hrs)
FMM 0.187 0.612 0.981 6.2

b VFMM 0.129 0.720 0.980 0.55
FMM 0.030 0.980 0.928 13.9

b VFMM 0.028 0.981 0.929 1.19

to each image by using the Daubechies wavelets with four vanishing moments, periodic
boundary extension mode and four resolution levels. To further reduce the dimension, in
wavelet domain we applied an efficient wavelet compression algorithm, which reduces the
dimension from 10,657,241 to 22,096 while retaining 96% of the total energy.

Based on group means obtained from VFMM and FMM in wavelet domain, we cal-
culated pair-wise contrast effects between the AD (N=192), MCI (N=396), and normal
(N=228) groups as well as the contrast effect between male and female groups. To identify
local regions on these contrast effects, we performed basis-space testing in the compressed
wavelet domain by following the procedure proposed in Section 2.3. For both VFMM and
FMM models, we set ¢ = 0.5 and controlled the overall Bayesian expected FDR across
all compressed wavelet components and all four contrast effects at the significant level
a = 0.05. Significant local regions were flagged in data domain by using threshold § = 20.
In Figure 5, we demonstrate regions flagged by VFMM for each of the four contrast effects
by using sliced 2D plots. The flagged regions (colored by red or blue) were plotted on
top of the MDT background image (the gray scale image). For each contrast effect, we
showed the flagged regions via three views: the axial, sagittal and coronal views, sliced in
the middle of the 3D brain along three directions. Similar 2D plots for FMM are available
in supplementary materials. In addition to the 2D plots, we also produced interactive plots

in three views for each contrast effect, which allows users to visualize the flagged regions
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for all slices by using scroll bars.

Flagged regions on contrast effects reveal local volumetric tissue change for one group
relative to another group. From Figure 5 and the interactive plots, we observe that, on
the AD-Normal contrast effect, there is a profound positive contrast effect in the lateral
ventricle region, which indicates cerebrospinal fluid (CSF) inflation in AD patients. In
addition, positive contrast effects are also seen in the circular sulcus of the insula bilaterally,
suggesting brain volume expansions in these regions. Furthermore, we observe negative
contrast effects in the temporal and parietal regions and the hippocampus, which suggests
brain atrophy in these regions in AD patients. The contrast effects for AD-MCI and MCI-
Normal show similar patterns but with lower values and smaller regions. This indicates
graduate volumetric tissue changes from Normal to MCI and from MCI to AD.

On the Male-Female contrast effect, we observe positive contrast effects in the lateral
ventricle region, which indicates more CSF inflation for males relative to females. Addi-
tionally, we also observe positive contrast effects on the top portion of the frontal region.
This suggests higher brain volume (i.e., less tissue loss) for males in this region. Finally,
we observe negative contrast effects in the pariental and temporal regions, indicating lower
brain volume (i.e., more brain atrophy) for males in these regions. Results of FMM are
similar to VFMM; the 2D and interactive plots are shown in supplementary materials. In
addition to plots, in the bottom section of Table 2, we also listed Bayesian expected SEN,
FNR and SPEC, calculated just as in the 1-D case described in section 4.1. These results
demonstrate that VEFMM achieves Bayesian expected statistics very close to FMM. Re-
garding computation, we have split the wavelet components to three blocks and performed
posterior calculation in parallel for both VEMM and FMM. It took 13.9 hours for FMM
to finish 10,000 MCMC iterations with a burnin period of 5000 iterations, whereas it only
took 71 minutes for VEMM to converge. Additionally, FMM took 5.1 gigabytes to store
5000 posterior samples and the posterior results for VFMM only took 6.9 megabytes of

storage space.
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Figure 5: TBM brain imaging data analysis: plots of regions detected for four contrast
effects: (A) AD-Normal; (B) AD-MCI; (C) MCI-Normal; (D) Male-Female. Each row
illustrates three 2D images according to three views—the axial (sliced at z = 110), sagittal

(sliced at x = 110), and coronal (sliced at y = 110) views, from left to right.
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5 Discussion

To improve computational efficiency of Bayesian FMM, we have proposed VFMM, a
new computational approach that enables ultra-fast approximate inference. This novel
framework approximates the posterior distribution in wavelet domain by using variational
Bayes, avoiding expensive MCMC sampling and the need to store posterior samples. Our
approach leads to an automated, efficient algorithm suitable for a large family of high-
dimensional functional data. In order to detect interesting local regions, we proposed a
fast basis-space testing approach that does not require posterior samples. Our applications
to the 1-D cancer proteomics data and 3-D brain imaging data demonstrate comparable
Bayesian expected sensitivity and specificity relative to Bayesian FMM.

