
Visualizations for User-supported State Space
Exploration of Goal Models

Yesugen Baatartogtokh, Irene Foster, Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
amgrubb@smith.edu

Abstract—Automated analysis has been used in goal-oriented
requirements engineering (GORE) to evaluate scenarios and
make trade-off decisions. For higher complexity problems (e.g.,
backwards analysis), using a search-based solver may be more
efficient than custom algorithms. When these black-box solvers
produce a single solution, users may be suspicious about whether
the given answer is ideal or believable. Users would like to explore
the potential solutions but are prevented from doing so because
these inquiries often suffer from a state explosion problem.

In this RE@Next! paper, we introduce the use of valuation-
based filtering and coloring to assist users in understanding a
solution space and selecting custom states from it. We use the
concrete semantics of modeling requirements in the Evolving
Intentions framework and its associated goal modeling tool,
BloomingLeaf, to explore the application of these visualization
techniques. In our initial evaluation, we demonstrate how these
techniques can be used on a fully worked out example. We
conduct initial measurements of the time savings and state space
reduction created by the valuations and color filtering, and
discuss future directions of this project.

I. INTRODUCTION & MOTIVATION

Goal-oriented requirements engineering (GORE) provides
stakeholders with analysis tools needed to make trade-off deci-
sions in the early phases of a project [1], [2], [3]. GORE frame-
works allow stakeholders to document their requirements and
represent them through goal models, which consist of actors
and intentions (e.g., goals) that are connected via relationships.
Users create models for the purpose of considering how alter-
native project scenarios impact the needs of stakeholders, who
depend on the system. Individual intentions in these models
can then be given an evaluation label to describe whether
the intention is fulfilled with respect to the current scenario
under consideration. Goal model analysis enables stakeholders
to understand and answer “what-if” questions by exploring
alternate scenarios [4], including evolving scenarios [5], [6].
In this paper, we use the Evolving Intentions framework [6]
and its associated tool, called BloomingLeaf [7], to look at
how project scenarios evolve over time.

Depending on the approach, model analysis may be manual,
semi-automatic involving user intervention, or fully auto-
matic [2]. For automatic algorithms, results may be deter-
ministic (e.g., forward propagation, from leaf to root nodes)
or non-deterministic with multiple solutions (e.g., backward
propagation, from root to leaf nodes). As previously demon-
strated, solvers can be used to find a satisfying assignment
for the evaluation labels in the model [4], [8], [9]. The model

Legend —

Fig. 1: Fragment of goal model for processing and approving
income limits of student loan borrowers via IRS Form 1040.

structure, as well as the intention evaluation labels, act as the
constraints placed upon the solver. When analyzing how the
evaluation labels of a goal model change over time, a satisfying
assignment for each intention must be found at each time
point, creating a solution space consisting of multiple paths
that the model can take [6]. In this paper, we investigate the
problem of solution space exploration when the content of
each state is the satisfying assignment for the entire model.

When a black-box solver produces only a single solution,
users may be suspicious about whether the proposed answer
is ideal or believable, given the provided constraints. As well,
users may want to explore other results that satisfy the same
criteria or create their own custom paths. Ideally, users would
like to explore the potential solutions. However, depending
on the size of the solution space (i.e., state explosion prob-
lem [10]) and the complexity of any individual state, current
visualization techniques (e.g., [11]) are insufficient.
Illustrative Example. Consider the software team at the US
Department of Education working to implement the 2022
Biden-Harris Administration Student Debt Relief Plan [12].
Fig. 1 shows the goal model created in BloomingLeaf by
analysts as part of their requirements process. As part of this
temporary program, roughly 32 million borrowers are required
to send in their most recent tax return (via IRS Form 1040)
to verify they are within the income limit and qualify for

1



the relief payment [12]. The team is evaluating trade-offs for
processing the 1040 forms. This decision is illustrated by the
top-level goal Process and Approve 1040-Income being or-
decomposed into Manual Review and Auto Review, with each
of these options being further decomposed into their sub-tasks.

