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Abstract. Given a system of analytic functions and an approximation to a cluster of zeros, we wish to
construct two regions containing the cluster and no other zeros of the system. The smaller region tightly
contains the cluster while the larger region separates it from the other zeros of the system. We achieve this
using the method of ination which, counterintuitively, relates it to another system that is more amenable to
our task but whose associated cluster of zeros is larger.

1. Introduction

Suppose that F is a system of m analytic function in n unknowns, where m n, and z 2 C" is a point near
several isolated zeros of F, i.e., z approximates a cluster of zeros of F. The zero cluster isolation problem is
to compute two closed regions R and R+ and a positive integer c such that

(1) z2 R R+, where R is the interior of R+ and
(2) the number of zeros of F is the same in both R and R+ and equals c.

In other words, R encircles a cluster of ¢ zeros of F, and this cluster of zeros is isolated from the other zeros
of F by R+ nR . We also consider the relaxation where c is an upper bound on the number of zeros in R
and R..

We develop the method of ination, which applies in the square system case (m = n) and gives the exact
count ¢ when it succeeds. When ination fails and in the overdetermined case, we provide a method that
yields an upper bound on the size of the cluster.

At a high level, we have the following steps:

(1) From the given system F, nd a nearby system G with a singularity at z,

(2) compute the structure of the singularity of G at z, and

(3) use the relationship between F and G to infer the location and count of the zeros of F near z from
the structure of the singularity of G at z.

The word nearby should only be used in a colloquial and motivational sense since we do not provide a
metric for identifying nearness. We consider both numerical and symbolic perturbations of F to generate G,
but we require the nal computation to be certied. In other words, as part of their computations, our
algorithms not only generate both the integer c and the regions R and R., but they also provide a proof of
correctness, showing that R , R+, and c have the required properties.

Since all of our constructions and computations pertain to a small neighborhood of one point and tolerate
small perturbations of functions in that neighborhood, one may replace analytic functions with polynomials as
long as there is an eective way to estimate the dierence with the original functions. Hence, we focus on the
polynomial case throughout the remainder of the paper.

1.1. Motivation and contribution. Many numeric and symbolic algorithms struggle with computing or
approximating zeros of zero-dimensional systems of polynomials that are either singular or clustered. For
some algorithms, however, providing information about the clusters, such as their sizes, locations, and
distances from the other zeros, can be used to restore the eciency of these algorithms [7, 10]. In addition, data
about these clusters can also be used to derive more precise estimates on the algorithmic complexity of
algorithms, see, for example, [14, 3, 4, 1].

Our main contribution is in generalizing the technique dubbed ination and introduced by the rst and third
authors in [6]. Counterintuitively, the ination procedure transforms a square system with a multiple zero into
a square system with the same multiple zero but of higher multiplicity.
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In [6], a notion of a regular zero of order d is dened. In this paper we dene a regular zero of order d
and breadth where:

a regular zero of order d corresponds to a regular zero of order d and breadth n,
a regular zero (in the usual sense) is a regular zero of order 1.

In this new terminology, the original ination procedure of [6] attempts to create a regular zero of order 2 from
a regular zero of order 2 and arbitrary breadth. Here we develop ination of arbitrary order, a routine to create
a regular zero of order d from a regular zero of order d and arbitrary breadth. This turns out to be much more
subtle and intricate than the approach in [6]. In addition, for systems where ination cannot be applied directly,
we develop new methods to isolate the cluster and provide upper bounds on the size of the cluster.

The shape of isolating regions is dictated by the type of the singularity the input system is close to.
Although these regions may in turn be easily bounded by Euclidean balls, this would be an unnecessary
relaxation: the region R that we construct (see, for instance, Figure 1) is natural and encapsulates the
cluster much closer than the ball in which it may be inscribed.

The symbolic procedure of ination is carried out for G in the view of numerical applications. Namely, the
transformations that we use are applied to a nearby polynomial system F with a cluster of zeros. At the end,
the eect of the transformations on the dierence between F and G must be small enough to apply the
multivariate version of Rouche’s theorem [5, Theorem 2.12]. We note that our certication step is similar to
the certication in [2], but the goals of the papers are dierent and the use of ination to regularize the system is
one of the novel contributions of the current paper.

