A validation study for a bat-inspired sonar sensing simulator
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Abstract

Many species of bats rely on echoes to forage and navigate in densely vegetated
environments. Foliage echoes in some cases can help bats gather information about the
environment, whereas in others may generate clutter that can mask prey echoes during
foraging. It is therefore important to study foliage echoes and their role in bat’s sensory
ecology. In our prior work, a foliage echo simulator has been developed; simulated
echoes has been compared with field recordings using a biomimetic sonar head. In this
work, we improve the existing simulator by allowing more flexible experimental setups
and enabling a closer match with the experiments. Specifically, we add additional
features into the simulator including separate directivity patterns for emitter and
receiver, the ability to place emitter and receiver at distinct locations, and multiple
options to orient the foliage to mimic natural conditions like strong wind. To study how
accurately the simulator can replicate the real echo-generating process, we compare
simulated echoes with experimental echoes measured by ensonifying a single leaf across
four different species of trees. We further extend the prior work on estimating foliage
parameters to estimating a map of the environment.

Introduction

Many bat species rely on echolocation—they emit short ultrasonic pulses and listen for
the returning echoes to support navigation and prey hunting [1]. The dominant
frequency in bat biosonar pulses can reach up to 212 kHz [2] with thresholds for object
detection as low as 0.05 mm [3]—smaller than the thickness of human hair. The
extremely capable sonar sensing system coupled with low energy requirements makes
bats an excellent biological model for the study of smart sonar systems.

As many bat species inhabit vegetated environments such as forests, foliage echoes
play an important role in bats’ sensing experience. Natural foliage is indeed challenging
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for sonar sensing—it consists of a multitude of sound-reflecting surfaces which can
produce interference that masks a target echo [4,5]. Previous studies suggest that
foliage echoes are highly stochastic [6] and that bats rely on statistical features of the
echoes for object/target recognition/detection [7-11]. These studies, however, were
based on experiments with animals or biomimetic sonar, which limits the amount of the
available data. As a result, the analysis have been focused on simple tasks such as plant
classification [8,12], texture recognition [7], landmark identification [11,13,14], and
passageway finding [9,10]. An alternative approach is to use simulations to recreate a
much wider range of sensing scenarios. A simulation approach can produce foliage
echoes based on full knowledge of the (simulated) foliage geometry, which makes it
possible to study more complicated sensing scenarios that are beyond the scope of
physical experiments. For example, imagine training an Unmanned Aerial Vehicle to fly
through a forest based on biomimetic sonar. This would require acquiring large
numbers of foliage echoes along with the respective location data. Simulation offers a
convenient method for such study that is not only cost-effective (compared with
experiments) but also easily repeatable.

Several computer simulation models have been developed to replicate the physical
processes that underlie the foliage echo creation. For example, authors in [8] presented a
computational foliage model that treats leaves as point reflectors. This work considered
the spatial distribution of reflectors but did not take into account factors such as leaf
shape, size, orientation, and occlusion. A more recent work by [15] proposed a
computational model for foliage echoes that accounts for the density, size, and
orientation of leaves that were left out by [8]. In both [8] and [15], foliage echoes are
simulated as superposition of echoes returned from reflectors. A follow-up work by [16]
investigated several simplifications made in [15]. Specifically, this work studied the
effect of approximating leaf shape with a disk and assessed whether the uniform leaf
distribution assumed in [15] needs to be relaxed to include inhomogeneous foliage
patterns simulated from Lindenmayer-system model [17]. More extensive studies on the
simulation of random trees have been done by [18]. A more recent work of [19]
introduced a unified simulation framework that combines the simulation of natural
forests with the foliage echo simulator of [15,16]. This integrated simulation framework
can be used for the training of robotic algorithms in biosonar-based Unmanned Aerial
Vehicles. Based on simulated foliage echoes, various statistical estimation methods have
been proposed to estimate relevant foliage parameters [16, 20, 21].

One key concern behind simulation-based approach is the fidelity in representing the
real system. While it is reasonable to expect that any simulated echoes will exhibit
certain deviations from the real foliage echoes due to necessary model simplifications, a
valid model should retain key properties of the echo-generating process and produce
data that are close enough to reality. A preliminary analysis of the effect of some of the
model simplifications, such as treating leaves as hard discs and neglecting the shading
between leaves, were carried out in [16]. However, there is still a lack of side-by-side
comparison between simulated and experimental echoes under similar experimental
setups. The goal of this paper is to fill this gap by presenting a validation study that
compares outputs of the simulator with experimental data under similar experimental
conditions.

