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I S O L A T I N G  C L U S T E R S  O F  Z E R O S  O F  A N A L Y T I C  S Y S T E M S  U S I N G
A R B I T R A R Y - D E G R E E  I N F L A T I O N

M I C H A E L  B U R R ,  K I S U N  L E E ,  A N D  A N T O N  L E Y K I N

A b s t r a c t .  Given a system of analytic functions and an approximation to a cluster of zeros, we wish to
construct two regions containing the cluster and no other zeros of the system. The smaller region tightly
contains the cluster while the larger region separates it from the other zeros of the system. We achieve this
using the method of ination which, counterintuitively, relates it to another system that is more amenable to
our task but whose associated cluster of zeros is larger.

1. Int roduc t i on

Suppose that F  is a system of m analytic function in n unknowns, where m  n, and z 2  C n  is a point near
several isolated zeros of F ,  i.e., z approximates a cluster of zeros of F .  The zero cluster isolation problem is
to compute two closed regions R   and R +  and a positive integer c such that

(1) z 2  R    R + ,  where R +
 is the interior of R +  and

(2) the number of zeros of F  is the same in both R   and R +  and equals c.
In other words, R   encircles a cluster of c zeros of F ,  and this cluster of zeros is isolated from the other zeros
of F  by R +  n R      . We also consider the relaxation where c is an upper bound on the number of zeros in R
and R + .

We develop the method of ination, which applies in the square system case (m =  n) and gives the exact
count c when it succeeds. When ination fails and in the overdetermined case, we provide a method that
yields an upper bound on the size of the cluster.

At a high level, we have the following steps:
(1) From the given system F ,  nd a nearby system G with a singularity at z,
(2) compute the structure of the singularity of G at z, and
(3) use the relationship between F  and G to infer the location and count of the zeros of F  near z from

the structure of the singularity of G at z.

The word nearby should only be used in a colloquial and motivational sense since we do not provide a
metric for identifying nearness. We consider both numerical and symbolic perturbations of F  to generate G,
but we require the nal computation to be certied. In other words, as part of their computations, our
algorithms not only generate both the integer c and the regions R   and R + ,  but they also provide a proof of
correctness, showing that R      , R + ,  and c have the required properties.

Since all of our constructions and computations pertain to a small neighborhood of one point and tolerate
small perturbations of functions in that neighborhood, one may replace analytic functions with polynomials as
long as there is an eective way to estimate the dierence with the original functions. Hence, we focus on the
polynomial case throughout the remainder of the paper.

1.1. Motivation and contribution. Many numeric and symbolic algorithms struggle with computing or
approximating zeros of zero-dimensional systems of polynomials that are either singular or clustered. For
some algorithms, however, providing information about the clusters, such as their sizes, locations, and
distances from the other zeros, can be used to restore the eciency of these algorithms [7, 10]. In addition, data
about these clusters can also be used to derive more precise estimates on the algorithmic complexity of
algorithms, see, for example, [14, 3, 4, 1].

Our main contribution is in generalizing the technique dubbed ination and introduced by the rst and third
authors in [6]. Counterintuitively, the ination procedure transforms a square system with a multiple zero into
a square system with the same multiple zero but of higher multiplicity.
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In [6], a notion of a regular zero of order d is dened. In this paper we dene a regular zero of order d
and breadth  where:

 a regular zero of order d corresponds to a regular zero of order d and breadth n,
a regular zero (in the usual sense) is a regular zero of order 1.

In this new terminology, the original ination procedure of [6] attempts to create a regular zero of order 2 from
a regular zero of order 2 and arbitrary breadth. Here we develop ination of arbitrary order, a routine to create
a regular zero of order d from a regular zero of order d and arbitrary breadth. This turns out to be much more
subtle and intricate than the approach in [6]. In addition, for systems where ination cannot be applied directly,
we develop new methods to isolate the cluster and provide upper bounds on the size of the cluster.

The shape of isolating regions is dictated by the type of the singularity the input system is close to.
Although these regions may in turn be easily bounded by Euclidean balls, this would be an unnecessary
relaxation: the region R   that we construct (see, for instance, Figure 1) is natural and encapsulates the
cluster much closer than the ball in which it may be inscribed.

The symbolic procedure of ination is carried out for G in the view of numerical applications. Namely, the
transformations that we use are applied to a nearby polynomial system F  with a cluster of zeros. At the end,
the eect of the transformations on the dierence between F  and G must be small enough to apply the
multivariate version of Rouche’s theorem [5, Theorem 2.12]. We note that our certication step is similar to
the certication in [2], but the goals of the papers are dierent and the use of ination to regularize the system is
one of the novel contributions of the current paper.

We note that the paradigm in which we operate doesn’t distinguish between scenarios where there is
only one singular zero and scenarios where several simple or singular zeros are tightly clustered. We aim to
produce the isolating regions as described in the introduction. We point out that our procedures to construct a
nearby system with a singular zero do not work universally. Producing a nearby singular system in a more
general setting is the focus of [12], for instance. We also assume that an approximation z is given to us.
There is more focused work on algorithms to approximate a cluster in case of embedding dimension one [9] or
to restore convergence of Newton’s method around a singular solution via deation [11], for example.

Isolating clusters in cases not covered by our technique and nding new algorithms to approximate clusters
are worth future exploration.

1.2. Outl ine.  In Section 2, we consider a square system with a singular zero and, rst, introduce necessary
transformations to put the system in pre-inatable shape with a regular zero of breadth  and order d, and
then inate in order to isolate the original singular zero. In Section 3, we demonstrate that the same
procedure applied to a nearby system succeeds in isolating a cluster of roots. In Section 4, we consider
systems that are hard or impossible to put in inatable shape and show that after symbolic manipulation, it is
still possible to isolate a cluster, and the size of the cluster can be bounded from above. Section 5 is devoted
to proofs of our results.