A key contribution of VFMM is its computational advantage. As shown by our sim-
ulation and real data analysis, VFMM can accomplish Bayesian estimation in minutes
whereas MCMC-based Bayesian FMM may require days to finish a few thousand MCMC
iterations. Additionally, VFMM only takes very little storage space to store the estimated
model parameters, whereas MCMC-based FMM may need gigabytes of storage to save
posterior samples. Finally, the algorithm of VFMM can be easily implemented in parallel
on manycore CPUs or multicore GPUs, making it suitable for extremely high-dimensional
computational tasks.

We have focused on wavelet basis in the proposed VFMM due to its nice whitening
properties and several appealing characteristics, such as the multi-resolution representa-
tion, the choice of compact supported wavelets, and the ability to perform efficient com-
pression. However, as emphasized by several works (Morris et al., 2011; Meyer et al., 2015;
Zhang et al., 2016), the Bayesian FMM framework is not limited to wavelet bases; it can
be used with other lossless or near lossless basis functions that have whitening (decorrela-
tion) property. While other basis functions can be generally applied to VFMM just as in
FMM, compactly supported bases are desirable in order to detect local regions by using
our proposed basis-space testing approach. Examples include a family of wavelets (e.g.,
Daubechies, spherical wavelets) and orthogonal splines (Mason et al., 1993).

We have assumed Gaussian process distributions for the random effect and residual
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functions. As we have highlighted in Section 1, the current framework can be directly
applied to FMM under different basis choices as well as several extensions of FMM without
any major modifications. For other extensions, such as the robust FMM with heavier tailed
distributions (Zhu et al., 2011) and FMM with spatial-temporal correlations in residuals
(Zhang et al., 2016; Zhu et al., 2018), modifications are needed in order to estimate pa-
rameters induced by assuming heavier-tailed distribution or between-function correlation.
Extension to the former case should be straightforward as the conditional posteriors are
still in the exponential family. Extension to the latter case may involve applying search
algorithms to numerically optimize the ELBO, which can be computationally more chal-
lenging.

Both FMM and VFMM assume spike-slab priors for fixed effects in basis space. We
could easily use other sparsity-inducing priors such as Bayesian Lasso (Park and Casella,
2008), scale mixtures of normals (Griffin and Brown, 2005), horse shoe (Carvalho et al.,
2010), and non-local priors (Johnson and Rossell, 2010). In our experience, these choices
produce similar results in terms of regularization. Nevertheless, both models could be
extended by including other alternative priors which is left to future work. Notable works
on variational Bayes approaches to variable selection include Ormerod et al. (2017), Serra
et al. (2019), and Ray and Szabé (2021), etc.

The VFMM is based on variational Bayes. A well known issue of variational Bayes is the
approximation error caused by the mean-field assumption. Our simulations demonstrate
that VEFMM tends to provide narrower credible intervals in fixed and random effects, which
often leads to higher sensitivity and sometimes higher false discovery rate or lower specificity
in region detection. However, following our observation in simulations, we conjecture that
the effect of reduced specificity should not be a big concern if the number of true positive
components in basis space is small relative to the total number of components, which is
usually true if one adopts sparse basis such as wavelets. After all, given its computational
benefits, the proposed VEMM provides an ideal option for producing fast initial results. If
desired, full Bayesian analysis can still be performed by using outputs of VEMM as initial

values.
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Finally, we have adopted mean-field variational inference. Alternatively, stochastic
variational inference (Hoffman et al., 2013) has been proposed which offers better scalability
for data with large sample size. However, in VEMM, we are often dealing high-dimensional
functional data with relatively small/moderate sample size; for example, our brain imaging
data contain images with O(10°) measurement points with sample size 816. This is the
typical situation in most medical and genomics applications since collecting large samples is
usually expensive. Thus, in these cases, the subsampling strategy of stochastic variational
inference is not needed. Nevertheless, it remains a promising solution if the sample size

becomes large.

Supplementary Materials

The supplementary materials contain details of the VEMM algorithm, Henderson’s mixed
model equations, ELBO under a block design, and additional simulation and real data

results. Demonstration code written in Matlab is available.
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