Multiphysics FEA Simulation for Polymer
Nanocomposite Laser Ultrasound Transducer

Howuk Kim
Department of Mechanical and
Aerospace Engineering
North Carolina State

Sipan Liu
Department of Mechanical and
Aerospace Engineering
North Carolina State

University University
Raleigh, USA Raleigh, USA
sliu46@ncsu.edu hkim43@ncsu.edu

Xiaoning Jiang
Department of Mechanical and
Aerospace Engineering
North Carolina State
University
Raleigh, USA
xjiangS@ncsu.edu

Abstract— In this study, the acoustic output of candle soot
nanoparticles(CSNP)/PDMS laser ultrasound transducer
(LUT) was predicted by a multiscale hierarchical simulation
method. Firstly, the carbon/PDMS composites’ effective
properties were estimated by the nanoscale unit model.
Secondly, a LUT model was developed in COMSOL by coupling
Wave Optics, Heat Transfer, Structural Mechanics and
Acoustics modules, and the acoustic output at the LUT surface
was predicted using the properties parameters generated by the
model in the first step. Lastly, the near-field wave proportion
was calculated theoretically. For CSNP/PDMS LUT, our
hierarchical model had high accuracy on both time and
frequency domain output.

Keywords—nanocomposite, photoacoustic, laser ultrasound
transducer, FEA, multiscale, multiphysics.

1. INTRODUCTION

The laser ultrasound transducer (LUT) has been developed
as an emerging technology for high-intensity focused
ultrasound (HIFU) [1]-[6]. The LUTs overcome many
challenges of the traditional piezo-based transducer with their
excellent merits such as high-power density, high frequency,
broad bandwidth, and wireless device operation. LUTs
employed the optoacoustic effect which converts the laser’s
energy to acoustic energy [7]-[15]. Firstly, the absorption
layer, which usually are composites with high optical
absorption embedded particles, absorbs the specific
wavelength laser and converts it to thermal energy. The local
temperature of the LUT increases dramatically in a very short
duration corresponding to the bandwidth of the laser pulse (3
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- 10 ns). Secondly, the material volume expands due to the
temperature difference. Thermal energy converts to
mechanical energy. Lastly, at the surface of the LUT, the
acoustic wave was generated. Due to the high energy density
and short duration characteristics of the incident laser, the
acoustic waves produced by LUT usually have high acoustic
pressure and high frequency (10 - 30 MHz) [7], [16]-[18].

As the application areas of LUT have expanded and
specialized, there is an emerging need to design a LUT to meet
bespoken output characteristics for a wide variety of
applications [19]-[22]. For instance, the high axial resolution
imaging needs broader -6dB bandwidth; the medical
lithotripsy and plaque disruption require high positive
pressure; high precision operation ablating malign tumors
necessitates both high positive pressure and board -6dB
bandwidth to avoid possible damage of surrounding tissue
[16], [23]. Carbon/Polydimethylsiloxane (PDMS) is
commonly used for optoacoustic nanocomposite due to the
high laser absorption coefficient of carbon (30 pm') and high
thermal expansion coefficient of PDMS (300 x 106/°C). It is
necessary to understand the relation of the properties of the
material with the final acoustic output before researchers
design and fabricate the LUTs. Previously, researchers have
developed several predicting models based on theoretical
calculations or FEA, but there is still a significant discrepancy
between the predicted results with the experiments. In this
study, a multiphysics and multiscale FEA model was
developed to predict the candle soot
nanoparticle(CSNP)/PDMS transducer’s output.



II. METHODS

A. Effective nanocomposites properties predicting model
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Figure 1. The unit FEA model for effective properties estimation.
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Figure 3. Physics modules and multiphysics modules used in
COMSOL.