We consider the simulator used by [15,16] and [19] as it is by far the most general
foliage echo simulator established. To avoid introducing multiple uncontrollable factors,
we collected experimental data under a simple setup—only single leaves from multiple
species were ensonified and echoes were collected using a biomimetic sonar head. We
made several modifications to the simulator to achieve a closer match with the biosonar
experimental set-up as well as to enable the modeling of a wider range of sensing
scenarios. We compare the simulation and experimental echoes both in time- and
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frequency-domain and use statistical summaries to characterize the differences. In
addition to the comparison of echoes, we also demonstrate the application of our
modified simulator on constructing a partial map of the surroundings based on foliage
echoes.

The contributions of this work are as follows: 1) It demonstrates a close match
between experimental and simulated echoes obtained from individual leaves, thereby
supports the usage of the simulator to study more challenging scenarios hard to study
experimentally. 2) It proposes an estimation approach to construct a partial map—the
map of a specific region of the environment—through actively scanning the region. This
is computationally more efficient than always mapping the whole environment, thus is
more suitable for real-time navigation systems such as biosonar-based Unmanned Aerial
Vehicles. 3) It proposes a modified simulator that not only achieves a close match with
experimental echoes but also enables study of biosonar across a wider set of sensing
scenarios such as object detection, obstacle avoidance, path planning, and target
tracking.

Materials and methods

Foliage echo simulator

In this section, we briefly review the foliage echo simulation model previously
established by [15,16], and describe the modifications made to achieve a better match
with the experimental data and to enable simulation of a wider set of experimental
scenarios. The echo simulation model developed by [15,16] has two components: (i)
simulation of individual leaves and (ii) simulation of entire foliages. The leaves are
modeled as round disks characterized by their radii and locations in a three-dimensional
space. To generate foliage, leaf parameters such as radii, locations, and orientations can
be generated from truncated uniform or normal distributions [15]. If more realistic
foliage shape is desired, the spatial arrangement of the leaves (location and orientation)
can also be modelled using L-systems [16,19]. The leaf locations and orientations are
later used to calculate the incidence angle for each leaf reflector—the angle between leaf
normal and the axis connecting the emitter and the leaf center.

To reduce the computation time needed to produce the synthetic foliage echoes, the
leaves that fall outside the sonar beam footprint (which is a function of the sonar
beampattern and distance between the emitter and the foliage) are removed from the
echo calculations beforehand. In addition, leaves that generate weak echoes (below
-80dB) are also left out from computation. For this work, the sonar was assumed to be
monostatic with identical directivity patterns for both emitter and receiver. The
directivity patterns were approximated as the product of two Gaussians, one to model
gain as a function of azimuth and the other for gain as a function of elevation angle.

The foliage echoes were simulated in the range of 60 to 80 kHz based on the emission
recorded for greater horseshoe bats [22]. This choice, as well as other design of the
simulator such as the sonar beampattern, are made to mimick bats’ biosonar from the
biomimetic point of view. The basic principle of simulation is as follows: first, we
calculate the frequency domain response for each leaf reflector at each frequency
component in the range, and set the responses at other frequencies to be zero. This
requires calculating the amplitude and phase delay at each leaf and at each frequency
component. This calculation takes several parameters as inputs, including the sonar
beampattern, the approximated leaf beampattern, and the distance between the sonar
and the leaf center; second, the overall frequency domain components of the impulse
response are calculated by summing over frequency components across all leaves; finally,
we apply inverse Fourier transform to the frequency domain responses to obtain the
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time domain impulse response of the entire foliage. More details of the simulator can be
found in [15] and the appendix of [20].

