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Abstract— In this study, the acoustic output of candle soot 

nanoparticles(CSNP)/PDMS laser ultrasound transducer 

(LUT) was predicted by a multiscale hierarchical simulation 

method. Firstly, the carbon/PDMS composites’ effective 

properties were estimated by the nanoscale unit model. 

Secondly, a LUT model was developed in COMSOL by coupling 

Wave Optics, Heat Transfer, Structural Mechanics and 

Acoustics modules, and the acoustic output at the LUT surface 

was predicted using the properties parameters generated by the 

model in the first step. Lastly, the near-field wave proportion 

was calculated theoretically. For CSNP/PDMS LUT, our 

hierarchical model had high accuracy on both time and 

frequency domain output.   

Keywords—nanocomposite, photoacoustic, laser ultrasound 

transducer, FEA, multiscale, multiphysics. 

I. INTRODUCTION  

The laser ultrasound transducer (LUT) has been developed 
as an emerging technology for high-intensity focused 
ultrasound (HIFU) [1]–[6]. The LUTs overcome many 
challenges of the traditional piezo-based transducer with their 
excellent merits such as high-power density, high frequency, 
broad bandwidth, and wireless device operation. LUTs 
employed the optoacoustic effect which converts the laser’s 
energy to acoustic energy [7]–[15]. Firstly, the absorption 
layer, which usually are composites with high optical 
absorption embedded particles, absorbs the specific 
wavelength laser and converts it to thermal energy. The local 
temperature of the LUT increases dramatically in a very short 
duration corresponding to the bandwidth of the laser pulse (3 

- 10 ns). Secondly, the material volume expands due to the 
temperature difference. Thermal energy converts to 
mechanical energy. Lastly, at the surface of the LUT, the 
acoustic wave was generated. Due to the high energy density 
and short duration characteristics of the incident laser, the 
acoustic waves produced by LUT usually have high acoustic 
pressure and high frequency (10 - 30 MHz) [7], [16]–[18]. 

As the application areas of LUT have expanded and 
specialized, there is an emerging need to design a LUT to meet 
bespoken output characteristics for a wide variety of 
applications  [19]–[22]. For instance, the high axial resolution 
imaging needs broader -6dB bandwidth; the medical 
lithotripsy and plaque disruption require high positive 
pressure; high precision operation ablating malign tumors 
necessitates both high positive pressure and board -6dB 
bandwidth to avoid possible damage of surrounding tissue  
[16], [23]. Carbon/Polydimethylsiloxane (PDMS) is 
commonly used for optoacoustic nanocomposite due to the 
high laser absorption coefficient of carbon (30 μm-1) and high 

thermal expansion coefficient of PDMS (300  10-6/oC). It is 
necessary to understand the relation of the properties of the 
material with the final acoustic output before researchers 
design and fabricate the LUTs. Previously, researchers have 
developed several predicting models based on theoretical 
calculations or FEA, but there is still a significant discrepancy 
between the predicted results with the experiments. In this 
study, a multiphysics and multiscale FEA model was 
developed to predict the candle soot 
nanoparticle(CSNP)/PDMS transducer’s output.  
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II. METHODS 

A. Effective nanocomposites properties predicting model 

To decrease the computation load of the following FEA 

LUT model, the effective properties of the absorption layer 

CSNP/PDMS nanocomposite were estimated by the unit 

FEA model (Figure. 1) [24]–[28]. Total five physical 

properties were predicted: absorption coefficient 𝛼, Young's 

modulus E, Poisson's ratio 𝜈, thermal expansion coefficient 

𝛽 and thermal conductivity K. Other two properties, effective 

density, and heat capacity, were simulated by theoretical 

equation based on the particles volume fraction. 
 