2. I n f l at i o n

The rst case we consider is a square system which has a singularity at z. This case is a main step in our
general case in Section 3 since there we replace the given system with a nearby singular system. For
simplicity, we assume z is the origin in many of our computations. Since the point z is explicitly given or
computed as a rational point, no heavy symbolic techniques are needed to perform this translation.

2.1. Regular  breadth- systems of order d. Consider a graded local order >  on C[x1; : : : ; xn ], i.e., the order
>  respects multiplication and if the total degrees of two exponent vectors  and  satisfy jj >  jj, then x  <  x.
For a polynomial, we use the phrase initial term to denote the largest nonzero monomial under the order
> ,  and we use initial form to denote the homogeneous polynomial formed from the terms of the polynomial
with smallest total degree. We dene the breadth  of the polynomial system to be the nullity of its Jacobian.

For an ideal I  =  hF i   C[x1; : : : ; xn ], the standard monomials are the monomials that do not appear as
initial terms of polynomials in I .  For each i, we dene the (local) Hilbert function evaluated at i, denoted by
hF (i),  to be the number of monomials of total degree i  appearing as standard monomials. The corresponding
(local) Hilbert series is dened to be H S F ( t )  = i0 hF (i)t i .  We note that hF (1) =  .
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Denit ion 2.1. Suppose that P  =  fp1; : : : ; png is a square polynomial system C[x1; : : : ; xn ] such that the
origin is an isolated zero of P  of breadth . We say that the origin is a regular zero of breadth  and order d if the
Hilbert series for hP i at the origin is (1 +  t +   +  td 1).

We note that when the origin is a regular zero of breadth  and order d of a system P ,  the multiplicity
of the zero at the origin is d.

Throughout the remainder of this section, we provide Algorithm 3, which converts any square polynomial
system into a standardized form, called the pre-inatable form.

Denit ion 2.2. Suppose that P  =  fp1; : : : ; png is a square polynomial system in C[x1; : : : ; xn ] such that
the origin is an isolated zero of P .  We say that P  is a (; k; ‘)-pre-inatable system if

(1) P  has breadth  and the kernel of the Jacobian is he1; : : : ; ei, where ei denotes the i-th standard
basis vector,

(2) the only terms in p1; : : : ; p involving x+1 ; : : : ; xn have degree greater than k, and
(3) the only terms in p+1; : : : ; pn involving only x1; : : : ; x have degree greater than ‘ .

In the case where our algorithm is applied to a square system with a regular zero of breadth  and order
d, we prove in Section 5 that the resulting system is particularly well-structured. In particular, when the
parameters to the pre-inatable algorithm are k =  ‘  =  d, the resulting system is described as in the following
theorem:

Theorem 2.1. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of
breadth  and order d. Then there is a locally invertible transformation that realizes z as a regular zero of
breadth  and order d at the origin of a polynomial system P  =  fp1; : : : ; png which is (; d; d)-pre-inatable such
that

(1) the initial degree of each pi is equal to d for 1  i   ,
(2) the initial forms of p1; : : : ; p do not vanish on the unit sphere in x1; : : : ; x, and
(3) the initial form of pi is x i  for  +  1  i   n.

We observe that when the second condition holds, the initial forms of p1; : : : ; p form a regular sequence.
Systems of the form described in Theorem 2.1 are ideal for applying ination.

The ination operator of order d and breadth  is dened to be

x i 1  i
i x i  +  1  i   n

The ination operator in [6] is of order 2 and breadth .

2.2. Construct ing  regular zeros. Suppose that a given system G has a singular zero at the origin of
breadth . We present a sequence of transformations to construct an equivalent system that is (; k; ‘)-pre-
inatable for any given k; ‘ 2  N, see Algorithm 1.

First, since G has breadth , there is a linear transformation A  : C n  !  C n  so that the kernel of the
Jacobian of A  : =  G  A  is spanned by e1; : : : ; e, where ei denotes the i-th standard basis vector. This implies
that the linear parts of the polynomials in A  only involve x+1 ; : : : ; xn .

Second, there is a linear map B  : C[x1 ; : : : ; xn ]n !  C[x1 ; : : : ; xn ]n such that B  : =  B   A  =  fb1; : : : ; bng is a
square system of polynomials where b1; : : : ; b do not have any linear terms while the linear part of bi  is x i
for i  >  . The map B  can be chosen to implement row reduction on the linear parts of the polynomials of
A.

Next, for the given k, there is an invertible linear map C k  : C[x1 ; : : : ; xn ]n !  C[x1 ; : : : ; xn ]n such that
Ck : =  C k  B  =  fc1; : : : ; cng is a square system of polynomials with the same properties as B, and, in addition,
in c1; : : : ; c, the smallest total degree of a term involving x+1 ; : : : ; xn is greater than k. This transformation
can be achieved by using the initial terms of b+1; : : : ; bn to eliminate monomials involving x+1 ; : : : ; xn of
small degree.

Finally, for the given ‘,  there is an invertible change of variables, denoted by D ‘ ,  such that P k ; ‘  : =
Ck  D ‘  =  fp1; : : : ; png is a square system of polynomials with the same properties as Ck and the smallest
degree of a term in p+1; : : : ; pn involving only x1; : : : ; x is greater than ‘.  This change of variables can be
achieved by a sequence of transformations of the form x i  !  x i  +  qi (x1 ; : : : ; x) for some polynomial qi and
the remaining variables are left unchanged.
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Algor i thm 1 Pre-ination construction
Input:  A  square polynomial system G with a singular zero z of breadth , and integers d and ‘.  Output :
A  (; k; ‘)-pre-inatable system whose zero at the origin is of the same multiplicity as z for G.