We improved upon the existing simulator [15,16] in multiple ways. Prominent
changes include: (1) The speaker and the microphone can now be placed at arbitrary
locations, allowing for more accurate recreation of an experimental setup. (2) Multiple
ways of orienting simulated leaves are introduced; for example, all leaves can now be
oriented in the same direction on average to mimic conditions like strong wind blowing;
alternatively, each leaf can have an orientation that is independent of others. (3)
Separate spatial directivity patterns (beampatterns) are used for microphone and
speaker in simulation to allow a better match with the experimental set-up. The
directivity patterns for the microphone and speaker can be measured experimentally, or
in the case of speaker, can also be analytically modeled as a circular baffled piston. If
desired, the measured or modeled directivity patterns can be further simplified with a
Gaussian approximation. (4) the output and input of the speaker and microphone are
modulated by their respective frequency responses instead of the flat frequency response
used previously. (5) The simulation now allows for generating directive patterns for a
given beamwidth in degrees (beamwidth measured at -3dB from the peak of 0 dB) or an
input frequency. (6) The location of the peak directivity can now be set at any arbitrary
location within the frontal hemisphere, which allows for the study of problems that
require sonar sweeps for detection/recognition or perusal of object. In summary, all
above changes allow for a closer match between simulated and experimental setup, and
allow for the study of a wider range of problems that were previously intractable.
Notice that these improvements are rather generic and targeted at a large scope of
situations. Some of them, such as (1) and (2), will not be used in the simpler setup of
the current validation study.

Experimental Validation

To study validity of the improved foliage echo simulator, we designed an experiment to
collect real foliage echoes from single leaf samples of four species of trees. The
experiment was performed using a biomimetic sonar head in an anechoic chamber, as
shown in Fig 1(A). The sonar head was equipped with an emitter and two receivers,
whose locations were marked in Fig 1(A). The emitter was an electrostatic ultrasonic
loudspeaker (Series 600 open-face ultrasonic transducer, diameter 38 mm, SensComp,
Livonia, MI, USA) with a two-sided -3 dB beamwidth of 10° at 50 kHz. The receivers
were two MEMS capacitive microphones (Monomic, Dodotronic, Rome, Italy) with
cones attached. Each cone has an outer diameter of 50 mm and a length of 10 cm. The
spacing between the two MEMS is 7 cm. The sonar head used a PXIe-6356 data
acquisition system (National Instruments, Austin, Texas, USA) with a 500 kHz
sampling rate and 16-bits resolution to perform digital-to-analog and analog-to-digital
conversion to create the pulse waveform and record the echoes respectively. The emitted
pulse consisted of a Hamming window as the envelope and a 2 ms frequency modulation
from 20 to 105 kHz. A tripod was used to mount the sonar head at a fixed height.

Fig 1. Experimental setup. (A) The sonar head. (B) A diagram of the experiment
setup, where (a) denotes a side view of the sonar head, (b) denotes a leaf suspended on
thin filament, and (c) denotes the wall of the anechoic chamber. The dashed lines show
directions of vertical rotations at 0° (red), 45° (green), and 90° (blue). The purple
arrows show the direction of horizontal rotations.

A diagram of the experiment is shown in Fig 1(B). During the experiment, a single
leaf was suspended between two thin filaments (fishing lines) and was positioned one
meter away from the sonar head. The fishing lines were connected to a stepper motor
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which can rotate the leaf horizontally (along the azimuth direction from 0 to 360 degrees
about the z axis; direction is shown using purple arrows on Fig 1(B)). When suspending
the leaf on the fishing lines, we set three angles (rotated about the leaf normal axis):
horizontal, 45 degree tilted or vertical. This gives three vertical angles of the leaf—0, 45
and 90 degrees; directions are shown as red, green and blue dashed lines on Fig 1(B).
Under each leaf orientation setup, we record the leaf angles, total length of the leaf, tree

species along with the echo signals received from the two microphones of the sonar head.

In addition to the above experiment, we have also carried out experiments to
measure beampatterns of the microphone-plus-cone structure of the sonar head. These
measurements were then used to construct emitter and receiver beampattern in our
refined simulator. When measuring beampattern for the microphone-plus-cone
structure, the whole microphone-plus-cone was mounted on a pan-tilt unit (model
PTU-E46-17, FLIR Systems, Inc., Burlington, ON, Canada) and rotated over 425°
both in azimuth and elevation with 1°resolution. A loudspeaker was mounted at the
same height as the microphone-plus-cone and set one meter away from its center to the
microphone. The transmitted signal was a two millisecond constant frequency waveform
from 20 kHz to 100 kHz with a step of 5 kHz. A total of 20 repeated measurements at
each position for each frequency were made.

To measure the beampattern of the loudspeaker, we mounted the loudspeaker to the
pan-tilt and scanned from —45 degrees to +45 degrees with one degree per step
horizontally. A 1/8-inch pressure-field microphone (Briiel & Kjaer, Virum,
Hovedstaden) was mounted one meter away from the loudspeaker at the same height.
The frequency was set between 20 kHz and 105 kHz with 5 kHz per step. At each
position and each frequency, the test was repeated by 10 times. A comparison between
beamwidths of the loudspeaker at -3 dB and -5 dB with that from the mathematical
piston model gives a good match, so we decided to use the piston model to characterize
the beamwidth of the loudspeaker.

