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Abstract

Many species of bats rely on echoes to forage and navigate in densely vegetated 1

environments. Foliage echoes in some cases can help bats gather information about the 2

environment, whereas in others may generate clutter that can mask prey echoes during 3

foraging. It is therefore important to study foliage echoes and their role in bat’s sensory 4

ecology. In our prior work, a foliage echo simulator has been developed; simulated 5

echoes has been compared with field recordings using a biomimetic sonar head. In this 6

work, we improve the existing simulator by allowing more flexible experimental setups 7

and enabling a closer match with the experiments. Specifically, we add additional 8

features into the simulator including separate directivity patterns for emitter and 9

receiver, the ability to place emitter and receiver at distinct locations, and multiple 10

options to orient the foliage to mimic natural conditions like strong wind. To study how 11

accurately the simulator can replicate the real echo-generating process, we compare 12

simulated echoes with experimental echoes measured by ensonifying a single leaf across 13

four different species of trees. We further extend the prior work on estimating foliage 14

parameters to estimating a map of the environment. 15

Introduction 16

Many bat species rely on echolocation—they emit short ultrasonic pulses and listen for 17

the returning echoes to support navigation and prey hunting [1]. The dominant 18

frequency in bat biosonar pulses can reach up to 212 kHz [2] with thresholds for object 19

detection as low as 0.05 mm [3]—smaller than the thickness of human hair. The 20

extremely capable sonar sensing system coupled with low energy requirements makes 21

bats an excellent biological model for the study of smart sonar systems. 22

As many bat species inhabit vegetated environments such as forests, foliage echoes 23

play an important role in bats’ sensing experience. Natural foliage is indeed challenging 24
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for sonar sensing—it consists of a multitude of sound-reflecting surfaces which can 25

produce interference that masks a target echo [4, 5]. Previous studies suggest that 26

foliage echoes are highly stochastic [6] and that bats rely on statistical features of the 27

echoes for object/target recognition/detection [7–11]. These studies, however, were 28

based on experiments with animals or biomimetic sonar, which limits the amount of the 29

available data. As a result, the analysis have been focused on simple tasks such as plant 30

classification [8, 12], texture recognition [7], landmark identification [11,13,14], and 31

passageway finding [9, 10]. An alternative approach is to use simulations to recreate a 32

much wider range of sensing scenarios. A simulation approach can produce foliage 33

echoes based on full knowledge of the (simulated) foliage geometry, which makes it 34

possible to study more complicated sensing scenarios that are beyond the scope of 35

physical experiments. For example, imagine training an Unmanned Aerial Vehicle to fly 36

through a forest based on biomimetic sonar. This would require acquiring large 37

numbers of foliage echoes along with the respective location data. Simulation offers a 38

convenient method for such study that is not only cost-effective (compared with 39

experiments) but also easily repeatable. 40

Several computer simulation models have been developed to replicate the physical 41

processes that underlie the foliage echo creation. For example, authors in [8] presented a 42

computational foliage model that treats leaves as point reflectors. This work considered 43

the spatial distribution of reflectors but did not take into account factors such as leaf 44

shape, size, orientation, and occlusion. A more recent work by [15] proposed a 45

computational model for foliage echoes that accounts for the density, size, and 46

orientation of leaves that were left out by [8]. In both [8] and [15], foliage echoes are 47

simulated as superposition of echoes returned from reflectors. A follow-up work by [16] 48

investigated several simplifications made in [15]. Specifically, this work studied the 49

effect of approximating leaf shape with a disk and assessed whether the uniform leaf 50

distribution assumed in [15] needs to be relaxed to include inhomogeneous foliage 51

patterns simulated from Lindenmayer-system model [17]. More extensive studies on the 52

simulation of random trees have been done by [18]. A more recent work of [19] 53

introduced a unified simulation framework that combines the simulation of natural 54

forests with the foliage echo simulator of [15,16]. This integrated simulation framework 55

can be used for the training of robotic algorithms in biosonar-based Unmanned Aerial 56

Vehicles. Based on simulated foliage echoes, various statistical estimation methods have 57

been proposed to estimate relevant foliage parameters [16,20,21]. 58

One key concern behind simulation-based approach is the fidelity in representing the 59

real system. While it is reasonable to expect that any simulated echoes will exhibit 60

certain deviations from the real foliage echoes due to necessary model simplifications, a 61

valid model should retain key properties of the echo-generating process and produce 62

data that are close enough to reality. A preliminary analysis of the effect of some of the 63

model simplifications, such as treating leaves as hard discs and neglecting the shading 64

between leaves, were carried out in [16]. However, there is still a lack of side-by-side 65

comparison between simulated and experimental echoes under similar experimental 66

setups. The goal of this paper is to fill this gap by presenting a validation study that 67