1: Apply an ane transformation A  : C n  !  C n  so that A(0) =  z and the kernel of the Jacobian of A
=  G  A  is spanned by the standard basis vectors e1; : : : ; e.

2: Apply a linear map B  : C[x1 ; : : : ; xn ]n !  C[x1 ; : : : ; xn ]n to construct the system B  =  B A  =  fb1; : : : ; bng
such that bi  for i  =  1; : : : ;  do not have any linear terms and the linear form of bi is x i  for i  >  .

3: Apply a linear map C k  : C[x1 ; : : : ; xn ]n !  C[x1 ; : : : ; xn ]n to produce the system Ck     =  C k   B  =
fc1; : : : ; cng such that the smallest total degree of a term with x+1 ; : : : ; xn in c1; : : : ; c is greater than
k.

4: Apply a change of variables D ‘  producing the system P k ; ‘  =  Ck D ‘  =  fp1; : : : ; png such that the smallest
total degree of a term in p+1; : : : ; pn with only x1; : : : ; x is greater than ‘.

The property of interest in this series of transformations is the consequence of the Lemma 5.1, which
proves that the resulting system is (; k; ‘)-pre-inatable. The following example explicitly illustrates this
construction:

Example 2.3. [13, Example 4.1] Consider the polynomial system
2x1 +  x2 +  x2

8x1 +  4x2 +  x2

This system has a zero at the origin and its Jacobian is 8     4 , which has a one-dimensional nontrivial

kernel spanned by h1;  2i. Therefore, this system is breadth-one. We construct a (1; 3; 3)-pre-inatable
system from G.

For the linear transform A, we use the matrix p
5

1 2 , which is the unitary matrix which maps the

rst standard basis vector to a nonzero element of the kernel of the Jacobian and the second standard basis
vector to a vector perpendicular to the kernel. The resulting system is

( )

A  =  G  A  = 5x2 +   1  +  4 x 1 x 2  +          2

:
2

 
5

1
5 

2  
5

1
Next, row reduction on the linear part of this system, expressed via the matrix 0  p  ; results in the

system

B =  B   A  =
x1 x2 +  3x 2

2 :
2 5

p
5 5

p
5 20

p
5

Next, the transformation for k =  3 is the symbolic transformation that uses the initial x2 of the second
polynomial to eliminate monomials involving x2 in the rst equation. The transformation is given by the
matrix !

C3  =   
0 

5     5 5x1 +  15     5x 2  +   
4 +  x 1 x 2     

16 ;

which arrives at the system

<  3 x 1      x 3 x 2 x 2 x 2 x 1 x 3 3x 4
      

9
C3 =  C3   B  = 20     5 20 

2
5 8     5 16 

2  
5 320     5 :

1  1      2 2
5     5 5     5 20     5

Finally, the change of variables for ‘  =  3 absorbs the unwanted terms involving x1 into x2 via the
transformation where x2 is replaced by x2   

5
p

5  
  125 . This results in rather long polynomials, but many
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of the coecients are quite small in absolute value. The resulting system starts with

<  3 x 4
     x 3 x 2 x 2 x 2 x 1 x 3 3x 4

     =
P =  H   D  = 20     5 20     5 8     5 16     5 320     5

x2   
5

p
5  

+  
20

p
5 

  1  
0 +  

500
p

5 
  

1250
p

5 
+  : : :

Since the transformations B  and C k  are both invertible for any k, we observe that A ,  B, and Ck all
generate the same ideal. The construction of P k ; ‘  from G, as in Example 2.3, forms a preprocessing step so
that the resulting system is pre-inatable.

Unfortunately, not all pre-inatable systems can be successfully inated so that their zeros can be isolated
using our techniques. Only those systems where the (; d; d)-pre-inatable system has a regular zero of
breadth  and order d can be inated with our techniques.

2.3. A p p l y i n g  ination. Suppose that P  is a (; d; d)-pre-inatable system where the origin is a regular zero
of breadth  and order d. The system P   S d is then a square system where the initial forms are all of degree d
and form a regular sequence, see Section 5.2. Therefore, P   S d has a zero of multiplicity dn at the origin.

Let ( P   S d )d denote the square homogeneous system of degree d consisting of the initial forms of P   S d . Since
this system does not vanish on the unit sphere, let M be a positive lower bound on k(P  S d)dk over the
(Hermitian) unit sphere.

Since all of the terms of P   S d   ( P   S d )d are of degree greater than d, there is a constant C  >  0 such that for
all kxk  1, kP  S d (x)    ( P   S d )d (x)k  C kxkd+1 : Then, by applying Rouche’s theorem as in Lemma 5.6 both ( P
S d )d and P   S d have dn zeros in the ball of radius ".

While it is straight-forward to observe that the origin is a zero of multiplicity dn for P   S d , the content
of this computation is that there are no additional zeros in the ball of radius ". The process established is
summarized in Algorithm 2.