The speaker and microphone directivity patterns, both analytical and measured,
were approximated in simulation using product of two Gaussian functions, one function
each for azimuth and elevation. The standard deviation of both Gaussian functions were
set to half of the -3dB beamwidth either intended (as a user input) or estimated based
on the beampattern data collected in experiment.

Data preprocessing, simulation, and comparison

Raw echoes were recorded for single leaf samples from four different tree species: oak,
dogwood, yew, and tulip tree. Each recording contained two echo signals, one from each
microphone. The raw recordings were 25 milliseconds long with a sampling rate of 400
kHz. The size of the leaves varies from 2.8 to 9.0 inches, the azimuth angle of the leaves
varies from 1.8 to 358.2 degrees, and the elevation angles can be either 0, 45, or 90
degrees.

Based on the raw echo recordings, several pre-processing steps were carried out to
obtain impulse responses that are comparable with the simulation outputs. First, we
bandpass-filtered the emitted chirp with a frequency band ranging from 25 to 95 kHz, a
range that matches with the simulation. We then calculated the cross correlation
between each echo recording and the filtered chirp, which resulted in an estimate of the
impulse response signal. Next, we applied a cut-off and only retained the signals
between 5 and 10 milliseconds, a range that covers the impulse responses in all cases.
After these steps, we extracted two features to quantify the noise level and used them to
filter out noisy measurements. The first feature consists of peaks extracted from the
envelope of each impulse response. To obtain this feature, we first obtained the envelope
of the impulse response and then detected peaks of the envelopes that are above a
pre-specified threshold 0.3. The second feature is the integration of the envelope signal
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across the time domain. We filtered out noisy recordings based on three conditions: (i)
the total number of envelope peaks is greater than three, (ii) the largest time difference
between two neighboring peaks are greater than 0.2 miliseonds, and (iii) the area under
the normalized envelope signal is greater than 0.2. These pre-processing steps resulted
in a total of 8,695 impulse response measurements, among which 5,269 are from oak,
2,416 from dogwood, 180 from yew, and 830 from tulip tree.

We further applied our refined foliage echo simulator to generate single leaf impulse
responses in order to compare with experimental data. The simulation parameters were
chosen to match the leaf parameters and the experimental setup. Specifically, the
distances between sonar and leaf center as well as leaf center and microphone were both
set at one meter. The leaf radii and sound incident angles used to generate simulated
echoes were also set the same as the experiment. When simulating the frequency
domain signal, we set a frequency range from 25 to 95 kHz. In contrast to the previous
simulator [15,16] which assumes a flat frequency response for microphone and speaker,
in our simulation, we adopt the real frequency response curves of the microphone and
speaker used in the experiments to calculate the emission and reception gains at each
frequency. While the above settings were made to best match the experiment, unlike
the experiment, we still assumed that there is only one receiver in the simulator and the
emitter and receiver were in the same position. Thus, only one impulse response is
simulated for each leaf setup.

Before comparing the experimental measurements with simulated signals, several
further adjustments were performed. First, the amplitudes of impulse responses for the
two microphones are on different scales, which is likely caused by differences in
microphone gains. On the other hand, amplitudes of the simulated impulse response are
also influenced by the emission/reception setups (e.g., gains, input frequency, etc.) for
the emitter and receiver. We thus rescaled each impulse response signal, either
simulated or measured through experiment, by dividing its magnitudes by the highest
peak of the signal’s envelope. Furthermore, the times of arrival for impulse responses in
experiment vary between 5 and 7 milliseconds, which do not align with that of the
simulated signal. This misalignment is due to the fact that in experiments, microphones
were placed on the two sides of the speaker. Therefore, the distances between
microphones and the leaf is greater than one meter, whereas in simulation we have
assumed that the speaker and receivers are both one meter away from the leaf. We thus
aligned the experimental signals with the simulated ones by matching locations of the
highest peak of their envelopes. Specifically, we shift the experimental signal along the

time axis so that the location of the highest peak matches that of the simulated signal.