In simulating this model over time, the analysts want to
answer the question, “Is conducting a Manual Review, Auto
Review, or a combination of the two best to ensure that the
applications are processed correctly (i.e., satisfying Accuracy
of Review) with fast turn-around for borrowers (i.e., satisfying
Fast Responses to Borrowers)?”. The solver in BloomingLeaf
returns one possible path of eight steps (the first four steps
are shown in Fig. 2), where each individual intention in the
model changes over time according to its given constraints;
yet, there are numerous additional valid solutions. In this
initial solution, the Manual Review option becomes satisfied
first (see t1 in Fig. 2(b)), denoted by the dark blue or (F ,
⊥) as seen in the legend in Fig. 3. At this time, Accuracy
of Review is satisfied and Fast Responses to Borrowers is
conflicted, which prompts the team to want to know whether
both these soft goals can be satisfied. Additionally, the team
wants to explore creating two paths, one where Get Contract
with Vendors is satisfied and the other where Build Algorithm In-
house is satisfied. BloomingLeaf allows users to answer these
types of questions through the Next States view, where users
can get all possible states for a given time point in the model
evolution. However, other than clicking through each possible
state, it is unclear how the user can make an informed choice.

The state of the art in visualizing constraint programing
looks at analyzing the decisions made by the solver [11].
Seeing a high-level view of the solution space does not enable
users to interpret which elements have specific valuations.
Verbeek et al. used Petri net models to give users a sense of the
valuations of attributes in a solution space [13], [14], but this
approach does not scale with more complex models with many
attributes. Within GORE, Hu and Grubb proposed a simple set
of filters to reduce the domain and solution space [15]. These
filters allow state-reduction based on the whole model, such
as removing any states that contain a conflicted satisfaction
value, but users cannot filter by individual intentions. These
filters are generic and eliminate unhelpful states, but do not
provide insights or assist the user in selecting a future state.

Contributions. In this RE@Next! paper, we propose the use
of valuation-based filtering and coloring to assist users in
exploring and selecting states from a solution space more
efficiently. We use the concrete semantics of the Evolving
Intentions framework, to demonstrate the applicability of this
approach, yet these visualization techniques can be adapted to
other areas in RE.

In the remainder of this paper, we review relevant back-
ground in Sect. II, present our filtering and coloring techniques
in Sect. III, and provide an initial evaluation in Sect. IV. We
complete our presentation with a discussion of related work
in Sect. V, and a description of our future development and
validation plans in Sect. VI.

II. EVOLVING GOAL MODEL REPRESENTATION

In this section, we define an evolving goal model and
describe how it is captured as a constraint satisfaction problem
(CSP) [16]. Within the Evolving Intentions framework [6], an
evolving goal graph M is a tuple 〈A,G,R, EF,C, maxTime〉,
where A is a set of actors, G is a set of intentions (e.g., goals,
tasks, and soft goals, see legend in Fig. 1), R is a set of
relationships over intentions, EF is a set of evolving functions,
C is a set of constraints over the time points in the graph, and
maxTime ∈ N+ is the maximum absolute time over which any
time point is defined (adapted from [6]). For the purposes of
our work, M is a graph (henceforth called a model) consisting
of intentions g ∈ G and these intentions are assigned evidence
pairs as valuations. An evidence pair is a pair (s, d) where
s ∈ {Full (F), Partial (P), None (⊥)} is the level of evidence
for and d ∈ {F ,P ,⊥} is the level of evidence against the
fulfillment of g. The cross product of s and d results in nine
valuations, denoted as the universe E (see legend in Fig. 3).
The evidence pair assignments for intentions are determined
by the model constraints defined in R, EF, and C.

For example, the model fragment in Fig. 1 illustrates an
evolving goal model M with one actor and 18 intentions in G.
The Current Staff Levels intention has the evidence pair (F , ⊥)
to indicate that it is fully satisfied. Other letter markings (e.g.,
C, DS) denote evolving functions that constrain the valuation
of the intentions in EF. Intentions are also constrained by
and/or decomposition and contribution links (e.g., ++S) in R.

The model can then be simulated over a series of time points
Π, known as a time point path [6]. For a given time point
t ∈ Π, the evaluation of g at t, is a mapping G × Π →
E ∪ {⊥}. Thus, a complete evaluation of M at t is the total
mapping G× t→ E resulting from the repeated application of
all constraints within R, EF, and C. Simply put, a complete
evaluation path is the complete evaluation of M at each time
point in Π, which we represent as a CSP.