Example 2.4. Continuing Example 2.3, the polynomial system P3;3 is (1; 3; 3)-pre-inatable, and the origin is
a regular zero of breadth 1 and order 3. The ination step replaces x2 with x3. The resulting system is

< 3 x 4 x 5 7x 6 x 3 x 3 x 7 =
3 20     5 500 5000     5 20     5 10000

: x 2  +  
500

1 
5 

  
5

p
5  

+  31250    
250 +  

312500
p

5 
+  ;

In this example, (P3;3  S 3 )3 =  fx3 ; x3 g, and k(P3;3  S 3 )3 (x)k  1 for x  of norm 1. We observe that the sum of
the absolute values of the noninitial coecients of P3;3  S 3 is 

78125000000 
3 

5 
+  3906250000  0:251981. Since this is

less than 2 , for any xed 0 <  "  1 and kxk =  ",

(1) k(P3;3  S1 )3 (x)k >  kP3;3  S1 (x)       (P3;3  S1 )3 (x)k:

Hence, Rouche’s theorem applies and P3;3  S 3 has 32 zeros in the ball of radius ".
Since the ball containing the 9 zeros is dened by jx1j2 + jx2 j2  ", we can apply the inverse of the changes of

variables A, D3 , S1 to compute the following region in the original coordinates,

5 
jx1      2x2j2 +  

51=3 (2x1 +  x2 ) +  
(x1      2x2)2 

+  
(x1      2x2)3 3  

 "2;

containing the triple zero of F .  We observe that the ination map creates a three-to-one cover of the zeros
of P3;3  S1 to those of P3;3 , which conrms the root count of F .

Theorem 2.2. Suppose that G is a square polynomial system where z is a regular zero of breadth  and order
d of G. Algorithm 2 produces a region containing z and no other zeros of G. Moreover, the multiplicity of the
zero at z is d.

We note that that when considering one (exact) singular zero, we produce only the large region R +  since
the small region R   can be taken to be trivial, i.e., R   =  fzg.
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Algor i thm 2 Generalized ination for isolating singular zeros
Input:  A  square polynomial system G with a regular zero z of breadth  and order d.
Output :  A  region R +  containing the zero z and no other zeros of G.

1: Apply Algorithm 1 to G to construct a (; d; d)-preinatable system Pd;d.
2: Using the ination operator S d, construct the system Pd;d S d , and nd " so that Pd;d S d has dn zeros in the

ball of radius ".
3: Apply the inverse of A   D ‘   S  to the ball of radius " to get the isolating region R + .

3. C l us t e r s  o f  Zeros

In the intended application of our approach, we do not expect to be given a system that has a multiple
zero, as explored in Section 2. Instead, we expect to be given a system that has a cluster of zeros, each with
multiplicity one. Suppose that F  is a square system of polynomials and z approximates the center of a
cluster of zeros of F .  Our approach is to nd a nearby singular system and use that system to inform about the
zeros of F .

3.1. Isolating clusters. Suppose that system G has a (singular) zero at z whose coecients are close to those
in F .  Suppose also there exist invertible maps T : C n  !  C n  and U : C[x1 ; : : : ; xn ]n !  C[x1 ; : : : ; xn ]n such that
the origin is a regular zero of breadth  and order d of U  G  T . One candidate for U and T is presented in
Section 2.2. We then apply these maps and ination to the original system to get the system U  F   T  S d . Let (U
F   T  S d )d denote the homogeneous part of this system of degree d. Similarly, we write (U  F   T  S d ) > d  and (U  F
T  S d ) < d  for the terms greater than or less than d.

Let M be a positive lower bound on k(U  F   T  S d)dk over the (Hermitian) unit sphere. Since all the terms
of (U F  T S d ) > d  are of degree greater than d, there is a constant M1 >  0 such that for all kxk  1, k(U  F   T
S d )> d k  M1kxkd+1. Similarly, since all terms of (U  F   T  S d ) < d  have degree less than d, there is a constant
M2 >  0 such that for all kxk  1, k(U  F   T  S) < d k  <  M2. If     2M

2       1=d <  2M
 , then for any " between "  =  2

M
2

1=d and " +  =  2M
 , k(U  F   T  S)d (x)k dominates the other parts of U F  T S d and, by Rouche’s theorem, see

Lemma 5.6, U F  T S d and (U F  T S d )d have the same number of zeros in the ball of radius ". The smaller
region R   corresponds to the lower bound "  and the larger region R +  corresponds to the upper bound " +
on ".

Example 3.1. Consider the polynomial system
2x1 +  x2 +  x2 +  0:001

8x1 +  4x2 +  x2 +  0:001
with approximate zero z =  (  0:0001;  0:0001). This system is a perturbation of our running example from
Example 2.3.     The three zeros in the cluster are approximately (  0:043   0:082i; 0:091 +  0:158i), (  0:043 +
0:082i; 0:091 +  0:158i), and (0:086;  0:181), and z approximates their average.

First, we shift the system F  so that z is at the origin. The resulting system is very close to system G from
Example 2.3. After applying the same transformations from Examples 2.3 and 2.4, the resulting system is (after
rounding) is

 0:0084 +  0:0013x1 +  0:000078x2 +  x3 +  0:0016x3 +  : : :
 0:000022 +  0:00002x1 +  0:00000089x1 +  0:00000008x1 +  x2 +  : : :

In this case, the cubic part of the system is bounded from below on the unit circle by 0:4984. On the other
hand, the sum of the coecients of degree less than 3 is greater than 0:009757, which can be used for M2.
Finally, the sum of the coecients of degree greater than 3 is less than 0:2746, which can be used for M1.
Therefore, we may choose " +  =  0:9075 and "  =  0:3396, as illustrated in Figure 1 in the original domain.

The only other zero of the system is approximately equal to (4; 8) and is far away from all depicted
isolating regions. We also note that the regions are not convex and the boundaries of the regions are only
piecewise smooth.