We found that rescaling and shifting by using the highest peak of the envelopes gives
better alignment than simply using the maximum amplitude of the signal. In Fig 2, we
show a simulated signal and an experimental signal, together with their envelopes and
the highest peaks, before and after the alignment. The signals shown in Fig 2 were
obtained by using leaf size of 5.0 inches, azimuth angle of 318.6 degree and elevation
angle of 90 degree. After aligning the signals, we further cut the signals shorter by

Fig 2. Align simulated and measured impulse responses by matching the
highest peak of the envelopes. (A) Before alignment. (B) After alignment.

retaining 200 sampling points before and 199 sampling points after the peak location,
resulting in a signal length of 400 (with a time span of 1 milisecond) for all impulse
responses. When visualizing the waveforms and calculating descriptive statistics, we
used the time argument of the simulated impulse response as the common time
argument for both simulated and experimental data.
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Estimation of the surroundings

Comparing simulated echoes with experimental data helps us evaluate the effectiveness
of the foliage echo simulator in representing the biosonar ensonification procedure in
reality. To further demonstrate the potential application of the foliage echo simulator,
we adopted an analytical approach to estimate the surroundings based on the simulated
foliage echoes. Such an approach provides evidence that the simulated echoes indeed
carry information about the environment, thus can be used for more sophisticated
biosonar sensing tasks. It is noteworthy that, though methods for estimating leaf
parameters based on simulated echoes have been proposed in recent publications [15,20],
estimation of the surroundings was not considered. In this study, we focus on estimating

a rough map of the surroundings and predicting some important features of the foliage.

We consider a forest environment consisting of tree foliage, and aim to reconstruct a
map of the foliage environment. For this purpose, we calculate distances from sonar to
both the nearest and the farthest leaves within the sonar beam by using the arrival
times of the echo responses. These distances are then used to determine the boundaries
of the foliage. Let tg and t; denote the onset and end times of the reflections, which can
be obtained by identifying the earliest and latest peaks from the echo responses. The
distances from sonar to the onset and end reflectors are calculated by dy = cty/2 and
dy = ct1/2, respectively, where ¢ is the speed of sound. Note that a “snapshot” of these
distances at a specific sonar direction is not sufficient to determine the boundaries of
the foliage within the sonar beam. However, by changing the sonar directions
continuously along azimuth-elevation, we can collect information about the dynamic
change of these distances when the foliage enters and exits the sonar beam. Such
dynamic information forms the basis of our foliage boundary identification algorithm.
Moreover, in order to resolve difficult non-identifiable situations occasionally (e.g., small
gaps between two clusters of tree foliage), it is necessary to vary the beamwidth of the
sonar. In Fig 3(A), we demonstrate a 2D example of how the boundary of a ball-shaped
leaf cluster can be detected by scanning along the azimuth direction counterclockwise.
In this example, both sonar and microphone are located at (0,0,0), shown as a black
circle. Tree leaves, shown in black dots, are distributed uniformly in a sphere with
radius 1.5 and center (4,4, 0), with 100 leaves per cubic meter. The scan is performed at
a angular spacing of 1°. The blue and yellow areas in Fig 3(A) highlight the sonar
beams at two different azimuth angles. The red dots mark the onset and end of the leaf
reflectors detected based on the minimum and maximum arriving times of echo
responses. The edge of the foliage can be detected by connecting the boundary points
along the scanning steps. We note that simulation of foliage echoes from the ball-shaped
leaf cluster follows the same principle described previously—we need to specify relative
locations of each leaf and the sonar, incident angles, and the leaf sizes as inputs. The
simulation involves calculating the frequency domain response for each leaf within the
sonar beam and summing over across all leaves.

Besides the arrival times, biosonar echoes also carry other information of the
reflectors which may be used to estimate important features of the foliage. Previous
works [15,20] have shown that the estimates are often non-unique, i.e., some parameters
such as reflector size and orientation appear to be non-identifiable—larger and smaller
leaves may result in the same impulse response under different orientations. Therefore,
instead of trying to estimate all reflector features using the 1-dimensional impulse
responses, we believe it is more reasonable to focus on estimating features that are
identifiable and relevant to the task at hand. In this study, we focus on predicting the
number of leaves within the sonar beam from the impulse responses. The prediction
result can be used to determine the leaf density of the foliage cluster, a key parameter
for tasks like path planning—changes in leaf density at different scanning angles may
help localize gaps or holes to fly through. Besides the number of leaves, there are a few
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confounding parameters, such as the mean leaf size and the mean leaf orientation.
These confounding parameters are relevant to factors such as tree species, and may be
determined by implementing classification algorithms such as [23]. In this study, we

treat the confounding parameters as fixed during the training and prediction procedure.

