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ABSTRACT

Machine learning models can greatly improve the search for strong gravitational lenses in imaging surveys by reducing the amount
of human inspection required. In this work, we test the performance of supervised, semi-supervised, and unsupervised learning
algorithms trained with the ResNetV2 neural network architecture on their ability to efficiently őnd strong gravitational lenses in
the Deep Lens Survey (DLS). We use galaxy images from the survey, combined with simulated lensed sources, as labeled data
in our training datasets. We őnd that models using semi-supervised learning along with data augmentations (transformations
applied to an image during training, e.g., rotation) and Generative Adversarial Network (GAN) generated images yield the best
performance. They offer 5ś10 times better precision across all recall values compared to supervised algorithms. Applying the
best performing models to the full 20 deg2 DLS survey, we őnd 3 Grade-A lens candidates within the top 17 image predictions
from the model. This increases to 9 Grade-A and 13 Grade-B candidates when 1% (∼ 2500 images) of the model predictions
are visually inspected. This is ≳ 10× the sky density of lens candidates compared to current shallower wide-area surveys (such
as the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper all-sky surveys. These results
suggest that pipelines tasked with őnding strong lens systems can be highly efficient, minimizing human effort. We additionally
report spectroscopic conőrmation of the lensing nature of two Grade-A candidates identiőed by our model, further validating
our methods.
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1 INTRODUCTION

Under rare alignment conőgurations, the gravitational potential of
a massive galaxy can cause light from a distant galaxy located be-
hind it to take multiple paths around it. This results in the formation
of several distinct images of the distant galaxy around the massive
galaxy, a phenomenon known as strong gravitational lensing (e.g.,
Treu 2010). These multiple images are magniőed by factors that can
reach >10 times, making them appear brighter and more spatially
extended. Such magniőcation makes these systems ideal for study-
ing the formation and evolution of galaxies across cosmic time (e.g.,
Wuyts et al. 2014; Pettini et al. 2002; Swinbank et al. 2009; Koop-
mans et al. 2006; Leethochawalit et al. 2016), while analysis of the
lensing mass distribution enables insight into the nature of dark mat-
ter (e.g., Chiba 2002; Bradač et al. 2002; Miranda & Macciò 2007;
Gilman et al. 2019; Shajib et al. 2022).

The main current challenge in working with strong lens systems
is their scarcity on the sky. Therefore, methods which are able to
efficiently identify lensed galaxies from wide-area sky surveys are
extremely beneőcial. Automated methods will be especially valuable
for lens searches in upcoming wide-area sky surveys to be carried
out by the Vera Rubin Observatory, Euclid, and Roman (e.g., LSST
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† Work done prior to joining Amazon

Science Collaboration et al. 2009; Laureĳs et al. 2011; Spergel et al.
2015), whose improvements in sensitivity, angular resolution and
sky coverage will enable detection of far more lens samples than are
currently known.

Early approaches to őnding strong lens systems included various
algorithms searching for multiple lensed images or arc shapes, man-
ual searches around massive galaxies, and citizen science projects
(e.g., Moustakas et al. 2007; Paraőcz et al. 2016; Seidel & Bartel-
mann 2007; Gavazzi et al. 2014; Alard 2006; Fassnacht et al. 2004;
More et al. 2016; Belokurov et al. 2009; Diehl et al. 2009; Garvin
et al. 2022). While successful, these methods are time-consuming
and difficult to incorporate into an automated framework. Convolu-
tional Neural Networks (CNNs; LeCun et al. 1989; Krizhevsky et al.
2012), which have been successfully developed into a standard tool
in the őeld of computer vision in the past decade, are a promising
approach to solving image recognition problems. Depending on the
problem, there are various neural network architectures that can be
optimized for the desired objectives. CNNs and machine learning
techniques in general have indeed been used with success in the past
few years to uncover gravitationally lensed candidates in wide-area
imaging surveys (e.g., Jacobs et al. 2017, 2019; Sonnenfeld et al.
2018; Pourrahmani et al. 2018; Huang et al. 2020; Li et al. 2020;
Cañameras et al. 2020).

Most machine learning searches for lenses have relied primarily
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on supervised learning methods (i.e., using a data set consisting of
labeled lensed and non-lensed galaxies to train a model). However,
while non-lensed galaxies are plentiful, current surveys have very few
known lenses to be used as positive labels. Instead, machine learning
models are trained on simulated lenses, which can be generated
in abundance (e.g., Jacobs et al. 2017). However, this presents a
new problem, that the training data distribution (i.e., the simulated
lenses) differs from the test data distribution (i.e., the real lenses) ś
a problem called distribution shift (Quinonero-Candela et al. 2008).
To overcome distribution shift, machine learning researchers have
repurposed semi-supervised learning methods, which use unlabeled
data and data augmentation to adapt the trained model to the test data
(Berthelot et al. 2021).

An advantage to the semi-supervised learning approach is that it
can learn from the abundance of unlabeled images from the survey,
which allows models to generalize better to unseen images. This is
particularly useful to improve performance given millions of galaxy
images that are detected in sky surveys but not included in the train-
ing data. The model performance is further improved through aug-
mentations applied to images during training (e.g., translation and
rotation). In addition to conventional transformations, a rich source
of data augmentation can be derived by making use of unsupervised
learning algorithms (e.g., Goodfellow et al. 2014; Kingma & Welling
2014; Erhan et al. 2010). Given the range of methodologies avail-
able, we now seek to address the question of which combination
of machine learning methods (supervised and semi-supervised) and
augmentations are best suited for őnding strong gravitational lenses.

We seek efficient models which minimize human effort by reduc-
ing the number of images that must be visually inspected to recover
a given sample of lenses. In this work we apply CNN models to the
Deep Lens Survey (DLS; Wittman et al. 2002), which has relatively
good image quality and also remains relatively unexplored in terms
of machine learning searches, thus serving as a good testbed for this
study. Also, because of the small size of known lenses from the DLS
survey, we reserve those for use only in our test dataset. Training
and validation datasets will only contain simulated lenses. In our
previous methodology paper (Sheng et al. 2022, hereafter S22), we
discussed the CNN models and lens detection techniques used in
this work. Herein, we describe our training data in detail and focus
on evaluating the performance of the different models on the DLS
dataset.

This paper is organized as follows. In Section 2 we give an overview
of the Deep Lens Survey and our source selection used for this work.
We summarize our machine learning architecture and learning meth-
ods in Section 3. Section 4 describes the method used to generate
training, validation, and testing data from DLS images. Section 5
discusses our metric to evaluate the performance of the different
CNN models. We discuss the results from our experiments in Sec-
tion 6, including the sample of new lens candidates from DLS and
spectroscopic conőrmation of two systems. Finally, we summarize
the main conclusions in Section 7. Throughout this paper we use the
AB magnitude system and a ΛCDM cosmology with Ω𝑀 = 0.3,
ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

2 DEEP LENS SURVEY DATA

Here we give a brief overview of imaging data from the Deep Lens
Survey (DLS) which we use to test and optimize strong lens detec-
tion methods. The DLS consists of relatively deep imaging over 20
square degrees in őve independent 2

◦ × 2
◦ őelds which are widely

separated in the sky (Wittman et al. 2002). Each őeld was imaged

in BVRz photometric őlters (Schmidt & Thorman 2013) using the 4-
meter Mayall telescope at Kitt Peak National Observatory or Blanco
telescope at Cerro Tololo Inter-American Observatory, depending
on declination. The survey was carried out over ∼120 nights. The
survey was designed for weak gravitational lensing measurements,
with stringent requirements on image quality and limiting magnitude,
such that the data are naturally well suited for identifying strong lens
systems. Typical 5𝜎 point-source detection limits are 25.8, 26.3, and
26.9 AB magnitude in the 𝐵, 𝑉 , and 𝑅 őlters respectively (Schmidt
& Thorman 2013). The 𝑅 band limit is only ∼0.6 magnitudes shal-
lower than the expected depth to be reached by Rubin observatory’s
10-year survey (Ivezić et al. 2019). The seeing is by design best in
the R band (FWHM≲0.′′9) and is typically ≳0.′′9 in the B, V, and z
bands (Wittman et al. 2002). Images in the 𝑧 band are shallowest and
typically subject to worse seeing conditions. In this paper, we use
only the 𝐵𝑉𝑅 data.

2.1 Source selection and regions of interest

The DLS catalog includes ∼5 million detected galaxies across 20
square degrees. However, only those of moderate redshift and rel-
atively high mass will act as detectable strong lenses (i.e., with
Einstein radii Θ𝐸 ≳ 1 arcsecond). We applied a magnitude cut
of 17.5 < 𝑅 < 22 (similar to that used by Jacobs et al. 2017) in
order to remove objects which are unlikely to produce a detectable
lensing effect. Additionally, we use SExtractor (Bertin & Arnouts
1996) ŕags to eliminate saturated low-redshift galaxies, and exclu-
sion masks to remove galaxies around bright stars or at the edge of
the őeld. This results in 281,425 objects (hereafter referred to as the
SurveyCatalog). We őnd that SExtractor ŕags and exclusion masks
remove ∼ 5% of the galaxies from the survey which reduces the ef-
fective sky area probed by our SurveyCatalog to∼ 19 square degrees.
We set aside 2277 (∼0.8%) randomly sampled object images from
this catalog to experiment and tune the HumVI scaling parameters
(discussed in Section 4.1). All model training analysis in this paper
pertains to the remaining set of 279,149 objects (hereafter referred
to as the TrainCatalog).

For our analysis we extract image cutouts spanning 25.′′7 × 25.′′7
(100 × 100 pixels) centered on each object. This size is sufficient for
galaxy- and group-scale lenses (Θ𝐸 ≲ 12ž); we do not focus on the
most massive cluster lenses which are already well cataloged (Ascaso
et al. 2014) and simpler to identify. We create color-composite images
from the source 𝐵𝑉𝑅 FITS őles for all targets in the SurveyCatalog
(Figure 4; discussed in detail in Section 4.1). These color composite
images have smaller őle sizes compared to original data, enabling
us to keep the rest of the analysis computationally efficient. These
images are still able to capture the detected low-suface brightness
features, while not saturating the brightest objects of interest for this
work.