Remark 3.2. One approach to compute M is based on sum-of-squares computations as in [6]. For the
bounds M1 and M2, one way to get these bounds is to sum the absolute values of the coecients appearing in
the appropriate systems.
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F i gu r e  1. Contours of isolating regions for a cluster of zeros of F .  The inner- and outer-
most contours are the boundaries of R   and R + ,  the smallest and largest isolating regions
our method produces. The (red) point in the second quadrant depicts the real part of two
conjugate nonreal zeros.

Algor i thm 3 Generalized ination for isolating clusters of zeros
Input:  A  square polynomial system G with a cluster of zeros near z and d 2  N.
Output :  A  pair of regions R +  and R   containing the cluster and no other zeros of G such that R    R + .  1:

Construct a singular system G close to the given system.
2: Apply Algorithm 1 with parameters k =  ‘  =  d to G and collect the two invertible maps U and T applied

to G as U  G  T .
3: Compute U  F   T  S d .
4: Compute a lower bound M on (U  F   T  S d )d on the (Hermitian) unit sphere. 5:
Compute an upper bound M1 on (U  F   T  S d )>d =kxkd+1 on the unit disk.
6: Compute an upper bound M2 on (U  F   T  S d ) < d  on the unit disk. 7:

Compute "  =  2M 2       1=d and " +  =   M  .
8: if "  <  " +  then
9: Apply the inverse of T  S d to the balls of radii "  and " +  to get the isolating regions R   and R + .

10: end if

Theorem 3.1. Suppose that F  is a square polynomial system where z approximates a cluster of zeros. If
Algorithm 3 succeeds, then it produces a pair of regions R and R containing z and the cluster of zeros
such that R    R + .  Moreover, the number of zeros in the cluster is d.

3.2. Construct ing  a singular system. In order to complete the steps outlined in Section 3.1, we need to
be able to construct an appropriate singular system G. One way to construct such a system is outlined in [6,
Section 2.1] via the singular value decomposition of the Jacobian D F (z ) .  This construction also provides  as
a count of the number of small singular values of the Jacobian.

For any d >  0, we may apply Algorithm 2 to G to construct a (; d; d)-pre-inatable system. It is unlikely
that the resulting system has the origin as a regular zero of breadth  and order d.
Even though the polynomial system resulting from Algorithm 2 might not be amenable to ination itself, the

constructed transformations, when applied to F  as in Section 3.1, may succeed in isolating the cluster of
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F .  We have experimental evidence that applying these transformations will be successful when extra terms
in p1; : : : ; p have small coecients.

Remark 3.3. The value of d in the construction of the pre-inatable system may either be given or guessed
through the computations. In particular, we may apply Algorithm 2 with many dierent values of d until the
degree-d homogeneous part of the resulting system has enough terms with coecients larger than some
tolerance as to not vanish on the unit sphere.

4. I r r e g u l a r  systems

Even when the approach in Section 2 fails for singular systems, we present ways to isolate the cluster and
estimate its size. Three instances where the approach in Section 2 may fail are when the origin is a regular
zero of breadth  and order d, when the initial forms of the (; d; d)-pre-inatable system vanish on the unit sphere,
and when the initial system is not square.

4.1. Uneven ination. The structure of the polynomial system in Theorem 2.1 are designed so that we know
the structure of the system after ination, see Section 5.2. In particular, several of the steps in the
construction of a pre-inatable system are designed to control which terms appear in the initial form of the
system after ination.

When the initial forms of a polynomial system do not vanish on the unit sphere, but they do not have the
appropriate degrees, we may apply an ination operator that changes the degree of each variable individually. To
illustrate this, consider the following motivating example:

Example 4.1. Consider the following family of polynomial systems, where a is a parameter:
< x1 =

G =       x2 +  ax2 +  x4       :
x3

An initial attempt might be to inate by replacing x1, x2, and x3 by x6, x3, and x2, respectively. Unfortu-
nately, after this ination step, the resulting system is

9

:
a x 3  +  x2 +  x 3 ;

:
3

We cannot apply our approaches unless a =  0, in which case the initial forms are all of degree 6 and do not
vanish on the unit sphere.

When a =  0, the inated system has a zero of multiplicity 63 =  216 at the origin and Rouche’s theorem can
be applied to isolate these zeros. Moreover, since the ination map is 36-to-one, this region isolates the 6
solutions of the original system.

When a =  0, it is impossible to choose an ination map so that the initial forms are all of the same degree.
In this case, the ination approach fails and we must consider alternate methods.

For a general singular system G where zero is not a regular zero, suppose that it is possible to replace each
variable by a power so that all the initial terms of the resulting system have the same degree. In this case,
Rouche’s theorem, see Lemma 5.6 can be applied to isolate the cluster. For this approach to succeed, it is
usually important that the initial forms of the system G have some structure and that problem-specic higher
degree terms have a zero coecient.

4.2. U p p e r  bounds. One may attempt a symbolic transformation that leads to a system where Rouche’s
theorem applies, see Lemma 5.6. Given a singular system G of m functions in n unknowns with m  n with an
isolated zero at the origin, there is an n  m matrix T such that the initial forms of the polynomials in T G do
not vanish on the unit sphere. Even in the case m =  n, it is possible to nd a suitable T that is invertible in a
neighborhood of the singularity at the origin. Therefore, the multiplicity of the origin as a zero of T G is only
an upper bound of the multiplicity of G.