We selected three types of features as predictors, including the sum of envelope’s
amplitudes (which we call “total amplitudes”), the number of peaks of the impulse
response, and the quantiles of heights of the peaks. Fig 3(B) demonstrates the
relationship between the number of leaves and two of the predictor variables, the sum
amplitudes and the number of peaks, based on data obtained in the scanning procedure
shown in Fig 3(A). From Fig 3(B), we observe a positive monotonic and non-linear
relationship between the number of leaves and the two predictor variables.

Fig 3. Estimation of the surroundings. (A) A demonstration of detecting
boundary points of a ball-shaped leaf cluster at two azimuth angles. (B) Relationship
between the number of leaves and two of the predictor variables: the total amplitudes
and the number of peaks.

Results

We compared experimental impulse responses with outputs from the foliage echo
simulator using several approaches. First, we visualized the waveforms by plotting the
aligned signals on a common time domain. We then measured the similarity by
calculating the normalized cross-correlation—the correlation coefficient between one
discrete signal and the shifted (lagged) copies of another signal, recorded as a function
of the lag. If two signals are identical, then the normalized cross-correlation equals one
at lag zero, otherwise it lies between zero and one. We use the maximum value of the
normalized cross-correlation as a statistic to summarize the amount of similarity. In
addition to the time domain comparison, we also compared the signals in frequency
domain by plotting the single-sided amplitude spectra. We use the L2 distance (integral
of squared difference) between the amplitude spectra as a statistic to summarize the
similarity in frequency domain.

We performed three groups of pairwise comparisons between impulse responses
obtained from the two microphones and the simulation—microphone 1 vs. 2,
microphone 1 vs. simulated, and microphone 2 vs. simulated. The similarity between
signals from microphones 1 and 2 serves as a benchmark, which represents an ideal
situation under which no systematic differences between the two signals exist. We
expect the differences between experimental measurements and simulation outputs to be
larger than the benchmark due to simplifications and approximations made in the
foliage echo simulation model.

In Fig 4 (A)-(C), we demonstrate comparison plots for one measurement about a
leaf from the oak tree. From Fig 4(A), we see that waveforms of the impulse responses
from the two microphones and simulation are similar. Such similarity is also observed
for other measurements with slight variation. Fig 4(B) plots the normalized cross
correlation between impulse responses from microphone 2 and simulation. The
benchmark cross correlation between two microphones shows a similar pattern but with
a higher peak value. Fig 4(B) shows that after alignment, the peak of normalized cross
correlation appears at lag —4, with a (absolute) peak value 0.7225 which is close to the
benchmark value between the two microphones (0.8621). Fig 4(C) shows the frequency
domain comparison—the amplitude spectra of signals from the two microphones and
the simulation. We observe that while the overall shapes are similar, the amplitude
spectrum for simulation appears shifted to the right, with lower signal power in the
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frequency range of [20, 50] kHz and higher signal power in the range from 65 to 95 kHz.

For this example, the pairwise L2 distances for the amplitude spectra are 0.0025
(microphones 1 vs. 2), 0.0223 (microphone 1 vs. simulation), and 0.0135 (microphone 2
vs. simulation). To further demonstrate how the comparison results change when the
leaf angles is changed, in Fig 4(D) we demonstrate boxplots of the maximum absolute
cross correlation at three different incident angle intervals [0, 2], [43,47], and [85, 90]

degrees. From Fig 4(D) we do not observe evident differences across the three intervals.

To verify this observation statistically, We also performed a one-way analysis of variance
(ANOVA) to test whether there are systematic differences on means of the three groups,
which gives a p-value of 0.1779. Therefore, we conclude that there are no significant
differences on the means of the three groups.

Fig 4. Comparison plots for one measurement. (A) Waveforms of impulse
responses from the two microphones and simulation. (B) The normalized cross
correlations between microphone 2 and simulated signal, plotted as a function of lags.
Here, the lag refers to the number of phase shift positions. (C) Frequency domain
comparison—single sided amplitude spectra for impulse responses from the two
microphones and simulation. (D) Boxplots of the maximum absolute cross correlation at
three different incident angle intervals

To quantitatively summarize results of comparison, we extracted two statistics from
each pair of comparison, the maximum absolute value of the normalized cross correlation
in time domain and the L2 distances of the single sided amplitude spectra in frequency
domain. The mean values as well as the 2.5% and 97.5% percentiles calculated across all
measurements for each species are listed in Table 1. From Table 1, we observe that the
cross correlation between experimental data and simulated one are lower than the

benchmark values between the two microphones, and the statistics for microphone 1 vs.