compares outputs of the simulator with experimental data under similar experimental 68

conditions. 69

We consider the simulator used by [15,16] and [19] as it is by far the most general 70

foliage echo simulator established. To avoid introducing multiple uncontrollable factors, 71

we collected experimental data under a simple setup—only single leaves from multiple 72

species were ensonified and echoes were collected using a biomimetic sonar head. We 73

made several modifications to the simulator to achieve a closer match with the biosonar 74

experimental set-up as well as to enable the modeling of a wider range of sensing 75

scenarios. We compare the simulation and experimental echoes both in time- and 76
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frequency-domain and use statistical summaries to characterize the differences. In 77

addition to the comparison of echoes, we also demonstrate the application of our 78

modified simulator on constructing a partial map of the surroundings based on foliage 79

echoes. 80

The contributions of this work are as follows: 1) It demonstrates a close match 81

between experimental and simulated echoes obtained from individual leaves, thereby 82

supports the usage of the simulator to study more challenging scenarios hard to study 83

experimentally. 2) It proposes an estimation approach to construct a partial map—the 84

map of a specific region of the environment—through actively scanning the region. This 85

is computationally more efficient than always mapping the whole environment, thus is 86

more suitable for real-time navigation systems such as biosonar-based Unmanned Aerial 87

Vehicles. 3) It proposes a modified simulator that not only achieves a close match with 88

experimental echoes but also enables study of biosonar across a wider set of sensing 89

scenarios such as object detection, obstacle avoidance, path planning, and target 90

tracking. 91

Materials and methods 92

Foliage echo simulator 93

In this section, we briefly review the foliage echo simulation model previously 94

established by [15,16], and describe the modifications made to achieve a better match 95

with the experimental data and to enable simulation of a wider set of experimental 96

scenarios. The echo simulation model developed by [15,16] has two components: (i) 97

simulation of individual leaves and (ii) simulation of entire foliages. The leaves are 98

modeled as round disks characterized by their radii and locations in a three-dimensional 99

space. To generate foliage, leaf parameters such as radii, locations, and orientations can 100

be generated from truncated uniform or normal distributions [15]. If more realistic 101

foliage shape is desired, the spatial arrangement of the leaves (location and orientation) 102

can also be modelled using L-systems [16,19]. The leaf locations and orientations are 103

later used to calculate the incidence angle for each leaf reflector—the angle between leaf 104

normal and the axis connecting the emitter and the leaf center. 105

To reduce the computation time needed to produce the synthetic foliage echoes, the 106

leaves that fall outside the sonar beam footprint (which is a function of the sonar 107

beampattern and distance between the emitter and the foliage) are removed from the 108

echo calculations beforehand. In addition, leaves that generate weak echoes (below 109

-80dB) are also left out from computation. For this work, the sonar was assumed to be 110

monostatic with identical directivity patterns for both emitter and receiver. The 111

directivity patterns were approximated as the product of two Gaussians, one to model 112

gain as a function of azimuth and the other for gain as a function of elevation angle. 113

The foliage echoes were simulated in the range of 60 to 80 kHz based on the emission 114

recorded for greater horseshoe bats [22]. This choice, as well as other design of the 115

simulator such as the sonar beampattern, are made to mimick bats’ biosonar from the 116

biomimetic point of view. The basic principle of simulation is as follows: first, we 117

calculate the frequency domain response for each leaf reflector at each frequency 118

component in the range, and set the responses at other frequencies to be zero. This 119

requires calculating the amplitude and phase delay at each leaf and at each frequency 120

component. This calculation takes several parameters as inputs, including the sonar 121

beampattern, the approximated leaf beampattern, and the distance between the sonar 122

and the leaf center; second, the overall frequency domain components of the impulse 123

response are calculated by summing over frequency components across all leaves; finally, 124

we apply inverse Fourier transform to the frequency domain responses to obtain the 125
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time domain impulse response of the entire foliage. More details of the simulator can be 126

found in [15] and the appendix of [20]. 127

We improved upon the existing simulator [15,16] in multiple ways. Prominent 128

changes include: (1) The speaker and the microphone can now be placed at arbitrary 129

locations, allowing for more accurate recreation of an experimental setup. (2) Multiple 130

ways of orienting simulated leaves are introduced; for example, all leaves can now be 131

oriented in the same direction on average to mimic conditions like strong wind blowing; 132

alternatively, each leaf can have an orientation that is independent of others. (3) 133

Separate spatial directivity patterns (beampatterns) are used for microphone and 134

speaker in simulation to allow a better match with the experimental set-up. The 135

directivity patterns for the microphone and speaker can be measured experimentally, or 136

in the case of speaker, can also be analytically modeled as a circular baffled piston. If 137

desired, the measured or modeled directivity patterns can be further simplified with a 138