Additionally, they are better suited for the machine learning archi-
tecture and methods used in this work (discussed in Section 3).

3 DEEP LEARNING ARCHITECTURE AND LEARNING

METHODS USED

The task at hand is to establish a machine learning (ML) algorithm
that efficiently classiőes the 281,425 color-composite images from
the survey into lensed and non-lensed galaxies. Furthermore, by rank-
ing the images from highest predicted probability of being a lens to
lowest, we can order the images for human inspection. This requires
the selection of an architecture (i.e., a function that takes images
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Figure 1. Schematic depiction of the ResNetV2 deep learning architecture
used in this work. The input to the network is an RGB color-composite image
generated from the BVR őts őles (Section. 4.1), and the output is a value
between 0 and 1 indicating the probability of the input image being a lens. The
general network consists of three stacks, each containing 3𝑛 residual units.
In this work, we use a stack size of 𝑛 = 1 resulting in a total of three residual
units. Each residual unit consists of two sets of Batch Normalization (BN),
Rectiőed Linear Unit activation function (ReLU), and Conv units, where Conv
denotes a convolutional layer with kernel size 3 × 3 and appropriate stride
size. The network ends with global average pooling and a softmax layer.

as input and gives prediction probabilities as output) and learning
methods (i.e., a way for our function to learn from the data). The
key components of our ML training pipeline are a supervised convo-
lutional neural net (CNN), domain adaptation with semi-supervised
learning, and augmenting training samples with generative adversar-
ial nets (GAN). A more detailed account of our ML method can be
found in S22.

3.1 Convolutional neural network architecture

CNNs have previously been used for classifying and identifying lens
candidates (e.g., Jacobs et al. 2017). They are a speciőc form of neural
network that learns translation invariant representations via trainable
convolution kernels. This is particularly well suited to astronomical
images where patterns are repeated throughout the sky. Deep CNNs
are models where these learned non-linear representations of the
image (called layers) are stacked on top of one another. Deep CNNs
are trained using variations of stochastic gradient descent, where an
objective function is evaluated on small subsets of the data, called
mini-batches, and the parameters are updated by subtracting some
fraction of the objective’s gradient.

There are many choices of how precisely these layers are con-
structed and combined, such as selection of the convolutional kernel

size, number of output channels for each convolution layer, the non-
linear activation function, and the incorporation of other layers that
improve performance such as Batch Normalization (Ioffe & Szegedy
2015). All of these details together are called the model architecture.

We make use of the ResNet version-2 architecture (ResNetV2;
He et al. 2016a,b) designed for the CIFAR10 dataset (Krizhevsky
2009a), shown schematically in Figure 1. It is one of the widely
used industry standard networks for image classiőcation problems
(e.g., Litjens et al. 2017; Gu et al. 2018; Madireddy et al. 2019).
The ResNetV2 used in this work consists of three stacks (see Fig-
ure 1; green blocks) and each stack consists of 𝑛 residual unit blocks,
where 𝑛 is a parameter to be chosen that controls the depth of the
neural network. A deeper neural network has more learning capacity
but requires more computational power and training samples. Each
residual unit block consists of three convolution layers of kernel size
3× 3 and one skip connection. To match the feature map dimensions
(width, height) and the number of channels between stacks, a few
extra convolution layers are included at the input and the beginning
block of each stack. Therefore, 9𝑛 + 4 convolution layers are present
in the network in total. For all the models used in this work, we adopt
𝑛 = 1. With strided convolutions, the feature map dimensions to each
stack decrease by a factor of 1/2. The number of input and output
channels to each stack are: (16 → 64), (64 → 128), (128 → 256).

The network ends with global average pooling, a fully-connected
layer and softmax. The global average pooling constrains the output
to be rotationally invariant. The softmax transforms the output to be
a value between 0 and 1 which can be interpreted as a probability.
Throughout this work, a value of 1 is designated for lensed candidates
(referred to herein as Lenses) and 0 for nonlensed candidates (referred
to as NonLenses).

3.2 Domain adaptation with semi-supervised learning

In supervised learning, our algorithm is trained via mini-batches
of images 𝑋 and corresponding labels 𝑦 (1 for Lenses and 0 for
NonLenses). The algorithm then tries to learn the neural network
parameters, collectively referred to as Θ. The output of the neural
network after the softmax activation produces a prediction 𝑝Θ (𝑋),
which is our predicted probability of 𝑋 being a lens. Our supervised
learning objective function is the cross-entropy loss function, denoted
ℓ𝑆 , which is a measure of the quality of our predictions, 𝑝Θ (𝑋), when
compared to the true labels, 𝑦. Merely using supervised learning does
not perform well in the face of distributional shift, and we turn to
semi-supervised learning (SSL) methods which make use of the
unlabeled test data to adapt to this domain.

There are many semi-supervised approaches to deep learning. The
methods we explore are FixMatch1 (Sohn et al. 2020), MixMatch
(Berthelot et al. 2019), Virtual Adversarial Training (Miyato et al.
2019), Mean Teacher (Tarvainen & Valpola 2017), Π-Model (Laine
& Aila 2017), and Pseudo-Labeling (Lee 2013).

Most SSL algorithms follow the same template. We minimize
an objective function consisting of a supervised component (i.e. ℓ𝑆
losses), where the label is provided, plus an unsupervised component
(i.e. ℓ𝑈 losses). Both are optimized together over mini-batches, now
consisting of labeled and unlabeled data, but without signiőcant
modiőcation to the stochastic gradient descent algorithm. The main
feature that distinguishes our setting from typical SSL is that our

1 FixMatch was not part of the original lens search study since this technique
had not been published at the time. We are including it in our results here to
be thorough.
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RGB-shuffle Randomly perturb the order of the channels in the images
JPEG-quality 50-100%

Rot90 Randomly rotate the images by a multiple of 90 degrees
Translations Randomly translate the images by at most 20 pixels in the up, down, left and right directions

Horizontal ŕips Randomly ŕips the images across the x-axis
Color augmentation Randomly perturb the brightness(-0.1-0.1), saturation(0.9-1.3), hue(0.96-1.00), and gamma(1.23-1.25) of the images

Table 1. Data augmentations used on images in the semi-supervised training pipeline.

training NonLenses and test set come from the same pool of data,
while the simulated Lenses do not exist in the test data. This is in
contrast to Jacobs et al. (2017) for example, in which they produce
simulated NonLenses as well, but do not attempt domain adaptation.

In the Pseudo-Label algorithm (Lee 2013), we assign pseudo-
labels to unlabeled data by taking the model’s predicted class as
the label. We can then use the same loss as in the supervised task
(i.e., ℓ𝑆 = ℓ𝑈). The motivation is that we are implicitly enforc-
ing entropy minimization by forcing the model to be conődent on
unlabeled samples. An alternative approach to SSL is consistency

regularization, where two independently augmented samples of the
same test image are encouraged to produce similar predictions. The
Π-model algorithm (Laine & Aila 2017) directly uses consistency
regularization. The idea is to take two random augmentations of the
same sample data point, 𝑋 , and compute the squared difference of the
model outputs for the augmented copies. We use aug, ãug to denote
two independent augmentations, which can be produced by selecting
different randomization seeds. The unsupervised loss is then

ℓ𝑈 (𝑋) = ∥𝑝Θ (aug(𝑋)) − 𝑝Θ (ãug(𝑋))∥2 . (1)

The choice of stochastic augmentation function is up to the modeler
and will often be domain speciőc.

The Mean Teacher algorithm (Tarvainen & Valpola 2017) also uses
consistency regularization, but replaces one of the augmentations in
Equation 1 with the output of the model using an exponential mov-
ing average (the teacher model) of model parameters, Θ. FixMatch
(Sohn et al. 2020) and MixMatch (Berthelot et al. 2019) employ both
consistency regularization and entropy minimization. MixMatch was
originally proposed as a heuristic approach, and FixMatch was later
derived as a more principled simpliőcation of MixMatch and other
related SSL methods. Virtual adversarial training (VAT; Miyato et al.
2019) uses an adversarial, worst-case, augmentation. This adversar-
ial augmentation pushes the image in the direction which will cause
the greatest increase in loss. One downside to VAT is that the adver-
sarial augmentations are not able to encode the domain speciőc prior
information that random augmentations can provide (see Table 1).

3.3 Data augmentation and GANs

Data augmentation serves as a crucial regularizer in semi-supervised
learning (SSL) algorithms. Several SSL algorithms, including those
mentioned in this paper such as pi-model (Laine & Aila 2017), Mix-
Match (Berthelot et al. 2019), and őxMatch (Sohn et al. 2020), utilize
data augmentation techniques. The data augmentation techniques we
employed in our study are provided in Table 1, and are particularly
well-suited for DLS images.

RGB-shuffle randomizes the order of channels and Color aug-
mentation perturbs the colors in the images. These have the effect
of accounting for systematic bias in channel and color information
introduced by the simulation pipeline. JPEG-quality augmentation
accounts for varying levels of noise and image quality, and applies
to any color composite image irrespective of the format that the
image is saved in (e.g., in this case we use png format instead of

jpeg). Rot90, Translations, and Horizontal ŕips induce translational
and rotational invariance in the predictions. Examples of these aug-
mentations are shown in Figure 2. We note that even though some
augmentations (e.g., RGB-shuffle) result in unrealistic images, our
empirical tests described in Section 6.1.1 indicate that these aug-
mentations yield improved model performance. Domain adaptation
problems employing semi-supervised algorithms (SSLs) have been
shown to beneőt greatly from data augmentations in general (e.g.,
Sohn et al. 2020), suggesting that this effect is not speciőc to our lens
search.