simulation and microphone 2 vs. simulation are similar. Similar pattern is also observed
for the L2 distances in frequency domain, i.e., distances for microphone 1 vs. simulation
and microphone 2 vs. simulation are close, and both are higher than the benchmark
values. These patterns are consistent with our expectation—the simulator will generate
data with larger differences than the benchmark due to additional simplifications (e.g.,
on leaf shape, beam patterns) made. Looking across the tree species, we found that
most statistics are similar for all tree species, except that for the yew tree, the statistics
between experimental and simulated signals give slightly lower cross correlations and
higher L2 distances than the other three species. This may be related to the fact that
the long, narrow shape of the yew leaf deviates further from the disc-shape assumption
made in the simulation, causing larger approximation error in simulation. Overall, the
statistics in Table 1 implies that while showing some deviations from the benchmark,
differences between the experimental and simulated data are still on the same scale with
the benchmark thus are not too far off the ideal situation.

To illustrate how the simulated foliage echoes can be used to estimate the
surroundings, we simulated an environment that consists of two isolated clusters of
foliage. Each cluster contains multiple spherical regions filled with leaves, with radii
ranging from 0.8 to 1 meter. Within each spherical region, leaves are uniformly
distributed with density 100 per cubic meter. However, throughout the entire cluster
leaves are not uniformly distributed because of the overlap of the spherical regions. The
leaf sizes are approximated by disks whose radii follow a truncated Gaussian
distribution with mean 0.05 meter and standard deviation 0.005. A top view of such an
environment is shown in a 2D plot in Fig 5. The sonar was put at the origin [0, 0, 0],
about 6 to 7 meters away from the centers of these spherical regions. For simplicity, we
fixed the elevation angle at 0° and use the sonar to scan the environment along the
azimuth direction on range [—30°,180°] with step size 1°. The beamwidth of the sonar
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Table 1. Summary Statistics For Comparison.

Mic 1 vs. Mic 2

Mic 1 vs. Sim.

Mic 2 vs. Sim.

Oak 0.786 (0.506, 0.933)  0.564 (0.323, 0.772)  0.560 (0.288, 0.791)
Cross Dogwood  0.778 (0.457, 0.923) 0.584 (0.364, 0.799)  0.606 (0.370, 0.783)
Corr.  Yew 0.718 (0.403, 0.893)  0.564 (0.388, 0.802) 0.405 (0.209, 0.583)
Tulip Tree  0.797 (0.526, 0.947)  0.582 (0.318, 0.785)  0.579 (0.315, 0.788)
Oak 0.009 (0.001, 0.031)  0.024 (0.009, 0.047)  0.028 (0.010, 0.058)
L2  Dogwood  0.010 (0.002, 0.034) 0.024 (0.008, 0.046) 0.025 (0.011, 0.046)
Dist.  Yew 0.019 (0.006, 0.051)  0.025 (0.007, 0.041)  0.049 (0.024, 0.079)
Tulip Tree  0.007 (0.001, 0.026)  0.022 (0.009, 0.049) 0.024 (0.009, 0.054)

Cross Corr: the maximum absolute value of normalized cross correlation; L2 Dist: the
L2 distances of single sided amplitude spectra; Mic 1: signal from microphone 1; Mic 2:
signal from microphone 1; Sim: the simulated signal.

was set to 5° which enables us to identify the gap between the two clusters. The
estimated foliage boundary is marked by red lines in Fig 5. From this figure, we see that
the foliage edge can be detected with reasonable accuracy by using the arrival times.

Fig 5. Boundary detection. (A) An overlooking view of two isolated clusters of
foliage, together with their detected boundaries. For both emission and reception, the
beampattern peak amplitude is set to 40 dB, and the beamwidth is set to 5°. Tree
leaves are shown in blue dots, and the detected boundaries are shown in red lines. Sonar
beams at three azimuth angles 16°, 38°, and 101°are shown in yellow color. (B,C,D) The
corresponding echo waveforms at 16°, 38°, and 101°.