Gaussian approximation. (4) the output and input of the speaker and microphone are 139

modulated by their respective frequency responses instead of the flat frequency response 140

used previously. (5) The simulation now allows for generating directive patterns for a 141

given beamwidth in degrees (beamwidth measured at -3dB from the peak of 0 dB) or an 142

input frequency. (6) The location of the peak directivity can now be set at any arbitrary 143

location within the frontal hemisphere, which allows for the study of problems that 144

require sonar sweeps for detection/recognition or perusal of object. In summary, all 145

above changes allow for a closer match between simulated and experimental setup, and 146

allow for the study of a wider range of problems that were previously intractable. 147

Notice that these improvements are rather generic and targeted at a large scope of 148

situations. Some of them, such as (1) and (2), will not be used in the simpler setup of 149

the current validation study. 150

Experimental Validation 151

To study validity of the improved foliage echo simulator, we designed an experiment to 152

collect real foliage echoes from single leaf samples of four species of trees. The 153

experiment was performed using a biomimetic sonar head in an anechoic chamber, as 154

shown in Fig 1(A). The sonar head was equipped with an emitter and two receivers, 155

whose locations were marked in Fig 1(A). The emitter was an electrostatic ultrasonic 156

loudspeaker (Series 600 open-face ultrasonic transducer, diameter 38 mm, SensComp, 157

Livonia, MI, USA) with a two-sided -3 dB beamwidth of 10◦ at 50 kHz. The receivers 158

were two MEMS capacitive microphones (Monomic, Dodotronic, Rome, Italy) with 159

cones attached. Each cone has an outer diameter of 50 mm and a length of 10 cm. The 160

spacing between the two MEMS is 7 cm. The sonar head used a PXIe-6356 data 161

acquisition system (National Instruments, Austin, Texas, USA) with a 500 kHz 162

sampling rate and 16-bits resolution to perform digital-to-analog and analog-to-digital 163

conversion to create the pulse waveform and record the echoes respectively. The emitted 164

pulse consisted of a Hamming window as the envelope and a 2 ms frequency modulation 165

from 20 to 105 kHz. A tripod was used to mount the sonar head at a fixed height.

Fig 1. Experimental setup. (A) The sonar head. (B) A diagram of the experiment
setup, where (a) denotes a side view of the sonar head, (b) denotes a leaf suspended on
thin filament, and (c) denotes the wall of the anechoic chamber. The dashed lines show
directions of vertical rotations at 0◦ (red), 45◦ (green), and 90◦ (blue). The purple
arrows show the direction of horizontal rotations.

166

A diagram of the experiment is shown in Fig 1(B). During the experiment, a single 167

leaf was suspended between two thin filaments (fishing lines) and was positioned one 168

meter away from the sonar head. The fishing lines were connected to a stepper motor 169
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which can rotate the leaf horizontally (along the azimuth direction from 0 to 360 degrees 170

about the z axis; direction is shown using purple arrows on Fig 1(B)). When suspending 171

the leaf on the fishing lines, we set three angles (rotated about the leaf normal axis): 172

horizontal, 45 degree tilted or vertical. This gives three vertical angles of the leaf—0, 45 173

and 90 degrees; directions are shown as red, green and blue dashed lines on Fig 1(B). 174

Under each leaf orientation setup, we record the leaf angles, total length of the leaf, tree 175

species along with the echo signals received from the two microphones of the sonar head. 176

In addition to the above experiment, we have also carried out experiments to 177

measure beampatterns of the microphone-plus-cone structure of the sonar head. These 178

measurements were then used to construct emitter and receiver beampattern in our 179

refined simulator. When measuring beampattern for the microphone-plus-cone 180

structure, the whole microphone-plus-cone was mounted on a pan-tilt unit (model 181

PTU-E46-17, FLIR Systems, Inc., Burlington, ON, Canada) and rotated over ±25◦ 182

both in azimuth and elevation with 1◦resolution. A loudspeaker was mounted at the 183

same height as the microphone-plus-cone and set one meter away from its center to the 184

microphone. The transmitted signal was a two millisecond constant frequency waveform 185

from 20 kHz to 100 kHz with a step of 5 kHz. A total of 20 repeated measurements at 186

each position for each frequency were made. 187

To measure the beampattern of the loudspeaker, we mounted the loudspeaker to the 188

pan-tilt and scanned from −45 degrees to +45 degrees with one degree per step 189

horizontally. A 1/8-inch pressure-field microphone (Brüel & Kjaer, Virum, 190

Hovedstaden) was mounted one meter away from the loudspeaker at the same height. 191