A second tool that we use to augment our data is to generate
new images that mimic the simulated lenses. In deep learning, the
state-of-the-art method to produce generative models is by using
Generative Adversarial Networks (GANs; Goodfellow et al. 2014;
Arjovsky et al. 2017). GANs generate unseen samples that are distinct
from the original images, but are distributionally quite similar. These
generative models are trained along with an adversarial discriminator
that is attempting to distinguish between the fake and real images.

We trained a WGAN-GP (Wasserstein GAN + Gradient Penalty;
Gulrajani et al. 2017) on simulated lenses and add the generated
images (see examples in Figures 3 and 4) to our training set as
another form of data augmentation. The motivation is that GANs can
provide a rich source of more exotic data augmentations.

Figure 3 gives a brief summary of the steps discussed thus far.
The training, testing, and validation data along with the model check-
points used in this paper are made available on our GitHub repository
2.

4 TRAINING AND VALIDATION DATA

One of the challenges that we face in gravitational lens searches is
trying to generate a training and testing dataset when having lim-
ited knowledge of the type of strong lenses that we might őnd in
a survey. Prior to this work, Kubo & Dell’Antonio (2008) used a
semi-automated method to search for lensed candidates in one of the
DLS őelds (F2) and uncovered two lens candidates. But in order to
train a machine learning model to recognize lenses, we require Lens
and NonLens image samples on the order of a few thousand. This is
not a problem for NonLens galaxies, as they are abundant. But this
is challenging for Lenses, as the known samples are extremely small
compared to training requirements. We note that although the DLS
area overlaps with other surveys used for strong lens searches (e.g.,
SDSS), no lens candidates have been published from these other
surveys within the DLS footprint. This is likely due to the shallower
depth of other surveys (see Section 6.4). We must therefore generate
an artiőcial lens training set. We describe our process of generating
the training and testing datasets in this section.

2 https://github.com/sxsheng/SHLDN
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Original Shuffle RGB channel JPEG quality Random rotation 90 degrees Random translation Random flips Random color adjust

Original Shuffle RGB channel JPEG quality Random rotation 90 degrees Random translation Random flips Random color adjust

Figure 2. Example of augmentations used during training. From left to right, the original RGB color composite image undergoes the series of augmentations
described in Table 1: RGB-shuffle, JPEG quality, Rot90, Translation, Flip, Color adjustment. The őnal image is then passed as input to the model.

Figure 3. Schematic of the pipeline used in this work to test the performance of different learning methods described in Sections 3.2 and 3.3 (see text for details).
The GAN generated lenses are only included in the training data for unsupervised learning methods (e.g., GAN+MixMatch).

4.1 Generating the NonLenses dataset

Color png images centered on each object in the SurveyCatalog are
constructed from 𝐵𝑉𝑅 őts őles using HumVI (Marshall et al. 2015).
HumVI is based on the color composition algorithm described in
Lupton et al. (2004) and offers several tunable parameters to control
the output image (e.g., contrast). We randomly sample objects from
the SurveyCatalog and visually inspect the effect of changing the
HumVI parameters 𝑠 and 𝑝 which control the contrast and color
balance respectively. Although there is a degeneracy in the choice of
these values, we pick ones that reasonably represent both the bright

and dim features in the data (i.e., spanning the range of detectable
surface brightness). Table 2 lists our chosen HumVI parameters and
Figure 4 (top panel) shows 4 randomly selected color-composite
survey images generated using these values. The chosen HumVI
parameters are kept constant and applied to all images in the survey.
It is beyond the scope of this work to explore the effect of choosing
different HumVI parameters on the performance of the models, but
we note that color augmentations applied during training (Table 1;
Section 6.1.1) have the effect of making our models invariant to small
perturbations in color.

MNRAS 000, 1ś17 (2022)
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Figure 4. Top row: Four randomly selected color composite survey images
generated by running HumVI on their respective BVR FITS őles. These
images are examples of NonLenses used for training the network. Each image
spans 25.′′7 × 25.′′7 on the sky. Table 2 lists the HumVI parameters used
to generate these images. Middle row: The same set of survey images as in
the top row, but superimposed with simulated lens conőgurations generated
with glaőc. Section 4.2 discusses the steps involved in detail. These images
are examples of Lenses used during training. Bottom row: GAN generated
simulated lenses. These are added to the training data as Lenses for our
unsupervised models (e.g., GAN+MixMatch; Section. 3.3).

Parameter Value
glaőc

Position 𝑥def, 𝑦def, 𝑥src, 𝑦src U(-0.5,0.5)
(arcseconds)

PA 𝜃def, 𝜃src U(0,180)
(degrees)
Ellipticity 𝑒def, 𝑒src U(0.3,0.7)
Dispersion 𝜎def U(250,450)
(km s−1)

𝑟core, def U(0,0.5)
Brightness U(200,600)

(counts/pix2)
Redshift 𝑧def U(0.3,0.7)
Redshift 𝑧src U(𝑧def + 0.5, 𝑧def + 2.5)

HUMVI
-s 0.2,0.7,1.3
-p 2.5, 0.01
-m 0.1

Table 2. Values for the glaőc and HumVI parameters used to generate the sim-
ulated arcs and png color-composite images respectively. 𝑈 (𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 )

indicates that the value was sampled from a uniform distribution with 𝑥𝑚𝑖𝑛

and 𝑥𝑚𝑎𝑥 being the minimum and maximum values.

4.2 Generating the simulated Lenses dataset

As described above, the scarcity of known lensed galaxies requires
us to generate simulated lens samples for training ML models. Our
approach is to add simulated lensed galaxies onto survey images, as
has been used successfully in prior work (e.g., Jacobs et al. 2017,
2019). For this work, we adopt an agnostic procedure for simulating
lensed arcs which does not rely on photometric measurements of the
deŕector galaxy. We consider all galaxies which satisfy the magni-
tude cut criteria described in Section 2.1 (regardless of their color)

for simulating the lensed arcs. We note that ∼ 50% of the galax-
ies in our SurveyCatalog have a BPZ best őt photometric template
from Schmidt & Thorman (2013) indicating that they are massive
early-type galaxies at intermediate redshifts, and are indeed likely to
act as strong lenses. We discuss the actual color distribution for lens
candidates in Section 6.2.3.

Given any object from the training dataset, we assume that the
central galaxy (łdeŕectorž) is at a redshift 𝑧def ∈ [0.3, 0.7] and is
characterized by a Singular Isothermal Ellipsoid (SIE) mass density
(Kormann et al. 1994). The mass proőle is dependent on the galaxy’s
position (𝑥def, 𝑦def), ellipticity (𝑒def), position angle (𝜃def), veloc-
ity dispersion (𝜎def), and choice of 𝑟core,def. The values for these
parameters are sampled from a uniform distribution spanning the
ranges listed in Table 2. These values ensure that the resulting mass
proőle of the deŕector is sufficient to produce a detectable lensing
effect (i.e., Θ𝐸 ≳ 1 arcsecond). A background galaxy (łsourcež) is
assumed to lie at a redshift 𝑧src with morphology given by a Sérsic
proőle parameterized by its position (𝑥𝑠𝑟𝑐 , 𝑦𝑠𝑟𝑐), central brightness
(in units of counts/pix2), ellipticity (𝑒src), position angle (𝜃src), and
a Sérsic index of 1. The value for 𝑧src is randomly chosen from a
uniform distribution between 𝑧def + 0.5 and 𝑧def + 2.5. These values
for the deŕector and source redshifts are typical of spectroscopically
measured values from previous strong lens surveys (e.g., Sonnenfeld
et al. 2013; Bolton et al. 2008; Tran et al. 2022).

The light from the background galaxy is traced using glaőc (Oguri
2010) to produce a simulated lensed arc in the image plane. The
simulated lensed arcs are convolved with the point spread function
(PSF) of the survey, scaled by a factor of (1,1.5,3) for the BVR őlters,
and then added to the 𝐵𝑉𝑅 őts images of the galaxy. We model the
PSF of the survey in all the three őlters as a 2D Gaussian kernel
with a FWHM of ∼1 arcsecond corresponding to the approximate
average seeing conditions. In addition to smoothing, we add Poisson
noise in order to produce more realistic simulated arc images. The őts
images are converted to a color png image using HumVI (as described
in Section 4.1). For this paper, we focus on generating moderately
bright blue lensed arcs, and the parameter ranges that produce these
conőgurations are listed in Table 2. Figure 4 illustrates common
conőgurations of the arcs produced using this method. However,
we note that the RGB-shuffle augmentation which is applied during
training produces arcs of different colors (e.g., Figure 2). We őnd
that such an approach, where the simulated arcs are not dependent
on the photometric properties of the central deŕector galaxy, likely
serves as an additional form of augmentation. This approach prevents
over-őtting of our deep learning models while allowing for rapid
prototyping and testing.

4.3 Generating the training datasets: TrainingV1 and

TrainingV2

Using the Lenses and NonLenses datasets, we construct two training
sets: TrainingV1 and TrainingV2. The main difference between the
two training sets is the number of labeled images used as Lenses and
NonLenses. Prior work using CNNs (e.g., Jacobs et al. 2019) have
favored large training datasets (i.e., ≳150,000 galaxies). Therefore,
for TrainingV1 we use 266,301 images for non-lenses and 257,874
corresponding simulations as lenses (described in Section 4.2). Since
semi-supervised training requires both labeled and unlabeled data,
TrainingV1 cannot be used to test semi-supervised learning methods.