We note that the paradigm in which we operate doesn’t distinguish between scenarios where there is
only one singular zero and scenarios where several simple or singular zeros are tightly clustered. We aim to
produce the isolating regions as described in the introduction. We point out that our procedures to construct a
nearby system with a singular zero do not work universally. Producing a nearby singular system in a more
general setting is the focus of [12], for instance. We also assume that an approximation z is given to us.
There is more focused work on algorithms to approximate a cluster in case of embedding dimension one [9] or
to restore convergence of Newton’s method around a singular solution via deation [11], for example.

Isolating clusters in cases not covered by our technique and nding new algorithms to approximate clusters
are worth future exploration.

1.2. Outline. In Section 2, we consider a square system with a singular zero and, rst, introduce necessary
transformations to put the system in pre-inatable shape with a regular zero of breadth and order d, and
then inate in order to isolate the original singular zero. In Section 3, we demonstrate that the same
procedure applied to a nearby system succeeds in isolating a cluster of roots. In Section 4, we consider
systems that are hard or impossible to put in inatable shape and show that after symbolic manipulation, it is
still possible to isolate a cluster, and the size of the cluster can be bounded from above. Section 5 is devoted
to proofs of our results.

2. Inflation

The rst case we consider is a square system which has a singularity at z. This case is a main step in our
general case in Section 3 since there we replace the given system with a nearby singular system. For
simplicity, we assume z is the origin in many of our computations. Since the point z is explicitly given or
computed as a rational point, no heavy symbolic techniques are needed to perform this translation.

2.1. Regular breadth- systems of order d. Consider a graded local order > on C[x1;:::; Xn], i.e., the order
> respects multiplication and if the total degrees of two exponent vectors and satisfy jj > jj, then x < x.
For a polynomial, we use the phrase initial term to denote the largest nonzero monomial under the order
>, and we use initial form to denote the homogeneous polynomial formed from the terms of the polynomial
with smallest total degree. We dene the breadth of the polynomial system to be the nullity of its Jacobian.

For an ideal | = hFi C[x1;:::;Xn], the standard monomials are the monomials that do not appear as
initial terms of polynomials in I. For each i, we dene the (local) Hilbert function evaluated at i, denoted by
he (i), to be the number of monomials of total degree i appearing as standard monomials. The corresponding
(local) Hilbert series is dened to be HS¢ (t) = o he(i)t'. We note that he (1) = .
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Denition 2.1. Suppose that P = fp1;:::;png is a square polynomial system C[x1;:::;Xn] such that the
origin is an isolated zero of P of breadth . We say that the origin is a regular zero of breadth and order d if the
Hilbert series for hPi at the originis (1+ t+ + t9 1),

We note that when the origin is a regular zero of breadth and order d of a system P, the multiplicity
of the zero at the origin is d.

Throughout the remainder of this section, we provide Algorithm 3, which converts any square polynomial
system into a standardized form, called the pre-inatable form.

Denition 2.2. Suppose that P = fps1;:::; png is a square polynomial system in C[x1;:::; Xn] such that

In the case where our algorithm is applied to a square system with a regular zero of breadth and order
d, we prove in Section 5 that the resulting system is particularly well-structured. In particular, when the
parameters to the pre-inatable algorithm are k = * = d, the resulting system is described as in the following
theorem:

Theorem 2.1. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of
breadth and order d. Then there is a locally invertible transformation that realizes z as a regular zero of

that
(1) the initial degree of each p; is equal tod for1 i ,

Systems of the form described in Theorem 2.1 are ideal for applying ination.
The ination operator of order d and breadth is dened to be
xi 1

xd +1in

S9(xi) =

The ination operator in [6] is of order 2 and breadth .

2.2. Constructing regular zeros. Suppose that a given system G has a singular zero at the origin of
breadth . We present a sequence of transformations to construct an equivalent system that is (; k; ‘)-pre-
inatable for any given k;‘ 2 N, see Algorithm 1.