A CSP is defined as a triple 〈V ,D,Q〉, where V is a set
of variables, D is a set of the respective domains of values,
and Q is a set of constraints [16]. When constructed as a CSP,
our aim is to find an evaluation for each intention in the graph
(g ∈ G) at each time point (t ∈ Π). Thus, the CSP variables V
are a set of intentions at all time points (i.e., |V | = |G| ∗ |Π|).
Initially, the domain d of each variable v is the set of evidence
pairs (E). Each element in R, EF, and C forms constraints Q
over the elements in V . Thus, the valuation of all variables in
|V | is a complete evaluation path of model M .

For example, the CSP solver in BloomingLeaf generates
a simulated time point path Π for the model M in Fig. 1,
consisting of eight timepoints t0–t7. As introduced in Sect. I,
the team wants to build a path where Build Algorithm In-house
is satisfied. They agree with the selected results for t0–t2
(see Fig. 2), but want to find an alternative solution for the
assignments in t3. By constraining the acceptable values for
the model M at t0–t2, we update our CSP solver request in
BloomingLeaf to return all possible solutions for t3, discussed
in the next section.

2



(a) t0 (b) t1 (c) t2 (d) t3

Fig. 2: Fragment of one possible simulation path of the Student Aid model, with EVO color visualization applied (see legend
in Fig. 3), showing the evolution of intentions over time points t0 to t3.

Legend (E) —

Fig. 3: BloomingLeaf’s Next States view of Student Aid model, with EVO % mode selected and two intention filters applied.

III. FILTERS & VISUALIZATIONS

In this section, we describe two techniques to assist users
in creating their own path from a solution space of an
evolving model. Fig. 3 shows a screenshot of our extension of
BloomingLeaf in the state exploration view (called the Next
States window). BloomingLeaf invokes the JaCoP constraint
solver [17] to find satisfying assignments for each variable
and displays the first option for the selected time point (t3)
on the center canvas of the Next State window. The left panel
shows the existing filters, as presented in [15]. The user can
select from the many possible states or incrementally navigate
through each state with arrows in the left panel. The new Color
Visualization is shown in the top toolbar (called EVO, ‘%’
selected) and the valuation filtering is shown in the right panel.
Color Visualization. Each evidence pair (see Sect. II and
legend in Fig. 3) is assigned a color, where blue denotes
satisfied, red denotes denied, and purple denotes conflicting
values with both evidence for and against the fulfillment of

the intention [18]. The more saturated (or darker) the color
shade, the stronger the evidence (e.g., F is darker than P ).

We introduce two color overlays to assist users in under-
standing the model and selecting future states. State mode (not
shown) colors the background of each intention in the graph
with the color associated with the assigned evidence pair. This
view is similar to the coloring applied to the model path in
Fig. 2. Seeing the colors for each intention allows users to
more quickly understand the valuations in the viewed state
without reading each of the evidence pairs. The second is the
percentage mode, which is selected in the EVO slider on the
top toolbar and shown on the canvas in Fig. 3. When percent
mode is selected, the background of each intention is colored
with the percentage of states in the solution space where the
intention has each evidence pair assignment.

Filtering Intention Valuations. To allow users to sort through
and find desired solutions, we added an additional panel on
the right-side of the window that enables the user to add and

3



remove filters (i.e., Intention Filters). Unlike the filter on the left
panel (from [23]), it filters solutions based on the valuation of
individual intentions, returning only solutions where intentions
have the specified evidence pair. Users are able to add separate
filters to different intentions, as well as filter multiple evidence
pairs for a single intention. This act reduces the solution space,
allowing users to focus only on the options that meet their
aims without having to manually evaluate all permutations
of an intention. For example, when Build Review Algorithm
is selected on the center canvas in Fig. 3 (see red box), then
the Intention Filter panel is populated with the information for
this element and allows the user to add a new filter.
Usage Scenario. While each of these filters may seem sim-
plistic on their own, taken together they form a powerful
mechanism for users to create and validate their own paths.
In the illustrative example, after generating the path shown in
Fig. 2 (see Sect. II), the user is unsatisfied with the model
at t3. Specifically, the user wants to find a path where Get
Contract with Vendors is not the next step, but perhaps Build
Review Algorithm is satisfied instead. When the user explores
all possible states for t3, there are 864 states (not shown).
First, we recommend turning on EVO % mode to see a high-
level view of the solution space. Since the user is looking for a
state where Build Review Algorithm is satisfied, they select the
node and choose Satisfied (F ,⊥) in the right panel, limiting
the number of states to 108. With a second valuation filter
applied to Get Contract with Vendors, which is shown in Fig. 3,
there are 54 possible states. From Fig. 3 the user can see that
much of the variability in the remaining states exists within a
few elements. If the user had applied the valuation of None
(⊥,⊥) to Hire and Train New Workers, then only 9 similar states
remain. Finally, the user turns on EVO in State mode, and
clicks through the remaining states and selects #5 as their
preferred one. By selecting Save & Close (see Fig. 3) the CSP
solver generates the remainder of the path given this updated
state. Alternatively, the user could click Explore Next States
to generate all possible solutions for the next time point (t4),
given the updated choices for t3.