For TrainingV2, we choose the number of images for each class
to be similar to those used in standard computer vision datasets
such as Canadian Institute for Advanced Research-10 (CIFAR-10;
Krizhevsky 2009b) and Street View House Numbers (SVHN; Netzer
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et al. 2011) dataset. We use a set of 7,074 human-labeled objects
as NonLenses and 6,929 corresponding simulations as Lenses. The
human labeling was carried out on randomly chosen images from
Field-1 (F1) of the DLS. We note that the choice of labeling the data
only from F1 does not affect the results presented in the rest of the
paper (see Appendix A). The 259,248 NonLens images which are not
part of TrainingV2 serve as unlabeled data for our semi-supervised
learning methods (e.g., MixMatch; Section 3.2).

Counter-intuitively, we őnd that too much training data from sim-
ulated lenses and randomly selected NonLenses can hurt the perfor-
mance of our algorithms. We refer readers to Section 6.1.2 and S22
for further discussion of sample size effects, which can also con-
tribute to differences in performance between the training sets. We
note that the TrainingV2 labeled datasets are comparable to the size
where we őnd peak performance.

We performed a 90-10 split for both TrainingV1 and TrainingV2,
where 90% of the data was allocated for training the ResNetV2 model
and 10% was kept aside for validation. We chose the maximum num-
ber of epochs (passes through the training dataset) for each training
combination as 100, since this was sufficient to observe a plateau in
the validation metrics. For each of the training combination described
in Section 3, we conducted four independent trials and selected the
checkpoint with the best validation metrics for testing it on the survey
data.

5 METRIC TO EVALUATE MODEL PERFORMANCE

We have described several models which are each tuned to optimize
validation accuracy, which is measured on the validation dataset
(Section 4.3) consisting of simulated Lenses and survey NonLenses.
In order to gauge the performance of the models on their ability to őnd
real lenses from the survey, we require a testing dataset consisting of
lenses from the survey, as well as a metric to evaluate them on.

5.1 Generating the Testing dataset

Curating testing data in our case is a challenging task. As discussed
earlier, only two strong lenses in the entire survey were known prior to
this work, which is insufficient for meaningful evaluation. Therefore,
we use an ensemble of 5 ResNet models trained on simulated lenses
but using polar transformed images as input to the network. The
exclusive task of this model is to őnd real lens candidates to add to our
test dataset. We emphasize that this model is independent of the rest of
the models discussed so far in this paper, and does not inŕuence their
performance in any way. Details of its implementation are discussed
in S22. It is beyond the scope of this paper to quantify the performance
of ensemble models or the effect of polar transformation during
training, but it is an interesting avenue for future work.

We őnd 52 likely lens candidates from this model, of which 27 are
deemed to be good candidates upon visual inspection. Therefore, we
create two testing datasets: TestV1 and TestV2. TestV1 contains all
the 52 lens candidates found using our ensemble model approach,
while TestV2 contains the 27 best visual candidates. NonLenses for
both TestV1 and TestV2 were formed by randomly selecting 874 of
our 8734 human-labeled non-lenses (Section 4).

5.2 Precision and Recall

A standard metric widely used in machine learning to evaluate the
performance of test data on a trained model is the Precision-Recall

curve (PR curve), where precision and recall are deőned as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (2)

Here TP, FP, and FN are the number of True Positive, False Positive,
and False Negative images respectively. These values are computed
by passing a labeled test dataset (TestV1 and TestV2 in this case)
through a trained model (e.g., GAN+Mixmatch) and setting different
prediction thresholds.

Since the primary goal of this work is to őnd models which mini-
mize the number of nonlensed images that an investigator encounters
while maximizing the number of lensed images found (i.e., less FP
and FN values), we seek models which have high precision at high
recall. We present the results from our PR curve analysis in the next
section.

6 RESULTS AND DISCUSSION

6.1 Semi-supervised algorithms with GANs and Augmentations

have superior performance

We consider 17 variations on the learning approaches described in
Section 3: 4 supervised, 6 semi-supervised, and 7 semi-supervised
with GANs. SupervisedV1 and SupervisedV2 are our baseline mod-
els. They were trained using a supervised learning approach with no
data augmentation on TrainingV1 (∼250,000 Lenses and NonLenses)
and TrainingV2 (∼7000 Lenses and NonLenses) respectively. On the
other hand, SupervisedV1+DA and SupervisedV2+DA were trained
using supervised learning with data augmentation (DA). The rest
of the models were trained on TrainingV2 using semi-supervised
learning methods with DA or with DA + GANs. In this subsection,
we summarize the performance of these different models. We pri-
marily use the PR curve (Section 5.2) evaluated on our TestV1 and
TestV2 sets to gauge which models perform best. We note that our
methodology paper S22 includes an additional discussion of these
results.

We plot the PR curve obtained for our best-performing baseline
models (SupervisedV1, SupervisedV2) along with a subset of semi-
supervised and GAN+semi-supervised models in Figure 5 (see Ta-
bles 3 and 4 of S22 for additional model results). Table 3 lists the
precision value obtained for a subset of models at 100% recall. We
őnd that our models tend to generalize poorly when trained without
any augmentations. Our baseline models, trained without any data
augmentation, performed worst out of all models at every recall level.
For example, at 100% recall, the baseline SupervisedV1 and Super-
visedV2 have a precision of ∼ 3% on our TestV2 set, whereas the
GAN+Π-model has a precision of ∼ 22%. The poor precision values
of our supervised models may reŕect challenges in simulating the
characteristics of lenses from a survey given limited priors. Fortu-
nately, we őnd that data augmentation methods are able to address
this problem. We őnd a factor ∼5-10× improved precision across
almost all recall levels when applying the full set of augmentations
(Table 1) to our supervised models.

The improvement of semi-supervised over supervised algorithms
suggests that valuable features can in fact be extracted from the
mostly unlabeled NonLenses, providing beneőts in the classiőcation
of real lenses. Adding GAN images to our training pipelines had a
seemingly profound impact at all recall levels, especially at higher
recalls where more difficult-to-classify images come into play. This
suggests that GAN-generated images contain subtle variations which,
while not necessarily signiőcant to the naked eye, do in fact produce
a strong regularizing effect when used in training.
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6.1.1 Ablation study on data augmentations

We investigated the impact of each of the data augmentations we
used by doing an ablation study using TrainingV2. The results from
this study are tabulated in Table A1. We őnd that removing GAN
images from the training sets causes a noticeable decrease in model
performance at all recall levels, which agrees with our earlier conclu-
sion. It also appears that color augmentations and JPEG quality play
a very signiőcant role in model performance. Including these three
augmentations in our training pipelines is apparently what allows our
model to generalize so well, despite relying on simulated lenses for
training. A curious result from this ablation study is that multiples of
90-degree rotations actually had a negative effect on model perfor-
mance. The difference in performance is relatively small compared
to that seen for other augmentations (e.g., GANs), but persists at all
recall rates. A possible reason for this could be our small validation
and test sets. Because the validation set is small, model selection
may be biased towards certain orientations of the image. Likewise,
an equally small test set may have preferred orientations that the
model does not generalize to, resulting in degraded performance.

6.1.2 Larger non-lens training samples can degrade the classiőer’s

performance

To understand why our larger training set (TrainingV1) led to poorer
generalization, we also performed a test where we őxed the number of
simulated Lenses and varied the number of NonLenses in the dataset
(see S22, Table 5). As we gradually increased the number of Non-
Lenses in the training data from 0 to 256,000, we saw that precision
gradually increased and peaked at around 8000-16000 NonLenses,
then started to signiőcantly decrease to around ∼6% precision for
nearly all recall levels. One possible explanation for this effect is
that as we increase the number of NonLenses in training, we also
increase the number of NonLens false positives which appear similar
to real lenses in the survey data (and perhaps even more similar to
real lenses than the simulations we use). As a result, the decision
boundary for non-lenses overlaps more with the regions occupied by
real lenses, leading to higher levels of misclassiőcation. Therefore,
care must be taken in constructing training data based on simulations.
Arbitrarily increasing the size of the training data can evidently lead
to signiőcantly worse performance than using a smaller well-curated
training set.

To summarize, we őnd that models trained with a semi-supervised
learning approach using TrainingV2 and GAN-generated images
along with all of our proposed list of data augmentations have high
precision values at all recall values. In particular, among the mod-
els tested, the top two performing models are GAN+MixMatch and
GAN+Π-model. In the following subsection, we turn to apply these
models to the full set of DLS survey images (i.e., SurveyCatalog in
Section 2.1)

6.2 Catalog of Lens candidates found

Having established which of our trained models perform best on our
test set in terms of PR curves, we now turn to the key question of how
many lenses are identiőed in the DLS and importantly, how much
human inspection effort is required to őnd them.

We obtain a ∼97% and ∼86% precision at 50% recall (i.e., to őnd
50% lenses from our test set) for the GAN + MixMatch and GAN
+ Π-model respectively. On the other hand, if we needed to reach
100% recall (i.e., őnd all the lenses from our test set), the precision
drops to∼ 8% and∼ 22% respectively (Table 3). Based on the results

from Pourrahmani et al. (2018) who searched for gravitational lenses
in the COSMOS őeld with excellent image quality from the Hubble
Space Telescope, we expect a maximum of ∼7 Grade-A lenses per
square degree. This gives an upper bound of ≲140 lens candidates
in the 20 degree2 of the DLS, where the number of detectable lenses
will be smaller since many of the COSMOS lenses have Einstein
radii which are too small to resolve in ground-based DLS data, and
because the COSMOS data are more sensitive. We estimate that half
of the COSMOS lenses are unresolved in DLS based on the distribu-
tion of Einstein radii of the sample, with median ≃1.′′2 reported by
Pourrahmani et al. (2018), such that we would expect ∼70 detectable
lenses in the DLS survey area. At 100% recall, 8% precision, and
a TP≈70, the number of false positive (FP) images that an inves-
tigator has to look at to őnd 70 lenses is ∼ 850. If the number of
detectable lenses in DLS is much lower, as suggested by samples re-
ported from large ground-based campaigns such as the Dark Energy
Survey (DES), then the total number of images and false positives
which must be searched is correspondingly smaller. We also note
that these estimates are based on the assumption that the precision
values obtained from our test set also apply to the survey data. A
decrease in this precision value would increase the number of FPs.
Therefore, considering these uncertainties, for this work we visu-
ally examine the top 12, 25, 100, 800, 2800, and 4000 predictions
from the GAN+Mixmatch and GAN+Π-model, and investigate the
number of lenses found. Throughout this paper, we focus only on
using relative ranks (i.e., top 𝑛 prediction) to assess model perfor-
mance since the distribution of absolute prediction threshold values
(such as those employed in Jacobs et al. 2019) can vary signiőcantly
between different models (Appendix A1). The absolute prediction
values obtained from different models can be calibrated, for example
by scaling the obtained model weights to the softmax layer, but this
is beyond the scope of our study. We note that the relative ranks
which we use in this study will be unaffected under such scaling
transformations.

