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Abstract

For a fairly general family of L-functions, we survey the known consequences of
the existence of asymptotic formulas with power-saving error term for the (twisted)
first and second moments of the central values in the family.

We then consider in detail the important special case of the family of twists of
a fixed cusp form by primitive Dirichlet characters modulo a prime q, and prove
that it satisfies such formulas. We derive arithmetic consequences:

• a positive proportion of central values L(f ⊗ χ, 1/2) are non-zero, and
indeed bounded from below;

• there exist many characters χ for which the central L-value is very large;
• the probability of a large analytic rank decays exponentially fast.

We finally show how the second moment estimate establishes a special case of a
conjecture of Mazur and Rubin concerning the distribution of modular symbols.
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CHAPTER 1

The second moment theory of families of
L-functions

1.1. General introduction

1.1.1. Families and moments. In the analytic theory of automorphic forms,
many problems are out of reach, or make little sense, when specialized to single L-
functions or modular forms. It has therefore been a very common theme of research
to study families of L-functions, and to search for statistical results on average over
families. This point of view has led to numerous insights. In fact, it also sometimes
provides a viable approach to questions for individual objects, as in most works
concerning the subconvexity problem for L-functions. An excellent survey of this
point of view is that of Iwaniec and Sarnak [38].

When studying L-functions on average, it has emerged from a series of works
in the last ten to fifteen years that a remarkable array of results can be obtained
as soon as one has sufficiently strong information concerning the first and espe-
cially the second moment of the values of the L-functions on the critical line. More
precisely, what is often the crucial input needed is “a bit more” than the second
moment, which is most easily captured in practice by an asymptotic formula with
power saving for the second moment, together with some basic information for in-
dividual L-functions (such as versions of the Prime Number Theorem, sometimes
for auxiliary L-functions, or bounds for averages or mean-square averages of coeffi-
cients). This phenomenon is of course consistent with probabilistic intuition: recall
for instance that the Law of Large Numbers only requires the first moment to exist,
and that the Central Limit Theorem only depends on the second moment.

In this section, we will explain the basic principle and describe some of its
applications in a fairly general and informal setting. In the next sections, we will
introduce the particular family that will be the focus of the remainder of this book,
and we will state the precise new results that we have obtained in that case.

Let d ⩾ 1 be an integer. We interpret here a family of cusp forms of rank
d ⩾ 1 as the data, for any integer N , of a finite set FN of cusp forms (cuspidal
automorphic representations) on GLd (over Q for simplicity). Given such a family
F, we obtain probability and average operators

PN (f ∈ A) =
1

|FN |
∑
f∈FN
f∈A

1 EN (T (f)) =
1

|FN |
∑
f∈FN

T (f)

for any N such that FN is not empty. Here A is any subset of cusp forms on GLd,
and T is any complex-valued function defined on the set of cusp forms on GLd. We
will sometimes informally write f ∈ F to say that f ∈ FN for some N (which might
not be unique).

7



8 1. THE SECOND MOMENT THEORY OF FAMILIES OF L-FUNCTIONS

We also require that the size of FN and the analytic conductors q(f) of the
cusp forms f ∈ FN grow with N in a nice way, say |FN | ≍ Nα and q(f) ≍ Nβ for
some α > 0 and β > 0.

The basic invariants are the standard (Godement-Jacquet) L-functions

L(f, s) =
∑
n⩾1

λf (n)n−s

associated to a cusp form f ∈ F, that we always normalize in this book so that the
center of the critical strip is s = 1

2 . These are indeed often so important that one
speaks of families of L-functions instead of families of cusp forms.

For any reasonable family of L-functions, one can make precise conjectures for
the asymptotic behavior as N → +∞ of the complex moments

EN

(
L(f, σ + it)kL(f, σ + it)

l
)
,

at any point σ+it ∈ C, where k and l are non-negative integers. Here, “reasonable”
has no precise generally accepted formal definition. A minimal requirement is that
the family should satisfy some form of “local spectral equidistribution” (see [47]),
which means that for any fixed prime p, the local component at p of the cusp
forms f ∈ FN should become equidistributed with respect to some measure µp as

N → +∞ in the unitary spectrum ĜLd(Qp) of GLd(Qp). Such a statement is more
or less required to express for instance the arithmetic component of the leading
term of the asymptotic of the moments at s = 1

2 .
Indeed, following the work of Keating and Snaith [42] and the ideas of Katz

and Sarnak [41], for any integer k ⩾ 0, one expects an asymptotic formula of the
type

(1.1) EN

(
|L(f, 12 )|2k

)
∼ akgk(logN)ck

as N → +∞, where ak is an arithmetic factor, whereas gk and ck are real numbers
that depend only on the so-called “symmetry type” of the family, and have an
interpretation in terms of Random Matrix Theory. In general, these invariants can
be predicted, based on the local spectral equidistribution properties of the family.
More precisely, one can often deduce the “symmetry type”, in the sense of Katz-
Sarnak, from the limiting behavior of the measures µp as p→ +∞ (see [47, §9, §10],
but note that this line of reasoning wouldn’t always work in the case of “algebraic”
families [74]). From this symmetry type, which is either unitary, symplectic, or
orthogonal (with some variants in the orthogonal case related to root numbers),
one can predict the values of gk and ck. These are related to the asymptotic
beahvior of the moments of the value of the characteristic polynomials of random
matrices in families of compact Lie groups of unitary, or symplectic or orthogonal
matrices, in the limit when the size of the matrices increases. For instance, in a
unitary family, we have ck = k2 and

gk =
G(1 + k)

G(1 + 2k)
=

k∏
j=0

j!

(j + k)!

where G is the Barnes function.
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Using this information, ak is an Euler product given by

ak =
∏
p

(1 − p−1)ck
∫

|Lp(π, 12 )|2k dµp(π)

where the integral is over the unitary spectrum of GLd(Qp) and Lp is the local
L-factor at p. (The value of ck is exactly such that the Euler product converges).

Remark 1.1. Families can also be defined with non-uniform weights over finite
sets, instead of the uniform measure, or can also be continuous families with a finite
probability measure (typically to consider L-functions in the t-aspect on the critical
line). The sets FN might also be defined only for a subset of the integers N . This
does not affect the general discussion. We will see certain variants of this type in
the examples below.

For orientation, here are some examples of families that have been studied
extensively, and that we will refer to in the list of applications below. One is given
for each of the three basic symmetry types.

Example 1.2. (1) For N ⩾ 1, let DN be the finite set of primitive Dirichlet
characters modulo q ⩽ N . This is a unitary family.

(2) For q ⩾ 17 prime, let Cq be the finite set of primitive weight 2 cusp forms
of level q. This family has particularly nice arithmetic applications, because the
Eichler–Shimura formula implies that∏

f∈Fq

L(f, s)

is the (normalized) Hasse-Weil L-function of the jacobian J0(q) of the modular
curve X0(q). This illustrates one way in which average studies of families of L-
functions may have consequences for a single arithmetic object of natural interest.
The family Cq is of orthogonal type. It is often of interest to restrict to cusp forms
where L(f, s) has a given root number 1 or −1, which would split into even and
odd orthogonal types.

(3) For N ⩾ 2, let QN be the finite set of primitive real Dirichlet characters
modulo q ⩽ N . This is a family of symplectic type.

(4) Finally, there have been a number of important works recently that show
that many natural families of cusp forms on GLd, or other groups, satisfy the basic
local spectral equidistribution properties (see for instance the work of Shin and
Templier [78] and surveys by Sarnak–Shin–Templier [74] and Matz [57]).

The assumption of the second moment theory of a family of L-functions is
that the expected asymptotic formula holds for the first and second moments on
the critical line, with a power-saving in the error terms with respect to N , and
polynomial dependency with respect to the imaginary part. More precisely, we
assume that there exists δ > 0 and A ⩾ 0 such that

(1.2) EN

(
L(f, 12 + it)

)
= MT1(N ; t) +O((1 + |t|)AN−δ),

and

(1.3) EN

(
|L(f, 12 + it)|2

)
= MT2(N ; t) +O((1 + |t|)AN−δ),

for N ⩾ 1 and t ∈ R. The main terms are polynomials of some fixed degree in
logN , as also predicted by the precise forms of the moment conjectures (due to
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Conrey, Farmer, Keating, Rubinstein and Snaith [12]). In fact, it is not required in
practice to know that the main terms exactly fit the moment conjectures, provided
they are given in sufficiently manageable form for the computations that will follow
(the degree of the polynomial in logN is of crucial importance).

As we hinted at above when saying that one needs “a bit more”, these estimates
are in fact intermediate steps. The really crucial point is that, if they can be
proved with almost any of the currently known techniques, then it is also possible
to improve them to derive asymptotic formulas for the first and second moments
twisted by the coefficients λf (ℓ) of the L-functions, namely

(1.4) EN

(
λf (ℓ)L(f, 12 + it)

)
= MT1(N ; t, ℓ) +O((1 + |t|)ALBN−δ),

and

(1.5) EN

(
λf (ℓ)|L(f, 12 + it)|2

)
= MT2(N ; t, ℓ) +O((1 + |t|)ALBN−δ),

where 1 ⩽ ℓ ⩽ L is an integer (maybe with some restrictions) and B ⩾ 0.
The consequences that follow from such asymptotic formulas are remarkably

varied. We will now discuss some of them, with references to cases where the
corresponding results have been established. The discussion is still informal. The
ordering goes (roughly and not systematically) in increasing order of the amount of
information required of the moments. We will make no attempt to be exhaustive.

1.1.2. Universality outside the critical line. One can generalize Bagchi’s
version of Voronin’s Universality Theorem to establish a functional limit theorem
for the distribution of the holomorphic functions L(f, s) restricted to a fixed suitable
compact subset D of the strip 0 < Re(s) < 1 (see [82] for Voronin’s original paper
and [2] for Bagchi’s probabilistic interpretation). This result is much softer than
those that follow. It first requires an upper-bound of the right order of magnitude
(with respect to N) of the untwisted second moment, which is used to get an upper
bound for

EN

(
|L(f, 12 + it)|

)
using the Cauchy-Schwarz inequality. Using this (and local spectral equidistribu-
tion), one proves a form of equidistribution of L(f, s) restricted to D in a space of
holomorphic functions on D. Then some form of the Prime Number Theorem (for
an auxiliary L-function) is required to compute the support of the random holo-
morphic function that appeared in the first step, in order to deduce the universality
statement.

For instance, in the case of the family C above, it is proved in [48] that the
L-functions become distributed like the random Euler products∏

p

det(1 −Xpp
−s)−1

where (Xp) is a sequence of independent random variables that have the Sato-Tate
distribution. The support of this random Euler product is (for D a small disc
centered on the real axis and contained in the interior of the strip 1

2 < Re(s) < 1)
the set of non-vanishing holomorphic functions φ on D, continuous on the boundary,
that satisfy the real condition φ(s̄) = φ(s).
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1.1.3. Upper and lower bounds for integral moments. For a family
F with a given symmetry type (in the Katz-Sarnak sense described above), the
asymptotic formula from the moment conjectures (1.1) imply that the order of
magnitude of EN (|L(f, 12 )|2k) should be (logN)ck for some constant ck depending

only on the symmetry type, with ck = k2 if the family is unitary, for instance.
Although the asymptotic remains very mysterious, the order of magnitude is much
better understood.

First, there exists a robust method due to Rudnick and Soundararajan [72]
to derive lower bounds of the right form. We illustrate it in the case of a unitary
family. The method involves evaluating the two averages

S1 = EN

(
L(f, 12 )A(f)k−1A(f)k

)
, S2 = EN

(
|A(f)|2k

)
,

where

A(f) =
∑
n⩽L

λf (n)√
n

for some parameter L. Hölder’s inequality gives the lower bound

EN

(
|L(f, 12 )|2k

)
⩾

|S1|2k

S2k−1
2

,

and hence we obtain the desired lower bounds if we can prove that

S2 ≪ (logN)k
2

≪ S1.

After expanding the value of A(f), and using multiplicativity, we see that S1 is a
combination of twisted first moments involving integers ℓ ⩽ L2k−1. It is therefore
to be expected that we can evaluate S1, provided we have an asymptotic formula
for the twisted first moments (1.4) valid for the corresponding values of ℓ. We
can expect to evaluate the first moment in such a range only when the “pure”
first moment has an asymptotic formula with power saving. The evaluation of S2

is, in principle, simpler. It can be expected (and turns out to be true when the
method is applicable) that one requires L to be comparable to the conductor Nα

in logarithmic scale for the bounds above to hold.
There is no corresponding unconditional upper bound. However, Soundarara-

jan [79] devised a method to obtain almost sharp upper bounds when one assumes
that the L-functions in the family F satisfy the Riemann Hypothesis (i.e., all zeros
of L(f, s) with positive real part have real part 1/2). Precisely, he obtained results
like

EN

(
|L(f, 12 )|2k

)
≪ (logN)ck+ε,

for any ε > 0 for some important families (or the analogue for the k-th moment
in symplectic and orthogonal families). His approach was refined by Harper [29],
who obtained the upper-bound (logN)ck (still under the Riemann Hypothesis for
the L-functions). We refer to the introductions to both papers for a description of
the ideas involved.

1.1.4. Proportion of non-vanishing. Because of the Riemann Hypothesis,
the problem of the location of zeros of L-functions is especially important. In
particular, much interest has been concentrated on the special point s = 1

2 . This
is obviously natural in families where the order of vanishing at this point has some
arithmetic interpretation. This is the case, for instance, in the family C of cusp
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forms of weight 2: indeed, for any f ∈ C, Shimura has constructed an abelian
variety Af over Q, of dimension equal to the degree of the field generated by the
coefficients

√
pλf (p) for p prime, such that L(f, s) is the Hasse-Weil L-function

of Af ; then the Birch and Swinnerton-Dyer conjecture predicts that the order of
vanishing of f at 1

2 should be equal to the rank of the group Af (Q). However, there
are also other applications to an understanding of the behavior of central values (see
the highly influential study of Landau-Siegel zeros by Iwaniec and Sarnak [37,38]).

If the L-function L(f, s) is self-dual, and the sign of its functional equation of
L(f, s) is −1, then we get L(f, 12 ) = 0 trivially. One may expect conversely that few

L-functions satisfy L(f, 12 ) = 0 otherwise (some do have this property, but they are
not easy to come by; see, e.g., [36, Ch. 22–23] for an account of the construction
of a single such L-function by Gross and Zagier, and how it completed Goldfeld’s
effective lower-bound for class numbers of imaginary quadratic fields).

Using ideas reminiscent of Markov’s inequality in probability theory, one can
obtain rather good information on the proportion of non-vanishing of central values.
The basic observation is that, assuming asymptotic formulas (1.2) and (1.3), a
simple application of the Cauchy-Schwarz inequality (or of Markov’s inequality),
leads to the lower bound

PN

(
L(f, 12 ) ̸= 0

)
⩾

EN
(
L(f, 12 )

)2
EN
(
|L(f, 12 )|2

) ⩾
MT1(N ; 0)2 + o(1)

MT2(N ; 0) + o(1)

as N → +∞. Since the main terms are polynomials in logN , the lower-bound
is of the form (logN)−k for some integer k ⩾ 0. This suffices to obtain a large
number of non-vanishing central critical values, but in practice, one finds that
k ⩾ 1 (which can be guessed from the degrees of the polynomials, predicted by
the moment conjectures), so we do not obtain an asymptotic positive proportion of
non-vanishing.

The mollification method, pioneered by Selberg [76], exploits the twisted first
and second moments to overcome this loss in the case where k = 1, which is the
most common. This method introduces a mollifier

M(f) =
∑

1⩽ℓ⩽L

α(ℓ)λf (ℓ)

where the coefficients α(ℓ) are chosen so that M(f) approximates (in some sense)
the inverse of L(f, 12 ). Using the asymptotic formulas for the twisted first and
second moment, one obtains asymptotic formulas for the mollified moments

EN

(
M(f)L(f, 12 )

)
= M̃T1(N,L) +O(LBN−δ),

and

EN

(
|M(f)L(f, 12 )|2

)
= M̃T2(N,L) +O(LBN−δ).

The effect of the power-saving with respect to N is that we can select L = Nγ to
be a small enough (fixed) power of N so that the Cauchy-Schwarz inequality now
leads to the lower bound

PN

(
L(f, 12 ) ̸= 0

)
⩾

M̃T1(N,L)2

M̃T2(N,L)
(1 + o(1))
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as N → +∞. It turns out that the leading term is now a positive constant (of
size depending on γ), so we get a positive lower bound for the proportion of non-
vanishing special values.