One popular \rewriting" method is to derive T from a local Gr•obner basis computation. In particular, we
choose n elements whose initial terms are pure powers from the Gro•bner basis. This process also applies to the
overdetermined case because we are choosing only n elements from the Gr•obner basis regardless of the
number of equations in F .  We illustrate this method in the following example:
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Example 4.2. Consider the following singular polynomial system
8

x 1 x 2       x 3 =
G = x2 x3      x3 :

x1 x3      x3

The initial forms simultaneously vanish on the unit sphere in the coordinate directions. From a local Gro•bner
basis calculation, there are three elements in the basis whose initial terms are pure powers:

<  x2      x3 =
x1      x2 :

x3      x1 x2

Therefore, we can nd a system of polynomials in the ideal generated by G that have the same degree for
their initial forms. In particular, we have the elements

< x 2       x 2 x 3 =
P  = x1      x1 x2 :

x3      x1 x2

This system can be obtained by multiplying the equations of G by the following matrix, derived from a local
Gr•obner basis calculation:

x2 x3 0  x2

T =  @ 0  x2 x1 x2 A :
 x2 x3 x2 x3

Since the initial forms do not vanish on the unit sphere, we can nd a lower bound M for kP5k on the unit
sphere. Then, by following the approach of Section 2, we nd a region R +  that isolates the singularity at the
origin. In this case, the singularity has multiplicity at most 4  4  5 =  80 while the true multiplicity is 11.

In the cluster case, i.e., when F  is given with z approximating a cluster of zero, a suitable T can be found
by executing the steps of a Gr•obner basis computation while dropping terms with small coecients to
construct G. As long as T F       G is suciently small, then Rouche’s theorem can be used.

Since the multiplicity of z may increase when F  transforms into G, this increase also applies to the size
of the corresponding cluster of T F .  Thus, this process may not provide the exact size of the cluster, but an
upper bound of it.

5. P r o o f s

We provide proofs for several of the stated facts in the paper.

5.1. Pre-inatable form. We prove that the procedure described in Section 2.2 and Algorithm 1 produces a
(; k; ‘)-pre-inatable system for any square polynomial system of breadth .

Lemma 5.1. Let G be a square polynomial system with a singular zero at z of breadth . The result of
Algorithm 1 with parameters k and ‘  on G is a (; k; ‘)-pre-inatable system of polynomials with a zero at the
origin whose multiplicity is the same as the multiplicity of z for G.

Proof. We rst show that the multiplicity of the origin and z are the same for the input and output
systems. The rst step of the algorithm is an invertible ane transformation on the domain, and such
transformations do not change the multiplicity of a zero. The second and third steps replace the system with a
new system that generates the same ideal, hence the multiplicity does not change. Finally, the last step uses
transformations of the form x i  !  x i  +  qi (x1; : : : ; x), which preserve leading forms of all polynomials in the
ideal, and, hence preserve the Hilbert series and multiplicity.

Now, we prove that the nal system is (; k; ‘)-pre-inatable. By the discussion above, the breadth of the system
does not change under the steps of Algorithm 1, therefore, the nal system has the correct breadth. In addition,
the ane transformation in the rst step rotates the domain so that the resulting Jacobian has the correct kernel.
The second and third steps do not change the kernel of the Jacobian, and the last step maintains the initial
terms, so the Jacobian is also preserved. The rst and second steps prepare the initial
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terms of the last n    polynomials via standard linear algebra, and these initial terms are not changed in
the last two steps.

Finally, the third and fourth steps can be broken down into a sequence of cancellation steps, each of which
remove a term of low degree and replace it with terms of higher degree. Through induction, all of the desired
terms have coecient zero. Therefore, the resulting system is in (; k; ‘)-pre-inatable form.

This construction explicitly leads to the following corollary, which proves one of the conditions in Theo-
rem 2.1.

Corol lary 5.2. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of
breadth  and order d. Algorithm 1 with parameters k =  ‘  =  d applied to this system results in a (; d; d)-
pre-inatable system such that the initial form of pi is x i  for  +  1  i   n.

5.2. Regular  zero form. The following proof is an algorithmic proof of the remaining two conditions in
Theorem 2.1. It provides a construction of an analytic change of variables that transforms a system with a
regular zero of breadth  and order d into one of the desired form.

Before beginning the proof, we introduce some notation and a fact about Hilbert series.     For series A(t)
= a(i)ti  and B (t)  = b(i)ti , we let A(t)   B (t)  if a(i)  b(i) for all i. In addition, we
consider the following lemma for the proof:

Lemma 5.3. [8, Lemma 1] Consider F  =  ff1 ; : : : ; fn g and G =  fg1; : : : ; gng where f1; : : : ; fn; g1; : : : ; gn are
homogeneous and g1; : : : ; gn are generic. If deg gi =  deg f i ,  then, H SG (t)   H S F ( t ) .

Moreover, generic homogeneous forms of degree d form a regular sequence, and the Hilbert series of a
regular sequence is (1 t )  

n  
.

Lemma 5.4. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of breadth  and
order d. Algorithm 1 with parameters k =  ‘  =  d applied to this system results in a (; d; d)-pre-inatable system
such that the initial degree of each pi is equal to d for 1  i   .

Proof. In order to prove this lemma, we begin with the transformation from Section 2.2 that transforms the
original system G into the system Pd;d =  fp1; : : : ; png that is a (; d; d)-pre-inatable system. As mentioned in
the proof of Lemma 5.1, the Hilbert series is unchanged under this transformation.