The frequency was set between 20 kHz and 105 kHz with 5 kHz per step. At each 192

position and each frequency, the test was repeated by 10 times. A comparison between 193

beamwidths of the loudspeaker at -3 dB and -5 dB with that from the mathematical 194

piston model gives a good match, so we decided to use the piston model to characterize 195

the beamwidth of the loudspeaker. 196

The speaker and microphone directivity patterns, both analytical and measured, 197

were approximated in simulation using product of two Gaussian functions, one function 198

each for azimuth and elevation. The standard deviation of both Gaussian functions were 199

set to half of the -3dB beamwidth either intended (as a user input) or estimated based 200

on the beampattern data collected in experiment. 201

Data preprocessing, simulation, and comparison 202

Raw echoes were recorded for single leaf samples from four different tree species: oak, 203

dogwood, yew, and tulip tree. Each recording contained two echo signals, one from each 204

microphone. The raw recordings were 25 milliseconds long with a sampling rate of 400 205

kHz. The size of the leaves varies from 2.8 to 9.0 inches, the azimuth angle of the leaves 206

varies from 1.8 to 358.2 degrees, and the elevation angles can be either 0, 45, or 90 207

degrees. 208

Based on the raw echo recordings, several pre-processing steps were carried out to 209

obtain impulse responses that are comparable with the simulation outputs. First, we 210

bandpass-filtered the emitted chirp with a frequency band ranging from 25 to 95 kHz, a 211

range that matches with the simulation. We then calculated the cross correlation 212

between each echo recording and the filtered chirp, which resulted in an estimate of the 213

impulse response signal. Next, we applied a cut-off and only retained the signals 214

between 5 and 10 milliseconds, a range that covers the impulse responses in all cases. 215

After these steps, we extracted two features to quantify the noise level and used them to 216

filter out noisy measurements. The first feature consists of peaks extracted from the 217

envelope of each impulse response. To obtain this feature, we first obtained the envelope 218

of the impulse response and then detected peaks of the envelopes that are above a 219

pre-specified threshold 0.3. The second feature is the integration of the envelope signal 220
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across the time domain. We filtered out noisy recordings based on three conditions: (i) 221

the total number of envelope peaks is greater than three, (ii) the largest time difference 222

between two neighboring peaks are greater than 0.2 miliseonds, and (iii) the area under 223

the normalized envelope signal is greater than 0.2. These pre-processing steps resulted 224

in a total of 8, 695 impulse response measurements, among which 5, 269 are from oak, 225

2, 416 from dogwood, 180 from yew, and 830 from tulip tree. 226

We further applied our refined foliage echo simulator to generate single leaf impulse 227

responses in order to compare with experimental data. The simulation parameters were 228

chosen to match the leaf parameters and the experimental setup. Specifically, the 229

distances between sonar and leaf center as well as leaf center and microphone were both 230

set at one meter. The leaf radii and sound incident angles used to generate simulated 231

echoes were also set the same as the experiment. When simulating the frequency 232

domain signal, we set a frequency range from 25 to 95 kHz. In contrast to the previous 233

simulator [15,16] which assumes a flat frequency response for microphone and speaker, 234

in our simulation, we adopt the real frequency response curves of the microphone and 235

speaker used in the experiments to calculate the emission and reception gains at each 236

frequency. While the above settings were made to best match the experiment, unlike 237

the experiment, we still assumed that there is only one receiver in the simulator and the 238

emitter and receiver were in the same position. Thus, only one impulse response is 239

simulated for each leaf setup. 240

Before comparing the experimental measurements with simulated signals, several 241

further adjustments were performed. First, the amplitudes of impulse responses for the 242

two microphones are on different scales, which is likely caused by differences in 243

microphone gains. On the other hand, amplitudes of the simulated impulse response are 244

also influenced by the emission/reception setups (e.g., gains, input frequency, etc.) for 245

the emitter and receiver. We thus rescaled each impulse response signal, either 246

simulated or measured through experiment, by dividing its magnitudes by the highest 247

peak of the signal’s envelope. Furthermore, the times of arrival for impulse responses in 248

experiment vary between 5 and 7 milliseconds, which do not align with that of the 249

simulated signal. This misalignment is due to the fact that in experiments, microphones 250

were placed on the two sides of the speaker. Therefore, the distances between 251

microphones and the leaf is greater than one meter, whereas in simulation we have 252

assumed that the speaker and receivers are both one meter away from the leaf. We thus 253

aligned the experimental signals with the simulated ones by matching locations of the 254

highest peak of their envelopes. Specifically, we shift the experimental signal along the 255

time axis so that the location of the highest peak matches that of the simulated signal. 256

We found that rescaling and shifting by using the highest peak of the envelopes gives 257

better alignment than simply using the maximum amplitude of the signal. In Fig 2, we 258

show a simulated signal and an experimental signal, together with their envelopes and 259

the highest peaks, before and after the alignment. The signals shown in Fig 2 were 260

obtained by using leaf size of 5.0 inches, azimuth angle of 318.6 degree and elevation 261

angle of 90 degree. After aligning the signals, we further cut the signals shorter by

Fig 2. Align simulated and measured impulse responses by matching the
highest peak of the envelopes. (A) Before alignment. (B) After alignment.