A version of this method was used by Selberg to prove his celebrated result on
a positive proportion of critical zeros of the Riemann zeta function. It applies also,
for instance, in proving that there is a positive proportion of non-vanishing critical
values in the families D and C above (due to Iwaniec–Sarnak [37] and Kowalski–
Michel [49], respectively), among other important families.

1.1.5. Existence of large values. The problem of the possible extreme sizes
of values of L-functions is one of the most difficult and mysterious. This is due, in
part, to the fact that their “typical” average behavior seems to be quite accurately
predicted using various probabilistic models, but there is no particular reason to
expect that such models can be reliable at the level of “large deviations”. And even
if one is convinced (rightly or wrongly!) that such a model is accurate, rigorous
results are very difficult to come by. Soundararajan [80] introduced a tool called the
“resonator method” to produce remarkably large values of L(f, 12 ) for some f ∈ FN
(this method is also related to the ideas introduced by Goldston-Pintz-Yıldırım [26]
to study gaps between primes). The idea is again to select coefficients (α(ℓ))ℓ⩽L
and form the corresponding sums

R(f) =
∑
ℓ⩽L

α(ℓ)λf (ℓ),

(or some variations thereof, cf. Section 7.5.1) which are now called “resonators”.
Indeed, they are constructed so that the sizes of the two quantities

Q1 = EN (|R(f)|2)

and

Q2 = EN

(
|R(f)|2L(f, 12 )

)
are such that |Q2|/Q1 is as large as possible. These sums can be evaluated asymp-
totically as quadratic forms (with variables α(ℓ)) if L = Nγ with γ > 0 small
enough, because of the asymptotic formula for twisted first moments (1.4). We
then have

max
f∈FN

|L(f, 12 )| ⩾

√
|Q2|
Q1

.

It remains a delicate issue to optimize the choice of the coefficients α(ℓ), but as in
the previous application, we see that we can certainly expect to find asymptotic
formulas for Q1 and Q2, provided L is not too large, if we have access to an
asymptotic formula for twisted moments for ℓ ⩽ L2. Once more, the dependency on
L is such that we obtain really good results only if we can take L of size comparable
to N in logarithmic scale, which is what power-savings in the first moment leads
to.

1.1.6. Decay of probability of large order of vanishing. As we already
indicated, the distribution of the order of vanishing rkan(f) of an L-function L(f, s)
at the critical point 1

2 (which is also called the analytic rank) has been extensively
studied, often because of its links to arithmetic geometry in special cases. A method
due to Heath-Brown and Michel [31] exploits a variant of the mollification method
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to study how often the analytic rank might be a very large integer. The starting
point are the moments

EN

(∣∣∣∑
p

λf (p)(log p)
√
p

ϕ(log p)
∣∣∣2k), EN

(∣∣∣∑
ϱ

ϕ̂(ϱ− 1
2 )
∣∣∣2k)

for integers k ⩾ 0, where ϱ runs over zeros of L(f, s) “far away” from 1
2 in some

sense, and ϕ are suitable test functions. The first of these two can be studied rela-
tively elementarily, if ϕ has sufficiently small support. The second is estimated by
a delicate computation using the explicit formula (relating zeros of L-functions and
their coefficients), and the asymptotic formulas for twisted second moments (1.5).
From these bounds, one can deduce that the analytic rank cannot be large very of-
ten. In fact, one obtains exponentially-decaying tail-bounds: there exists a constant
c > 0 (depending on the family) such that

EN (ec rkan(f)) ≪ 1

for N ⩾ 1, from which it follows that

lim sup
N→+∞

PN (rkan(f) ⩾ r) ≪ e−cr

for r ⩾ 0.

1.1.7. Subgaussian bounds for critical values. Given a family F of L-
functions, the most general moment conjectures of Keating-Snaith (including suit-
able complex exponents; see [53] for some general discussion of these) lead to the
expectation that log |L(f, 12 )| should have an approximately normal distribution as
N → +∞, after a suitable normalization. There are currently very few results of
this type. The first one is due to Selberg [77] (see also the short proof by Radziwi l l
and Soundararajan in [66]), and applies to the Riemann zeta function. It states
that for T ⩾ 3, and t ∈ [T, 2T ], the distribution of

log ζ( 1
2 + it)√

1
2 log log T

converges as T → +∞ to a standard complex gaussian.
Radziwi l l and Soundararajan [65] have developed a robust method to prove

subgaussian upper bounds in many families. For a given family, they show that
such bounds hold whenever one has suitable asymptotic formulas for the twisted
moments (1.4) when ℓ is as large as a small power of the conductor (which, in turn,
usually follows once an asymptotic formula for the first moment is known with
power-saving error term).

The results have a different form depending on the symmetry type of the family.
In the orthogonal case, for instance, the method leads to

PN

( logL(f, 12 ) + 1
2 log logN

√
log logN

⩾ V
)
⩽

1√
2π

∫ +∞

V

e−x
2/2dx+ o(1),

for any fixed V ∈ R; in this case, the gaussian conjecture would be that the left-
hand side is equal to the right-hand side.
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The method is quite intricate. Roughly speaking, it starts with the proof that
the sums over primes

PN (f) =
∑
p⩽P

λf (p)
√
p

have a gaussian distribution if P is well-chosen, typically P = N1/(log logN)2 , which
in turn is an effect of quantitative local spectral equidistribution (with independence
of the local components at distinct primes).

One expects that PN (f) is a good approximation to logL(f, 12 ) + 1
2 log logN in

some statistical sense (the additional term is the contribution of squares of primes,
and the plus sign reflects the orthogonal symmetry). Fixing V , one distinguishes
(again, roughly speaking; see [65, p. 1046] for a precise discussion) between three
possibilities to compute the probability that

logL(f, 12 ) + 1
2 log logN

√
log logN

⩾ V,

namely:

• It may be that PN (f) ⩾ (V − ε)
√

log logN for some small ε > 0, and the
gaussian distribution of PN (f) gives a suitable gaussian bound for that
event;

• It may be that |PN (f)| ⩾ log logN , but the gaussian behavior shows that
this is very unlikely;

• In the remaining case, we have

|PN (f)| ⩽ log logN,

L(f, 12 )(logN)1/2 exp(−PN (f)) ⩾ exp(ε
√

log logN).

To control this last critical case, one shows that it implies

L(f, 12 )(logN)1/2
( k∑
j=0

(−PN (f))j

j!

)
≫ exp(ε

√
log logN)

for some suitable integer k ⩾ 1. But one can obtain an upper bound for

EN

(
L(f, 12 )

( k∑
j=0

(−PN (f))j

j!

))
using the twisted first moments (where the power-saving gives as before the cru-
cial control of a suitable value of the length P of PN (f)). Then, by the Markov
inequality, we get

PN (third case) ⩽ exp(−ε
√

log logN)EN

(
L(f, 12 )

( k∑
j=0

(−PN (f))j

j!

))
which shows that the third event is also unlikely.

Radziwi l l and Soundararajan [67] have recently announced another method
that leads to gaussian lower bounds for conditional probabilities that normalized
values of logL(f, 12 ) belong to some interval, knowing that they are non-zero. These
rely on (and in some sense incorporate) the proof of existence of a positive propor-
tion of non-vanishing (discussed in Section 1.1.4). For an orthogonal family, the
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statements are of the type

PN

(
α ⩽

logL(f, 12 ) + 1
2 log logN

√
log logN

⩽ β
)

⩾ PN

(
L(f, 12 ) ̸= 0

)
× 1√

2π

∫ β

α

e−x
2/2dx+ o(1),

as N → +∞, when it is known that

lim inf
N→+∞

PN (L(f, 12 ) ̸= 0) > 0.

1.1.8. Paucity of real zeros. The problem of possible existence of real zeros
of L-functions on the right of the critical line is fascinating and difficult, especially
in the case of self-dual L-functions, with the famous problem of Landau-Siegel
zeros (concerning real zeros close to 1 of L-functions of real Dirichlet characters)
remaining one of the key open problems of analytic number theory.

In this respect, Conrey and Soundararajan [13] discovered a very subtle variant
of the mollification method (related to some of the techniques of Section 1.1.6, in
particular a critical lemma of Selberg, see [13, Lemma 2.1]) that allowed them to
prove that the specific family of real Dirichlet characters QN (which is of special
interest in this respect) satisfies

lim inf
N→+∞

PN

(
L(χ, s) has no real zero s > 0

)
> 0.

It is unclear how general this method is, because it ultimately depends on the
numerical evaluation of a certain quantity. Conrey and Soundararajan [13, end
of §2] explain that the success can be motivated by computations from Random
Matrix Theory for symplectic families, but these assume (at least) the Generalized
Riemann Hypothesis, and therefore are no guarantee of success in practice. In fact,
we may note that Ricotta [70] obtained a similar result for families of Rankin-
Selberg L-functions, but obtaining a positive proportion with at most three real
zeros. This type of result is probably more robust.

1.2. The family of twists of a fixed modular form

We present in this section the (quite classical) family of L-functions that we
will study in the remainder of the book.

We fix throughout the book a primitive cusp form (newform) f with respect to
some congruence subgroup Γ0(r), with trivial central character, i.e., trivial neben-
typus, which we will denote χr. The modular form f may be either a holomorphic
cusp form of some weight kf or a Maaß cusp form with Laplace eigenvalue 1/4+ t2f .

To simplify some computations, the following convention will be useful:

Convention 1.3. For a modular form f as above we define a quantity, the
signed level, denoted by r, which is equal to the level of f (and thus positive) if f is
holomorphic and equal to minus the level (and thus negative) if f is a Maaß form.

Remark 1.4. In general, the level is an ideal in the ring of integers of the
underlying number field (in our case the number field is simply Q), and the signed
level should be thought of a suitable idele generating the ideal. For simplicity of
notation, we continue to write χr for the trivial character modulo |r|.
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We denote by λf (n), for n ⩾ 1, the Hecke eigenvalues of f , normalized so that
the mean square is 1 by Rankin-Selberg theory, or equivalently so that the standard
L-function of f , ∑

n⩾1

λf (n)n−s,

is absolutely convergent in Re s > 1.
From the point of view of cusp forms, we now consider the family parameterized

by primes q, not dividing r, which is given by

Fq = {f ⊗ χ | χ (mod q), χ ̸= χq},

(where χ runs over the set of primitive Dirichlet characters modulo q). Since
(q, r) = 1, this is a subset of the set of primitive cusp forms of level rq2. The
associated L-functions are the twisted L-functions

L(f ⊗ χ, s) =
∑
n⩾1

λf (n)χ(n)

ns
=
∏
p

(
1 − χ(p)λf (p)

ps
+
χrχ

2(p)

p2s

)−1

.

Remark 1.5. We emphasize that throughout the remainder of this
memoir, the modulus q will be assumed to be prime, unless explicitly
stated otherwise.

We will usually think of the L-functions as simply parameterized by q, and
write the probability and expectation explicitly as

1

q − 2
|{χ mod q | χ ̸= χq, χ ∈ A}|, 1

q − 2

∑∗

χ mod q

T (χ)

for any set A of Dirichlet characters, or any function T defined for Dirichlet char-
acters; the notation

∑∗
restricts the sum to primitive characters. We will write

φ∗(q) = q − 2 to clarify the notation.
This family has been studied in a number a papers (for instance by Duke,

Friedlander, Iwaniec [16], Stefanicki [81], Chinta [10], Gao, Khan and Ricotta [23],
Hoffstein and Lee [33] and in our own papers [4,6,52]). It is a very challenging
family from the analytic point of view, and also has some very interesting algebraic
aspects, at least when f is a holomorphic cusp form of weight 2. Indeed, if Af
is the abelian variety over Q constructed by Shimura with Hasse-Weil L-function
equal to L(f, s), then the product∏

χ mod q

L(f ⊗ χ, s) = L(f, s)
∏

χ mod q
χ ̸=χq

L(f ⊗ χ, s)

is the Hasse-Weil L-function of the base change of Af to the cyclotomic field Kq

generated by q-th roots of unity. According to the Birch and Swinnerton-Dyer
conjecture, the vanishing (or not) of critical values of L(f ⊗ χ, s) for χ ̸= χq is
therefore related to the increase of rank of the Mordell-Weil group of Af over Kq

compared with that over Q. (We will come back to this relation, as related to
recent conjectures and questions of Mazur and Rubin).

The starting point of this book is that our recent papers [4,6,52] give access
to the second moment theory of this family, in the sense sketched in the previous
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section. Precisely, the combination of these works provides a formula with power-
saving error term for the second moment of the central value at s = 1/2, namely

1

φ∗(q)

∑∗

χ (mod q)

|L(f ⊗ χ, 12 )|2.

From this, it is a relatively simple matter to derive asymptotic formulas includ-
ing twists, and to include values at other points of the critical line with polynomial
dependency on the imaginary part, giving formulas of the type (1.4) and (1.5). We
can then attempt to implement the various applications of the previous section,
and we will now list those which are found in this book.

Remark 1.6. (1) The family of twists is very simple from the point of view of
local spectral equidistribution, which in that case amounts merely to an application
of the orthogonality relations for Dirichlet characters modulo q. Precisely, for any
prime p, the local components at p (in the sense of automorphic representations)
of f ⊗ χ become equidistributed in the unitary spectrum of GL2(Qp) as q → +∞,
with limit measure the uniform probability measure on the set of unramified twists
πp(f)⊗ | · |itp , where πp(f) is the p-component of f . This fact will not actually play
a role in our arguments so we skip the easy proof. It implies however (and this can
easily be checked by means of the distribution of low-lying zeros) that the family
is of unitary type.

(2) Because the orthogonality relations for Dirichlet characters are easier to
manipulate when summing over all characters modulo q, we will sometimes use
sums over all Dirichlet characters. This amounts to adding the L-function of f
into our family (with the Euler factor at q removed) and changing the normalizing
factor from 1/φ∗(q) to 1/φ(q), and has no consequence in the asymptotic picture.

In the next sections, we state precise forms of the results we will prove concern-
ing this family. These concern non-vanishing properties and extremal values. We
leave as an exercise to the interested reader the proof of the universality theorem
(following [48]), which takes the following form:

Theorem 1.7. Let 0 < R < 1/4 be a real number and let D be the disc
of radius R centered at 3/4, which has closure D̄ contained in the critical strip
1/2 < Re(s) < 1. Let φ : D̄ → C be a function that is continuous and holomorphic
in D, and does not vanish in D. Then, for all ε > 0, we have

lim inf
q→+∞

1

φ∗(q)

∣∣∣{χ (mod q) non-trivial | sup
s∈D̄

|L(f ⊗ χ, s) − φ(s)| < ε}
∣∣∣ > 0.

We do not consider lower-bounds for integral moments, but refer to the earlier
paper of Blomer and Milićević [6, Th. 4] where a special case is treated.

1.3. Positive proportion of non-vanishing

We will first use the mollification method to show that the central value L(f ⊗
χ, 12 ) is not zero for a positive proportion of χ (mod q). In fact, as is classical,
we will obtain a quantitative lower-bound. Moreover, inspired by the work of B.
Hough [34], we will establish a result of this type with an additional constraint on
the argument of the L-value.

For χ such that L(f ⊗ χ, 12 ) ̸= 0, we let

(1.6) θ(f ⊗ χ) = arg(L(f ⊗ χ, 12 )) ∈ R/2πZ
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be the argument of L(f⊗χ, 12 ). We will also use the same notation for the reduction
of this argument in R/πZ (we emphasize that this is R/πZ, and not R/2πZ; as
we will see, our method is not sensitive enough to detect angles modulo 2π).

We say that a subset I ⊂ R/πZ (or I ⊂ R/2πZ) is an interval if it is the image
of an interval of R under the canonical projection.

Theorem 1.8. Let I ⊂ R/πZ be an interval of positive measure. There exists
a constant η > 0, depending only on I, such that

1

φ∗(q)
|{χ (mod q) non-trivial | |L(f⊗χ, 12 )| ⩾ (log q)−1, θ(f⊗χ) ∈ I}| ⩾ η+of,I(1)

as q → ∞ among the primes.

Remark 1.9. (1) Our proof will show that one can take η = µ(I)2

1443ζ(2) , where

µ(I) denotes the (Haar probability) measure of I. It also shows that the lower
bound (log q)−1 can be replaced with (log q)−1/2−ε for any ε > 0. For more details
see §6.6 below.