First, since G has breadth , there is a linear transformation A : C" | C" so that the kernel of the
Jacobian of A := G A is spanned by e1;:::;e, where e; denotes the i-th standard basis vector. This implies

small degree.
Finally, for the given ‘, there is an invertible change of variables, denoted by D+, such that Py  :=

Ck D = fp1;:::;png is a square system of polynomials with the same properties as Cx and the smallest
degree of a term in p+1;:::; pn involving only x1;:::;x is greater than ‘. This change of variables can be
achieved by a sequence of transformations of the form x; ! x; + qi(x1;:::; x) for some polynomial g; and

the remaining variables are left unchanged.
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Algorithm 1 Pre-ination construction

Input: A square polynomial system G with a singular zero z of breadth , and integers d and ‘. Output:
A (; k; ‘)-pre-inatable system whose zero at the origin is of the same multiplicity as z for G.

1: Apply an ane transformation A : C" | C" so that A(0) = z and the kernel of the Jacobian of A

such that b; fori = 1;:::; do not have any linear terms and the linear form of b; is x; for i >
3: Apply a linear map Cx : C[x1;:::;xa]™ ! C[x1;:::;xn]" to produce the system Ck = Cx B =
fc1;:::;cng such that the smallest total degree of a term with x+1;:::;Xxn in c1;:::;c is greater than

The property of interest in this series of transformations is the consequence of the Lemma 5.1, which
proves that the resulting system is (;k;‘)-pre-inatable. The following example explicitly illustrates this
construction:

Example 2.3. [13, Example 4.1] Consider the polynomial system
2x1 + X2 + X2
G= 8xi+4dxa+xy

This system has a zero at the origin and its Jacobian is , which has a one-dimensional nontrivial

1
8 4
kernel spanned by hl; 2i. Therefore, this system is breadth-one. We construct a (1;3;3)-pre-inatable
system from G.

2 L . . .
5 17 which is the unitary matrix which maps the
rst standard basis vector to a nonzero element of the kernel of the Jacobian and the second standard basis
vector to a vector perpendicular to the kernel. The resulting system is

For the linear transform A, we use the matrix 9-1;

X 4xqXx 4x
+ L4 2X1X2 4 252
TS AN P T
211 2X1Xp 22
4 5X2 + 5 S + 5
1
Next, row reduction on the linear part of this system, expressed via the matrix 6 . results in the
’
system 45
( X1Xo + 3x3 )
1A2 -
B=B A= , 4 2
T XKoo Xy
X2+ SRR 0Ps

Next, the transformation for k = 3 is the symbolic transformation that uses the initial x, of the second
polynomial to eliminate monomials involving x> in the rst equation. The transformation is given by the

matrix |

G- 55 SPoas iy e g
0 1
which arrives at the system
8 : 9
G p. < BETEE TS s
: X2+ e i—ghs ’
Finally, the change of variables for * = 3 absorbs the unwanted terms involving x1 into x» via the

2 3
transformation where x> is replaced by x> Sxptg 135- This results in rather long polynomials, but many
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of the coecients are quite small in absolute value. The resulting system starts with

g 3 x3x2 x2x? x1x3 3x* 2
Jpz b B 4 o
_ _ Xq ¥+ 20’35' %P5 B?EFrPs  Fobs t ol
P,.=H D £
3;3 3 . 2 2 4 3 .
Y X XaXo 4 _Xp X1Xa , X X1Xg .
55 20 5 250 500 5 1250 5 ’

Since the transformations B and Cx are both invertible for any k, we observe that A, B, and Ci all
generate the same ideal. The construction of Py;- from G, as in Example 2.3, forms a preprocessing step so
that the resulting system is pre-inatable.

Unfortunately, not all pre-inatable systems can be successfully inated so that their zeros can be isolated
using our techniques. Only those systems where the (;d;d)-pre-inatable system has a regular zero of
breadth and order d can be inated with our techniques.