262

retaining 200 sampling points before and 199 sampling points after the peak location, 263

resulting in a signal length of 400 (with a time span of 1 milisecond) for all impulse 264

responses. When visualizing the waveforms and calculating descriptive statistics, we 265

used the time argument of the simulated impulse response as the common time 266

argument for both simulated and experimental data. 267
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Estimation of the surroundings 268

Comparing simulated echoes with experimental data helps us evaluate the effectiveness 269

of the foliage echo simulator in representing the biosonar ensonification procedure in 270

reality. To further demonstrate the potential application of the foliage echo simulator, 271

we adopted an analytical approach to estimate the surroundings based on the simulated 272

foliage echoes. Such an approach provides evidence that the simulated echoes indeed 273

carry information about the environment, thus can be used for more sophisticated 274

biosonar sensing tasks. It is noteworthy that, though methods for estimating leaf 275

parameters based on simulated echoes have been proposed in recent publications [15,20], 276

estimation of the surroundings was not considered. In this study, we focus on estimating 277

a rough map of the surroundings and predicting some important features of the foliage. 278

We consider a forest environment consisting of tree foliage, and aim to reconstruct a 279

map of the foliage environment. For this purpose, we calculate distances from sonar to 280

both the nearest and the farthest leaves within the sonar beam by using the arrival 281

times of the echo responses. These distances are then used to determine the boundaries 282

of the foliage. Let t0 and t1 denote the onset and end times of the reflections, which can 283

be obtained by identifying the earliest and latest peaks from the echo responses. The 284

distances from sonar to the onset and end reflectors are calculated by d0 = c t0/2 and 285

d1 = c t1/2, respectively, where c is the speed of sound. Note that a “snapshot” of these 286

distances at a specific sonar direction is not sufficient to determine the boundaries of 287

the foliage within the sonar beam. However, by changing the sonar directions 288

continuously along azimuth-elevation, we can collect information about the dynamic 289

change of these distances when the foliage enters and exits the sonar beam. Such 290

dynamic information forms the basis of our foliage boundary identification algorithm. 291

Moreover, in order to resolve difficult non-identifiable situations occasionally (e.g., small 292

gaps between two clusters of tree foliage), it is necessary to vary the beamwidth of the 293

sonar. In Fig 3(A), we demonstrate a 2D example of how the boundary of a ball-shaped 294

leaf cluster can be detected by scanning along the azimuth direction counterclockwise. 295

In this example, both sonar and microphone are located at (0, 0, 0), shown as a black 296

circle. Tree leaves, shown in black dots, are distributed uniformly in a sphere with 297

radius 1.5 and center (4, 4, 0), with 100 leaves per cubic meter. The scan is performed at 298

a angular spacing of 1◦. The blue and yellow areas in Fig 3(A) highlight the sonar 299

beams at two different azimuth angles. The red dots mark the onset and end of the leaf 300

reflectors detected based on the minimum and maximum arriving times of echo 301

responses. The edge of the foliage can be detected by connecting the boundary points 302

along the scanning steps. We note that simulation of foliage echoes from the ball-shaped 303

leaf cluster follows the same principle described previously—we need to specify relative 304

locations of each leaf and the sonar, incident angles, and the leaf sizes as inputs. The 305

simulation involves calculating the frequency domain response for each leaf within the 306

sonar beam and summing over across all leaves. 307

Besides the arrival times, biosonar echoes also carry other information of the 308

reflectors which may be used to estimate important features of the foliage. Previous 309

works [15, 20] have shown that the estimates are often non-unique, i.e., some parameters 310

such as reflector size and orientation appear to be non-identifiable—larger and smaller 311

leaves may result in the same impulse response under different orientations. Therefore, 312

instead of trying to estimate all reflector features using the 1-dimensional impulse 313

responses, we believe it is more reasonable to focus on estimating features that are 314

identifiable and relevant to the task at hand. In this study, we focus on predicting the 315

number of leaves within the sonar beam from the impulse responses. The prediction 316

result can be used to determine the leaf density of the foliage cluster, a key parameter 317

for tasks like path planning—changes in leaf density at different scanning angles may 318

help localize gaps or holes to fly through. Besides the number of leaves, there are a few 319
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confounding parameters, such as the mean leaf size and the mean leaf orientation. 320