(2) When f is a holomorphic form with rational coefficients (i.e., it is the cusp
form associated to an elliptic curve over Q), Chinta [10] has proved the following
very strong non-vanishing result: for any ε > 0, we have

(1.7)
1

φ(q)
|{χ (mod q) | L(f ⊗ χ, 12 ) ̸= 0}| = 1 +Of,ε(q

−1/8+ε).

His argument uses ideas of Rohrlich, and in particular the fact that in this case,
the vanishing or non-vanishing of L(f ⊗χ, 12 ) depends only on the orbit of χ under
the action of the absolute Galois group of Q. The Galois invariance of the non-
vanishing of L(f ⊗ χ, 12 ) is not known if f is a Maaß form, and it is not known

either whether a lower bound such as |L(f ⊗ χ, 12 )| ⩾ (log q)−1 is Galois-invariant,
even when f is holomorphic.

Theorem 1.8 can be seen as a special case of a more general class of new non-
vanishing results for L(f⊗χ, 1/2) under additional constraints on χ. In Section 6.7,
we combine the mollification method with Katz’s work on the equidistribution of
Mellin transforms of trace functions over finite fields (see [40]) to prove a very
general theorem of this type (see Theorem 6.7). We state a representative special
case here.

For any χ (mod q), the Evans sum is defined as

t̃e(χ) =
1
√
q

∑
x∈F×

q

χ(x)e
(x− x̄

q

)
.

By Weil’s bound for exponential sums in one variable, the Evans sums are real
numbers in the interval [−2, 2]. A result of Katz [40, Th. 14.2] implies that they
become equidistributed, as q → +∞, with respect to the Sato–Tate measure on
[−2, 2]. We then have:

Theorem 1.10. Let I ⊂ [−2, 2] be a set of positive measure with non-empty
interior. There exists a constant η > 0, depending only on I, such that

1

φ(q)
|{χ (mod q) | |L(f ⊗ χ, 12 )| ⩾ (log q)−1, t̃e(χ) ∈ I}| ⩾ η + of,I(1)

as q → ∞ among the primes.
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1.4. Large central values

Our next result exhibits large central values of twisted L-functions in our family,
using Soundararajan’s resonator method. More precisely, we first prove a result that
includes an angular constraint, similar to that in the previous section.

Theorem 1.11. Let I ⊂ R/πZ be an interval of positive measure. There exists
a constant c > 0 such for all primes q large enough, depending on I and f , there
exists a non-trivial character χ (mod q) such that

L(f ⊗ χ, 12 ) ⩾ exp

(( c log q

log log q

)1/2)
and θ(f ⊗ χ) ∈ I.

We will also prove a second version which involves a product of twisted L-
functions (and thus a slightly different family of L-functions), without angular
restriction.

Theorem 1.12. Let g be a fixed primitive cusp form of level r′ and trivial
central character. There exists a constant c > 0, depending only on f and g, such
that for all primes q large enough in terms of f and g, there exists a non-trivial
character χ mod q such that

|L(f ⊗ χ, 12 )L(g ⊗ χ, 12 )| ⩾ exp

(( c log q

log log q

)1/2)
.

Note that because we have a product of two special values, the resonator method
is now not a “first moment” method, but will involve the average of these products,
which is of the level of difficulty of the second moment for a single cusp form f ,
and once more, a power-saving in the error term is crucial for success.

1.5. Bounds on the analytic rank

Our third result concerns the order of vanishing (the analytic rank)

rkan(f ⊗ χ) = ord
s=1/2

L(f ⊗ χ, s)

of the twisted L-functions at the central point. Using the methods of [31,49,50]
(as in Section 1.1.6) we prove the exponential decay of the probability that the
analytic rank exceeds a certain value:

Theorem 1.13. There exist constants R ⩾ 0, c > 0, depending only on f , such
that

1

φ∗(q)

∑∗

χ (mod q)

exp(c rkan(f ⊗ χ)) ⩽ exp(cR)

for all primes q. In particular, by the inequality of arithmetic and geometric means,
we have

1

φ∗(q)

∑∗

χ (mod q)

rkan(f ⊗ χ) ⩽ R,

for all primes q, and for any t ⩾ 0 we have

lim sup
q→+∞

1

φ∗(q)
|{χ (mod q) non-trivial | rkan(f ⊗ χ) ⩾ t}| ≪f exp(−ct).
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Remark 1.14. If f is holomorphic with rational coefficients, an immediate
consequence of Chinta’s bound (1.7) (using the bound rkan(f ⊗ χ) ≪f log q, for
which see, e.g., [36, Th. 5.7]) is that

1

φ∗(q)

∑∗

χ (mod q)

rkan(f ⊗ χ) ≪f,ε q
−1/8+ε.

1.6. A conjecture of Mazur-Rubin concerning modular symbols

Suppose that f is a holomorphic form of weight 2. For any integers q ⩾ 1
coprime with r and a coprime to q, the corresponding modular symbol (associated
to f) is defined by〈a

q

〉
f

= 2πi

∫ a/q

i∞
f(z)dz = 2π

∫ ∞

0

f
( a
q

+ iy
)
dy,

where the path of integration can be taken as the vertical line joining i∞ to a/q in
the upper half-plane. This quantity, as a function of a, depends only on a (mod q).

It turns out that modular symbols are closely related to the special values
L(f ⊗ χ, 12 ) for Dirichlet characters χ (mod q), by means of a formula due to Birch
and Stevens (cf. [59, (8.6)]).

Recently, Mazur and Rubin [58] have investigated the variation of the rank
of a fixed elliptic curve E/Q in abelian extensions of Q (including infinite ex-
tensions). This has led them (via the Birch–Swinnerton-Dyer conjecture and the
Birch–Stevens formula) to a number of questions and conjectures concerning the
modular symbols of the cusp form f attached to E (i.e., the cusp form whose L-
function coincides with the Hasse-Weil L-function of E by the modularity theorem).
In particular, they raised a number of problems concerning the distribution of these
modular symbols.

Many of these questions have now been solved by Petridis and Risager [63] on
average over q. In Chapter 9, we will study the distribution of modular symbols
associated to an individual prime modulus q (see also the recent work [46] by Kim
and Sun for a more arithmetic/algebraic perspective on modular symbols). Among
other things, we will solve a conjecture of Mazur and Rubin (see [63, Conj. 1.2])
concerning their variance. Let

Mf (q) =
1

φ(q)

∑
a mod q
(a,q)=1

〈a
q

〉
f

be the mean value, which will be computed in Theorem 9.2.

Theorem 1.15. For q a prime, the variance of modular symbols

Vf (q) =
1

φ(q)

∑
a mod q
(a,q)=1

∣∣∣ 〈a
q

〉
f
−Mf (q)

∣∣∣2
satisfies

Vf (q) = 2
∏
p|r

(1 + p−1)−1L
∗(Sym2f, 1)

ζ(2)
log q + βf +O(q−1/145)

for q prime, where βf ∈ C is a constant and L∗(Sym2f, s) denotes the imprimitive
symmetric square L-function of f (cf. Section 2.3.3).
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1.7. Twisted moment estimates

As we have explained in Section 1.1, the proofs of most of these results rely on
the amplification method and the resonator method, and involve various asymptotic
formulas for moments and twisted moments of the L-functions in the family.

In our case, since the Fourier coefficients of f ⊗ χ are λf (n)χ(n), and the first
factor is fixed, it is most natural to consider moments twisted simply by character
values χ(ℓ) for some integers ℓ. Moreover, in order to incorporate angular restric-
tions on the central values, as in Theorems 1.8 and 1.11, it is useful to also consider
twists by powers of the Gauß sums of the characters, at least in the first moment.

Hence, our basic sums of interests are

L(f, s; ℓ, k) :=
1

φ∗(q)

∑∗

χ (mod q)

L(f ⊗ χ, s)εkχχ(ℓ),

Q(f, s; ℓ, ℓ′) :=
1

φ∗(q)

∑∗

χ (mod q)

∣∣L(f ⊗ χ, s)
∣∣2χ(ℓ)χ(ℓ′)

(1.8)

where s is a complex parameter (with real part close to 1
2 in practice), ℓ and ℓ′ are

coprime integers, k ∈ Z and

(1.9) εχ =
1
√
q

∑
h (mod q)

χ(h)e
(h
q

)
is the normalized Gauß sum of χ. If s = 1/2, we will drop it from the notation and
write L(f ; ℓ, k) = L(f, 1/2; ℓ, k), Q(f ; ℓ, ℓ′) = Q(f, 1/2; ℓ, ℓ′).

Using these, we can build the mollified moments (or resonating moments, de-
pending on the application), namely

1

φ∗(q)

∑∗

χ (mod q)

L(f ⊗ χ, s)e(2kθ(f ⊗ χ))M(f ⊗ χ, s;xL)

and
1

φ∗(q)

∑∗

χ (mod q)

∣∣L(f ⊗ χ, s)
∣∣2∣∣M(f ⊗ χ, s;xL)

∣∣2
where M(f ⊗ χ, s;xL) is a finite sum

M(f ⊗ χ, s;xL) =
∑
ℓ⩽L

xℓ
χ(ℓ)

ℓs

involving complex parameters xL = (xℓ)ℓ⩽L that we select carefully depending on
each application.

We need to evaluate the first moment only for s = 1
2 , and by the functional

equation of L(f ⊗ χ, s) is it sufficient to do so when k ⩾ −1.

Theorem 1.16. For k ⩾ −1, ℓ ∈ (Z/qZ)× and any ε > 0, we have

L(f ; ℓ, k) = δk=0
λf (ℓq)

ℓ
1/2

q

+Of,ε,k(q−1/8+ε),

for q prime, where ℓq denotes the unique integer in the interval [1, q] satisfying the

congruence ℓℓq ≡ 1 (mod q).
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The proof of this theorem is rather elementary when k = 0, but it requires
the results of Fouvry, Kowalski and Michel [20] on twists of Fourier coefficients by
trace functions otherwise.

The evaluation of the second moment is significantly more challenging. The
combination of our three papers [4, 6, 52] successfully handles the case ℓ = ℓ′ =
|r| = 1. Precisely, by [52, Th. 1.5] (which relies on the previous papers), we have:

Theorem 1.17. Assume that the level of f is r = 1. For any δ < 1/144, we
have

1

φ∗(q)

∑∗

χ (mod q)

|L(f ⊗ χ, 12 )|2 = Pf (log q) +Of,δ(q
−δ),

for q prime, where Pf (X) is a polynomial of degree 1 depending on f only with

leading coefficient 2L(Sym2f, 1)/ζ(2).

As we discussed above, this is in a certain sense the main case, and from there
it is possible to evaluate the more general second moments Q(f, s; ℓ, ℓ′), which we
do here for f of general level. In fact, for the proof of Theorem 1.12, we will require
an estimate involving two cusp forms (which of course may be equal!).

Theorem 1.18. Let f, g be primitive cusp forms of signed levels r and r′ co-
prime to q, with trivial central character. Define

Q(f, g, s; ℓ, ℓ′) =
1

φ∗(q)

∑∗

χ (mod q)

L(f ⊗ χ, s)L(g ⊗ χ, s)χ(ℓ)χ(ℓ′)

for integers 1 ⩽ ℓ, ℓ′ ⩽ L, with (ℓℓ′, qrr′) = (ℓ, ℓ′) = 1, and s ∈ C.
Then, for s = 1

2 + β + it, β, t ∈ R with |β| ⩽ 1/ log q, we have the asymptotic
formula

Q(f, g, s; ℓ, ℓ′) = MT(f, g, s; ℓ, ℓ′) +Of,g,ε(|s|O(1)L3/2q−1/144+ε)

for q prime, where

MT(f, g, s; ℓ, ℓ′) =
1

2
MT+(f, g, s; ℓ, ℓ′) +

1

2
MT−(f, g, s; ℓ, ℓ′)

is a “main term” whose even and odd parts MT±(f, g, s; ℓ, ℓ′) are given in (5.2).

The main terms as we express them here are well-suited to further trans-
formations for our main applications. If one is interested in the second moment
Q(f, g, 12 ; 1, 1) only (as in Theorem 1.15), then one can express the main term more
concretely, but there are a number of cases to consider.

If f = g is of squarefree level r, then

MT(f, f, 12 ; 1, 1) = 2
∏
p|r

(1 + p−1)−1L(Sym2f, 1)

ζ(2)
(log q) + βf +O(q−2/5)

for some constant βf , where Sym2f is the symmetric square of f (cf. Section 2.3.3).
If f ̸= g, it may be that Q(f, g, 12 ; 1, 1) is exactly zero for “trivial” reasons.

This happens if f and g have the same signed level r = r′ (recall that, with the
convention 1.3, this implies that either both are holomorphic, or that both are non-
holomorphic) and their root numbers ε(f) and ε(g) satisfy ε(f)ε(g) = −1. In that
case, computations with root numbers show that

L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ) = −L(f ⊗ χ, 12 )L(g ⊗ χ, 12 )
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so the second moment cancels by pairing each character with its conjugate (see
Remark 2.4).

If, on the other hand, we have ε(f)ε(g) = 1 and f , g are of the same type, then
we have

MT(f, g, 12 ; 1, 1) = 2γf,g
L(f ⊗ g, 1)

ζ(2)
+O(q−2/5)

where L(f ⊗ g, s) is the Rankin-Selberg convolution of f and g (cf. Section 2.3.1)
and γf,g is some non-zero constant depending on f and g. We defer a more detailed
discussion to Proposition 5.2.

Remark 1.19. (1) Let d be the usual divisor function. Then d(n) is the n-th
Hecke eigenvalue of a non-holomorphic Eisenstein series E(s), and the identity

L(χ, s)2 = L(E ⊗ χ, s)

shows that the problem of estimating the second moment of twists of E is equivalent
to the problem of estimating the fourth moment of the values of the Dirichlet L-
functions L(χ, s). This remark shows that several parts of this memoir have obvious
links with the beautiful work of Young [84] (later improved in [4]) where he proves
the existence of a polynomial P4 of degree 4 and of a constant δ > 0 such that, for
all q ⩾ 2, we have

1

φ∗(q)

∑
χ mod q

|L(χ, 1/2)|4 = P4(log q) +O(q−δ).

(2) Recently Zacharias [86] used the evaluation of the mollified second moment
Q(f, s; ℓ, ℓ′) of this memoir together with his own evaluation of the mixed twisted
moment

1

φ∗(q)

∑∗

χ (mod q)

L(χ, 12 )L(f ⊗ χ, 12 )χ(ℓ)

to establish the existence of a positive proportion of primitive χ (mod q) such that

L(χ, 12 )L(f ⊗ χ, 12 ) ̸= 0.

He also obtained similar results when f is an Eisenstein series (in which case the
L-function L(f ⊗ χ, s) is a product of Dirichlet L-functions): using his evaluation
of the fourth mollified moment of Dirichlet L-functions ([85]) he shows that for
any pair of characters χ1, χ2 (mod q), there exists a positive proportion of primitive
characters χ (mod q) for which L(χ, 12 )L(χ · χ1,

1
2 )L(χ · χ2,

1
2 ) ̸= 0.

(3) The approach of Hoffstein and Lee [33] towards the second moment, based
on multiple Dirichlet series, reduces a proof of Theorem 1.17 (with some power-
saving exponent) to a non-trivial estimate for a certain special value of a double

Dirichlet series, which is denoted Z̃q(1−k/2, 1/2; f, f) in loc. cit. When q is prime,
our theorem therefore indirectly provides such an estimate

Z̃q(1 − k/2, 1/2; f, f) ≪ q−1/144.

Outline of the book

This book is organized as follows:
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(1) Chapter 2 is preliminary to the main results; we set up the notation, and
recall a number of important facts concerning Hecke L-functions (such
as those of our family), as well as auxiliary L-functions that arise during
the proofs of the main results (such as Rankin-Selberg L-functions). We
require, in particular, some forms of the Prime Number Theorem and
zero-free regions for these L-functions, and since the literature is not fully
clear in this matter, we discuss some of these in some detail. We also
discuss briefly a shifted convolution bound that is a slight adaptation of
one of Blomer and Milićević [6].

(2) Chapter 3 gives an account of the algebraic exponential and character
sums that occur in the book; on the one hand, these are the elementary
orthogonality properties of character sums, and the averages of Gauß sums
that give rise to hyper-Kloosterman sums, and on the other hand, we state
a number of deep bounds for various sums of Kloosterman sums. Although
we do not need to develop new bounds of this type, we give a quick sketch
of the arguments that lead to them, with references to the original proofs.
It is worth mentioning that these proofs rely in an absolutely essential way
on the most general form of the Riemann Hypothesis over finite fields, due
to Deligne, as well as on works of Katz. In Sections 3.4 and 3.5, we present
some background on trace functions and discuss the results of Katz on
discrete Mellin transforms over finite fields that are involved in the proof
of (the general form of) Theorem 1.10.