B. LUT output predicting FEA model 

After the effective properties of the nanocomposites were 

obtained, they are employed in the LUT FEA model. This 

FEA model was built in COMSOL Multiphysics 5.5. The 

model includes three layers for LUT and one layer (water) for 

the media (Figure 2). Four physics modules and three 

multiphysics modules were used (Figure 3). By using this 

model, the acoustic output in the time domain at the LUT 

surface can be achieved with one step.  

 

C. Near field wave propagation calculation 

The acoustic wave propagation at the near field was 

calculated by the theoretical equation: 
𝑝(𝒓, 𝑡) =
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where p(r,t) is the acoustic pressure at a location r at a time t, 
𝑘  is the wavenumber, 𝑝0  is the acoustic pressure at the 

transducer surface, 𝜔 is the angular frequency of the acoustic 
wave at the transducer surface. 

III. RESULTS AND DISCUSSIONS 

The hierarchical predicting method was validated by 

comparing the experiment results and theoretical calculation 

(Huang’s model) in the literatures [7] and [29], respectively. 

The CSNP/PDMS in the literature was composed of three 

layers: glass substrate, CSNP/PDMS layer, PDMS protection 

layer. All parameters were set as same as the literature. The 

particle volume fraction is 9 vol%, diameter is 40 nm, the 

incident laser intensity is 3.57 mJ/cm2. Firstly, the 

CSNP/PDMS nanocomposite effective physical properties 

were estimated by the unit model. The predicted results were 

shown in Table 1. Secondly, the effective properties were 

employed in the LUT FEA model, the acoustic signal at the 

LUT surface can be obtained. Lastly, the acoustic signal at 

4.2 mm was calculated with the LUT surface signal and 

equation (1). The acoustic output in both the time and 

frequency domain were shown in Figure 4. All the acoustic 

output parameters were summarized in Table 2.  

For the CSNP/PDMS LUT, the hierarchical model shows 

excellent accuracy. The predicted peak positive pressure is 

with 0.2MPa error, peak negative pressure is with 0.29 MPa 

error, the peak frequency is with 2.51 MHz error, the -6 dB 

bandwidth is with 1.2 MHz, and the efficiency is with 0.1% 

error.    
 

TABLE 1. The FEA unit model prediction of the CSNP/PDMS effective 

properties. 

 

 
Glass Water PDMS CB 

9% 

CSNP 

𝜷 [1/K] _- _- 3.30×10-4 2×10-6 3.02×10-4 

Cp 

[J/(kg×K)] 
1000 4200 1460 675 1390 

𝝆 [kg/m3] 2200 1000 970 1630 1029 

K [W/(m×K)] 2 0.65 0.16 150 0.207 

𝜶 [1/µm] 0 0 0 32 1.31 

E [kPa] 72×106  _- 750 107 951 

𝝂 0.17 _- 0.49 0.2 0.49 

 

 

Figure 1. The unit FEA model for effective properties estimation. 

 

Figure 3. Physics modules and multiphysics modules used in 
COMSOL 
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Figure 2. LUT model diagram 
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Figure 4. The experiments and hierarchical model prediction of the 
CSNP/PDMS LUT acoustic output. 
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TABLE 2. The Hierarchical model prediction of the CSNP/PDMS LUT 

acoustic output. 

  

Peak 

positive 
pressure 

[MPa] 

Peak 

negative 
pressure 

[MPa] 

Peak 

frequency 
[MHz] 

-6 dB 

bandwidth  
[MHz] 

Efficiency 

Exp 4.66 0.6 10 22.5  0.45% 

Huang 6.1 _ 10 65  0.32% 

FEA 4.4 0.89 7.49 21.3 0.35% 

 

IV. CONCLUSION 

In this research, a novel hierarchical multiscale model 

predicted the CSNP/PDMS LUT acoustic output with high 

accuracy. The waveform is very similar to the experiment. 

The hierarchical predicting model can be used to predict the 

output of LUT, investigated the optimal design, and analyze 

the underlying relation between the materials’ properties with 

the LUTs’ acoustic output. 
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