One substantial caveat when looking at the top 𝑛 predictions is
that, due to the density of galaxies in the sky and our image selection
method, the top predictions are not necessarily unique. For example,
the top 25 predictions from the GAN+Π-Model contain 17 unique
sources and 8 duplicates centered on different nearby objects (shown
in Figure A2 in the Appendix). For the top 2800 predictions, the
number of unique candidates is ∼ 1600 on average (i.e., ∼ 40% are
repeated). Since this is a signiőcant portion of the number of images
and would increase human effort during labeling, we remove such
repetitions based on their sky coordinates. Given our image size, we
remove duplicates within a radius of 26 arcseconds of each object in
the top 𝑛 predictions.

The remaining images are then replaced with a larger őeld of
view, ensuring that a given region of the sky needs to be visually
inspected only once. We note that removing duplicates is strictly a
post-processing step. Two of us (KVGC and TJ) visually inspected
the lens candidates and classiőed them into conődence categories:
Grade-A, Grade-B, Grade-C, and non-lenses. Grade-A indicates a
high likelihood of being a strong lens system, on the basis of a
clear arc morphology and/or coincidence with a moderately massive
group of galaxies. Grade-B lenses generally have a nebulous arc-
like feature surrounding a massive galaxy and/or have approximated
linear extended arc morphology near a group or cluster of galaxies. It
is uncertain if these features are from the lens or the effect of blending
multiple sources. Grade-C lenses (not discussed in this paper) are the
lowest-conődence candidates which typically show blended arc-like
features likely arising from spiral arms, tidal features, or asymmetric
diffuse light from the onset of mergers.
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Figure 5. Precision-Recall curves (PR curves) for a subset of the models described in Section 3 obtained using TestV1 (Left) and TestV2 (Right). TestV1
contains 52 lens candidates found using our ensemble model approach, while TestV2 contains the 27 best visual candidates (Section 5.1). SupervisedV1 and
SupervisedV2 are our baseline models. They were trained using a supervised learning approach with no data augmentation on TrainingV1 (∼250,000 Lenses and
NonLenses) and TrainingV2 (∼7000 Lenses and NonLenses) respectively. The rest of the models were trained on TrainingV2 with augmentations. MixMatch
and Π-Model are semi-supervised learning approaches, whereas GAN+MixMatch and GAN+Π-Model use GAN generated images along with semi-supervised
learning (see Figure 3 and Section 3 for details). GAN+SupervisedV2 uses supervised learning with GAN generated images. Models which use semi-supervised
learning along with GANs clearly outperform our baseline supervised learning models at all recall values, with GAN+Π-model having the highest precision at
100% recall (see results in Table 3; we note that Table 3 reports the average of our four runs while this őgure shows the runs with the best precision).

Model Training data used TestV1 Precision(%) TestV2 Precision(%)
SupervisedV1 TrainingV1 w/ no augmentation 5.62±0.01 3.01±0.02
SupervisedV2 TrainingV2 w/ no augmentation 5.65±0.02 3.06±0.04

MixMatch TrainingV2 w/ augmentation 12.28±5.09 6.84±3.00
Π-Model TrainingV2 w/ augmentation 13.41±2.33 8.68±1.49

GAN + Supervised TrainingV2 w/ augmentation 8.25±2.85 6.05±2.69
GAN + MixMatch TrainingV2 w/ augmentation 14.13±6.53 7.97±3.93
GAN + Π-Model TrainingV2 w/ augmentation 15.2±6.21 22.27±7.71

Table 3. Average precision values were obtained for a subset of the models tested at 100% recall. We note that a table with the performance of all the models
at various recall values is presented in S22. Here the average is computed from the performance of four independent runs on the test sets. The uncertainties are
1𝜎 standard deviations from the mean.

Figures 6 and 7 show the color composite images for the 9 Grade-A
and 13 Grade-B lenses found from the survey upon visually inspect-
ing ∼ 2500 unique candidates (the top 4000 by rank). Their sky
coordinates are listed in Table A2 in the Appendix. Several of the
Grade-A lenses appear to be compound lenses or part of a moder-
ately massive group or cluster of galaxies. This is interesting since
our training data consists of only galaxy-galaxy lenses. This is likely
due to the addition of GAN-generated images to our training data,
as the GAN-generated images (Figure 3) include irregularly shaped
arcs.

6.2.1 Human inspection effort

We now examine how much human effort is required to őnd the 22
Grade-A and B lens candidates. To quantify the effort we consider
the number of lenses found at different ranks, listed in Table 4. The

rank threshold determines the number of unique images which must
be visually inspected. Looking at the top 800 predictions from the
GAN+MixMatch and GAN+Π-model (corresponding to 513 and
430 unique lens candidates respectively), we őnd 4 and 3 Grade-A
lenses, and 2 and 5 Grade-B lenses respectively. This is several times
(≳3×) higher sky density than has been found from the shallower
ground-based DES survey, and smaller than the density found in
COSMOS with HST, as expected. The number of lens candidates
found increases to 9 Grade-A and 13 Grade-B candidates when the
top 4000 candidates (∼2500 unique images) are considered. This
corresponds to ∼1 lens per deg2 searched, which is ≳10× higher
sky density of lenses compared to previous shallower ground-based
surveys (as we discuss in Section 6.4).

In comparison, our supervised models (e.g., SupervisedV1, Su-
pervisedV2) őnd ≲ 50% of these top lens candidates. They also
have lower precision values (Table 3), with no compelling lenses
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Figure 6. Grade-A lenses found in the DLS along with the rank (Section 6.2) assigned to them by GAN+MixMatch(MM) and GAN+Π-model(PI) models. All
Grade-A lenses have a clear arc morphology and are located near a moderately massive galaxy or group, making them convincing lens candidates. Among these
candidates, 212072337 and 432021600 have been spectroscopically conőrmed to be true strong lens systems (Section 6.2.2).
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Figure 7. Grade-B lenses found along with the rank (Section 6.2) assigned to them by GAN+MixMatch(MM) and GAN+PiModel(PI) models. Targets in this
category have either a tentative nebulous arc-like feature surrounding a massive galaxy, or have approximately linear extended morphology near an apparent
galaxy group or cluster. It is hard to discern if these features correspond to lensed arcs or are caused by blending of multiple sources, hence the uncertain Grade-B
classiőcation.

found within the top 17 candidates inspected (whereas G+PI őnds 3
within this threshold range). This again highlights the value of adding
data augmentation and GAN images. The SupervisedV2+DA+GAN
model őnds 3 times more lenses than SupervisedV2 within the same

threshold range. These results demonstrate the efficiency with which
the models explored in this work can őnd strong lenses.
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Rank Number of unique Number of Number of Total lenses Number of Number of Number of
threshold lenses investigated Grade-A lenses Grade-A lenses Grade-A Grade-A lenses Grade-A lenses Grade-A lenses

(G+MM,G+PI) (G+MM) (G+PI) (both models) (SupervisedV2) (SupervisedV2+DA) (SupervisedV2+DA+GAN)

12 9, 9 1 1 1 0 0 0
25 19, 16 1 3 3 0 0 0
100 67, 56 2 3 3 0 1 2
800 513, 430 4 3 4 1 2 3
2800 1735, 1459 6 5 8 - - -
4000 2459, 2076 7 5 9 - - -

Table 4. Comparison of the number of Grade-A lenses found by different models tested. The predictions from the models are ranked such that the most likely
predicted lens has rank=1. The rank threshold value sets the number of lenses that an investigator has to visually inspect. The left two columns show the
chosen rank threshold and the number of unique lenses that it corresponds to (removing duplicates as described in Section 6.2). Our best performing models
GAN+MixMatch (G+MM) and GAN+PiModel (G+PI) őnd 4 and 3 lensed candidates each among the top ∼500 unique images (top 800 ranks), and 7 lensed
candidates each when the top ∼ 2300 images are investigated. Combining the results from both the models, we őnd 9 Grade-A candidates (shown in Figure 6).
The right three columns show the number of lenses found from the SupervisedV2, SupervisedV2+Data Augmentation(DA) and SupervisedV2+DA+GAN.
Although they őnd fewer (≲ 50%) lens candidates than our best performing models, we can see that DA and GANs are able to boost the number of lenses found
from 1 to 3 at a rank threshold of 800.

Rank Number of unique Number of Number of Total lenses Total lenses
threshold lenses investigated Grade-B lenses Grade-B lenses Grade-B lenses Grade-A+B lenses

(G+MM,G+PI) (G+MM) (G+PI) (both models) (both models)

12 9, 9 0 0 0 1
25 19, 16 0 0 0 3
100 67, 56 0 2 2 5
800 513, 430 2 5 5 9
2800 1735, 1459 6 11 12 20
4000 2459, 2076 9 11 13 22

Table 5. Similar to Table 4 but for Grade-B lenses.