(3) In Chapter 4, we prove the necessary asymptotic estimates for the first
twisted moment of our family. The proof is very short, which illustrates
the principle that the complexity of moment computations in families of
L-functions increases steeply as the order of moment increases.

(4) In turn Chapter 5 gives the proof of the required twisted second moment
estimates. Although this is much more involved than the first moment,
most of the necessary ingredients are found in our previous works, and
the chapter is relatively short.

(5) Finally, Chapters 6, 7, 8 and 9 are devoted to the proofs of our main
results: positive proportion of non-vanishing (including Theorem 1.8),
existence of large values, bounds for the analytic rank and the variance of
modular symbols, respectively. These chapters are essentially independent
of each other (the last one is extremely short, as the proof of Theorem 1.15
is mostly a direct translation of the second moment estimate), and many
readers will find it preferable to start reading one of them, and to refer to
the required results of the previous chapters only as needed.

Since the theory of trace functions and its required background involve
prerequisites that may be unfamiliar to some readers, the corresponding
statements and results are isolated in independent sections (besides the
background sections 3.4 and 3.5, they are in Sections 4.3 and 6.7).
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CHAPTER 2

Preliminaries

We collect in this chapter some preliminary material. Most of it is well-known,
however some cases of the Prime Number Theorem (Proposition 2.11) are difficult to
locate in the literature, and the computation of the ramified factors of the symmetric
square L-function in Section 2.3.3 are even more problematic.

2.1. Notation and conventions

– We use the notation δx,y or δ(x, y) or δx=y for the Kronecker delta symbol.
– The notation A ≍ B means

A≪ B ≪ A,

where ≪ denotes the Vinogradov symbol.
- In this book, we will denote generically by W , sometimes with subscripts,

some smooth complex-valued functions, compactly supported on [1/2, 2]
and possibly depending on a finite set S of complex numbers, whose
derivatives satisfy

(2.1) W (j)(x) ≪j

∏
s∈S

(1 + |s|)cj

for some fixed constant c > 0 and any j ⩾ 0 (as usual, an empty product
is defined to be equal to 1). In practice, S may be empty, or may contain
the (signed) levels r, r′ of two cusp forms, their weight/spectral parameter,
and/or a complex number s on or close to the 1

2 -line. Of course, the set
S must not contain our basic parameter q, but no harm is done if some
s ∈ S grows like (log q)2, say, since all our estimates contain a qε-valve. To
lighten the notation, we will not the display the dependence on parameters
s ∈ S in implied constants and just keep in mind that it is polynomial.

– Throughout this book, we will use the ε-convention, according to which a
statement involving ε holds for all sufficiently small ε > 0 (with implied
constants depending on ε) and the value of ε may change from line to
line. A typical example is (4.4), where the various ε’s in (2.29) and (2.16)
combine to a new ε.

– For z ∈ C, we denote e(z) = e2πiz. We recall that if q ⩾ 1 is an integer,
then x 7→ e(x/q) is a well-defined additive character modulo q.

– For an integer c ⩾ 1 and a ∈ Z coprime to c, we often write ā for the
inverse of a modulo c in (Z/cZ)×. The value of c will always be clear from
the context.

27



28 2. PRELIMINARIES

– For any (polynomially bounded) multiplicative function a(n), we define a
Dirichlet series

A(s) =
∑
n⩾1

a(n)n−s,

we denote by Ap(s) the p-factor of the corresponding Euler product, so
that

A(s) =
∏
p

Ap(s)

in the region of absolute convergence. For any integer r, we also write
A(r)(s) for the Euler product restricted to primes p ∤ r.

– Let c ⩾ 1 and let a, b be integers. We denote

S(a, b; c) =
∑

d (mod c)
(d,c)=1

e
(ad+ bd̄

c

)

the Kloosterman sum modulo c. We also denote

Kl(a; c) =
1√
c
S(a, 1; c),

the normalized Kloosterman sum.
– As we already mentioned, unless otherwise specified, q will be a
prime number .

2.2. Hecke L-functions

Let f be a primitive cusp form (holomorphic or Maaß) of signed level r (i.e. for
the group Γ0(|r|)) with trivial central character χr. The Hecke L-function of f is a
degree 2 Euler product absolutely convergent for Re s > 1:

L(f, s) :=
∏
p

Lp(f, s) =
∏
p

2∏
i=1

(
1 − αf,i(p)

ps

)−1

=
∏
p

(
1 − λf (p)

ps
+
χr(p)

p2s

)−1

=
∑
n⩾1

λf (n)

ns
, Re s > 1.

The factor Lp(f, s) is the local L-factor at the prime p and the coefficients αf,i(p)
for i = 1, 2 are called the local parameters of f at p. The coefficients of this Dirichlet
series (λf (n))n⩾1 have a simple expression in terms of these parameters: for any
prime p, we have

λf (p) = αf,1(p) + αf,2(p), αf,1(p)αf,2(p) = χr(p),

and we have the multiplicativity relations

λf (m)λf (n) =
∑

d|(m,n)

χr(d)λf

(mn
d2

)
,

λf (mn) =
∑

d|(m,n)

χr(d)µ(d)λf

(m
d

)
λf

(n
d

)
.

For a primitive form, the Dirichlet coefficient λf (n) is the eigenvalue of f for the
n-th Hecke operator.
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The local L-factors (Lp(f, s))p are completed by an archimedean local factor
which is a product of shifted Gamma functions

(2.2) L∞(f, s) = ΓR(s− µf,1)ΓR(s− µf,2), ΓR(s) = π−s/2Γ(s/2).

The coefficients µf,i, i = 1, 2 are called the local archimedean parameters of f and
are related to the classical invariants of f as follows:

µf,1 = −k − 1

2
, µf,2 = −k

2

if f is holomorphic of weight k ⩾ 2 and

µf,1 =
1 − κf

2
+ itf , µf,2 =

1 − κf
2

− itf

if f is a Maaß form with Laplace eigenvalue λf (∞) = ( 1
2 + itf )( 1

2 − itf ) and
κf ∈ {±1} is the eigenvalue of f under the involution f 7→ f(−z̄). The completed
product

Λ(f, s) = |r|s/2L∞(f, s)L(f, s)

admits a holomorphic continuation to the whole complex plane and satisfies a func-
tional equation of the shape

Λ(f, s) = ε(f)Λ(f, 1 − s)

where ε(f) (the root number) is a complex number satisfying |ε(f)| = 1.

2.2.1. Character twists. Let χ be a non-trivial Dirichlet character of prime
modulus q also coprime with r. The twisted L-function

L(f ⊗ χ, s) =
∏
p

Lp(f ⊗ χ, s) =
∏
p

∏
i=1,2

(
1 − αf,i(p)χ(p)

ps

)−1

=
∏
p

(
1 − λf (p)χ(p)

ps
+
χr(p)χ

2(p)

p2s

)−1

=
∑
n⩾1

λf (n)χ(n)

ns
, Re s > 1.

is in fact the Hecke L-function of a primitive cusp form f⊗χ for the group Γ0(q2|r|)
with central character χ2χr (see [36, Propositions 14.19 & 14.20], for instance, in
the holomorphic case which carries over to the general case).

Lemma 2.1. Let f be a primitive (holomorphic or Maaß) cusp form of signed
level r and trivial central character, and let χ be a primitive character modulo q,
not necessarily prime. Then the twisted L-function satisfies the functional equation

Λ(f ⊗ χ, s) = ε(f ⊗ χ)Λ(f ⊗ χ, 1 − s) = ε(f ⊗ χ)Λ(f ⊗ χ, 1 − s)

with
Λ(f ⊗ χ, s) = (q2|r|)s/2L∞(f ⊗ χ, s)L(f ⊗ χ, s).

Setting

a =
1 − κfχ(−1)

2
=

{
0, if χ and f have the same parity,

1, if χ and f have different parity,

we have

L∞(f ⊗ χ, s) =


L∞(f, s) if f is holomorphic of weight k,

L∞(f, s+ a) if f is an even Maaß form,

L∞(f, s− 1 + a) if f is an odd Maaß form,
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and

(2.3) ε(f ⊗ χ) = ε(f)χ(r)ε2χ

where ε(f) is the root number of L(f, s) and εχ is the normalized Gauß sum, cf.
(1.9).

Recall Convention 1.3 that r can be positive or negative depending on whether
f is holomorphic or not. Observe that L∞(f ⊗χ, s) depends at most on the parity
of χ, and is independent of χ if f is holomorphic. The following notation will be
useful: for χ(−1) = ±1 we write

L∞(f,±, s) := L∞(f ⊗ χ, s).

Proof. This is standard (see, e.g., [36, Th. 14.17 and Prop. 14.20] in the holo-
morphic case). We did not find a reference for the explicit root number computation
(2.3) in the Maaß case, so for the reader’s convenience we include the details. We
start with some general “converse type” computations. Let

F (z) =
√
y
∑
n̸=0

a(n)Kit(2π|n|y)e(nx), G(z) =
√
y
∑
n̸=0

b(n)Kit(2π|n|y)e(nx)

be two Maaß form that are both even or both odd and satisfy

F (−1/Nz) = η̄G(z)

for some integer N ⩾ 1 and some complex number η of modulus 1. Differentiating
both sides of the functional equation with respect to x, we obtain

η̄Gx(z) =
∂

∂x
F

(
−x+ iy

N(x2 + y2)

)
= Fx

(
− 1

Nz

)
1

Nz2
.

If both F and G are even, we compute

2

∫ ∞

0

F (iy)ys−1/2 dy

y
= 4

∑
n>0

a(n)

∫ ∞

0

Kit(2πny)ys
dy

y

= 4
∑
n>0

a(n)

ns
π−sΓ(1/2(s− it))Γ(1/2(s+ it))

4
= L(F, s)L∞(F, s).

On the other hand, by the functional equation, this equals

2η̄

∫ ∞

0

G(i/Ny)ys−1/2 dy

y
= η̄N1/2−s2

∫ ∞

0

G(iy)y−s+1/2 dy

y

so that by the above computation we have

L(F, s)L∞(F, s) = η̄N1/2−sL(G, 1 − s)L∞(G, 1 − s).

If both F and G are odd, we compute

1

i

∫ ∞

0

Fx(iy)ys+1/2 dy

y
= 4π

∑
n>0

a(n)n

∫ ∞

0

Kit(2πny)ys+1 dy

y

= 4π
∑
n>0

a(n)

ns
π−s−1Γ(1/2(s+ 1 − it))Γ(1/2(s+ 1 + it))

4
= L(F, s)L∞(F, s).
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On the other hand, by the functional equation for the derivative, this equals

1

i

∫ ∞

0

η̄Gx(i/Ny)
1

N(iy)2
ys+1/2 dy

y
= − η̄

iN

∫ ∞

0

Gx(i/Ny)ys−3/2 dy

y

= − η̄
i
N1/2−s

∫ ∞

0

Gx(iy)y3/2−s
dy

y
,

so that by the above computation we have

L(F, s)L∞(F, s) = −η̄N1/2−sL(G, 1 − s)L∞(G, 1 − s).

After these general considerations, we return to the functional equation of
twisted L-functions. Let f be a Maaß form of parity κf ∈ {±1} and signed level
r < 0 and trivial central character. Then f ⊗ χ has parity κfχ(−1) ∈ {±1}. Write

f(−1/(|r|z)) = η̄f(z)

so that by the above computation we have ε(f) = η̄κf for the root number. By a
formal matrix computation [35, Theorem 7.5] we see that

(f ⊗ χ)

(
− 1

q2|r|z

)
= ε2χχ(|r|)η̄ · (f ⊗ χ̄)(z)

So by the above computation, the root number of f ⊗ χ is indeed

ε2χχ(|r|)η̄ · κfχ(−1) = ε2χχ(r)ε(f)

as claimed. □

Remark 2.2. One could also recover the root number from general principles
of automorphic representation theory, since it is given by a product over all places,
and the behavior of local root numbers under twisting is relatively straightforward.
The above “classical” treatment doesn’t require knowledge of, say, the classification
of local representations at infinity.

In particular, taking s = 1/2 and recalling that θ(f ⊗ χ) is the argument of
L(f ⊗ χ, 1/2) (if the latter is non-zero), cf. (1.6), we obtain:
(2.4)

If L(f ⊗ χ, 1/2) ̸= 0, one has exp(2iθ(f ⊗ χ)) =
L(f ⊗ χ, 1/2)

L(f ⊗ χ, 1/2)
= ε(f)χ(r)ε2χ.

From the above discussion, and from the formula ε2χ = εχ
2, we can derive an

explicit form of the functional equation for a product of twisted L-functions.

Lemma 2.3. Let f, g be primitive cusp forms with trivial central character, of
signed levels r and r′ respectively, both coprime to q. We have

Λ(f ⊗ χ, s)Λ(g ⊗ χ, s) = ε(f)ε(g)χ(rr′)Λ(f ⊗ χ, 1 − s)Λ(g ⊗ χ, 1 − s).

We recall our convention 1.3: if f is a Maaß form, then its level is defined to
be the opposite of the arithmetic conductor.

Remark 2.4. If we assume that r = r′ (so f and g are of the same type) and
s = 1/2, then using the fact that λf (n) and λg(n) are real-valued, we obtain from
the functional equation the relation

L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ) = ε(f)ε(g)L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ).

In particular, if furthermore ε(f)ε(g) = −1, it follows that

(2.5) L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ) = −L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ).
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2.2.2. The explicit formula. In Chapter 8 we will obtain upper bounds for
the analytic rank of L(f ⊗ χ, s) (i.e. the order of vanishing at s = 1/2) on average
over χ. For this we will need the explicit formula in this specific situation. Define
Λf and Λf⊗χ by the formulas

−L
′

L
(f, s) =

∑
n⩾1

Λf (n)

ns
,

−L
′

L
(f ⊗ χ, s) =

∑
n⩾1

Λf⊗χ(n)

ns
=
∑
n⩾1

Λf (n)χ(n)

ns
.

The explicit formula for L(f ⊗ χ, s) is:

Proposition 2.5. Let φ :]0,+∞[→ C be smooth and compactly supported, and
let

φ̃(s) =

∫ ∞

0

φ(x)xs
dx

x

be its Mellin transform and ψ(x) = x−1φ(x−1) so that ψ̃(s) = φ̃(1 − s). One has

(2.6)
∑
n⩾1

(
Λf (n)χ(n)φ(n) + Λf (n)χ(n)ψ(n)

)
=

φ(1) log(q2|r|) +
1

2iπ

∫
(1/2)

( L′
∞(f,±, s)

L∞(f,±, s)
+
L′
∞(f,±, 1 − s)

L∞(f,±, 1 − s)

)
φ̃(s)ds−

∑
ϱ

φ̃(ϱ)

where ϱ ranges over the multiset of zeros of Λ(f ⊗ χ, s) in the strip 0 < Re s < 1.

See [36, §5.5] for the proof.

2.3. Auxiliary L-functions

In addition to Hecke L-functions and their twists by characters, several auxiliary
L-functions will play an important role in this memoir. They will arise as individual
L-functions (not in a family), typically in expressions for leading terms of various
asymptotic formulas. As a consequence, it is their behavior close to Re(s) = 1 that
is of most interest.

We review in this section the definitions of these L-functions, and summarize
their analytic properties. We then list some useful consequences.

2.3.1. Ranking-Selberg L-functions on GL2. We recall the basic theory
of Rankin-Selberg convolution for GL2. Given two primitive modular forms f and
g of level r and r′ respectively with trivial central character, the Rankin-Selberg
L-function of f and g is a degree 4 Euler product

L(f ⊗ g, s) =
∏
p

Lp(f ⊗ g, s) =
∑
n⩾1

λf⊗g(n)

ns
, Re s > 1

such that, for p ∤ rr′, we have

Lp(f ⊗ g, s) =
2∏

i,j=1

(
1 − αf,i(p)αg,j(p)

ps

)−1
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and in general

Lp(f ⊗ g, s) =
4∏
i

(
1 − αf⊗g,i(p)

ps

)−1

.

In particular, λf⊗g(n) = λf (n)λg(n) for any n squarefree coprime with rr′. An
exact description of all Dirichlet coefficients is given by Winnie Li in [54], but this
is rather complicated.