IV. DISCUSSION & VALIDATION

Benefits. Our work allows for the more efficient exploration
of a solution space. The intention valuation filters reduce the
number of states in the solution space that need to be manually
considered. Valuation-based coloring through EVO State mode
may allow for faster processing of evidence pairs in states
since users do not need to read each evidence pair label. The
EVO % mode shows an overview of the composition of the
state space and allows users to verify the absence of a state.
For example, given the filters applied in Fig. 3, no state exists
where Accuracy of Review is Denied (i.e., colored red).
Limitations. Our current implementation is limited to the
Evolving Intentions framework and needs to be expanded to
work with other CSPs. Within this framework, we require
users to generate a full path before exploring the state space.
Another design choice would allow users to explore states

TABLE I: Rate of state review with and without EVO.

Group Task Rate of Review (states per second)
0 1 2-Close 2-Distant 3

Author Base 5.37 4.08 4.03 2.08 0.66
First EVO 5.78 5.64 4.89 4.98 4.69
EVO Base 5.12 4.69 3.76 3.16 3.68
First EVO 5.27 5.00 4.30 3.42 3.63
Base Base 5.83 3.52 2.53 1.91 1.94
First EVO 5.19 3.8 3.7 3.28 3.00

from the initial model. Further, the color palette may not be
intuitive across an international audience. We are extending
our implementation to enable users to select the palette colors,
including a palette for individuals with a color vision defi-
ciency. Finally, there is an upper bound on the number of states
our solver will generate before timing out. The illustrative
example without any MP and DS functions produces 1,740,288
states if strong conflict (F ,F ) is removed from the domain
d of each variable v and a memory error if kept. In these
situations, it is often the case where the scenario has not been
fully explored by the users. We investigate a methodology to
help users explore state spaces more efficiently.

Initial Evaluation. Our initial evaluation work focused on
demonstrating the feasibility and effectiveness of our ap-
proach. We took measurements of the time savings and state
space reductions created by the valuations and color filtering.
Supplemental information for this evaluation is available at:
https://doi.org/10.35482/csc.003.2023.

Color Visualization: In a recent investigation, we found that
using EVO increased the speed for users to answer questions
about goal models [19]. We hypothesized that using EVO in
the Next States window enables users to click through states
faster than without using EVO. Thus, we collected initial
measurements of the time it took individuals to physically
click through the states in search of a solution with and without
EVO State mode enabled. Tbl. I lists the averaged number
of states that were reviewed per second for three groups.
Author, see first column in Tbl. I, represents expert clicking
by one of the authors of this paper. The other two groups
are averages of three undergraduate lab members with one
group using EVO First, while the other group (i.e., Base First)
were tested without EVO first. For each group, we measured
finding a solution given specific evidence pairs for zero, one,
two, or three intentions, including two intentions that were
close and distant from one another. We surmised that we may
observe cognitive processing delays by comparing the speed
of searching for close and distant intentions.

Our observations are inconclusive. The Author group was
faster with EVO than without EVO in all cases; yet, this has
the obvious problem of unconscious researcher bias. The two
student groups were often faster using EVO; however, there
was significant variation between individuals. Future studies
should account for individual variability, while controlling for
fatigue and carryover effects [20], as well as the interaction
between intention filters and state selection with/without EVO.

4



TABLE II: Best/worst case percentage reduction in states.

Model 1-Worst 1-Best 2-Worst 2-Best
1. Grad 80.0% 98.9% 99.2% 99.6%
2. WME 6.3% 98.8% 30.4% 99.7%
3. Ready4Work 37.7% 96.1% 68.8% 98.7%
4. Course 88.4% 99.0% 98.0% 99.6%
5. Debt 50.0% 96.1% 75.0% 98.7%

TABLE III: Average user percentage reduction in states using
one, two, and three valuation filters.