2.3. Applying ination. Suppose that P is a (;d; d)-pre-inatable system where the origin is a regular zero

of breadth and order d. The system P $9 is then a square system where the initial forms are all of degree d

and form a regular sequence, see Section 5.2. Therefore, P S9 has a zero of multiplicity d" at the origin.
Let (P S9)q4 denote the square homogeneous system of degree d consisting of the initial forms of P S9. Since

this system does not vanish on the unit sphere, let M be a positive lower bound on k(P S$%)4k over the
(Hermitian) unit sphere.

Since all of the terms of P S¢ (P S9)q4 are of degree greater than d, there is a constant C > 0 such that for
all kxk 1, kP S9(x) (P S9)g(x)k Ckxk9*1: Then, by applying Rouche’s theorem as in Lemma 5.6 both (P
Sd)g and PS¢ have d" zeros in the ball of radius "

While it is straight-forward to observe that the origin is a zero of multiplicity d" for PS¢, the content
of this computation is that there are no additional zeros in the ball of radius ". The process established is
summarized in Algorithm 2.

Example 2.4. Continuing Example 2.3, the polynomial system P3.3 is (1; 3; 3)-pre-inatable, and the origin is
a regular zero of breadth 1 and order 3. The ination step replaces x> with x3. Tbe resulting system is

8 o 9

g 2
3 X + m'*s—sdv—swo‘b‘r'—ﬁ'% :rodoo +

P. S =
3;3 1 :X§+ le + X2 + P+'

In this example, (P3;3 $%)3 = fx*;x?g, and k(P3;3 S3)3(x)k 1 for x of norm 1. We observe that the sum of
the absolute values of the noninitial coecients of P3;3 S3 is 28125000000 %00 (28818 Since this is

less than ,, for any xed 0< " 1 and kxk =",

(1) k(P3;3 Sq ):33 )k > kP33 Sl()é) (P3;3 51)3(%()k1

Hence, Rouche’s theorem applies and P3;3 S3 jhas 32 zeros in the ball of radius "
Since the ball containing the 9 zeros is dened by jx1j2+jx2j2 ", we can apply the inverse of the changes of
variables A, D3, S; t& compute the following region in the original coordinates,

(Xl 2X2)2 + (Xl 2X2)33 n2,
25 625 ’

1. . 1
gJx1 2ij2+ 51—=3(2x1+ X2) +

containing the triple zero of F. We observe that the ination map creates a three-to-one cover of the zeros
of P3;3 S; 3o those of P3.3, which conrms the root count of F.

Theorem 2.2. Suppose that G is a square polynomial system where z is a regular zero of breadth and order
d of G. Algorithm 2 produces a region containing z and no other zeros of G. Moreover, the multiplicity of the
zero at z is d.

We note that that when considering one (exact) singular zero, we produce only the large region R since
the small region R can be taken to be trivial, i.e., R = fzg.
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Algorithm 2 Generalized ination for isolating singular zeros

Input: A square polynomial system G with a regular zero z of breadth and order d.
Output: A region R containing the zero z and no other zeros of G.
1: Apply Algorithm 1 to G to construct a (; d; d)-preinatable system Pgq;4.
2: Using the ination operator $¢, construct the system P4.q4 S9, and nd " so that P4.4 S has d" zeros in the
ball of radius ".
3: Apply the inverse of A D« S td'the ball of radius " to get the isolating region R..

3. Clusters of Zeros

In the intended application of our approach, we do not expect to be given a system that has a multiple
zero, as explored in Section 2. Instead, we expect to be given a system that has a cluster of zeros, each with
multiplicity one. Suppose that F is a square system of polynomials and z approximates the center of a
cluster of zeros of F. Our approach is to nd a nearby singular system and use that system to inform about the
zeros of F.

3.1. Isolating clusters. Suppose that system G has a (singular) zero at z whose coecients are close to those
in F. Suppose also there exist invertible maps T : C" ! C" and U : C[x1;:::;xn]" ! C[x1;:::;Xn]"such that
the origin is a regular zero of breadth and order d of U G T. One candidate for U and T is presented in
Section 2.2. We then apply these maps and ination to the original system to get the systemU F T S9. Let (U
F T S9)q4 denote the homogeneous part of this system of degree d. Similarly, wewrite (U F T $9).4 and (U F
T S9)<q4 for the terms greater than or less than d.