From the denition of a pre-inatable system, in fp1; : : : ; pkg the only monomials of degree at most d which
appear in p1; : : : ; p involve only the variables x1; : : : ; x. On the other hand, since the initial term of gi for i  >   is
x i ,  it follows that no monomial involving any of x+1 ; : : : ; xn can appear as a standard monomial. In addition,
the coecients in the local Hilbert series for f1; : : : ; td 1g are the number of monomials in  variables. This
implies that p1; : : : ; p cannot have any monomials of degree less than d.

We now prove that the initial degree of p1; : : : ; p must be d. Suppose that p 2  hp1; : : : ; pni such that the
initial term of p is of degree d and involves only x1; : : : ; x. Briey, we write p = qi pi . Since, by
construction, the monomials in p+1; : : : ; pn involving only x1; : : : ; x must have degree larger than d, it
follows that the initial term of p does not appear in any qi pi for i  >  . On the other hand, since the initial
degree of p1; : : : ; p is at least d, it must be that the initial term of p is an initial term of an element of
h(p1)d; : : : ; (p)di, where (pi )d denotes the homogeneous part of pi of degree d.

This observation implies that the standard monomials of hPd;d i of degree d are the same as the standard
monomials of degree d that only involve x1; : : : ; x of h(p1)d; : : : ; (p)di. Suppose that (pi )d =  0 for ‘  values of
i, where 1  i   . Then, by Lemma 5.3, the coecient of td in the Hilbert series of h(p1)d; : : : ; (p)di is at least the
coecient of t in (  

(1 t )  
     ‘  

: If ‘  >  0, then this coecient is (strictly) greater than the corresponding coecient in (1 +  t
+   +  td 1), a contradiction. Hence, ‘  =  0 and the initial degree of each of p1; : : : ; p must be d.

Lemma 5.5. Let G be a square system in n variables with a zero at z. Suppose that z is a zero of breadth  and
order d. Algorithm 1 with parameters k =  ‘  =  d applied to this system results in a (; d; d)-pre-inatable system
such that the initial forms of p1; : : : ; p do not vanish on the unit sphere in x1; : : : ; x.

Proof. Suppose that (p1)d; : : : ; (p)d do not form a regular sequence. Let r  be the smallest degree where
there exists 1 <  j    and homogeneous polynomials m1; : : : ; mj of degree r      d such that      i = 1  mi (pi )d =  0
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and mj  2  h(p1)d; : : : ; (pj 1 )d i. For all degrees k less than i  and 1  ‘   , the multiplication map

(k[x1; : : : ; xn]=h(p1)d; : : : ; (p‘ 1 )d i)k  d !  (k[x1; : : : ; xn]=h(p1)d; : : : ; (p‘)d)k

is injective. Hence, the coecient of tk in the Hilbert series for f(p1)d; : : : ; (p)dg agrees with the correspond-ing
coecient for a regular sequence. In dimension r, this map is not always injective, so the coecient of tr in the
Hilbert series for f(p1)d; : : : ; (p)dg is larger than the coecient of tr for a regular sequence.

We now show that this also implies that the number of standard monomials of hPd;d i in dimension r
contradicts the assumption on the Hilbert series. Let p 2  hp1; : : : ; pi such that the initial degree of p is r  and
the initial form of p is not in h(p1)d; : : : ; (p)di. Since p 2  hp1; : : : ; pi, p = qi pi for some polynomials
qi . Suppose that the qi’s have been chosen so that the minimum initial degree of qi pi  is maximized. Let m be
this initial degree. Moreover, assume that the qi’s have been chosen so that the largest index where the initial
degree of qi pi  is m is minimized. Let this index be ‘.

Let (q i )m  d denote the degree m      d homogeneous part of qi . Since the initial degree of qi pi  is at least m,
either (q i )m  d =  0 or (q i )m  d is the initial form of qi . In addition, ‘ (q i )m  d(pi )d =  0 since otherwise,
this would be the initial form of p and would also be in h(p1)d; : : : ; (p)di. Moreover, the sum is not a sum of 0’s
since (q ‘ )m  d =  0. Therefore, m <  r  and so, by the assumption on r, (q ‘ )m  d 2  h(p1)d; : : : ; (p‘ 1 )d i. Therefore,
there exist homogeneous polynomials s1; : : : ; s‘ 1 which are either 0 or of degree m   2d such
that (q ‘ )m  d = i = 1  si (pi )d . Then,

‘  1

qi pi  = qi pi +  q ‘p ‘  + qi pi
i = 1                      i = 1                                       i = ‘ + 1

‘  1

= qi pi +  ((q ‘ )m  d +  (q ‘       (q ‘ )m  d ))p ‘  + qi pi
i = 1                                                                                                            i = ‘ + 1

‘  1 ‘  1

= qi pi + si (pi )d p ‘  +  (q ‘       (q ‘ )m  d )p ‘  + qi pi
i = 1                     i = 1                                                                                       i = ‘ + 1

‘  1 ‘  1

= qi pi + si (pi      (pi       (pi )d ))p ‘  +  (q ‘       (q ‘ )m  d )p ‘  + qi pi
i = 1 i = 1

‘  1

= (qi +  si p ‘ )pi  +

i = ‘ + 1

‘  1  si ((pi )d

pi ) +  (q ‘       (q ‘ )m  d)     p ‘  +             qipi :
i = 1 i = 1 i = ‘ + 1

The initial degree of (pi )d      pi is greater than d and that of q ‘       (q ‘ )m  d is greater than m      d as well. We see
that this violates the assumptions on m and ‘.  In other words, either the minimum initial degree of a
summand is larger or there are fewer terms that attain the degree m. Hence, (p1)d; : : : ; (p)d form a regular
sequence and only have nitely many common zeros in -dimensional ane space. Therefore, they cannot vanish
on the unit sphere x1; : : : ; x, as, by homogeneity, this would imply that they vanish on a line.