6.2.2 Spectroscopic conőrmation of two Grade-A lenses

While image morphology can provide compelling evidence for strong
gravitational lensing, spectroscopic redshifts are the standard to un-
ambiguously establish the lensing nature of a system. We have ob-
tained spectroscopy with Keck Observatory to conőrm the lensing
nature of two Grade-A systems presented herein: DLS212072337
and DLS432021848 (Figure 8). Observations of the arcs were con-
ducted with NIRES (Wilson et al. 2004) on the Keck II telescope. Full
details of the observations and data reduction are described in Tran
et al. (2022), along with spectroscopic redshifts for DLS212072337
(reported as AGEL091935+303156). We őnd a secure redshift of
𝑧arc = 1.81 for DLS212072337 from detection of H𝛼 𝜆6564 and [O
III] 𝜆𝜆4960,5008 emission lines. The deŕector galaxy is at a red-
shift of 𝑧def = 0.43, based on stellar absorption features from optical
SDSS/BOSS spectra.

We observed DLS432021848 with NIRES on 12 January 2022
using the same methodology. We obtained 6 exposures of 300 sec-
onds each. We detect a single emission line at 𝜆 = 1.93𝜇m which
we tentatively identify as either H𝛼 at 𝑧arc = 1.94 or [O III] 𝜆5008
at 𝑧arc = 2.85. However, we are unable to conőrm the redshift with
other strong lines, which fall in regions of poor atmospheric trans-
mission at both potential redshifts. We őnd further support for the
lensing nature of DLS432021848 from its morphology in follow-up
HST imaging (discussed in Section 6.4), which shows clear kurto-
sis and evidence of multiple lensed images. Thus we are reasonably
conődent that this is indeed a strong lensing system on the basis
of high-resolution imaging, despite the limited spectroscopic infor-
mation. Together with DLS212072337, these results give additional
conődence in the sample of lens candidates presented in this paper
and demonstrate that our methods are successful.

We note that redshifts are known for two additional Grade-A can-
didate deŕectors (DLS212148326, DLS421095124) from archival
data. DLS212148326 is at 𝑧def = 0.424 from SDSS/BOSS spectra,

while DLS421095124 is part of a massive galaxy cluster spectro-
scopically conőrmed at 𝑧def = 0.680 (Wittman et al. 2003, 2006,
reported as DLSCL J1055.2-0503). These redshifts are promising,
as the distances and approximate masses are consistent with the de-
ŕection angles implied by the strong lensing interpretation of these
images.

6.2.3 Distribution of lensed candidates in color-color space

The analysis and model performance described thus far in the paper
is based on a source selection using an intentionally simple 𝑅 band
magnitude cut and SExtractor ŕags (Section 2.1). We have demon-
strated in the above sections that such cuts are sufficient to search
for lensed candidates in the DLS. However, more sophisticated se-
lections can increase the efficiency of lens searches. Here we brieŕy
consider how color selection can provide higher-purity samples.

In Figure 9 we show the distribution of Grade-A and B lenses from
Section 6.2 in various color-color spaces, along with the top 4000
ranked images from the GAN-Π-model as an example. These colors
generally correspond to the central (candidate deŕector) galaxy. The
top lens candidates are not distributed uniformly, and we demonstrate
two color-color selections where the top candidates are clustered:
(𝐵−𝑉) < 0.56(𝐵−𝑅)−0.02 (purple line in left panel), and 𝑅−𝑧 ≳ 0.4

(right panel). Such simple color cuts can retain all Grade-A lenses
while removing the majority of false positives, thereby reducing
the required human inspection effort. Physically, these colors are
indicative of 4000 Å breaks at redshifts 𝑧 ≳ 0.25 (i.e. in the 𝑉 or 𝑅
band) whereas lower-𝑧 galaxies are less likely to act as strong lenses.

The distribution of lens candidates in color space suggests that the
precision of our models can be further improved by adopting color
criteria as a pre- or post-processing step, with minimal loss of the
best candidates. Using photometric redshift and mass estimates is
a similar and potentially even more promising method (Schmidt &
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DLS212072337 (𝑧 = 1.81)

DLS432021848 (𝑧 = 1.94; tentative)

Figure 8. (Top): NIRES spectra of Grade-A lens DLS212072337 at a redshift
of 𝑧 = 1.81 with prominent [O iii] emission lines marked in blue. (Bottom):
NIRES spectra of DLS432021848 showing the single emission line detected
at 1.93𝜇𝑚which we tentatively identify as H𝛼 at 𝑧 = 1.94. In both panels the
scaled sky spectrum is shown in orange (offset by -100), with gray shading
denoting regions affected by strong sky lines.

Thorman 2013) although it is beyond the scope of this paper. Al-
ternatively, a state-of-the-art automated means to address this would
be by using self-similarity based approaches (e.g., Stein et al. 2021),
wherein a CNN further classiőes the lens probabilities based on their
similarity with each other.

6.3 Lensing signatures identiőed by the models

We now examine which features of the lens candidate images are
most relevant for the model predictions. Deep neural networks (such
as ResNetV2 used in this work) are often considered as łblack boxesž
with all input information collapsed to a simple prediction for the user
to interpret. Having only a single output, it is impossible to discern
which distinguishing features of a gravitational lens are actually being
identiőed and considered by the models. Fortunately, in the past few
years, there have been a variety of methods proposed to alleviate
this such as occlusion methods, Guided Backprop (Springenberg
et al. 2015), CAM (Zhou et al. 2016), Grad-CAM (Selvaraju et al.
2017), Grad-CAM++ (Chattopadhay et al. 2018), and DeepSHAP
(Fernando et al. 2019).

Gradient-based interpretation methods (e.g., Grad-CAM++) effec-
tively compute gradients on intermediate feature maps of the network

to determine the importance of a feature. These gradient maps can
then be overlaid on top of the original input image, in order to assess
which image regions are contributing most to the predicted output
from the classiőer. These methods are not without drawbacks (e.g.,
Adebayo et al. 2018) but can provide valuable insight. Here we use
Grad-CAM++ to analyze some of our trained models.

Figure 10 shows Grad-CAM++ heatmaps obtained for a few il-
lustrative examples. We consider a simulated lens from the training
data, real Grade-A lenses from the survey, false positive images (i.e.,
images which are classiőed as lenses but show no visual evidence of
lensing), and a non-lens. In the case of the simulated lens, it is clear
that the model is indeed making its prediction based on the lensed
arc features. For the Grade-A lenses, the model does indeed discern
the lensed arcs, but there are additional unrelated regions within the
images that also inŕuence its decision. Curiously, the central massive
deŕector galaxy is not highlighted in these cases. In the case of the
false positives, the model encouragingly is not misled by the extended
central galaxies, but rather the heatmap highlights multiple sources
of similar color which surround the central galaxy. For example in
the spiral galaxy false-positive image, it is clear that the model picks
up on the three nearby red objects. The location and color of these
nearby objects is indeed similar to plausible multiple-image lens-
ing conőgurations. It thus appears that the model has successfully
learned to identify the astrophysical signatures of strong lensing.

6.3.1 Finding red arcs

As discussed in Section 4.2, our Lens dataset used for training only
consists of lensed arcs with blue optical colors. However, it is en-
couraging that the models have also identiőed red arcs such as the
system DLS212148326 (Figure 6). The network may be learning to
identify red arcs through color augmentations (Figure 2). Although
red-lensed arcs are known to exist, presumably a training dataset
consisting of only blue arcs is not ideal to robustly search for and
quantify them. It could be the case that adding more augmentations
or őne-tuning existing ones might suffice to search for arcs of vari-
ous colors. Alternatively, a broader range of arc colors could be used
in the simulated training set, or a separate classiőer could be con-
structed from a training set of red arcs. Given our adopted training
set, we consider the number of red-lensed arcs found from this work
to be a lower limit (relative to the blue arcs). Additionally, there are
likely many fainter blue or red arcs which our training set does not
represent, although the detection of fainter objects is naturally more
challenging.

6.4 Implications for future large-area sky surveys: sensitivity

and angular resolution

The next generation of wide-area sky surveys is expected to uncover
≳ 10

5 strong lens systems (e.g., Oguri & Marshall 2010; Collett
2015). Here we consider the gain in lens detection with survey depth
and angular resolution based on our DLS sample from Section 6.2.
We compare the sky density of detected lens candidates with two
other illustrative examples of CNN-based searches in Table 6. In
our DLS search, we őnd ∼0.5 Grade-A lenses per square degree
(or ∼1 Grade-A+B lenses per square degree). This is considerably
larger than found in shallower surveys such as SDSS and DES, which
have uncovered ∼0.1 lenses per square degree (in regions far from
the galactic plane). While these surveys have a comparable seeing-
limited resolution, sharper image quality enables more lenses to
be found. An example is the search of COSMOS HST imaging by
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2162 galaxies 1838 galaxies

Figure 9. Distribution of the top 4000 lenses found by GAN+Π-model in color-color space. The left panel shows 𝐵 − 𝑅 vs 𝐵 − 𝑉 and the right panel shows
𝐵 − 𝑅 vs 𝑅 − 𝑧. The images above show examples of galaxies found in the two regions of the left panel separated by the purple line. Low-z galaxy candidates
are clustered in the region above the trend line whereas all of the Grade-A lens candidates are below it. The right panel additionally shows that lens candidates
are typically redder in 𝑅 − 𝑧 colors (≳ 0.5). A color selection based on the purple lines in each panel would yield higher precision in our lens candidate samples
while retaining nearly all of the most probable lenses.

Pourrahmani et al. (2018) using a CNN approach, which found 13
Grade-A candidates and 70 Grade-A+B candidates in the 2 square
degree őeld (i.e., ∼35 per square degree). Therefore, we see that the
sky density of detectable strong lens systems increases by ∼10 times
when going from shallower ground-based surveys (e.g., SDSS) to the
DLS, and by another factor of ≳10 when the angular resolution is
improved by an order of magnitude with space-based HST imaging
at modest depth. These results generally support the predictions of
large lens samples which will become detectable with near-future
surveys planned with the Rubin (LSST Science Collaboration et al.
2009), Roman (Spergel et al. 2015), and Euclid (Laureĳs et al. 2011)
observatories.