These confounding parameters are relevant to factors such as tree species, and may be 321

determined by implementing classification algorithms such as [23]. In this study, we 322

treat the confounding parameters as fixed during the training and prediction procedure. 323

We selected three types of features as predictors, including the sum of envelope’s 324

amplitudes (which we call “total amplitudes”), the number of peaks of the impulse 325

response, and the quantiles of heights of the peaks. Fig 3(B) demonstrates the 326

relationship between the number of leaves and two of the predictor variables, the sum 327

amplitudes and the number of peaks, based on data obtained in the scanning procedure 328

shown in Fig 3(A). From Fig 3(B), we observe a positive monotonic and non-linear 329

relationship between the number of leaves and the two predictor variables. 330

Fig 3. Estimation of the surroundings. (A) A demonstration of detecting
boundary points of a ball-shaped leaf cluster at two azimuth angles. (B) Relationship
between the number of leaves and two of the predictor variables: the total amplitudes
and the number of peaks.

Results 331

We compared experimental impulse responses with outputs from the foliage echo 332

simulator using several approaches. First, we visualized the waveforms by plotting the 333

aligned signals on a common time domain. We then measured the similarity by 334

calculating the normalized cross-correlation—the correlation coefficient between one 335

discrete signal and the shifted (lagged) copies of another signal, recorded as a function 336

of the lag. If two signals are identical, then the normalized cross-correlation equals one 337

at lag zero, otherwise it lies between zero and one. We use the maximum value of the 338

normalized cross-correlation as a statistic to summarize the amount of similarity. In 339

addition to the time domain comparison, we also compared the signals in frequency 340

domain by plotting the single-sided amplitude spectra. We use the L2 distance (integral 341

of squared difference) between the amplitude spectra as a statistic to summarize the 342

similarity in frequency domain. 343

We performed three groups of pairwise comparisons between impulse responses 344

obtained from the two microphones and the simulation—microphone 1 vs. 2, 345

microphone 1 vs. simulated, and microphone 2 vs. simulated. The similarity between 346

signals from microphones 1 and 2 serves as a benchmark, which represents an ideal 347

situation under which no systematic differences between the two signals exist. We 348

expect the differences between experimental measurements and simulation outputs to be 349

larger than the benchmark due to simplifications and approximations made in the 350

foliage echo simulation model. 351

In Fig 4 (A)-(C), we demonstrate comparison plots for one measurement about a 352

leaf from the oak tree. From Fig 4(A), we see that waveforms of the impulse responses 353

from the two microphones and simulation are similar. Such similarity is also observed 354

for other measurements with slight variation. Fig 4(B) plots the normalized cross 355

correlation between impulse responses from microphone 2 and simulation. The 356

benchmark cross correlation between two microphones shows a similar pattern but with 357

a higher peak value. Fig 4(B) shows that after alignment, the peak of normalized cross 358

correlation appears at lag −4, with a (absolute) peak value 0.7225 which is close to the 359

benchmark value between the two microphones (0.8621). Fig 4(C) shows the frequency 360

domain comparison—the amplitude spectra of signals from the two microphones and 361

the simulation. We observe that while the overall shapes are similar, the amplitude 362

spectrum for simulation appears shifted to the right, with lower signal power in the 363
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frequency range of [20, 50] kHz and higher signal power in the range from 65 to 95 kHz. 364

For this example, the pairwise L2 distances for the amplitude spectra are 0.0025 365

(microphones 1 vs. 2), 0.0223 (microphone 1 vs. simulation), and 0.0135 (microphone 2 366

vs. simulation). To further demonstrate how the comparison results change when the 367

leaf angles is changed, in Fig 4(D) we demonstrate boxplots of the maximum absolute 368

cross correlation at three different incident angle intervals [0, 2], [43, 47], and [85, 90] 369

degrees. From Fig 4(D) we do not observe evident differences across the three intervals. 370

To verify this observation statistically, We also performed a one-way analysis of variance 371

(ANOVA) to test whether there are systematic differences on means of the three groups, 372

which gives a p-value of 0.1779. Therefore, we conclude that there are no significant 373

differences on the means of the three groups. 374

Fig 4. Comparison plots for one measurement. (A) Waveforms of impulse
responses from the two microphones and simulation. (B) The normalized cross
correlations between microphone 2 and simulated signal, plotted as a function of lags.
Here, the lag refers to the number of phase shift positions. (C) Frequency domain
comparison—single sided amplitude spectra for impulse responses from the two
microphones and simulation. (D) Boxplots of the maximum absolute cross correlation at
three different incident angle intervals