By Rankin-Selberg theory, L(f ⊗ g, s) admits analytic continuation to C with
at most one simple pole at s = 1, which occurs if and only if f = g. This L-function
satisfies a functional equation of the shape

Λ(f ⊗ g, s) = ε(f ⊗ g)Λ(f ⊗ g, 1 − s)

with

Λ(f ⊗ g, s) = r(f ⊗ g)s/2L∞(f ⊗ g, s)L(f ⊗ g, s)

where r(f ⊗ g) is a positive integer, L∞(f ⊗ g, s) is a product of Gamma factors
and ε(f ⊗ g) = ±1. Moreover, as a consequence of the descriptions above and of
the approximation to the Ramanujan-Petersson conjecture (cf. Section 2.3.5), for
any prime p the local factor Lp(f ⊗ g, s) has no poles for Re s ⩾ 1/2.

In some of our applications, we will also encounter the Dirichlet series

(2.7) L∗(f ⊗ g, s) =
∑
n⩾1

λf (n)λg(n)

ns
,

initially defined in Re s > 1. By the above discussion, it has holomorphic continu-
ation to Re s > 1/2, except for a pole at s = 1 which exists if and only if f = g. If
f ̸= g, then

L∗(f ⊗ g, s) =
L(f ⊗ g, s)

ζ(rr′)(2s)

∏
p|rr′

Ap(f, g; s),

for some correction factors Ap(f, g; s) which have been computed explicitly by Win-
nie Li [54, §2, Th. 2.2] when f and g are both holomorphic. Here and throughout
this book a superscript (r) denotes the removal of the Euler factors at primes di-
viding r.

Lemma 2.6. For two newforms f ̸= g we have L∗(f ⊗ g, 1) ̸= 0.

Proof. For p | rr′ we have

Ap(f, g; s) = L∗
p(f ⊗ g, s)Lp(f ⊗ g, s)−1.

The factor L∗
p(f ⊗ g, s) is the inverse of a polynomial at p−s (by multiplicativity),

so doesn’t vanish. On the other hand, it follows e.g. from results of Gelbart and
Jacquet [25, Prop. 1.2, 1.4] that Lp(f ⊗ g, s) has no poles in Re(s) ⩾ 1, so that
Ap(f, g; 1) ̸= 0. (More precisely, if one of the local representations of f or g at p
is supercuspidal, then Prop. 1.2 in [25], and the fact that the central character is
unitary, imply that all poles of Lp(f ⊗ g, s) satisfy Re(s) = 0; on the other hand, if
none of the local representation is supercuspidal, then Prop. 1.4 of [25] implies that
Lp(f ⊗ g, s) is a product of GL2-local factors, which have no poles for Re(s) = 1,

e.g. because they are products of at most two factors 1/(1−αp−s) where |α| < p1/2

by elementary results towards the Ramanujan-Petersson conjecture, as recalled in
Section 2.3.5). The lemma now follows from the fact that L(f ⊗ g, 1) ̸= 0 (see
Proposition 2.11). □
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If f = g, then we define L∗(Sym2f, s) through the relation

(2.8) ζ(r)(s)L∗(Sym2f, s) = ζ(r)(2s)L∗(f ⊗ f, s).

In particular, we have

(2.9) L∗(Sym2f, 1) = ζ(2)
∏
p|r

(1 + p−1) res
s=1

L∗(f ⊗ f, s).

Using the formulas in [54, p. 145, Example 1], it follows that if r is squarefree, then
we have

L∗(Sym2f, 1) = L(Sym2f, 1)

where Sym2f is the symmetric square; we will explain how to recover this fact (and
describe the corresponding formulas if r is not squarefree) in Section 2.3.3, using
the local Langlands correspondence.

2.3.2. Rankin-Selberg convolutions on GLd. The previous examples are
special cases of Rankin-Selberg L-functions attached to two general automorphic
representations of GLd(AQ). The general theory is due to Jacquet–Piatetskii-
Shapiro–Shalika [39], and we recall it briefly here.

Let d, e ⩾ 1 be integers, and let π, π′ be automorphic cuspidal representations
of GLd(AQ) and GLe(AQ), respectively, whose central characters ω, ω′ are trivial
on R>0. We denote by π̃ and π̃′ their contragredient representations.

The Rankin-Selberg L-function associated to π and π′ is an Euler product,
absolutely convergent for Re s > 1, of the form

L(π ⊗ π′, s) =
∏
p

Lp(π ⊗ π′, s) =
∏
p

d∏
i=1

e∏
j=1

(
1 −

απ⊗π′,(i,j)(p)

ps

)−1

=
∑
n⩾1

λπ⊗π′(n)

ns
, Re s > 1

such that, for p not dividing the product of the conductors q(π)q(π′), we have

απ⊗π′,(i,j)(p) = απ,i(p)απ′,j(p)

where απ,i(p) and απ′,j(p) are the local parameters of π, π′ at the place p, i.e.

Lp(π, s) =
d∏
i=1

(
1 − απ,i(p)

ps

)−1

, Lp(π
′, s) =

e∏
j=1

(
1 − απ′,j(p)

ps

)−1

are the local factors of the standard L-functions of π, π′.
When e = 1 and π′ = 1 is the trivial representation, this Rankin-Selberg L-

function is the standard L-function: we have then L(π ⊗ π′, s) = L(π, s).
The Rankin-Selberg L-functions admit meromorphic continuation to C, and

satisfy a functional equations of the shape

Λ(π ⊗ π′, s) = ε(π ⊗ π′)Λ(π̃ ⊗ π̃′, 1 − s)

with |ε(π ⊗ π′)| = 1 and

Λ(π ⊗ π′, s) = q(π ⊗ π′)s/2L∞(π ⊗ π′, s)L(π ⊗ π′, s)
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where q(π ⊗ π′) ⩾ 1 is an integer and

L∞(π ⊗ π′, s) =
d∏
i=1

e∏
j=1

ΓR(s+ µπ⊗π′,(i,j))

is a product of Gamma factors. The completed L-function Λ(π⊗ π′, s) is holomor-
phic on C, unless π′ ≃ π̃, in which case it has simple poles at s = 0, 1.

If π and π′ are not necessarily cuspidal, but are isobaric sums of cuspidal
representations πi and π′

j (whose central characters are trivial on R>0), say

π =
i

µiπi, π
′ =

j

νjπ
′
j , µi, νj ⩾ 1,

then the Rankin-Selberg L-function exists and is given as the product

L(π ⊗ π′, s) =
∏
i,j

L(πi ⊗ π′
j , s)

µiνj

so that analytic properties in the isobaric case are deduced immediately from the
purely cuspidal case.

The local parameters of the Rankin-Selberg L-function enjoy the following ad-
ditional properties:

(1) For a prime p ∤ q(π)q(π′), we have

λπ⊗π′(p) = λπ(p)λπ′(p).

(2) If d = e and π′ = π̃ is the contragredient of π, then we have

λπ⊗π̃(n) ⩾ 0

for all n ⩾ 1 (cf. [71, p. 318]).
(3) The archimedean local factor L∞(π⊗ π′, s) has no poles in the half-plane

Re s > 1, and likewise for any of the local factors Lp(π⊗π′, s) for p prime,
because of the absolute convergence of the series L(π⊗π′, s) in this region.

To measure the complexity of an L-function, we use the analytic conductor,
which is defined as the function

Q(π ⊗ π′, s) = q(π ⊗ π′)
∏
i,j

(1 + |µπ⊗π′,(i,j) + s|).

The conductor of a Rankin-Selberg L-function is controlled by that of the factors,
more precisely we have

(2.10) q(π ⊗ π′) ⩽ q(π)n
′
q(π′)n, Q(π ⊗ π′, 0) ⩽ Q(π, 0)n

′
Q(π′, 0)n

for some n, n′ (due to Bushnell and Henniart [8] for the non-archimedean part).
Analogously, we will use the notation Q(π) for the analytic conductor of π.

2.3.3. The symmetric square L-function. We return to the case d = 2.
When f = g (of level r and with trivial central character), it is possible to factor
the Rankin-Selberg L-function

L(f ⊗ f, s) = ζ(s)L(Sym2f, s)
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where L(Sym2f, s) is the symmetric square L-function of f . This is an Euler
product of degree three given by

L(Sym2f, s) =
∏
p

Lp(Sym2f, s) =
∏
p

3∏
i=1

(
1 −

αSym2f,i(p)

ps

)−1

=
∑
n⩾1

λSym2f (n)

ns
,

for Re s > 1. For all p ∤ r, we have

Lp(Sym2f, s) =
Lp(f ⊗ f, s)

(1 − p−s)−1

=
(

1 − αf,1(p)2

ps

)−1(
1 − αf,2(p)2

ps

)−1(
1 − αf,1αf,2(p)

ps

)−1

.

This L-function admits analytic continuation to C and satisfies a functional equa-
tion of the shape

Λ(Sym2f, s) = ε(Sym2f)Λ(Sym2f, 1 − s)

with ε(Sym2f) = +1 and

Λ(Sym2f, s) = q(Sym2f)s/2L∞(Sym2f, s)L(Sym2f, s)

where L∞(Sym2f, s) is a product of Gamma factors. In fact, it was proved by
Gelbart-Jacquet [25] that L(Sym2f, s) is the L-function of an automorphic repre-
sentation on GL3 over Q, which we denote Sym2f , and that L(Sym2f, s) is entire.
This result also implies that the Rankin-Selberg L-function L(f ⊗ f, s) is the L-
function of a (non-cuspidal) GL4(AQ)-automorphic representation.

In some applications, as in our Chapter 9, it is of some importance to under-
stand the precise relation between the automorphic symmetric square L-function of
Gelbart-Jacquet and the “imprimitive” version L∗(Sym2f, s) defined by (2.8), i.e.

ζ(r)(2s)L∗(f ⊗ f, s) = ζ(r)(s)L∗(Sym2f, s).

Since it is quite complicated to track the literature concerning this point (es-
pecially when the level of f is not squarefree), we record the result in our case of
interest, and sketch the proof using the local Langlands correspondance.

Let f be a primitive cusp form with trivial central character and level r. For
any prime p, let πp be the local representation of the automorphic representation
corresponding to f . The following list enumerates the possibilities for πp, the cor-
responding inverse L-factors at p, namely Lp(πp, s)

−1 for the standard L-function,

and Lp(Sym2f, s)−1 for the automorphic symmetric square L-function, and finally
the “correction factor”

Cp =
L∗
p(Sym2f, s)

Lp(Sym2f, s)
.

(1) Unramified:

Lp(πp, s)
−1 (1 − αpp

−s)(1 − βpp
−s), αpβp = 1

Lp(Sym2f, s)−1 (1 − α2
pp

−s)(1 − p−s)(1 − β2
pp

−s)

Cp 1
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(2) Unramified up to quadratic twist (πp = π′
p⊗η for some ramified quadratic

character η and some unramified representation π′
p):

Lp(πp, s)
−1 1

Lp(Sym2f, s)−1 (1 − (α′
p)

2p−s)(1 − p−s)(1 − (β′
p)

2p−s)

Cp (1 − (α′
p)

2p−s)(1 − p−s)(1 − (β′
p)

2p−s)
(3) Steinberg:

Lp(πp, s)
−1 1 − αpp

−s, α2
p = p−1

Lp(Sym2f, s)−1 1 − p−1−s

Cp 1
(4) Steinberg up to a quadratic twist (πp = σ ⊗ η for σ the Steinberg repre-

sentation and some ramified quadratic character η):

Lp(πp, s)
−1 1

Lp(Sym2f, s)−1 1 − p−1−s

Cp 1 − p−1−s

(5) Ramified principal series and not of Type (2):

Lp(πp, s)
−1 1

Lp(Sym2f, s)−1 1 − p−s

Cp 1 − p−s

(6) Supercuspidal equal to its twist by the unramified quadratic character:

Lp(πp, s)
−1 1

Lp(Sym2f, s)−1 1 + p−s

Cp 1 + p−s

(7) Supercuspidal not equal to its twist by the unramified quadratic character:

Lp(πp, s)
−1 1

Lp(Sym2f, s)−1 1

Cp 1

Remark 2.7. (1) In some references, only “twist minimal” representations
are considered, i.e, those f which have minimal conductor among all their twists
f ⊗ χ by (all) Dirichlet characters. Cases (2), (4) and (5) cannot happen for such
representations.

(2) All cases may happen for elliptic curves. Case (1) comes from good re-
duction, case (2) from good reduction up to a quadratic twist, (3) from semistable
reduction, (4) from semistable reduction up to a quadratic twist, while (5), (6) and
(7) can all come from potentially good reduction, with (7) only occurring at primes
2 and 3.

Proposition 2.8. The above list is correct and complete.

Proof. We use the local Langlands correspondance (due to Harris and Tay-
lor [30]), and its compatibility with the symmetric square (due to Henniart [32]).
The Langlands parameter corresponding to πp is a two-dimensional Weil-Deligne
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representation representation V of Qp with trivial determinant. The local L-factor
is then

det
(
1 − p−sF | (Sym2 V )Ip,N

)−1
,

where F is the Frobenius automorphism of Qp, Ip is the inertia subgroup of WQp ,
and N is the monodromy operator (whose invariant subspace is defined to be its
kernel). The restriction of V to Ip is semisimple, and thus can be of three possible
types:

(a) A sum of two copies of the same character.
(b) A sum of two different characters.
(c) A single irreducible character.

Only in case (a) can N act non-trivially, as N is nilpotent and commutes with
Ip, and we will handle that separately.

We now compute the symmetric square and the Frobenius action on the inertia
invariants in each case. It will be convenient to recall in some of the cases that,
because V has trivial determinant, we can canonically identify Sym2 V with the
space of endomorphisms of V with trace zero.

Case (a) – N trivial. Because the determinant is trivial, the inertia character
that appears must be either quadratic or trivial. In this case the representation is
unramified, potentially after a quadratic twist. This gives cases (1) and (2); the
L-factor calculation is well-known (see, e.g., [25, Section 3.5], or [11, p. 107, case
1] on the Galois side).

Case (a) – N nontrivial. By the same logic, the character is quadratic or
trivial. Then the inertia representation is trivial, potentially after a quadratic twist,
and the associated smooth representation is Steinberg, potentially after a quadratic
twist. This gives cases (3) and (4), and the L-factor calculation is also well-known
(e.g., the GL2 case can be found in [24, Th. 6.15], and the symmetric square factor
is computed, on the Galois side, in [11, p. 107, case 2], recalling that the symmetric
square is unchanged by a quadratic twist).

Case (b). The inertia invariants of the adjoint representation form a one-
dimensional space. The Frobenius action on this space defines a one-dimensional
unramified character η, which is either trivial or nontrivial. It is trivial if and only
if there is a non-scalar endomorphism of the whole representation, i.e., if it fails to
be irreducible, or in other words if the corresponding smooth representation is a
principal series. In this case, the Frobenius action on inertia invariants is trivial,
so the factor is 1/(1 − p−s). This is case (5). If η is non-trivial, then we have an
isomorphism V ⊗ η → V , which taking determinants implies that η is quadratic.
Hence we have the corresponding isomorphism on the automorphic side, and the
L-factor is 1/(1 − p−s). This is case (6).

Case (c). The space of inertia invariants of the adjoint representation vanishes.
Then the local L-factor is 1, and so the representation has no nontrivial endomor-
phisms and thus is irreducible, hence the corresponding automorphic representation
is supercuspidal, and has L-factor 1. This is case (7). □

2.3.4. Symmetric power L-functions. More generally, for any integer k ⩾
1, one can form the symmetric k-th power L-function L(Symkf, s), which is an
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Euler product of degree k + 1, namely

L(Symkf, s) =
∏
p

Lp(Symk, f, s) =
∏
p

k∏
i=0

(1 − αSymkf,ip
−s)−1 =

∑
n⩾1

λSymkf (n)

ns

and for p ∤ r,

Lp(Symk, f, s) =
k∏
i=0

(
1 −

αif,1(p)αk−if,2 (p)

ps

)−1

.