To visually illustrate the detection of lenses at different depths
and angular resolutions, Figure 11 compares DECaLS, DLS, and
HST imaging3 for the Grade-A lens candidate DLS432021848 found

3 The HST image was secured as part of program HST-GO-16773 targeting
lens candidates identiőed primarily in DES and DECaLS imaging (Tran et al.
2022). In brief, the HST image in Figure 11 was taken with WFC3-IR in
the F140W őlter with ∼30 minutes of exposure time (<1 orbit), and reduced

in this work. A blue arc is clearly visible in the DLS image and
shows typical lensing morphology in the high-resolution HST image.
However, the arc is only marginally visible in shallower DECaLS
imaging. Indeed, most (if not all) of the Grade-A lens candidates
found from this work would be difficult to detect in shallower imaging
surveys (e.g., DECaLS; hence for example they are not included in
the catalog of Huang et al. 2020).

Given the detectability of many lens systems with upcoming sur-
veys, it is clear that machine learning approaches (such as those we
have explored here) will be vitally important for the efficient selec-
tion of large samples. We have also demonstrated the feasibility of
spectroscopically following up on these moderately faint arc systems
(Section 6.2.2), which will be vital for conőrmation and subsequent
analyses.

using standard procedures. Details of the HST program will be described in
a forthcoming paper.
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Simulated Lens

Lenses found in DLS

False Positive

NonLens

Figure 10. Grad-CAM++ heatmaps for an example simulated lens, two Grade-
A lenses, two false positive lenses, and a NonLens. The left column shows the
color composite image obtained from HumVI and passed to the model. The
right column shows the Gradcam++ heatmaps. The red and green shading
indicates regions of high and moderate importance to the model, respec-
tively, whereas blue represents low importance. The middle column shows
the heatmaps superimposed on input images for visualization purposes. For
the simulated lens, we can clearly see that the entire lensed arc region is
taken into consideration. For the Grade-A lens candidates found in DLS, we
also őnd that the lensed arc features are considered important by the model,
despite a range of lensing morphologies and colors. This suggests that models
have indeed successfully generalized to the survey data. Notably, the mas-
sive deŕector (i.e., the luminous red galaxy) causing the lensing effect is not
highlighted in the simulated or candidate lens systems. Additional objects
in the őeld are also highlighted in heatmaps for the Grade-A lenses, which
is also apparent in the False Positive and NonLens examples. In the case of
the False Positives, the highlighted object distributions resemble an łEinstein
crossž lens conőguration. Heatmaps for all the Grade-A lenses are provided
in Figure A4 in the appendix.

DECaLS DLS HST

Figure 11. Comparison of the image quality from different observations of
the lens system DLS432021848, which shows a prominent blue arc in DLS
imaging (below center of images; all panels show the same őeld of view).
Left: The arc is apparent but not well detected in DECaLS imaging, which has
modest sensitivity. This image would likely be ŕagged in a low-conődence
category and indeed was not identiőed in previous lens searches (e.g., Huang
et al. 2020). Middle: DLS image of the target showing a prominent blue arc-
like feature below the red deŕector galaxy, characteristic of a gravitational
lens system. The increased sensitivity of DLS compared to DECaLS imaging
(Table 6) enables clear arc detection. Right: Near-infrared image of the same
target observed with HST, with a diffraction-limited angular resolution ap-
proximately 6 times sharper than DLS or DECaLS images. The HST image
reveals the lensed arc morphology at a high signal-to-noise ratio. This demon-
strates the capabilities of a ground-based telescope at good depth (e.g., DLS),
and a diffraction-limited space-based telescope with moderate exposure time
(e.g., HST).

Survey Lenses found 5𝜎 point FWHM References
per sq.deg source detection

(r/R/F814W-band
magnitude)

DES/DECaLS ∼ 0.1 23.6 (r) 0.′′98 J19
DLS 1 26.7 (R) 0.′′9 This work

COSMOS ∼ 35 27.2 (F814W) 0.′′07 P18,K07

Table 6. Number of lenses found using machine learning methods per square
degree of sky in different surveys, along with the 5𝜎 point source detection
depth and median angular resolution (given as the FWHM: full-width at half
maximum). We note that CNN and grading methods employed to őnd lenses
in each survey are different; the density of lenses should thus be treated as an
approximate comparison. References are as follows. J19: Jacobs et al. (2019),
P18: Pourrahmani et al. (2018), K07: Koekemoer et al. (2007).

7 CONCLUSIONS

In this paper, we have evaluated the performance of different CNN
learning approaches and data augmentations on their ability to effi-
ciently őnd gravitational lens candidates in the Deep Lens Survey.
We make use of the deep learning architecture ResNet for our exper-
iments, along with a training dataset consisting of simulated Lenses
and survey image NonLenses. We demonstrate that by using these
state-of-the-art semi-supervised learning approaches, we can greatly
reduce the human effort required to őnd lensed candidates from a
survey. We summarize our key results below.

(i) Among 17 variants of learning approaches tested in this work,
we őnd that our best performing models (i.e., those which have high
precision and minimize false positives during human inspection)
are GAN+MixMatch and GAN+Π−model. They have a precision of
∼ 86% and ∼ 97% at 50% recall and, ∼ 22% and ∼ 8% at 100%
recall respectively. In comparison, our supervised models have a pre-
cision of ∼ 3% at 100% recall. This increase in the performance of
the best models can be attributed largely to three factors. (1) They
leverage data augmentation (Table 1) during training, which helps
them to generalize better. (2) The datasets used to train these models
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to contain simulated Lenses as well as GAN-generated images (Sec-
tion 3), which serves as an additional form of data augmentation.
(3) Both of these top models employ a semi-supervised learning ap-
proach (MixMatch, Π-model) which enables our methods to adapt to
distributional shift (Section 3.2). These results indicate that data aug-
mentation, GANs, and semi-supervised learning are highly effective
approaches for building an efficient lens classiőer.

(ii) We investigated the Grad-CAM++ feature maps (Section 6.3)
used by our best performing models to make their predictions, őnding
that they indeed are inŕuenced mostly by lensed arc regions and
are generally not misled by other galaxies/artifacts (e.g., diffraction
spikes) in the images. This supplements our results presented above
that salient information regarding the arcs needed for classiőcation
has been successfully learned by the models through our methods.
This is encouraging for future lens searches, since simulated Lenses
used in this work are generated without relying on photometric data
of the deŕector galaxy (Section 4), making it simpler to automate the
task of generating a training dataset.

(iii) Applying the GAN+MixMatch and GAN+Π-model to the
entire DLS survey, and visually inspecting the top ∼ 2500 lens can-
didates, we őnd 9 Grade-A and 13 Grade-B lensed candidates (22
in total). 3 out of the 9 Grade-A candidates are found within the top
17 ranked images. The number of lenses found in the DLS corre-
sponds to ∼ 10× higher sky density of lenses per deg2 compared
to the shallower DES/DECaLS survey imaging and supports predic-
tions that vast numbers of lens systems (≳ 10

5) will be detectable in
the upcoming generation of sky surveys. We further conőrmed the
lensed nature of 2 Grade-A candidates with spectroscopy and high-
resolution imaging, demonstrating that our methods are successful.

We have generally explored methods intended to őnd as many
lenses as possible while minimizing human inspection effort. While
there are likely additional detectable lenses beyond those we have
identiőed, it is encouraging that our models have been able to iden-
tify lenses that are not represented in the training set. In particular, our
training set focused on blue lensed arcs, while our models also őnd
red arc candidates such as DLS212072337 (Section 6.3.1), although
at a lower rank compared to the bluer lenses. Additional augmenta-
tion methods and/or training datasets may be able to provide further
improvement for diverse lens system properties. Another straightfor-
ward improvement to our lens search efficiency is to include simple
cuts in color-color space as demonstrated in Section 6.2.3. Such cuts
can help increase the model precision by excluding sources that are
not likely to act as strong lenses based on their color and magnitude
(which is physically related to their mass and distance). Since our
sample is agnostic to color information, our results are well-suited
for assessing the color space distribution of the best lens candidates.

The scope of our models is currently limited to the DLS. However,
our methodology can be adapted for other data sets, and we note
that the DLS őelds overlap with wide-area surveys such as DECaLS
and SDSS. Exploring ways to translate these models across surveys
would be greatly beneőcial. Finally, conőrming the lensing nature
of new candidates either through spectroscopy (Section 6.2.2) or via
arc morphology (Section 6.4) is essential for a variety of investiga-
tions, including probes of galaxy evolution and cosmology. We have
demonstrated the feasibility of conőrming moderately faint arcs in
our sample. Accomplishing conőrmation for the thousands of lenses
that will be discovered in forthcoming surveys (such as with Ru-
bin/LSST, Roman, and Euclid) will aid in our understanding of the
formation and evolution of galaxies and the contents of the Universe.
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APPENDIX A: MODEL PERFORMANCE AND FINAL

LENS SAMPLE

In this appendix, we provide some additional details of the model
performance and the top lens candidates identiőed in this work.

Figure A1 shows the distribution of model scores across the dif-
ferent DLS őelds (F1 to F5), demonstrating similar performance in
each őeld. This is generally expected given the similar image quality
across the DLS survey. Importantly it shows that our use of labeled
training data from only F1 does not substantially affect the model
performance in the other őelds.

Table A1 lists the results from our ablation study discussed in
Section 6.1.1. We show the precision across recall rates from 50-
100%. The performance differences are generally similar across all
recall rates. Color augmentation, JPEG quality, and GAN images
appear to most prominently improving the model performance (i.e.,
the models perform signiőcantly worse when these augmentations
are removed).