Let M be a positive lower bound on k(U F T S%)gk over the (Hermitian) unit sphere. Since all the terms
of (UF TS9).4 are of degree greater than d, there is a constant M1 > 0 such that for all kxk 1, k(U F T
S9)sak Mikxkd*1. Similarly, since all terms of (U F T $9)<q have degree less than d, there is a constant

M2 > 0 such that for all kxk 1, k(U F T S)egk < Ma. If 2,2 ™ <, dthen for any " betMeen " = 2

1=d and "+ = ,y— k(U F T SM(x)k dominates the other parts of UK T 59 and, by Rouche’s theorem, see

Lemma 5.6, UF TSY and (U F T $%)4 have the sarﬁe number of zeros in the ball of radius ". The smaller
region R corresponds to the lower bound " and the larger region R . corresponds to the upper bound ",
on".

Example 3.1. Consider the polynomial system

_ 2x1+ x2 + x5+ 0:001
F = 8xqy+ 4xa + x3 + 0:001

with approximate zero z = ( 0:0001; 0:0001). This system is a perturbation of our running example from
Example 2.3. The three zeros in the cluster are approximately ( 0:043 0:082i;0:091 + 0:158i), ( 0:043 +
0:082i;0:091 + 0:158i), and (0:086; 0:181), and z approximates their average.

First, we shift the system F so that z is at the origin. The resulting system is very close to system G from
Example 2.3. After applying the same transformations from Examples 2.3 and 2.4, the resulting system is (after
rounding) is

0:0084 + 0:0013x1 + 0:000078xi + x-’i + O:OOlGxi + 1
0:000022 + 0:00002x; + 0:00000089x% + 0:00000008x3 + X3 + :::

In this case, the cubic part of the system is bounded from below on the unit circle by 0:4984. On the other
hand, the sum of the coecients of degree less than 3 is greater than 0:009757, which can be used for M.
Finally, the sum of the coecients of degree greater than 3 is less than 0:2746, which can be used for M.
Therefore, we may choose "+ = 0:9075 and " = 0:3396, as illustrated in Figure 1 in the original domain.

The only other zero of the system is approximately equal to (4;8) and is far away from all depicted
isolating regions. We also note that the regions are not convex and the boundaries of the regions are only
piecewise smooth.

Remark 3.2. One approach to compute M is based on sum-of-squares computations as in [6]. For the
bounds M3 and M3, one way to get these bounds is to sum the absolute values of the coecients appearingin
the appropriate systems.
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Figure 1. Contours of isolating regions for a cluster of zeros of F. The inner- and outer-
most contours are the boundaries of R and R., the smallest and largest isolating regions
our method produces. The (red) point in the second quadrant depicts the real part of two
conjugate nonreal zeros.

Algorithm 3 Generalized ination for isolating clusters of zeros

Input: A square polynomial system G with a cluster of zeros near z and d 2 N.

Output: A pair of regions R+ and R containing the cluster and no other zeros of G such that R R.. 1:
Construct a singular system G close to the given system.
2: Apply Algorithm 1 with parameters k = “ = d to G and collect the two invertible maps U and T applied

toGasU G T.

3: Compute U F T S9.

4: Compute a lower bound M on (U F T S
Compute an upper bound M on (U F T S
6: Compute an upper bound M on (U F T

9)4 on the (Hermitian) unit sphere. 5:

)
d),4=kxkd*1 on the unit disk.
S9)<q on the unit disk. 7:

Compute " = 2Mz 9 qpqw, o M
. 1
g8 if " < ", then
9: Apply the inverse of T S9 to the balls of radii " and ". to get the isolating regions R and R .
10: end if

Theorem 3.1. Suppose that F is a square polynomial system where z approximates a cluster of zeros. If
Algorithm 3 succeeds, then it produces a pair of regions R and R containing z and the cluster of zeros
such that R R.. Moreover, the number of zeros in the cluster is d.