Model 1 Filter 2 Filters 3 Filters
1. Grad 96.4% 99.6% 99.9%
2. WME 58.7% 87.6% 96.2%
3. Ready4Work 80.5% 91.2% 96.9%
4. Course 97.5% 98.9% 99.5%
5. Debt 81.9% 91.4% 97.7%

Intention Valuation Filtering: To test the effectiveness of ap-
plying intention valuation filters, we measured the percentage
reductions in the size of the solution space after applying one
to two filters on five different models, with a maximum model
size of 20 intentions. Depending on the number of constraints
in Q, the number of initial states could be anywhere between
one hundred and a million. Tbl. II lists the percentage of states
that are removed after applying one and two filters in the best
case and worst case, based on our own expert judgement. We
chose these cases based on visual inspection of the EVO %
mode. From Tbl. II, we observe that with a variety of models,
in the best case, we reduce the number of states by 96-98%
with one intention and 98-99% with two intentions. The worse
case reductions were as low as 6%, with averages between 50
and 75%, which indicates that much of the reduction comes
from the user choosing an appropriate intention.

To get a sense of how users would apply filters, we asked
five lab members to apply three filters to the same five models,
based on their intuitions after examining each model. Tbl. III
lists the average percentage reductions after applying one to
three filters. These average percent reductions are consistent
with those in Tbl. II. While state space reduction depends on
the users’ appropriate choice of a filter, on average, valuation-
based filtering provides a 90% reduction in the solution space
after two filters have been applied. In summary, intention
valuation filtering reduces the state space significantly by
removing undesired states, though its efficacy depends on the
user’s goals and choice in applying an appropriate filter.

Threats and Future Validation: Our initial data collection
was never intended as empirical validation. Our main threat is
that our evaluation was completed by the authors of this paper
and members of our lab. With three people per group for the
EVO evaluation and five people total for the filtering evalua-
tion, our sample size was insufficient to make conclusions. In
future work, we plan a large-scale study with plausible subjects
in a setting that is reflective of how stakeholders would learn
to use and apply these methods in the “real world”. Further
experiments with different populations, problem domains, and

contexts will be needed, as well as validating EVO Percent
mode. For EVO State mode, further exploration is required to
determine whether measuring clicking speed over states per
second is an appropriate measurement, as subjects’ fatigue and
attention span may make their clicking inconsistent.

V. RELATED WORK

Goal Modeling. Prior work in GORE investigated improving
the interpretability of goal model analysis. Horkoff and Yu
first investigated highlighting root/leaf nodes and conflicting
alternatives in goal graphs to assist users in understanding
analysis tasks [21]. Reddivari et al. investigated using visual
analytics techniques to help in requirements negotiation [22].
More recently, Oliveira et al. used RGB values to color nodes
in non-functional requirements models based on their quan-
titative valuations [23]. Amyot et al. used colors to visualize
analysis results in GRL using the jUCMNav tool [2], while
TimedGRL used color in heat maps to visualize evolving GRL
goal models [5]. Varnum et al. proposed coloring nodes within
qualitative goal models to assist users in interpreting the results
of path-based analysis [18]. In this paper, we adopt the initial
color scheme proposed by Varnum et al. as we use the same
universe of evidence pairs. As already stated in Sect. I, we
reimagine the work of Hu and Grubb, who reduced the size
of a CSP domain and solution space with generic filters [15].

Other work in GORE has used constraint programming
for model optimization. Anda combined GRL models and
cyber-physical systems to integrate social concepts into the
requirements activities for these systems [24]. Alwidian pro-
posed union models to improve the efficiency of analysis by
simultaneously analyzing related elements in goal models [9].
Exploring and Visualizing State Spaces. There has been
significant work on visualizing and debugging constraint pro-
grams [25]. Researchers investigated visualizing search trees
(e.g., [26]) and global constraints (e.g., [27]), with later work
focusing on explaining and comparing various algorithms for
constraint programming (CP). Freuder et al. generated expla-
nations for solving methods in the form of trees [28]. Dooms et
al. created a generic approach to visualize constraint-based
local-search [29]. Li and Epstein provided high-level visuals
of the search space to inform the guided search of CSPs [30].
Simonis et al. created a generic visualization of CP problems
for postmortem analysis [11].