The analytic continuation of these Euler products is not known in general. For
k = 3 and k = 4, Kim and Shahidi [44, 45] have proven that L(Symkf, s) is
the L-function of a self-dual automorphic (not-necessarily cuspidal) representation
of GLk+1 and in particular it admits analytic continuation to C and satisfies a
functional equation of the usual shape:

Λ(Symkf, s) = ε(Symkf)Λ(Symkf, 1 − s)

where ε(Symkf) = ±1 and

Λ(Sym2f, s) = q(Symkf)s/2L∞(Symkf, s)L(Symkf, s),

and again L∞(Symkf, s) is a product of Gamma factors.
We summarize the results of Kim and Shahidi, as well as those of Gelbart and

Jacquet that were already mentioned, as follows.
For k ⩽ 4 the L-function L(Symkf, s) is the L-function of an automorphic

representation Symkf of GLk+1(AQ). The representation Symkf decomposes into
an isobaric sum

(2.11) Symkf ≃
nf,k

j=1

µjπj

where nf,k ⩾ 1 and (πj) are cuspidal automorphic representations on GLdj (AQ).
This implies

L(Symkf, s) =
∏
j

L(πj , s)
µj .

The decomposition (2.11) satisfies
∑
j µjdj = k + 1. The automorphic represen-

tation Symkπ is self-dual, hence its decomposition into isotypical components is
invariant by taking contragredient, i.e., the multiset {(µj , πj) | j ⩽ nf,k} is invari-
ant under contragredient. Moreover, for every 1 ⩽ j ⩽ nf,k, we have

πj ≃ π̃j or dj ⩽ 2.

We now list the precise possibilities for the decomposition. Let π be the auto-
morphic representation associated to f . It is self-dual with trivial central character,
and Symkf = Symkπ. If π is of CM-type, then π⊗η ≃ π for a nontrivial quadratic
Dirichlet character η, which determines a quadratic extension E/Q, and there ex-
ists a Größencharacter χ of E such that π = π(χ) (the automorphic induction of
χ). Write χ′ for the conjugate of χ by the nontrivial element of Gal(E/Q). Then
we have:

• Sym2π = π(χ2) ⊞ η,
• Sym3π = π(χ3) ⊞ π(χ2χ′),
• Sym4π = π(χ4) ⊞ π(χ3χ′) ⊞ 1.



40 2. PRELIMINARIES

The individual terms π(χaχ′b) either remain cuspidal, and have unitary central
character, or split into the Eisenstein series of two unitary characters.

If π is not of CM-type, then the automorphic representations Sym2π, Sym3π
and Sym4π are all cuspidal and self-dual, with central character trivial on R>0.

In either case, we conclude

Corollary 2.9. The automorphic representations πj on GLdj (AQ) of the

isobaric decomposition of Symkπ have unitary central characters trivial on R>0.
They satisfy either πj ≃ π̃j, or dj ⩽ 2.

Remark 2.10. One can check that this corollary remains true for any cuspidal
automorphic representation π, even if the central character of π is non-trivial.
However, checking this requires the consideration of more cases, since π could be
of polyhedral type.

2.3.5. The Ramanujan-Petersson conjecture and its approximation.
The Ramanujan-Petersson conjecture at unramified places predicts optimal bounds
for the local parameters of f (equivalently a pole free region for the local L-factors),
namely it predicts that

|αf,i(p)| ⩽ 1, i = 1, 2,(2.12)

Reµf,i ⩽ 0, i = 1, 2.

This would imply that for any (n, q(f)) = 1 one has

(2.13) |λf (n)| ⩽ d(n)

where d(n) is the divisor function.
If f is holomorphic, the Ramanujan-Petersson conjecture is known by the work

of Deligne [14]. Moreover, it is known that (2.12) holds for any prime p | q(f), and
so (2.13) holds for all integers n.

The results on the functoriality of the symmetric power L-functions L(Symkf, s)
mentioned above together with Rankin-Selberg theory imply that the Ramanujan-
Petersson conjecture is true on average in a strong form: for any x ⩾ 1 and ε > 0,
we have

(2.14)
∑
n⩽x

(
|λf (n4)|2 + |λf (n2)|4 + |λf (n)|8

)
≪f x

1+ε,

(see e.g. [56, Theorem 1.2] for the last bound, the other cases being very similar)
where the implied constant depends on ε, and also

(2.15)
∑
n⩽x

|λf (n)|2 ≪f x

This implies that

|αf,i(p)| ⩽ p1/8, i = 1, 2.

With additional more sophisticated arguments, Kim and Sarnak [43] have ob-
tained the currently best approximation to the Ramanujan-Petersson conjecture.
For θ = 7/64, we have

|αf,i(p)| ⩽ pθ

Reµf,i ⩽ θ, i = 1, 2,
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and therefore, for any n ⩾ 1, we have

(2.16) |λf (n)| ⩽ d(n)nθ.

On the other hand, for p | r, we have (cf. e.g. [61, Theorem 4.6.17] or more generally
[24])

(2.17) |λf (p)| = p−1/2 or λf (p) = 0.

For the rest of the book the letter θ ⩽ 7/64 is reserved for an admissible exponent
towards the Ramanujan-Petersson conjecture.

2.4. Prime Number Theorems

By “Prime Number Theorems” we mean the problem of evaluating asymp-
totically certain sums over the primes of arithmetic functions associated to Hecke
eigenvalues of f and g. The main tool for this is the determination of zero-free
regions of the relevant L-functions. We first state a general result concerning the
zero-free domain for Rankin-Selberg L-functions.

Proposition 2.11. Let π and π′ be irreducible cuspidal automorphic represen-
tations of GLd(AQ) and GLe(AQ). Assume that the central characters ωπ and ωπ′

are unitary and trivial on R>0 and either:

(1) At least one of π or π′ is a GL1-twist of a self-dual representation, possibly
the trivial one, or

(2) d ⩽ 3 and e ⩽ 2, or vice-versa.

Then, there is an explicitly computable constant c = c(d, e) > 0 such that the
Rankin–Selberg L-function L(π × π′, σ + it) has no zeros in the region

(2.18) σ > 1 − c

log(Q(π)Q(π′)(|t| + 2))

except for at most one exceptional simple Landau-Siegel real zero < 1. Such a
zero may only occur if π ⊗ π′ is self-dual, i.e., if π̃ ⊗ π̃′ ≃ π ⊗ π′ as admissible
representations.

Proof. If π and π′ are both self-dual, then this is a result of Moreno [62,
Theorem 3.3]. If only one of the two is self-dual it was observed by Sarnak that
Moreno’s method extends [73]. However we could not find a proof of this in the
literature and we take this opportunity to report a proof kindly provided by F.
Brumley. We assume that π′ is self-dual and that π is not (in particular π′ ̸≃ π, π̃).
Given a non-zero real number t, consider the isobaric representation

Π = (π ⊗ | · |−it) ⊞ (π̃ ⊗ | · |it) ⊞ π′

and its Rankin-Selberg L-function

L(s) = L(Π ⊗ Π̃, s).

This L-function factors as a product of the following nine L-functions:

L(π ⊗ π̃, s), L(π ⊗ π̃, s), L(π′ ⊗ π′, s),

L(π ⊗ π, s+ 2it), L(π ⊗ π′, s+ it),

L(π̃ ⊗ π̃, s− 2it), L(π̃ ⊗ π′, s− it),

L(π ⊗ π′, s+ it), L(π̃ ⊗ π′, s− it).
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Also by construction the coefficients of −L′/L(s) are non-negative so that we can
use the Goldfeld-Hoffstein-Lieman Lemma [36, Lemma 5.9].

The L-function L(s) has a pole of order 3 at s = 1. On the other hand, suppose
that L(π⊗π′, σ+ it) = 0 for σ < 1 satisfying (2.18). Then L(s) vanishes to order at
least 4 at σ (the two factors L(π⊗π′, s+it) and the two factors L(π̃⊗π′, s−it)), thus
contradicting the Goldfeld-Hoffstein-Lieman Lemma if c is small enough, depending
on d, e.

Suppose now that neither π nor π′ are self-dual up to GL1-twists. If d = e = 2,
then the result follows from the functorial lift GL2 ×GL2 → GL4 of Ramakrish-
nan [68, Theorem M], according to which there exists an isobaric automorphic
representation π ⊠ π′ of GL4(AQ) (with unitary central character trivial on R+)
such that

L(s, π ⊠ π′) = L(s, π × π′).

If d = 2 and e = 3 this follows from the functorial lift

GL2 ×GL3 → GL6

established by Kim and Shahidi [44]. □

Remark 2.12. (1) This result covers the case when at least one of π or π′ is a
GL1-twist of the self-dual representation by passing the twist to the other factor.

In particular, this contains the case where (say) π′ = 1 is the (self-dual) trivial
representation, that is the standard zero-free region

σ > 1 − c

log(Q(π)(|t| + 2))

for the standard L-function L(π, s) of any cuspidal representation, except for the
possible Landau–Siegel zero if π ≃ π̃.

(2) In our actual applications in this book, we will apply the result only to
a finite set of auxiliary L-functions (depending on the given cusp forms f and g,
which are fixed), hence the issue of Landau-Siegel zeros is not an important one,
as long as we have a standard zero-free region in t-aspect.

From this, we deduce the next result.

Proposition 2.13. Let f, g be primitive cusp forms of levels r, r′ with trivial
central character. There exists an absolute constant c > 0 such that for k, k′ ⩽ 4

the Rankin-Selberg L-function L(Symkf ⊗ Symk′g, s) has no zeros in the domain

Re s ≥ 1 − c

log(Q(f)Q(g)(2 + |s|))
except for possible real zeros < 1.

Proof. In terms of the isobaric decompositions (2.11) of f and g given in
Section 2.3.4, we have

L(Symkf ⊗ Symk′g, s) =
∏
i,j

L(πi ⊗ π′
j , s)

µiνj .

It will then be sufficient to prove the result for each factor L(πi ⊗ π′
j , s), since

Q(πi ⊗ π′
j) ⩽ (Q(πi)Q(π′

j))
O(1) ⩽ (Q(Symkf)Q(Symk′f))O(1) ⩽ (Q(f)Q(g))O(1)

by (2.10) (and [44, 45]). By Corollary 2.9 we see that at least one of the two
sufficient conditions of Proposition 2.11 is always satisfied. □



2.4. PRIME NUMBER THEOREMS 43

We now spell out several corollaries which are deduced from these zero-free
domains by standard techniques. The first one concerns upper and lower bounds
for values of this L-function in the zero-free region:

Corollary 2.14. Let f, g be primitive cusp forms of levels r, r′ with trivial
central character. For 0 ⩽ k, k′ ⩽ 4, there exist two constants 0 < c = cf,g < 1/10
and A = Af,g ⩾ 0 such that for s satisfying

Re s ⩾ 1 − c

log(2 + |s|)

the following bounds hold:

log−A(2 + |s|) ≪
∣∣∣ s− 1

s

∣∣∣ϱL(Symkf ⊗ Symk′g, s) ≪ logA(2 + |s|)

where

ϱ = ϱf,g,k,k′ = ord
s=1

L(Symkf ⊗ Symk′g, s) ⩾ 0

is the order of the pole of L(Symkf ⊗Symk′g, s) at s = 1 and the implicit constants
depends on f and g only. Here we also make the convention that for k = k′ = 0,

we have L(Symkf ⊗ Symk′g, s) = ζ(s).

The second corollary concerns the versions of the Prime Number Theorem that
can be deduced from these zero-free regions:

Corollary 2.15. Let f, g be primitive cusp forms of levels r, r′ with trivial
central character. Let 0 ⩽ k, k′ ⩽ 4. There exists a constant C > 0 such that:

(1) There exist γk,k′ ∈ R and an integer mk,k′ ⩾ 0 (possibly also depending on
f, g) such that for any x ⩾ 2, we have∑

p⩽x

λSymkf (p)λSymk′
g(p) log p = mk,k′x+O(x exp(−C

√
log x))

∑
p⩽x

λSymkf (p)λSymk′
g(p)

log p

p
= mk,k′ log x+ γk,k′ +O

( 1

log x

)
.

(2) There exists γ′k,k′ ∈ R and an integer nk,k′ ⩾ 0 (possibly depending on f, g)
such that ∑

p⩽x

λf (p)kλg(p)
k′ log p = nk,k′x+O(x exp(−C

√
log x)),(2.19)

∑
p⩽x

λf (p)kλg(p)
k′ log p

p
= nk,k′ log x+ γ′k,k′ +O

( 1

log x

)
,(2.20)

and for 2 ⩽ x ⩽ y/2 we have

(2.21)
∑

x⩽p⩽y

λf (p)kλg(p)
k′

p log p
=

(
nk,k′ +O

( 1

log x

))( 1

log x
− 1

log y

)
.

In these estimates, the implied constants depend on f and g only.

Proof. The first two equalities are deduced from the zero free region for

L(Symkf ⊗ Symk′g, s) (see for instance Liu–Ye [55]).
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The remaining ones follow by partial summation, using the decompositions

λf (p) = λSym1f (p),

λf (p)2 = λf (p2) + 1 = λSym2f (p) + 1,

λf (p)3 = λf (p3) + 2λf (p) = λSym3f (p) + 2λSym1f (p),

λf (p)4 = λf (p4) + 3λf (p2) + 2 = λSym4f (p) + 3λSym2f (p) + 2

for p ∤ rr′, which reflect the decomposition of tensor powers of the standard repre-
sentation of SL2 in terms of irreducible representation (in particular, all coefficients
are non-negative integers). □

Remark 2.16. From

λf (p)2λg(p)
2 = (λSym2f (p) + 1)(λSym2g(p) + 1)

= λSym2f (p)λSym2g(p) + λSym2f (p) + λSym2g(p) + 1

for p ∤ rr′, we see that

n2,2 = m2,2 +m2,0 +m0,2 + 1 ⩾ 1,

and similarly

n4,4 = m4,4 + 3m4,2 + 3m2,4 + 2m4,0 + 2m0,4 + 9m2,2 + 3m2,0 + 3m0,2 + 4 ⩾ 4.

We will also need a variant. We denote by λ∗f and λ∗g any multiplicative func-
tions such that

(2.22) λ∗f (p) = λf (p) +O(pθ−1), λ∗g(p) = λg(p) +O(pθ−1),

where the implied constants depend on f and g. (Note that these functions may
depend on both f and g).

Corollary 2.17. The estimates (2.19), (2.20) and (2.21) are valid with λf , λg
replaced by λ∗f , λ

∗
g, with the same integers nk,k′ , but with possibly different values

for γk,k′ .

Proof. It suffices to verify (2.19). Since |λf (p)|, |λg(p)| ⩽ 2pθ, we have

λ∗f (p)kλ∗g(p)
k′ = λf (p)kλg(p)

k′ +O(p(k+k
′)θ−1)

and, since (k + k′)θ ⩽ 8θ < 1, the difference between∑
p⩽x

λ∗f (p)kλ∗g(p)
k′ log p and

∑
p⩽x

λf (p)kλg(p)
k′ log p

is ≪ x exp(−C
√

log x). □

2.5. Consequences of the functional equations

The functional equation satisfied by an L-function makes it possible to ob-
tain (by inverse Mellin transform) either a representation of its values by rapidly
converging smooth sums (this is called, somewhat improperly, the “approximate
functional equation”), or identities between rapidly converging smooth sums of
these coefficients (an example is the Voronoi summation formula). We discuss the
versions of these identities that we need in this section.
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2.5.1. Approximate functional equations. The following proposition is
obtained by specializing [36, Thm. 5.3, Prop. 5.4] to twisted L-functions and to the
product of two twisted L-functions, using the functional equations of Lemmas 2.1
and 2.3. Again, we recall that we use the convention 1.3 about the signed level of
a Maaß form.

Proposition 2.18. Let f, g be two primitive cusp forms of signed levels r and
r′ coprime to q, where f = g is possible. Given any A > 2, let G = GA be the
holomorphic function defined in the strip |Reu| < 2A by

(2.23) G(u) =
(

cos
πu

4A

)−16A

.

Let s ∈ C be such that 1/4 < Re s < 3/4, and let χ be a primitive Dirichlet
character modulo q, with parity χ(−1) = ±1.

(1) We have

(2.24) L(f ⊗ χ, s) =
∑
m⩾1

λf (m)

ms
χ(m)Vf,±,s

( m

q
√

|r|

)
+ ε(f,±, s)

∑
m⩾1

λf (m)

m1−s χ(m)Vf,±,1−s

( m

q
√

|r|

)
,

where

ε(f,±, s) = ε(f ⊗ χ)(q2|r|) 1
2−s

L∞(f,±, 1 − s)

L∞(f,±, s)
and

Vf,±,s(y) =
1

2πi

∫
(2)

L∞(f,±, s+ u)

L∞(f,±, s)
G(u)y−u

du

u
.