3.2. Constructing a singular system. In order to complete the steps outlined in Section 3.1, we need to
be able to construct an appropriate singular system G. One way to construct such a system is outlined in [6,
Section 2.1] via the singular value decomposition of the Jacobian DF (z). This construction also provides as
a count of the number of small singular values of the Jacobian.
For any d > 0, we may apply Algorithm 2 to G to construct a (; d; d)-pre-inatable system. It is unlikely

that the resulting system has the origin as a regular zero of breadth and order d.
Even though the polynomial system resulting from Algorithm 2 might not be amenable to ination itself, the

constructed transformations, when applied to F as in Section 3.1, may succeed in isolating the cluster of
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F. We have experimental evidence that applying these transformations will be successful when extra terms

Remark 3.3. The value of d in the construction of the pre-inatable system may either be given or guessed
through the computations. In particular, we may apply Algorithm 2 with many dierent values of d until the
degree-d homogeneous part of the resulting system has enough terms with coecients larger than some
tolerance as to not vanish on the unit sphere.

4. Irregular systems

Even when the approach in Section 2 fails for singular systems, we present ways to isolate the cluster and
estimate its size. Three instances where the approach in Section 2 may fail are when the origin is a regular
zero of breadth and order d, when the initial forms of the (; d; d)-pre-inatable system vanish on the unit sphere,
and when the initial system is not square.

4.1. Uneven ination. The structure of the polynomial system in Theorem 2.1 are designed so that we know
the structure of the system after ination, see Section 5.2. In particular, several of the steps in the
construction of a pre-inatable system are designed to control which terms appear in the initial form of the
system after ination.

When the initial forms of a polynomial system do not vanish on the unit sphere, but they do not have the
appropriate degrees, we may apply an ination operator that changes the degree of each variable individually. To
illustrate this, consider the following motivating example:

Example 4.1. Consider the following family ng polynomial syatems, where a is a parameter:

< X1 =

— 2 2 4
G = _ X5+ axg+ X3
x3 ’

3

An initial attempt might be to inate by replacing x1, x2, and x3 by x6,1x3,2and x2,3respectively. Unfortu-
nately, after this ination step, the resulting system is 9
8
< x$ =
axf+ x5+ x§
: . ;
X3

We cannot apply our approaches unless a = 0, in which case the initial forms are all of degree 6 and do not
vanish on the unit sphere.

When a = 0, the inated system has a zero of multiplicity 63 = 216 at the origin and Rouche’s theorem can
be applied to isolate these zeros. Moreover, since the ination map is 36-to-one, this region isolates the 6
solutions of the original system.

When a = 0, it is impossible to choose an ination map so that the initial forms are all of the same degree.
In this case, the ination approach fails and we must consider alternate methods.

For a general singular system G where zero is not a regular zero, suppose that it is possible to replace each
variable by a power so that all the initial terms of the resulting system have the same degree. In this case,
Rouche’s theorem, see Lemma 5.6 can be applied to isolate the cluster. For this approach to succeed, it is
usually important that the initial forms of the system G have some structure and that problem-specic higher
degree terms have a zero coecient.

4.2. Upper bounds. One may attempt a symbolic transformation that leads to a system where Rouche’s
theorem applies, see Lemma 5.6. Given a singular system G of m functions in n unknowns with m n with an
isolated zero at the origin, there is an n m matrix T such that the initial forms of the polynomials in TG do
not vanish on the unit sphere. Even in the case m = n, it is possible to nd a suitable T that isinvertible in a
neighborhood of the singularity at the origin. Therefore, the multiplicity of the origin as a zero of TG is only
an upper bound of the multiplicity of G.