Color has been used to visualize and explore decision trees.
Rojas and Villegas used color to enhance the weights of
nodes in 2D and 3D decision trees, allowing users to visually
identify weights associated with a node [31]. Closer to our
investigation, Verbeek et al. enabled users to explore state
spaces via the attributes of the system and “get a feeling” for
their behavior [13], [14]. In addition to visualizing the graph of
states, Verbeek et al. generated Petri net models from the state
space to give users a deeper understanding of the valuations
of attributes. Thus, while there has been a consistent effort to
visualize the decisions of the solver, there is limited work on
visualizations for the purpose of making human decisions, a
significant area for future exploration.

5



VI. SUMMARY AND FUTURE PLANS

In this paper, we introduced the use of valuation-based
filtering and coloring to assist users in exploring a solution
space and selecting custom states from it. We demonstrated
the use of these techniques through our illustration of the
Student Aid model. Our initial measurements with authors
and lab members showed a greater than 90% reduction in the
number of states viewable by the user with valuation filtering
after two filters have been applied, although this depends on
the users’ choice. Given the threats described in Sect. IV and
mixed EVO results, further study is required to validate our
initial observations. In this work, we mitigate the issue of
navigating explosive state spaces when the content of each
state is an entire model. We see our visualizations as new
avenues for interpreting solutions in other areas of GORE.

Our current implementation is limited to the Evolving
Intentions framework, which requires users to generate a full
path before exploring the state space. Additionally, there is an
upper bound on the number of states our solver will generate
before timing out due to incomplete scenario specifications.
Future work will develop a methodology to assist users in fully
describing scenarios and tooling to generate paths from the
initial state. The models used in this paper were not reflective
of “real world” scenarios. Future validation includes evaluating
the scalability of these visualization techniques.

We also intend to conduct a user-validation study to measure
the efficiency gains of these filters and visualization techniques
on the Evolving Intentions framework, as well as the usability
of our extensions to BloomingLeaf. This study will include
EVO Percent mode to fully understand the efficacy of EVO.
Further, we are extending our EVO color scheme to enable
users to select from multiple color palettes including a palette
for individuals with a color vision deficiency. Other GORE
frameworks support actor evaluations [32]. Adding actor-
level filtering may make our methods more applicable across
different frameworks. Finally, we make intention filtering more
expressive, by adding boolean and comparison operators.

Acknowledgments. We thank our lab members for their
assistance. This material is based upon work supported by
the National Science Foundation under Award No. 2104732.

REFERENCES

[1] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented Require-
ments Analysis and Reasoning in the Tropos Methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, no. 2, pp. 159–171, 2005.

[2] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating Goal Models Within the Goal-Oriented Requirement
Language,” International Journal of Intelligent Systems, vol. 25, no. 8,
pp. 841–877, 2010.

[3] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented
Requirements Engineering: An Extended Systematic Mapping Study,”
Requirements Engineering, vol. 24, no. 2, pp. 133–160, 2019.

[4] J. Horkoff and E. Yu, “Interactive Goal Model Analysis For Early
Requirements Engineering,” Requirements Engineering, vol. 21, no. 1,
pp. 29–61, 2016.

[5] Aprajita, “TimedGRL: Specifying Goal Models Over Time,” Master’s
thesis, McGill University, 2017.

[6] A. M. Grubb and M. Chechik, “Formal Reasoning for Analyzing Goal
Models that Evolve over Time,” Requirements Engineering, vol. 26,
no. 3, pp. 423–457, 2021.

[7] ——, “BloomingLeaf: A Formal Tool for Requirements Evolution over
Time,” in Proc. of RE’18: Posters & Tool Demos, 2018, pp. 490–491.

[8] G. Mathew, T. Menzies, N. Ernst, and J. Klein, “Shorter Reasoning
About Larger Requirements Models,” in Proc. of RE’17, 2017.

[9] S. Alwidian, “Union Models: Support of Variability Modeling and
Efficient Reasoning About Model Families Over Space and Time,” Ph.D.
dissertation, University of Ottawa, 2020.

[10] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model Checking
and the State Explosion Problem,” in Tools for Practical Software
Verification, ser. LNCS 7682. 154-163, 2012, pp. 1–30.