To quantitatively summarize results of comparison, we extracted two statistics from 375

each pair of comparison, the maximum absolute value of the normalized cross correlation 376

in time domain and the L2 distances of the single sided amplitude spectra in frequency 377

domain. The mean values as well as the 2.5% and 97.5% percentiles calculated across all 378

measurements for each species are listed in Table 1. From Table 1, we observe that the 379

cross correlation between experimental data and simulated one are lower than the 380

benchmark values between the two microphones, and the statistics for microphone 1 vs. 381

simulation and microphone 2 vs. simulation are similar. Similar pattern is also observed 382

for the L2 distances in frequency domain, i.e., distances for microphone 1 vs. simulation 383

and microphone 2 vs. simulation are close, and both are higher than the benchmark 384

values. These patterns are consistent with our expectation—the simulator will generate 385

data with larger differences than the benchmark due to additional simplifications (e.g., 386

on leaf shape, beam patterns) made. Looking across the tree species, we found that 387

most statistics are similar for all tree species, except that for the yew tree, the statistics 388

between experimental and simulated signals give slightly lower cross correlations and 389

higher L2 distances than the other three species. This may be related to the fact that 390

the long, narrow shape of the yew leaf deviates further from the disc-shape assumption 391

made in the simulation, causing larger approximation error in simulation. Overall, the 392

statistics in Table 1 implies that while showing some deviations from the benchmark, 393

differences between the experimental and simulated data are still on the same scale with 394

the benchmark thus are not too far off the ideal situation. 395

To illustrate how the simulated foliage echoes can be used to estimate the 396

surroundings, we simulated an environment that consists of two isolated clusters of 397

foliage. Each cluster contains multiple spherical regions filled with leaves, with radii 398

ranging from 0.8 to 1 meter. Within each spherical region, leaves are uniformly 399

distributed with density 100 per cubic meter. However, throughout the entire cluster 400

leaves are not uniformly distributed because of the overlap of the spherical regions. The 401

leaf sizes are approximated by disks whose radii follow a truncated Gaussian 402

distribution with mean 0.05 meter and standard deviation 0.005. A top view of such an 403

environment is shown in a 2D plot in Fig 5. The sonar was put at the origin [0, 0, 0], 404

about 6 to 7 meters away from the centers of these spherical regions. For simplicity, we 405

fixed the elevation angle at 0◦ and use the sonar to scan the environment along the 406

azimuth direction on range [−30◦, 180◦] with step size 1◦. The beamwidth of the sonar 407
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Table 1. Summary Statistics For Comparison.

Mic 1 vs. Mic 2 Mic 1 vs. Sim. Mic 2 vs. Sim.

Oak 0.786 (0.506, 0.933) 0.564 (0.323, 0.772) 0.560 (0.288, 0.791)
Cross Dogwood 0.778 (0.457, 0.923) 0.584 (0.364, 0.799) 0.606 (0.370, 0.783)
Corr. Yew 0.718 (0.403, 0.893) 0.564 (0.388, 0.802) 0.405 (0.209, 0.583)

Tulip Tree 0.797 (0.526, 0.947) 0.582 (0.318, 0.785) 0.579 (0.315, 0.788)

Oak 0.009 (0.001, 0.031) 0.024 (0.009, 0.047) 0.028 (0.010, 0.058)
L2 Dogwood 0.010 (0.002, 0.034) 0.024 (0.008, 0.046) 0.025 (0.011, 0.046)
Dist. Yew 0.019 (0.006, 0.051) 0.025 (0.007, 0.041) 0.049 (0.024, 0.079)

Tulip Tree 0.007 (0.001, 0.026) 0.022 (0.009, 0.049) 0.024 (0.009, 0.054)

Cross Corr: the maximum absolute value of normalized cross correlation; L2 Dist: the
L2 distances of single sided amplitude spectra; Mic 1: signal from microphone 1; Mic 2:
signal from microphone 1; Sim: the simulated signal.

was set to 5◦ which enables us to identify the gap between the two clusters. The 408

estimated foliage boundary is marked by red lines in Fig 5. From this figure, we see that 409

the foliage edge can be detected with reasonable accuracy by using the arrival times.

Fig 5. Boundary detection. (A) An overlooking view of two isolated clusters of
foliage, together with their detected boundaries. For both emission and reception, the
beampattern peak amplitude is set to 40 dB, and the beamwidth is set to 5°. Tree
leaves are shown in blue dots, and the detected boundaries are shown in red lines. Sonar
beams at three azimuth angles 16°, 38°, and 101°are shown in yellow color. (B,C,D) The
corresponding echo waveforms at 16°, 38°, and 101°.