One popular \rewriting" method is to derive T from a local Grebner basis computation. In particular, we
choose n elements whose initial terms are pure powers from the Grebner basis. This process also applies to the
overdetermined case because we are choosing only n elements from the Grebner basis regardless of the
number of equations in F. We illustrate this method in the following example:
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Example 4.2. Consider the following singular polynomial system

8x X x32
< 1X2 3=
G=  X2X3 x31
: 3,
X1X3 X2

The initial forms simultaneously vanish on the unit sphere in the coordinate directions. From a local Grebner
basis calculation, there are three elements in the basis whose initial terms are pure powers:

9
< Xé‘ X§ =
xt  x3
Cx3 o xPx3’

Therefore, we can nd a system of polynomials in the ideal generated by G that have the same degree for
their initial forms. In particular, we have the elements

8 9

<Xz Xa2x4=
P= xP xi1x3

T xz xgx3’

This system can be obtained by multiplying the equations of G by the following matrix, derived from a local

Grebner basis calculation:
51
X2X3 0 X5
T=@ 0 X2 x1x2A:
x3  x3  Xx2x3
Since the initial forms do not vanish on the unit sphere, we can nd a lower bound M for kPsk on the unit
sphere. Then, by following the approach of Section 2, we nd a region R. that isolates the singularity at the

origin. In this case, the singularity has multiplicity at most 4 4 5 = 80 while the true multiplicity is 11.

In the cluster case, i.e., when F is given with z approximating a cluster of zero, a suitable T can be found
by executing the steps of a Grebner basis computation while dropping terms with small coecients to
construct G. As long as TF G is suciently small, then Rouche’s theorem can be used.

Since the multiplicity of z may increase when F transforms into G, this increase also applies to the size
of the corresponding cluster of TF. Thus, this process may not provide the exact size of the cluster, but an
upper bound of it.

5. Proofs

We provide proofs for several of the stated facts in the paper.

5.1. Pre-inatable form. We prove that the procedure described in Section 2.2 and Algorithm 1 produces a
(; k; ‘)-pre-inatable system for any square polynomial system of breadth .

Lemma 5.1. Let G be a square polynomial system with a singular zero at z of breadth . The result of
Algorithm 1 with parameters k and ‘ on G is a (; k; ‘)-pre-inatable system of polynomials with a zero at the
origin whose multiplicity is the same as the multiplicity of z for G.

Proof. We rst show that the multiplicity of the origin and z are the same for the input and output
systems. The rst step of the algorithm is an invertible ane transformation on the domain, and such
transformations do not change the multiplicity of a zero. The second and third steps replace the system with a
new system that generates the same ideal, hence the multiplicity does not change. Finally, the last step uses
transformations of the form xi ! xi + qi(x1;:::;x), which preserve leading forms of all polynomialsin the
ideal, and, hence preserve the Hilbert series and multiplicity.

Now, we prove that the nal system is (; k; ‘)-pre-inatable. By the discussion above, the breadth of the system
does not change under the steps of Algorithm 1, therefore, the nal system has the correct breadth. In addition,
the ane transformation in the rst step rotates the domain so that the resulting Jacobian has the correct kernel.
The second and third steps do not change the kernel of the Jacobian, and the last step maintains the initial
terms, so the Jacobian is also preserved. The rst and second steps prepare the initial
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terms of the last n polynomials via standard linear algebra, and these initial terms are not changed in
the last two steps.

Finally, the third and fourth steps can be broken down into a sequence of cancellation steps, each of which
remove a term of low degree and replace it with terms of higher degree. Through induction, all of the desired
terms have coecient zero. Therefore, the resulting system is in (; k; ‘)-pre-inatable form.

This construction explicitly leads to the following corollary, which proves one of the conditions in Theo-
rem 2.1.

Corollary 5.2. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of

breadth and order d. Algorithm 1 with parameters k = ‘ = d applied to this system results in a (; d; d)-
pre-inatable system such that the initial form of p; is x; for + 1 i n.

5.2. Regular zero form. The following proof is an algorithmic proof of the remaining two conditions in
Theorem 2.1. It provides a construction of an analytic change of variables that transforms a system with a
regular zero of breadth and order d into one of the desired form.