We show the top 25 predicted lens candidates from the GAN+Π-
model and GAN+MixMatch models in Figures A2 and A3, respec-
tively. These include several of our top lens candidates based on
human inspection (see Figures 6) and 7), but many do not show
obvious signs of strong lensing. There are several duplicate images
at slightly different sky positions as discussed in the main text. In
Figure A4 we include the GradCAM++ heatmaps obtained for all
the Grade-A candidates (analogous to the example subsets shown
in Figure 10). These heatmaps were generated using our best per-
forming models: GAN+MixMatch or GAN+Π-model (discussed in
Section 6.3). Finally, we list the sky coordinates of all Grade-A and
Grade-B lenses in Table A2.

This paper has been typeset from a TEX/LATEX őle prepared by the author.
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Augmentation removed TestV1 Precision(%) TestV2 Precision(%) TestV1 baseline difference(%) TestV2 baseline difference(%)

Performance at 50% recall rate

None 84.95 ± 8.70 80.19 ± 17.08 - -
GAN 65.46 ± 15.00 55.77 ± 17.43 -19.49 -24.42

RGB shuffle 44.8 ± 24.32 35.45 ± 21.75 -40.15 -44.74
JPEG quality 65.30 ± 13.84 56.84 ± 14.06 -19.65 -23.35

Rot90 91.81 ± 4.41 89.96 ± 6.33 +6.86 +9.77
Translations 89.47 ± 10.34 84.59 ± 13.04 +4.52 +4.4

Horizontal ŕips 84.63 ± 10.85 75.74 ± 13.96 -0.32 -4.45
Color augmentation 71.88 ± 17.35 68.23 ± 15.2 -13.07 -11.96

Performance at 60% recall rate

None 79.88 ± 6.30 78.03 ± 12.45 - -
GAN 55.54 ± 13.13 44.09 ± 12.94 - 24.34 -33.94

RGB shuffle 34.25 ± 24.49 26.14 ± 15.9 - 45.63 -51.89
JPEG quality 52.75 ± 24.68 51.69 ± 17.91 - 27.13 -26.34

Rot90 84.94 ± 7.04 78.99 ± 5.23 +5.06 + 0.96
Translations 74.95 ± 16.11 72.26 ± 24.65 -4.93 -5.77

Horizontal ŕips 71.15 ± 11.46 60.64 ± 12.27 -8.73 -17.39
Color augmentation 63.24 ± 15.67 50.91 ± 15.53 -16.64 -27.12

Performance at 70% recall rate

None 69.42 ± 4.60 68.05 ± 12.96 - -
GAN 46.45 ± 14.49 37.24 ± 12.85 -22.97 -30.81

RGB shuffle 26.68 ± 17.28 18.75 ± 11.78 -42.74 -49.3
JPEG quality 40.38 ± 18.64 40.52 ± 21.74 - 29.04 -27.53

Rot90 79.97 ± 12.15 73.69 ± 7.11 +10.55 +5.64
Translations 67.69 ± 12.67 59.31 ± 22.34 -1.73 -8.74

Horizontal ŕips 67.36 ± 11.95 55.94 ± 14.71 -2.06 -12.11
Color augmentation 52.79 ± 14.92 45.93 ± 13.97 -16.63 -22.12

Performance at 80% recall rate

None 54.35 ± 4.57 40.98 ± 17.12 - -
GAN 33.02 ± 10.26 24.37 ± 10.50 -21.33 -16.61

RGB shuffle 15.34 ± 7.59 11.75 ± 4.90 -39.01 -29.23
JPEG quality 21.33 ± 8.29 15.25 ± 3.41 -33.02 -25.73

Rot90 62.63 ± 12.43 52.2 ± 13.65 +8.28 +11.22
Translations 52.17 ± 12.92 35.09 ± 16.64 -2.18 -5.89

Horizontal ŕips 60.54 ± 9.78 36.46 ± 9.03 +6.19 -4.52
Color augmentation 39.47 ± 13.24 33.84 ± 10.92 -14.88 -7.14

Performance at 90% recall rate

None 34.12 ± 7.47 16.33 ± 8.661 - -
GAN 22.60 ± 4.78 10.99 ± 4.25 -11.52 -5.34

RGB shuffle 10.37 ± 4.68 5.88 ± 2.61 -23.75 -10.45
JPEG quality 15.15 ± 6.37 6.18 ± 2.41 -18.97 -10.15

Rot90 40.72 ± 12.74 21.79 ± 3.08 +6.6 +5.46
Translations 32.88 ± 3.35 16.14 ± 6.72 -1.24 -0.19

Horizontal ŕips 30.81 ± 20.44 14.72 ± 6.59 -3.31 -1.61
Color augmentation 23.86 ± 8.13 14.25 ± 8.45 -10.26 -2.08

Performance at 100% recall rate

None 8.25 ± 2.85 6.05 ± 2.69 - -
GAN 8.13 ± 2.49 5.79 ± 3.93 -0.12 -0.26

RGB shuffle 6.43 ± 0.97 3.84 ± 1.02 -1.82 -2.21
JPEG quality 5.88 ± 0.21 4.14 ± 2.09 -2.37 -1.91

Rot90 14.76 ± 8.42 13.00 ± 5.16 +6.51 +6.95
Translations 10.83 ± 2.46 7.37 ± 3.66 +2.58 +1.32

Horizontal ŕips 15.74 ± 3.06 8.86 ± 1.84 +7.49 +2.81
Color augmentation 11.42 ± 7.25 6.84 ± 4.12 +3.17 +0.79

Table A1. Ablation performance for 50ś100% recall rates (in steps of 10%) for the GAN+Supervised model using TrainingV2. The őrst row of each recall rate
shows the baseline precision value obtained from the model on the test sets (TestV1, TestV2) when none of the augmentations are removed. In the subsequent
rows, we report the precision obtained when the model was trained without the speciőed augmentation. For example, the baseline model at 50% recall has a
precision of 80.19% for TestV2 and decreases to 55.77% when GAN images are removed during training. The difference in the obtained precision values are
quoted in the last two columns. Augmentations which improve model performance (i.e., improve precision when included and decrease decrease precision when
removed) are shown in red, while those which decrease model performance are shown in blue. Overall, the models perform worse when color augmentations,
JPEG quality and GANs are not included, indicating that these augmentations are important for optimal performance. The errrors quoted here are 1𝜎.
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Figure A1. Histogram of the scores obtained by the GAN+MixMatch and GAN+Π-model in the őve independent DLS Fields F1 through F5. As discussed in
Section 4, the training set used to train our models (TrainingV2) contains human labeled NonLenses which were randomly sampled only from Field F1. But as
we clearly see, the distribution of scores (and performance of the models as a result) is independent of the őeld chosen.
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212037916 212072337 312113398 312115456 313061432 313061831

412108621 412109246 421042511 421045132 421093628 421094894

421095028 432073432 432073661 432084332 432084829 432085076

432128113 511062020 513097808 523005873 523006308 532016801

532017387

Figure A2. DLS images of the top 25 predictions from GAN+Π-model. Several show clear evidence of strong lensing, while other images appear to be false
positives. We note that many images are duplicates (at overlapping regions of the sky), which we remove before visual inspection.
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Figure A3. Equivalent to Figure A2, showing the top 25 predictions from GAN+Mimatch.
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object ID RA DEC Field Rank (GAN+MixMatch) Rank (GAN+Π-model)
Grade-A candidates

421095124 163.792076 -5.070373 F4 2 12
513097468 209.340092 -10.244328 F5 38 13
212072337 139.896040 30.532355 F2 181 21
322054393 79.839914 -48.949647 F3 733 8326
432021600 162.750073 -5.941902 F4 1262 12424
431010921 163.364259 -5.789092 F4 1279 19826
512037933 209.677055 -10.687652 F5 7461 2068
421117552 163.897903 -5.054885 F4 4799 2768
212148326 139.512033 30.953524 F2 3579 23223

Grade-B candidates

313032462 78.742878 -48.149829 F3 365 59
331108599 81.300608 -49.432676 F3 1974 98
132023380 13.551513 11.794606 F1 3400 462
533097114 209.328083 -11.993324 F5 518 676
433116975 162.551767 -5.697394 F4 13673 720
233074254 139.046712 29.298535 F2 870 2320
413115231 162.585545 -4.498548 F4 8839 884
211134050 140.304878 30.471131 F2 12662 979
122079323 13.182525 12.323637 F1 8567 1145
312158847 80.455801 -48.489660 F3 3896 1209
322092794 80.115321 -49.246309 F3 1234 24945
421019105 163.411890 -4.870280 F4 1996 2702
221061603 140.662872 29.846367 F2 3990 8584

Table A2. Grade-A and Grade-B Lens candidates found from this work with their object ID, RA and DEC coordinates, DLS őeld (F1 through F5), and their
corresponding ranks from GAN+MixMatch and GAN+Π-models. The rank is obtained by passing all the survey images (281,425 objects in total; Section 2)
through the models and sorting them based on their prediction scores. High-conődence Lens candidates have lower ranks and high prediction scores. For
example, the Grade-A lens candidate DLS212072337 whose lensing nature has been spectroscopically conőrmed (Section 6.2.2) has a rank of 21 from the
GAN+Π-model and a prediction score of ≃ 1. The ranks quoted here represent an upper bound on the number of images an investigator has to look at to őnd the
lens candidate, as they do not account for duplicated sky regions which we remove before visual inspection (as discussed in Section 6.2), reducing the number
of unique lens candidates investigated.
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212072337 (MM)

322054393 (MM)

421095124 (MM)

421117760 (PI)

431010921 (MM)

432021600 (MM)

512037933 (PI)

513097329 (PI)

212148326 (MM)

Figure A4. GradCAM++ heatmaps for all Grade-A lenses, equivalent to Figure 10. Each image is labeled with its object ID, and the model corresponding to the
heatmaps (MM = GAN+MixMatch, PI = GAN+Π-model).
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