(2) We have

(2.25) L(f ⊗ χ, s)L(g ⊗ χ, s) =
∑
m,n⩾1

λf (m)λg(n)

msns
χ(m)χ(n)Wf,g,±,s

(
mn

q2|rr′|

)

+ ε(f, g,±, s)χ(rr̄′)
∑
m,n⩾1

λf (m)λg(n)

m1−sn1−s
χ(m)χ(n)Wf,g,±,1−s

(
mn

q2|rr′|

)
,

where

(2.26) ε(f, g,±, s) = ε(f)ε(g)(q2r)
1
2−s(q2r)

1
2−s̄

L∞(f,±, 1 − s)

L∞(f,±, s)
L∞(g,±, 1 − s)

L∞(g,±, s)
(again these expressions depend only on the parity of χ) and

(2.27) Wf,g,±,s(y) =
1

2πi

∫
(2)

L∞(f,±, s+ u)

L∞(f,±, s)
L∞(g,±, s+ u)

L∞(g,±, s)
G(u)y−u

du

u
.

Note that the Hecke eigenvalues λf (n), λg(n) are real. Also note the special
cases

(2.28) ε(f,±, 12 ) = ε(f ⊗ χ) = ε(f)χ(r)ε2χ, ε(f, g,±, 12 ) = ε(f)ε(g).

We need to record some decay properties for Vf,±,s,Wf,g,±,s and their deriva-
tives.

Shifting the contour to Reu = A or Reu = −(σ − θ) + ε for ε > 0 and using
Stirling’s formula, we have
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Lemma 2.19. Assume that σ = Re s ∈]1/4, 3/4[. For any integer j ⩾ 0 any
y > 0, we have

(2.29) Vf,±,s(y) − 1 ≪ (y/|s|)σ−θ−ε, Wf,g,±,s(y) − 1 ≪ (y/|s|2)σ−θ−ε

and

yjV
(j)
f,±,s(y) ≪ (1 + y/|s|)−A, yjW (j)

f,g,±,s(y) ≪ (1 + y/|s|2)−A

where the constant implied depends on f, g, ε and j (where applicable).

Convention 2.20. In most of this book, we will only treat in detail averages
over the even characters, since the odd case is entirely similar. To simplify notation,
we may then write ε(f, s), Vf,s and Wf,g,s in place of ε(f,+, s), Vf,+,s and Wf,g,+,s.
Moreover, for s = 1/2, we may simplify further, and write Vf and Wf,g in place of
Vf,1/2 and Wf,g,1/2.

2.5.2. The Voronoi summation formula. The next lemma is a version of
the Voronoi formula.

Lemma 2.21. Let q be a positive integer and a an integer coprime to q, and let
W be a smooth function compactly supported in ]0,∞[. Let f a primitive cusp form
of signed level r coprime with q and trivial central character. For any real number
N > 0, we have∑

n⩾1

λf (n)W
( n
N

)
e
(an
q

)
= ε(f)

∑
±

N

q|r|1/2
∑
n⩾1

λf (n)e
(
∓a|r|n

q

)
W̃±

( Nn
q2|r|

)
with

W̃±(y) =

∫ ∞

0

W (u)J±(4π
√
uy)du,

where (1) for f holomorphic of weight kf we write

J+(u) = 2πikfJkf−1(u), J−(u) = 0;

(2) for f a Maaß form with Laplace eigenvalue ( 1
2 + itf )( 1

2 − itf ) and reflection
eigenvalue εf = ±1 we write

J+(u) =
−π

sin(πtf )
(J2itf (u) − J−2itf (u)), J−(u) = 4εf cosh(πtf )K2itf (u).

See [51, Theorem A.4] for the proof. Note that W̃± depends on the archimedean
parameters of f , which we suppress from the notation. In particular, the passage

from a smooth weight function W to W̃± may increase the set of parameters S ,
cf. Section 2.1.

Let K : Z → C be a q-periodic function. Its normalized Fourier transform is
the q-periodic function defined by

K̂(h) =
1
√
q

∑
n (mod q)

K(n)e
(nh
q

)
for h ∈ Z. The Voronoi transform of K is the q-periodic function defined by

K

∧

(n) =
1
√
q

∑
h (mod q)
(h,q)=1

K̂(h)e
( h̄n
q

)
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for n ∈ Z (see [21, §2.2]). Combining the Voronoi formula above with the discrete
Fourier inversion formula

K(n) =
1
√
q

∑
a (mod q)

K̂(a)e
(
−an
q

)
,

we deduce:

Corollary 2.22. Let q be a prime number. Let W be a smooth function
compactly supported in ]0,∞[. Let f be a primitive cusp form of signed level r
coprime with q. For any real number N > 0, we have∑

n

λf (n)K(n)W
( n
N

)
=
K̂(0)

q1/2

∑
n⩾1

λf (n)W
( n
N

)
+

ε(f)
∑
±

N

q|r|1/2
∑
n⩾1

λf (n)K

∧

(±|r|n)W̃±

( nN
q2|r|

)
In particular, for any integer a coprime to q, if we take

K(n) = q1/2δn≡a (mod q) =

{
q1/2 if n ≡ a (mod q)

0 otherwise,

then we have

q1/2
∑

n≡a (mod q)

λf (n)W
( n
N

)
=

1

q1/2

∑
n⩾1

λf (n)W
( n
N

)
+

ε(f)
∑
±

N

q|r|1/2
∑
n⩾1

λf (n)W̃±

( nN
q2|r|

)
Kl(±a|r|n; q).

Finally, we recall the decay properties of the Bessel transforms W̃± which follow
from repeated integration by parts and the decay properties of of Bessel functions
and their derivatives. These are proved in [4, Lemma 2.4].

Lemma 2.23. Let W be a smooth function compactly supported in [1/2, 2] and
satisfying (2.1). In the Maaß case set ϑ = |Re it|, otherwise set ϑ = 0. For M ⩾ 1
let WM (x) = W (x/M). For any ε, for any i, j ⩾ 0 and for all y > 0, we have

yj (̃WM )
(j)

± (y) ≪i,j,ε M(1 +My)j/2
(
1 + (My)−2ϑ−ε)(1 + (My)1/2

)−i
.

In particular, the functions (̃WM )±(y) decay rapidly when y ≫ 1/M .

We recall that all implied constants may depend polynomially on the parame-
ters s ∈ S that W and W̃ depend on.

2.6. A factorization lemma

To shorten notations, let us write

(2.30) T (s) = L(f ⊗ f, s).

We denote by (µf (n))n⩾1 the convolution inverse of (λf (n))n⩾1, which is given by

(2.31) L(f, s)−1 =
∏
p

(
1 − λf (p)

ps
+
χr(p)

p2s

)
=
∑
n⩾1

µf (n)

ns
, Re s ⩾ 1.
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We then define an auxiliary function of six complex variables by
(2.32)

L(s, z, z′, u, v, w) =
∑∑
d,ℓ1,ℓ2,n

(ℓ1,ℓ2)=(dℓ1ℓ2,r)=1

µf (dℓ1)λf (ℓ1n)µf (dℓ2)λf (ℓ2n)

ℓs+z+u+v1 ℓ2
s+z′+u+wdz+z′+v+wn2s+2u

.

In Chapters 6 and 8, we will use the following lemma.

Lemma 2.24. For η ∈ R, let R(η) be the open subset of (s, z, z′, u, v, w) ∈ C6

defined by the inequalities

R(η) :=

{
Re s > 1

2 − η, Re z > 1
2 − η, Re z′ > 1

2 − η,

Reu > −η, Re v > −η, Rew > −η.

There exists η > 0 and a holomorphic function D(s, z, z′, u, v, w) defined on R(η)
such that D is absolutely bounded on R(η), and such that the holomorphic func-
tion L(s, z, z′, u, v, w) admits meromorphic continuation to R(η) and satisfies the
equality

L(s, z, z′, u, v, w) =
T (2s+ 2u)T (z + z′ + v + w)

T (s+ z + u+ v)T (s+ z′ + u+ w)
D(s, z, z′, u, v, w).

As a special case:

Corollary 2.25. The function (u, v, w) 7→ L( 1
2 ,

1
2 ,

1
2 , u, v, w) initially defined

as a convergent holomorphic series over a domain of the shape

Reu,Re v,Rew ≫ 1

extends meromorphically to the domain

Reu,Re v,Rew > −η

for some absolute constant η > 0 and satisfies

L( 1
2 ,

1
2 ,

1
2 , u, v, w) =

T (1 + 2u)T (1 + v + w)

T (1 + u+ v)T (1 + u+ w)
D(u, v, w)

= η3(f, u, v, w)
(u+ v)(u+ w)

u(v + w)
.

where

• D is an Euler product absolutely convergent for Reu,Re v,Rew ⩾ −η,
• η3 is holomorphic and non-vanishing in a neighborhood of (u, v, w) =

(0, 0, 0).

Proof of Lemma 2.24. The function µf is multiplicative and satisfies

µf (p) = −λf (p), µf (p2) = χr(p), µf (pk) = 0 for k ⩾ 3.

By (2.14), the series (2.32) is absolutely convergent in the intersection

C :=

{
Re(s+ z + u+ v) > 1, Re(s+ z′ + u+ w) > 1,

Re(z + z′ + v + w) > 1, Re(2s+ 2u) > 1

of four half spaces of C6. In particular, the region C contains the region R(0) of
C6.
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In this region we have the factorization

L(s, z, z′, u, v, w) =
∏
p

Lp(s, z, z
′, u, v, w)

where

Lp(s, z, z
′, u, v, w) =∑∑

δ,λ1,λ2,ν⩾0
λ1λ2=0

µf (pδ+λ1)λf (pλ1+ν)µf (pδ+λ2)λf (pλ2+ν)

pλ1(s+z+u+v)+λ2(s+z′+u+w)+δ(z+z′+v+w)+ν(2s+2u)

for p ∤ r. For α ⩾ 0 and θ = 7/64, we have

(2.33) |λf (pα)| ⩽ (α+ 1)pαθ,

hence the factor Lp(s, z, z
′, u, v, w) is absolutely convergent for (s, z, z, u, v, w) such

that

Re(z + z′ + v + w) > 2θ, Re(s+ z + u+ v) > 2θ,

Re(s+ z′ + u+ w) > 2θ, Re(s+ u) > θ.

This includes the region R(η) with η := θ/4. Now splitting the summation over the
set of (δ, λ1, λ2, ν) with 0 ⩽ δ+ λ1 + λ2 + ν ⩽ 1 and the complementary set, we see
that for (s, z, z′, u, v, w) ∈ R(θ/4) we have the equality

(2.34) Lp(s, z, z
′, u, v, w)

= 1 +
λf (p)2

pz+z′+v+w
− λf (p)2

ps+z+u+v
− λf (p)2

ps+z′+u+w
+
λf (p)2

p2s+2u
+ ELp(s, z, z

′, u, v, w)

with ELp(s, z, z
′, u, v, w) holomorphic in that region and satisfying

(2.35) ELp(s, z, z
′, u, v, w) = O

( p2θ

p2(1−θ)

)
= O

( 1

p2−4θ

)
where the implied constant is absolute.

We consider now the multivariable Dirichlet series

M(s, z, z′, u, v, w) :=
T (2s+ 2u)T (z + z′ + v + w)

T (s+ z + u+ v)T (s+ z′ + u+ w)
.

In the region C, it is absolutely convergent and factors as

M(s, z, z′, u, v, w) =
∏
p

Mp(s, z, z
′, u, v, w)

where

Mp(s, z, z
′, u, v, w) =

Tp(2s+ 2u)Tp(z + z′ + v + w)

Tp(s+ z + u+ v)Tp(s+ z′ + u+ w)
.

Let us recall that for any p we have

Tp(s) = ζp(s)
3∏
i=1

(
1 −

αSym2f,i(p)

ps

)−1

.

with

(2.36) |αSym2f,i(p)| ⩽ p2θ;
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in particular Tp(s) is holomorphic and non-vanishing for Re s > 2θ. Moreover, for
p ∤ r, we have

Tp(s) = (1 − 1

p2s
)−1

∑
α⩾0

λf (pα)2

pαs
= 1 +

λf (p)2

ps
+
∑
α⩾2

ξf (pα)

pαs

where the coefficients ξf (pα) satisfy

|ξf (pα)| = |λf (pα)2 + λf (pα−2)2 + · · · | ⩽ (α+ 1)3p2αθ,

by (2.33). Hence, by the same reasoning as before, we have for p ∤ r the equality

(2.37) Mp(s, z, z
′, u, v, w)

= 1 +
λf (p)2

pz+z′+v+w
− λf (p)2

ps+z+u+v
− λf (p)2

ps+z′+u+w
+
λf (p)2

p2s+2u

+ EMp(s, z, z
′, u, v, w)

with EMp(s, z, z
′, u, v, w) holomorphic in R(θ/4) and satisfying

(2.38) EMp(s, z, z
′, u, v, w) = O

( p2θ

p2(1−θ)

)
= O

( 1

p2−4θ

)
.

Let P ⩾ 1 be a parameter to be chosen sufficiently large; given some converging
Euler product

L =
∏
p

Lp

we set

L⩽P =
∏
p⩽P

Lp, L>P =
∏
p>P

Lp

so that

L = L⩽PL>P .

We apply this decomposition to L(s, z, z′, u, v, w) for P > r. In the region of
absolute convergence, we have

L(s, z, z′, u, v, w) = L⩽P (s, z, z′, u, v, w)L>P (s, z, z′, u, v, w).

We write

L>P (s, z, z′, u, v, w) = M>P (s, z, z′, u, v, w)D>P (s, z, z′, u, v, w)

where

D>P (s, z, z′, u, v, w) =
∏
p>P

Lp(s, z, z
′, u, v, w)

Mp(s, z, z′, u, v, w)

By (2.37) and (2.38) we can choose P > |r| sufficiently large so that for p > P ,
Mp(s, z, z

′, u, v, w)−1 is holomorphic in the region R(θ/4), then by (2.34), (2.35)
(2.37) and (2.38) we have, in that same region the equality

Lp(s, z, z
′, u, v, w)

Mp(s, z, z′, u, v, w)
= 1 +O

( 1

p2(1−3θ)
+

1

p2−4θ

)
.

Since 2 − 6θ > 1 the product

D>P (s, z, z′, u, v, w) =
∏
p>P

(
1 +O

( 1

p2(1−3θ)

))
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is absolutely convergent and uniformly bounded in the region R(θ/4). We now
write the finite product

L⩽P (s, z, z′, u, v, w) = M⩽P (s, z, z′, u, v, w)D⩽P (s, z, z′, u, v, w).

By (2.36) the finite product

D⩽P (s, z, z′, u, v, w) =
∏
p⩽P

Lp(s, z, z
′, u, v, w)

Mp(s, z, z′, u, v, w)

is holomorphic and uniformly bounded in the region R(θ/4) and

D(s, z, z′, u, v, w) = D⩽P (s, z, z′, u, v, w)D>P (s, z, z′, u, v, w)

has the required properties. □

2.7. A shifted convolution problem

The objective of this section is to adapt the work of Blomer and Milićević [6]
to prove a variant of the shifted convolution problem that is required in this book.
The following result is proved in loc. cit. in the case of cusp forms of level one.
Since, the generalization to arbitrary fixed (signed) level r is straightforward, we
will only briefly indicate the changes that are required.

Most of the notation in this section is borrowed from [6], except that the
modulus which is denoted q in this book is denoted d in loc. cit.

Proposition 2.26. Let ℓ1, ℓ2 ⩾ 1 two integers, q ⩾ 1 and N ⩾ M ⩾ 1. Let
f1, f2 be two primitive cusp forms of signed levels r1 and r2 and Hecke eigenvalues
(λ1(n))n⩾1 and (λ2(m))m⩾1, respectively. Assume that (ℓ1ℓ2, r1r2) = 1. Let V1, V2
be fixed smooth weight functions satisfying (2.1). Then for θ = 7/64, we have∑

ℓ2m−ℓ1n≡0 (mod q)
ℓ2m−ℓ1n̸=0

λ1(m)λ2(n)V1

(
ℓ2m

M

)
V2

(
ℓ1n

N

)

≪ (qN)ε
((

N

q1/2
+
N3/4M1/4

q1/4

)(
1 +

(NM)1/4

q1/2

)
+
M3/2+θ

q

)
uniformly in ℓ1, ℓ2, with an implied constant depending on f1, f2 and the parameters
S that V1, V2 depend on. The same bound holds if the congruence condition ℓ2m−
ℓ1n ≡ 0 (mod q) is replaced by

ℓ2m+ ℓ1n ≡ 0 (mod q).