Befori, beginning the proof, wei:introducg some notation and a fact about Hilbert series. For series A(t)
= o ali)t' and B(t) = o DP(i)t', we let A(t) B(t) if a(i) b(i) for all i. In addition, we
consider the following lemma for the proof:

Moreover, generic homogeneous forms of degree d form a regular sequence, and the Hilbert series of a

. dyn
regular sequence is (Tli—tt)ﬁ

Lemma 5.4. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of breadth and
order d. Algorithm 1 with parameters k = ‘ = d applied to this system results in a (; d; d)-pre-inatable system
such that the initial degree of each p; is equal to d for 1 i

Proof. In order to prove this lemma, we begin with the transformation from Section 2.2 that transforms the

implies that p1;:::;p cannot have any monomials of degree less than d.
We now prove that the initial degree of p1;:::;p must be d. Suppose that p 2 hpi;:::; pni such that the
initial term of p is of degree d and involves only x1;:::;x. Briey, we write p = gipi. Since, by

Lemma 5.5. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of breadth and
order d. Algorithm 1 with parameters k = ‘ = d applied to this system results in a (; d; d)-pre-inatable system

Proof. Suppose that (p1)d;:::;(p)a do not form a regular sequence. Let r be the smal':,est degree where
there exists 1 < j and homogeneous polynomials mq;:::; m; of degree r dsuch that !_; mi(pi)a= 0
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contradicts the assumption on the Hilbert series. Let p 2 hp1;:::; pi such that tpe initial degree of p is r and
the initial form of p is not in h(p1)4;:::; (p)ai. Since p 2 hp1;:::;pi, p = gipi for some polynomials
gi. Suppose that the gi’s have been chosen so that the minimum initial degree of gipi is maximized. Let m be
this initial degree. Moreover, assume that the gi’s have been chosen so that the largest index where the initial
degree of gipi is m is minimized. Let this index be ‘.

Let (gi)m o denote the degree m  d homogeneous part of g;. Since the initial degree of gipi is at least m,
either (qi)m 4 = 0 or (gi)m 4 is the initial form of gi. In addition, ;=1(qi)m d(pi)a = 0 since otherwise,
this would be the initial form of p and would also be in h(p1)4;:::; (p)di. Moreover, the sum is not a sum of 0’s

there exist homogeneous polynomials s1;:::;s< 1 which are either 0 or of degree m 2d such
that (q)m a= P i_4 si(pi)a. Then,

X X1 X
qgipi = qipi + qp- + qipi
i=1 i=1 i='+1
X1 X
= qipi + ((@)m a+ (- (q)m d))p-+ qipi
i=1 i=+1
X1 X1 X
= qipi + si(pi)ap-+ (@ (a)m da)p- + qipi
i=1 i=1 i='+1
£ 1 K1 X
= qipi + si(pi (pi (pi)a))p+ (4 (g )m d)p-+ qipi
i=1 i=1 | i=‘+1
X1 X 1 ' Xsi((pi)d
= (wrsipdeis pi)+ (4 (q)m o) P+ qipi:
i=1 i=1 i=+1

The initial degree of (pi)qd  pi is greater than d and that of g+ (q‘)m 4 is greater than m d as well. We see
that this violates the assumptions on m and ‘. In other words, either the minimum initial degree of a

5.3. Application of Rouche’s theorem. Finally, we prove the consequence of Rouche’s theorem that we
use to certify our algorithms.

Lemma 5.6. Let P be a square polynomial system and Q be a square homogeneous polynomial system of
degree d. Let S+ denote the n-dimensional (Hermitian) unit sphere of radius ". Suppose that
(1) There is a positive constant M such that minfkQ(x)k : x 2 S1g M and
(2) There are constants M1 and M and a decomposition P = P1 + P2 + Q such that for all " 1
(a) maxfkPi(x)k :x 2 Svg M"d*1,
(b) maxfkP2(x)k : kxk 1g lh/lz

i
1=d 1=d . .
If LR"AZ < M-, then for any " 2 ;%'r; ; ¥, » P has d" zeros in the ball of radius ".
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Proof. The rst condition implies that Q has no zeros on the unit sphere, so all of its d" zeros are at the
origin. For x satisfying the given conditions,

kP(x) Q(x)k kP1(x)k+ kP2(x)k M1"%*1+ M, M"® kQ(x)k:

Then, by the multivariate version of Rouche’s theorem [5, Theorem 2.12], both P and Q have the same
number of zeros in Sw.
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