410

In addition to estimating the boundary, we trained a model to predict the number of 411

leaves in the sonar beam during the scanning process using the same simulation setup 412

as in boundary detection. A total of 13 predictors from the impulse response were used, 413

including the total amplitudes, the number of peaks, as well as the (0, 10, . . . , 100)% 414

quantiles of the peak heights. We adopted an artificial neural network model for 415

training and prediction. This model incorporates a function fitting neural network with 416

one hidden layer of 20 neurons. Training and test data are generated under the 417

simulation scene that consists of two isolated clusters of foliage. The training data are 418

obtained from scanning of 100 simulated scenes with leaf sizes and orientations 419

randomized but spherical centers and radii fixed. The test data consist of one scan of a 420

simulated scene with both leaf parameters and spherical centers and radii randomized. 421

During the training stage, data on the 13 predictors and the number of leaves at each 422

azimuth angle in [−30◦, 180◦] were collected during each step of the scanning process 423

and fed into the neural network. The trained neural network was then used to predict 424

the number of leaves in the test data. For comparison purpose, data from one of the 425

total 100 scans in the training data was chosen as validation data. We found that, while 426

the mean number of leaves in the training data is 630.99, the mean absolute error 427

(MAE) of the prediction for the validation data is as low as 15.59. In contrast, the 428

prediction MAE for the test data is 20.85. The true and predicted number of leaves in 429

the test data are compared in a scatter plot in Fig 6. These results demonstrate that 430

the simulated foliage echos carry sufficient information for estimating the number of 431

leaves in the sonar beam during the scanning process. 432
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Fig 6. Prediction of number of leaves in test data. The number of leaves is
predicted by a function fitting neural network with one hidden layer of 20 neurons.
Inputs of the neural network include 13 predictors from the impulse response, including
the total amplitudes, the number of peaks, as well as the (0, 10, . . . , 100)% quantiles of
the peak heights. The red line represents y = x.

Discussion 433

We have carried out a validation study to demonstrate the effectiveness of the foliage 434

echo simulator of [15, 16] in reflecting real echo-generating process. We have refined the 435

existing simulator in order to introduce more flexibility and allow a better match with 436

the experimental setup. We used multiple summary statistics to characterize the 437

differences between simulated and experimental impulse responses on single leaves. We 438

treat the differences between signals received from two microphones in experiments as 439

the benchmark results, and found that simulated impulse responses does not deviate 440

from the experimental measurements substantially. This indicates that the 441

computational foliage models are able to capture most salient features of the realistic 442

foliage echo. In addition to comparing with experimental data, we also proposed a 443

statistical approach to estimate the surroundings based on simulated echoes. This 444

approach can be generally applied to more complicated sensing scenarios such as UAV 445

path planning. 446

While not all features of the refined foliage echo simulator have been used in the 447

setup of current study, the additional features make this simulator more general and 448

could contribute to other novel applications in future studies. For example, the refined 449

simulator allows us to place sonar speaker and microphone at arbitrary locations, this 450

enables the study of Doppler shifts during the movement of sonar as well as the Doppler 451

shift compensation mechanism of bats. Furthermore, with more flexibility on sonar 452

directivity, the refined simulator makes it easier to study beam-direction control during 453

situations like obstacle avoidance or contour following. 454

Our experiment has focused on single leaves, which allows us to match the simulation 455

with the experiment as close as possible. Since the impulse response of multiple leaves is 456

simply the superposition of those from single leaves, as long as the simulator is valid for 457

single leaves, it is probably also valid for multiple leaves. Of course this ignores the 458

effect of shading which is not considered in the current foliage echo model. In the 459

former study of [16], experimental data have been collected to study the acoustic effect 460

of shading; they found that shading between two leaves could attenuate the magnitude 461

of impulse responses and this attenuation depends on the relative distances between the 462

two leaves. An interesting future work would be to model the shading effect by 463

introducing an adjusted attenuation function in the foliage echo simulator. 464

In addition to modeling the shading effect, two other studies can be carried out in 465

the future to further validate effectiveness of the current foliage echo simulator and the 466

estimation approach: (1) A new study to confirm effectiveness of the improved foliage 467

echo simulator on leaf clusters. This requires collecting experimental and simulated data 468

under the similar or closely matching conditions, and comparing them using 469

quantitative methods. (2) A new study to further test performance of the proposed 470

approach on estimating partial maps and predicting the number of leaves by using 471

experimental data. This requires collecting experimental data in a scene that contains 472

multiple leaf clusters, and applying the proposed estimation and prediction approach 473

solely based on experimental data. 474

Finally, we have primarily focused on the forest environment. In addition to leaves, 475

natural surroundings may have many other reflectors such as branches, rocks, and water. 476

The contribution of these different reflectors may vary under different situations. 477
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Considering a forest that involves thousands of leaves in front of branches, modeling 478

only the leaves is probably a fair approximation. However, it is reasonable to expect 479

that such assumption may need to be relaxed for different outdoor situations. 480

Data used in this paper have been made available online [24]. 481
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