In addition to estimating the boundary, we trained a model to predict the number of
leaves in the sonar beam during the scanning process using the same simulation setup
as in boundary detection. A total of 13 predictors from the impulse response were used,
including the total amplitudes, the number of peaks, as well as the (0, 10,...,100)%
quantiles of the peak heights. We adopted an artificial neural network model for
training and prediction. This model incorporates a function fitting neural network with
one hidden layer of 20 neurons. Training and test data are generated under the
simulation scene that consists of two isolated clusters of foliage. The training data are
obtained from scanning of 100 simulated scenes with leaf sizes and orientations
randomized but spherical centers and radii fixed. The test data consist of one scan of a
simulated scene with both leaf parameters and spherical centers and radii randomized.
During the training stage, data on the 13 predictors and the number of leaves at each
azimuth angle in [—30°, 180°] were collected during each step of the scanning process
and fed into the neural network. The trained neural network was then used to predict
the number of leaves in the test data. For comparison purpose, data from one of the
total 100 scans in the training data was chosen as validation data. We found that, while
the mean number of leaves in the training data is 630.99, the mean absolute error
(MAE) of the prediction for the validation data is as low as 15.59. In contrast, the
prediction MAE for the test data is 20.85. The true and predicted number of leaves in
the test data are compared in a scatter plot in Fig 6. These results demonstrate that
the simulated foliage echos carry sufficient information for estimating the number of
leaves in the sonar beam during the scanning process.
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Fig 6. Prediction of number of leaves in test data. The number of leaves is
predicted by a function fitting neural network with one hidden layer of 20 neurons.
Inputs of the neural network include 13 predictors from the impulse response, including
the total amplitudes, the number of peaks, as well as the (0,10,...,100)% quantiles of
the peak heights. The red line represents y = x.

Discussion

We have carried out a validation study to demonstrate the effectiveness of the foliage
echo simulator of [15,16] in reflecting real echo-generating process. We have refined the
existing simulator in order to introduce more flexibility and allow a better match with
the experimental setup. We used multiple summary statistics to characterize the
differences between simulated and experimental impulse responses on single leaves. We
treat the differences between signals received from two microphones in experiments as
the benchmark results, and found that simulated impulse responses does not deviate
from the experimental measurements substantially. This indicates that the
computational foliage models are able to capture most salient features of the realistic
foliage echo. In addition to comparing with experimental data, we also proposed a
statistical approach to estimate the surroundings based on simulated echoes. This
approach can be generally applied to more complicated sensing scenarios such as UAV
path planning.

While not all features of the refined foliage echo simulator have been used in the
setup of current study, the additional features make this simulator more general and
could contribute to other novel applications in future studies. For example, the refined
simulator allows us to place sonar speaker and microphone at arbitrary locations, this
enables the study of Doppler shifts during the movement of sonar as well as the Doppler
shift compensation mechanism of bats. Furthermore, with more flexibility on sonar
directivity, the refined simulator makes it easier to study beam-direction control during
situations like obstacle avoidance or contour following.

Our experiment has focused on single leaves, which allows us to match the simulation
with the experiment as close as possible. Since the impulse response of multiple leaves is
simply the superposition of those from single leaves, as long as the simulator is valid for
single leaves, it is probably also valid for multiple leaves. Of course this ignores the
effect of shading which is not considered in the current foliage echo model. In the
former study of [16], experimental data have been collected to study the acoustic effect
of shading; they found that shading between two leaves could attenuate the magnitude
of impulse responses and this attenuation depends on the relative distances between the
two leaves. An interesting future work would be to model the shading effect by
introducing an adjusted attenuation function in the foliage echo simulator.

In addition to modeling the shading effect, two other studies can be carried out in
the future to further validate effectiveness of the current foliage echo simulator and the
estimation approach: (1) A new study to confirm effectiveness of the improved foliage
echo simulator on leaf clusters. This requires collecting experimental and simulated data
under the similar or closely matching conditions, and comparing them using
quantitative methods. (2) A new study to further test performance of the proposed
approach on estimating partial maps and predicting the number of leaves by using
experimental data. This requires collecting experimental data in a scene that contains
multiple leaf clusters, and applying the proposed estimation and prediction approach
solely based on experimental data.

Finally, we have primarily focused on the forest environment. In addition to leaves,

natural surroundings may have many other reflectors such as branches, rocks, and water.

The contribution of these different reflectors may vary under different situations.
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Considering a forest that involves thousands of leaves in front of branches, modeling
only the leaves is probably a fair approximation. However, it is reasonable to expect
that such assumption may need to be relaxed for different outdoor situations.

Data used in this paper have been made available online [24].
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