The proof of Lemma 5.5 implies that if the initial forms of p1; : : : ; p are a regular sequence, then the
initial forms of hPd;di are the same as the forms in h(p1)d; : : : ; (p)di. Moreover, we can also conclude that if
the Hilbert series for h(p1)d; : : : ; (p)di is (1 t )  

 
, then (p1)d; : : : ; (p)d form a regular sequence.

5.3. Appl icat ion of Rouche ’s theorem. Finally, we prove the consequence of Rouche’s theorem that we
use to certify our algorithms.

Lemma 5.6. Let P  be a square polynomial system and Q  be a square homogeneous polynomial system of
degree d. Let S"  denote the n-dimensional (Hermitian) unit sphere of radius ". Suppose that

(1) There is a positive constant M such that minfkQ(x)k : x  2  S1g  M and
(2) There are constants M1 and M2 and a decomposition P  =  P1  +  P2  +  Q  such that for all "  1

(a) maxfkP1 (x)k : x  2  S" g  M1"d+1.
(b) maxfkP2 (x)k : kxk  1g  M2

If     2M
2       1=d <  2M 1  

, then for any " 2 2
M

2       1=d ; 2M 1       
, P  has dn zeros in the ball of radius ".
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Proof. The rst condition implies that Q has no zeros on the unit sphere, so all of its dn
 
zeros are at the

origin. For x  satisfying the given conditions,

kP (x)       Q(x)k  kP1 (x)k +  kP2 (x)k  M1"d+1 +  M2  M"d  kQ(x)k:

Then, by the multivariate version of Rouche’s theorem [5, Theorem 2.12], both P  and Q  have the same
number of zeros in S" .

acknowledgments

Burr was supported by National Science Foundation grant DMS-1913119 and Simons Foundation collab-
oration grant #  964285. Leykin was supported by National Science Foundation grant DMS-2001267.

References

[1] Prashant Batra and Vikram Sharma. Complexity of a root clustering algorithm. Technical Report arXiv:1912.02820, arXiv,
2019.

[2] Ruben Becker and Michael Sagralo. Counting solutions of a polynomial system locally and exactly. Technical Report
arXiv:1712.05487 [cs.SC], arXiv, 2017.

[3] Ruben Becker, Michael Sagralo, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a
complex polynomial. In Proceedings of the A C M  on International Symposium on Symbolic and Algebraic Computation,
I S S A C  ’16, pages 71{78, 2016.

[4] Ruben Becker, Michael Sagralo, Vikram Sharma, and Chee Yap. A  near-optimal subdivision algorithm for complex root
isolation based on the Pellet test and Newton iteration. Journal of Symbolic Computation, 86:51{96, 2018.

[5] Carlos A.  Berenstein, Alekos Vidras, Roger Gay, and Alain Yger. Residue Currents and Bezout Identities. Progress in
Mathematics. Birkh•auser Basel, 1993.

[6] Michael Burr and Anton Leykin. Ination of poorly conditioned zeros of systems of analytic functions. Arnold Mathematical
Journal, 7:431{440, 2021.

[7] Jean-Pierre Dedieu and Mike Shub. On simple double zeros and badly conditioned zeros of analytic functions of n variables.
Math. Comput., 70(233):319{327, 2001.

[8] Ralf Fr•oberg. An  inequality for Hilbert series of graded algebras. Mathematica Scandinavica, 56(2):117{144, 1985.
[9] Marc Giusti, Gregoire Lecerf, Bruno Salvy, and Jean-Claude Yakoubsohn. On location and approximation of clusters of

zeroes: Case of embedding dimension one. Foundations of Computational Mathematics, 6(3):1{57, July  2006.
[10] Zhiwei Hao, Wenrong Jiang, Nan L i ,  and Lihong Zhi. On isolation of simple multiple zeros and clusters of zeros of

polynomial systems. Mathematics of Computation, 89(322):879{909, 2020.
[11] Anton Leykin, Jan Verschelde, and Ailing Zhao. Newton’s method with deation for isolated singularities of polynomial

systems. Theoretical Computer Science, 359(1-3):111{122, 2006.
[12] Angelos Mantzaaris, Bernard Mourrain, and Agnes Szanto. Punctual Hilbert scheme and certied approximate singu-

larities. In ISSAC ’20|Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, pages
336{343. ACM,  New York, 2020.

[13] Takeo Ojika. Modied deation algorithm for the solution of singular problems. i. a system of nonlinear algebraic equations.
Journal of mathematical analysis and applications, 123(1):199{221, 1987.

[14] Michael Sagralo. When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial. In
I S S A C  2012|Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pages 297{304.
ACM, New York, 2012.

S c h o o l  o f  Mathe m at i c a l  and S tat i s t i c a l  Science, Clemson Univers i ty ,  220 Pa r k way  D r i v e ,  Clemson, S C  29634
Email address: burr2@clemson.edu
U R L :  https://cecas.clemson.edu/~burr2/

Depart ment  o f  Mathematics,  Univers i ty  o f  C a l i f o r n i a  San Diego,  9500 G i l m an  D r i v e ,  L a  J o l l a ,  C A  92093
Email address: kil004@ucsd.edu
U R L :  https ://k lee669.g i thub. io

S c h o o l  o f  Mathematics,  G e o r g i a  Inst i tute  o f  T e c hno l o g y ,  686 C h e r ry  S t r e e t ,  At l a n ta ,  G A  30308
Email address: leykin@math.gatech.edu
U R L :  https://antonleykin.math.gatech.edu