[11] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carls-
son, “A Generic Visualization Platform for CP,” in Principles and
Practice of Constraint Programming, 2010, pp. 460–474.

[12] Federal Student Aid, An Office of the U.S. Department of
Education, “One-Time Student Loan Debt Relief,” Online at
https://studentaid.gov/debt-relief-announcement/one-time-cancellation,
2022, accessed 10/01/2022.

[13] H. Verbeek, A. Pretorius, W. van der Aalst, and J. van Wijk, “On Petri-
net Synthesis and Attribute-based Visualization,” in Proc. of PNSE’07
Workshop, 2007, pp. 127–141.

[14] H. Verbeek, A. Pretorius, W. Van der Aalst, and J. van Wijk, “Visualizing
State Spaces with Petri Nets,” Computer Science Report, vol. 7, no. 01,
2007.

[15] B. C. Hu and A. M. Grubb, “Support for User Generated Evolutions of
Goal Models,” in Proc. of MiSE’19 Workshop, 2019, pp. 1–7.

[16] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2010, ch. 6 Constraint Satisfaction Problems.

[17] K. Kuchcinski and R. Szymanek, “JaCoP - Java Constraint Programming
solver,” http://jacop.osolpro.com, 2016, accessed: 2016-02-21.

[18] M. H. Varnum, K. M. B. Spencer, and A. M. Grubb, “Towards an
Evaluation Visualization with Color,” in Proc. of iStar’20 Workshop,
2020, pp. 79–84.

[19] Y. Baatartogtokh, I. Foster, and A. M. Grubb, “An Experiment on the
Effects of using Color to Visualize Requirements Analysis Tasks,” in
Proc. of RE’23, 2023.

[20] S. Vegas, C. Apa, and N. Juristo, “Crossover Designs in Software
Engineering Experiments: Benefits and Perils,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 120–135, 2016.

[21] J. Horkoff and E. Yu, “Visualizations to Support Interactive Goal Model
Analysis,” in Proc. of REV’10 Workshop, 2010, pp. 1–10.

[22] S. Reddivari, S. Rad, T. Bhowmik, N. Cain, and N. Niu, “Visual
Requirements Analytics: A Framework and Case Study,” Requirements
Engineering, vol. 19, no. 3, pp. 257–279, 2014.

[23] R. F. Oliveira and J. C. S. do Prado Leite, “Using Colorimetric Concepts
for the Evaluation of Goal Models,” in Proc of MoDRE’20, 2020, pp.
39–48.

[24] A. A. Anda, “Combining Goals and SysML for Traceability and
Decision-Making in the Development of Adaptive Socio-Cyber-Physical
Systems,” Ph.D. dissertation, University of Ottawa, 2020.

[25] P. Godefroid, “Model Checking for Programming Languages Using
VeriSoft,” in Proc. of POPL’97, 1997, pp. 174–186.

[26] H. Simonis and A. Aggoun, “Search-tree Visualisation,” in Analysis and
Visualization Tools for Constraint Programming. Springer, 2000, pp.
191–208.

[27] P. Deransart, M. V. Hermenegildo, and J. Małuszynski, Eds., Analysis
and Visualization Tools for Constraint Programming: Constraint Debug-
ging, ser. LNCS 1870. Springer, 2000.

[28] E. C. Freuder, C. Likitvivatanavong, and R. J. Wallace, “Deriving
Explanations and Implications for Constraint Satisfaction Problems,” in
Proc. of CP 2001, 2001, pp. 585–589.

[29] G. Dooms, P. Van Hentenryck, and L. Michel, “Model-Driven Visual-
izations of Constraint-Based Local Search,” in Proc. of CP 2007, 2007,
pp. 271–285.

[30] X. Li and S. L. Epstein, “Visualization for Structured Constraint
Satisfaction Problems,” in Proc. of AAAI’10 Workshops, 2010.

[31] W. A. C. Rojas and C. M. Villegas, “Graphical Representation and
Exploratory Visualization for Decision Trees in the KDD Process,” in
Proc. of IC-ININFO’12, 2012.

[32] X. Franch, G. Grau, and C. Quer, “A Framework for the Definition of
Metrics for Actor-Dependency Models,” in Proc. of RE’04, 2004, pp.
348–349.

6