To decrease the computation load of the following FEA
LUT model, the effective properties of the absorption layer
CSNP/PDMS nanocomposite were estimated by the unit
FEA model (Figure. 1) [24]-[28]. Total five physical
properties were predicted: absorption coefficient &, Young's
modulus E, Poisson's ratio v, thermal expansion coefficient
B and thermal conductivity K. Other two properties, effective
density, and heat capacity, were simulated by theoretical
equation based on the particles volume fraction.

B. LUT output predicting FEA model

After the effective properties of the nanocomposites were
obtained, they are employed in the LUT FEA model. This
FEA model was built in COMSOL Multiphysics 5.5. The
model includes three layers for LUT and one layer (water) for
the media (Figure 2). Four physics modules and three
multiphysics modules were used (Figure 3). By using this
model, the acoustic output in the time domain at the LUT
surface can be achieved with one step.

C. Near field wave propagation calculation

The acoustic wave propagation at the near field was
calculated by the theoretical equation:
i p(r, t) - ikz
- % poe It {2 [ "’7 e KIG=20)*+0=¥0)*1/ @D g dy, (1)

where p(r,f) is the acoustic pressure at a location r at a time ¢,
k is the wavenumber, p, is the acoustic pressure at the
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Figure 4. The experiments and hierarchical model prediction of the
CSNP/PDMS LUT acoustic output.

transducer surface, w is the angular frequency of the acoustic
wave at the transducer surface.

III. RESULTS AND DISCUSSIONS

The hierarchical predicting method was validated by
comparing the experiment results and theoretical calculation
(Huang’s model) in the literatures [7] and [29], respectively.
The CSNP/PDMS in the literature was composed of three
layers: glass substrate, CSNP/PDMS layer, PDMS protection
layer. All parameters were set as same as the literature. The
particle volume fraction is 9 vol%, diameter is 40 nm, the
incident laser intensity is 3.57 ml/cm? Firstly, the
CSNP/PDMS nanocomposite effective physical properties
were estimated by the unit model. The predicted results were
shown in Table 1. Secondly, the effective properties were
employed in the LUT FEA model, the acoustic signal at the
LUT surface can be obtained. Lastly, the acoustic signal at
4.2 mm was calculated with the LUT surface signal and
equation (1). The acoustic output in both the time and
frequency domain were shown in Figure 4. All the acoustic
output parameters were summarized in Table 2.

For the CSNP/PDMS LUT, the hierarchical model shows
excellent accuracy. The predicted peak positive pressure is
with 0.2MPa error, peak negative pressure is with 0.29 MPa
error, the peak frequency is with 2.51 MHz error, the -6 dB
bandwidth is with 1.2 MHz, and the efficiency is with 0.1%
error.

TABLE 1. The FEA unit model prediction of the CSNP/PDMS effective

properties.
9%
Glass Water PDMS CB CSNP
B /K] - - 3.30x10* | 2x10° | 3.02x10*
G
1000 4200 1460 675 1390
[J/(kgxK)]
p [kg/m’] 2200 1000 970 1630 1029
K [W/(mxK)] 2 0.65 0.16 150 0.207
a [1/pm] 0 0 0 32 1.31
E [kPa] 72x10° - 750 107 951
v 0.17 - 0.49 0.2 0.49




TABLE 2. The Hierarchical model prediction of the CSNP/PDMS LUT

acoustic output.

Peak | Peak Peak -6.dB
g::;;zz gfeg:stlll\r/: frequency | bandwidth | Efficiency
[MPal] [MPal [MHz] [MHZz]
Exp 4.66 0.6 10 22.5 0.45%
Huang | 6.1 B 10 65 0.32%
FEA 4.4 0.89 7.49 213 0.35%
IV. CONCLUSION
In this research, a novel hierarchical multiscale model

predicted the CSNP/PDMS LUT acoustic output with high
accuracy. The waveform is very similar to the experiment.
The hierarchical predicting model can be used to predict the
output of LUT, investigated the optimal design, and analyze
the underlying relation between the materials’ properties with
the LUTSs’ acoustic output.
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