Proof. If N ≍M , we write ℓ2m±ℓ1n = hq with 0 ̸= h≪M/q. For each value
of h, we use [3] to bound the corresponding shifted convolution sum by M1/2+θ+ε,
so that we get a total contribution of

≪ q−1M3/2+θ+ε.

If N ⩾ 20M , say, then the bound is a straightforward adaptation of [6, Propo-
sition 8] to cusp forms with general level. The key observation is that Jutila’s circle
method allows us to impose extra conditions on the moduli c. It is easiest to work
with moduli c such that r1r2 | c (the condition (c, r1r2) = 1 would also do the
job). With this in mind, we follow the argument and the notation of [6, Sections 7
and 8]. We replace the definition [6, (7.1)] with Q = (N |r1r2|)1000 (note that this
has no influence on the dependency of the implied constant on the levels, since an
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important feature of Jutila’s method is the fact that Q enters the final bound only
as Qε). The definition of the weight function w in [6, (7.5)] is non-trivial only for
ℓ1ℓ2r1r2 | c, so that

Λ ≫ C2φ(ℓ1ℓ2|r1r2|)
(ℓ1ℓ2|r1r2|)2

in [6, (7.6)]. From there, the argument proceeds identically with the Voronoi sum-
mation formula and the Kuznetsov formula for level |r1r2|ℓ1ℓ2. In [6, (8.1)], we put
β = lcm(ℓ1, ℓ2, d, r1, r2). Again the argument proceeds verbatim as before. Wilton’s
bound in [6, Section 8.2] is polynomial in the level, see [28, Proposition 5]. The rest
of the argument remains unchanged, except that the level of the relevant subgroup
for the spectral decomposition in [6](7.14) and below is Γ0(ℓ1ℓ2|r1r2|) instead of
Γ0(ℓ1ℓ2); as a consequence, the sum over δ before and after [6, (8.8)] must be over
δ | ℓ1ℓ2r1r2.

The changes that are required to handle the congruence ℓ2m+ ℓ1n ≡ 0 mod q
are explained in Section 11 of [6]. □

2.8. Partition of unity

We will use partitions of unity repeatedly in order to decompose a long sum
over integers into smooth localized sums (see e.g. [17, Lemme 2]).

Lemma 2.27. There exists a smooth non-negative function W (x) supported on
[1/2, 2] and satisfying (2.1) such that∑

k⩾0

W
( x

2k

)
= 1

for any x ⩾ 1.



CHAPTER 3

Algebraic exponential sums

In this chapter, we will first summarize elementary orthogonality properties
of Dirichlet characters, then state and sketch some ideas of the proofs of bilinear
estimates with Kloosterman sums. These are the core results that we use in all
main results of this book. In Sections 3.4 and 3.5, which are only used later in
Sections 4.3 and 6.7, we discuss briefly trace functions over finite fields, and the
equidistribution properties of their discrete Mellin transforms (following Katz [40]).

3.1. Averages over Dirichlet characters

Let q be an odd prime. Given a function τ defined on Dirichlet characters
modulo q, we will write∑+

χ (mod q)

τ(χ) =
∑

χ (mod q)

1 + χ(−1)

2
τ(χ),

∑−

χ (mod q)

τ(χ) =
∑

χ (mod q)

1 − χ(−1)

2
τ(χ),

∑∗

χ (mod q)

τ(χ) =
∑

χ (mod q)
χ primitive

τ(χ)

for the sum of τ over even (resp. odd, primitive) Dirichlet characters modulo q.
We recall the basic orthogonality relations

(3.1)

1

φ(q)

∑
χ

χ(m)χ(n) = δ(mn,q)=1δm≡n (mod q),

2

φ(q)

∑+

χ

χ(m)χ(n) = δ(mn,q)=1δm≡±n (mod q).

As in (1.9), we denote

εχ =
1

q1/2

∑
h (mod q)

χ(h)e
(h
q

)
the normalized Gauß sum of a character χ modulo q. If χ = χq is the trivial

character, then we have εχq = −q−1/2.
Since we are interested in the distribution of root numbers, we will need to

handle moments of the Gauß sums. These are well-known (see, e.g., [36, Proof of
Th. 21.6]): for any integer k ⩾ 1 and (m, q) = 1, we have

1

φ(q)

∑
χ

χ(m)εkχ = q−1/2Klk(m; q),

53
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where

(3.2) Klk(m; q) =
1

q
k−1
2

∑
x1···xk=m (mod q)

e
(x1 + · · · + xk

q

)
is the normalized hyper-Kloosterman sum modulo q. Consequently, we have

(3.3)
1

φ∗(q)

∑∗

χ (mod q)

χ(m)εkχ = q−1/2Klk(m; q) +O(q−1−|k|/2).

This formula remains true for k = 0 if we define

Kl0(m; q) = q1/2δm=1 (mod q).

Moreover, since

εχ = εχ
−1 = χ(−1)ε−1

χ

for primitive characters, the formula (3.3) extends to negative k when we define

Klk(m; q) := Kl|k|((−1)km; q), k ⩽ −1.

Similarly, we obtain

(3.4)
2

φ∗(q)

∑+

χ primitive

χ(m)εkχ =
1

q1/2

∑
±

Klk(±m; q) +O(q−1−|k|/2).

for the sum restricted to even characters only.
The following deep bound of Deligne is essential at many points, in particular

it implies the equidistribution of angles of Gauß sums.

Proposition 3.1 (Deligne). Let k be a non-zero integer. For any prime q and
any integer m coprime to q, we have

|Klk(m; q)| ⩽ |k|.

Remark 3.2. To avoid confusion, we will never use the notation k to refer to
a finite field.

This was proved by Deligne [14,15] as a consequence of his general form of the
Riemann Hypothesis over finite fields. For k = 2, it is simply the Weil bound for
classical Kloosterman sums.

3.2. Bounds for Kloosterman sums

In this section we recall various bounds for sums of Kloosterman sums which
will be required in some of our applications. For a prime q and an integer a coprime
with q, we define

(3.5) B(Kl2,α,β) =
∑∑

m⩽M, n⩽N

αmβn Kl2(amn; q),

where α = (αm)1⩽m⩽M , β = (βn)1⩽n⩽N are sequences of complex numbers. We
write

∥α∥22 =
∑
m⩽M

|αm|2, ∥β∥22 =
∑
n⩽N

|βn|2.

The following bound is a special case of a result of Fouvry, Kowalski and
Michel [18, Thm. 1.17].
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Proposition 3.3. For any ε > 0, we have

B(Kl2,α,β) ≪ε q
ε∥α∥2∥β∥2(MN)1/2

( 1

q1/4
+

1

M1/2
+

q1/4

N1/2

)
,

uniformly for (a, q) = 1.

We will also need the following bound which is a special case of another result
of Fouvry, Kowalski and Michel [20, Thm. 1.2 and (1.3)]:

Proposition 3.4. For any primitive cusp form f with trivial central character
and level r, and any smooth function W satisfying (2.1), we have∑

n⩾1

λf (n)Klk(an; q)W
( n
N

)
≪ε q

ε+1/2−1/8N1/2
(

1 +
N

q

)1/2
for any (a, q) = 1, any k ∈ Z − {0}, any integer N ⩾ 1 and any ε > 0, where the
implied constant depends polynomially on f and k (and the parameters S that W
depends on).

The last estimate we require was conjectured by Blomer, Fouvry, Kowalski,
Michel and Milićević in [4], and was proved by Kowalski, Michel and Sawin [52,
Thm. 1.1]:

Proposition 3.5. Suppose that M,N ⩾ 1 satisfy

1 ⩽M ⩽ Nq1/4, MN ⩽ q5/4.

For any ε > 0, we have

(3.6) B(Kl2,α,β) ≪ε q
ε∥α∥2∥β∥2(MN)

1
2

(
1

M1/2
+ q−

1
64

( q

MN

) 3
16

)
,

uniformly for (a, q) = 1.

Remark 3.6. (1) The point of this result, in comparison with Proposition 3.3
(which applies in much greater generality than [52]) is that it is non-trivial even in
ranges where MN < q. More precisely, Proposition 3.5 gives a non-trivial estimate
as soon as MN ⩾ q7/8+δ for some δ > 0.

(2) Notice that we may always assume in addition that MN > q1/4 (as in [52]),
since otherwise the bound (3.6) is implied by the trivial bound

B(Kl2,α,β) ≪ ∥α∥2∥β∥2(MN)1/2.

3.3. Sketch of the arguments

We summarize here the key ideas of the proofs of the estimates of the previous
section. We hope that this informal discussion will be helpful to readers yet unfa-
miliar with the tools involved in the use of trace functions and of Deligne’s form of
the Riemann Hypothesis over finite fields.

Trace functions modulo a prime q are functions on Fq attached to ℓ-adic sheaves
on the affine line or on the multiplicative group over Fq (here ℓ is a prime number
different from q). We will not recall precise definitions of trace functions (see [19]
for an accessible survey), but we note that Kl2 is a fundamental example of a trace
function, and will give further examples later.
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Proposition 3.3 is proved by the use of the Cauchy-Schwarz inequality to elimi-
nate the arbitrary coefficients βn, and then by completing the sum in the n variable
to obtain sums over Fq. This reduces the proof to the estimation of correlation sums∑

n∈Fq

Kl2(am1n; q) Kl2(am2n; q)e

(
hn

q

)
.

In the generalization of this problem considered in [18], where Kl2 is replaced with
a general trace function, such sums are estimated using Deligne’s most general
form of the Riemann hypothesis over finite fields [15]. This argument gives square-
root cancellation for sums of trace functions over algebraic curves, as long as an
associated cohomology group vanishes, and this vanishing reduces to an elementary
problem of representation theory for the geometric monodromy group of the sheaves
associated to these trace functions (in fact, one that does not require knowing
precisely what the monodromy group is).

However, a number of special cases, including this one, have a more elementary
proof. In this case, the bound follows directly from Weil’s bound for Kloosterman
sums, since one can check elementarily that∑

n∈Fq

Kl2(am1n; q) Kl2(am2n; q)e

(
hn

q

)
=
∑
y∈F×

q

e
(am2ȳ − am1(h+ y)

q

)
which, for h ∈ F×

q , is equal to

q1/2e

(
−ah̄(m1 +m2)

q

)
Kl2

(
a2m1m2

h2
; q

)
(such an identity is to be expected since Kl2(a; q) is a discrete Fourier transform of
x 7→ e(x̄/q), so that the correlation sum can be evaluated by the discrete Plancherel
formula).

Proposition 3.4 is proven using the amplification method. This involves am-
plifying over modular forms, which means that the sum is enlarged dramatically
to a sum of similar expressions over a basis B of Hecke eigenforms g of the space
of modular forms of the same weight as f and of level pr (both holomorphic and
non-holomorphic), so that the Petersson-Kuznetsov formula may be applied. Here
we view f , a form of level r, as being of level pr, and we can assume that f ∈ B.

To get a nontrivial bound using this approach, it is necessary to insert an
amplifier A(g), which is here a weighted sum of Hecke eigenvalues, of the form

A(g) =
∑
ℓ⩽L

αℓλg(ℓ),

for g ∈ B, chosen so that A(g) is “large”. We hope to get an upper bound for

Σ =
∑
g∈B

|A(g)|2
∣∣∣∑
n⩾1

λg(n)Klk(an; q)W
( n
N

)∣∣∣2,
in order to claim by positivity that∣∣∣∑

n⩾1

λf (n)Klk(an; q)W
( n
N

)∣∣∣2 ⩽
Σ

|A(f)|2
.
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The application of the Kuznetsov formula produces a complicated sum on the
arithmetic side. In the off-diagonal terms of the amplified sums, we see that corre-
lation sums of the following shapes

C(Kl2; γ) =
∑
z∈Fq

K̂l2(γ · z; q)K̂l2(z; q),

appear, for certain quite specific γ ∈ PGL2(Fq). In the generalized version, one
again uses Deligne’s Theorem to estimate such sums; this involves separating the
possible γ for which there is no square-root cancellation, and exploiting the fact that
they are very rare, except for very special input sheaves, and cannot coincide too
often with the “special” γ that occur in the application of the Kuznetsov formula.

Here also, in the special case of the Kloosterman sums that we are dealing
with, whose Fourier transform is x 7→ e(x̄/q), the estimate for correlation sums
reduce to Weil’s bound for Kloosterman sums (see [20, 1.5(3)]). In the simplest

case of Dirichlet characters, this method was pioneered by Bykovskĭi [9], cf. also
[5]. However, for general hyper-Kloosterman sums Klk, it seems very unlikely that
a similarly elementary argument exists to prove this bound.

Finally, the proof of Proposition 3.5 is by far the most difficult and involves
highly non-trivial algebraic geometry. In particular, it uses heavily some special
properties of Kloosterman sums, and does not apply to an arbitrary trace function
(although one can certainly expect that a similar result should be true for any trace
function that is not an additive character times a multiplicative character, in which
case it is trivially false).

The completion step in this case should be thought of as primarily an analogue
of the Burgess bound [7] for short sums of Dirichlet characters. Similarly to the
standard proof of the Burgess bound, we use the multiplicative structure of the
function Kl2(amn) to bound sums over intervals of length smaller than

√
q by re-

ducing them to high moments of sums over even shorter intervals, which themselves
can be controlled by more complicated complete sums.

More precisely, we begin in the same way as in the proof of Proposition 3.3 by
applying the Cauchy-Schwarz inequality to eliminate the coefficients βn. However,
the resulting sum over n is now too short to be usefully completed directly. Instead,
we apply the Burgess argument in the form of the “shift by ab” trick of Karatsuba
and Vinogradov. This ends up reducing the problem to the estimation of certain
complete exponential sums in three variables. The key result that we need to prove
(a special case of [52, Theorem 2.6]) is the following:

Theorem 3.7. For a prime q, for r ∈ Fq, λ ∈ Fq and b = (b1, . . . , b4) ∈ F4
q,

let

R(r, λ, b) =
∑
s∈F×

q

e

(
λa

q

) 2∏
i=1

Kl2(s(r + bi)) Kl2(s(r + bi+2)).

Then we have

(3.7)
∑
r∈Fq

R(r, λ1, b)R(r, λ2, b) = q2δ(λ1, λ2) +O(q3/2)

for all b, except those that satisfy a certain non-trivial polynomial equation Q(b) = 0
of degree bounded independently of q.
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A key difference with the Burgess bound is that, whereas the Weil bound for
multiplicative character sums over curves which is used there gives square-root
cancellation outside of an explicit and very small set of diagonal parameters, the
exceptional set of parameter values b in Theorem 3.7 is not explicit, and is also
relatively large (it has codimension one). This is the main difficulty in generalizing
the bound (3.6) to shorter ranges, since in order to do so, we must take higher
moments of short sums, leading to complete sums of more variables, for which even
best-possible estimates are not helpful unless one can show that the codimension
of the diagonal locus diminishes proportionally to the exponent.

However, this difficulty is not significant for the applications in this book, since
we need the bound (3.6) only in the case where M and N are very close to

√
q. In

this case, using higher moments would not give better results, even if the analogue
of Theorem 3.7 was obtained with an exceptional locus of the highest possible
codimension (as in the Burgess case).

We now give a longer but still informal summary of the techniques behind The-
orem 3.7, which involve simpler exponential sum estimates, topology, elementary
representation theory, and simple arguments with Galois representations, as well
as more technical steps based on vanishing cycles.

The proof of the theorem begins by constructing (in [52, §4.1]) a sheaf R on A6
Fq

whose trace function exponential sum R, which depends on 6 variables r, λ, b. This
is proven using the ℓ-adic machinery in a relatively formal way, exploiting known
sheaf-theoretic analogues of the algebraic operations involved in the definition of
R. One begins with a fundamental result of Deligne (related to Proposition 3.1)
which implies that there is a sheaf (of conductor bounded in terms of q only) with
trace function equal to hyper-Kloosterman sums; then taking tensor products of
two sheaves multiplies their trace functions, and the sum over s is obtained by com-
puting sheaf cohomology (precisely, computing a higher direct image with compact
support of a 7-variable sheaf). Both the result of Deligne and the step where we sum
over s involve key results in étale cohomology, such as the Grothendieck–Lefschetz
trace formula.

At this point, we apply Katz’s Diophantine Criterion for Irreducibility and
Deligne’s Riemann Hypothesis (in [52, Theorem 4.11 and (3.4)]) . These imply
that the bound (3.7) holds for a given b if and only if the sheaves Rb,λ in one
variable r obtained by specializing the parameters (b, λ) of the R are geometrically
irreducible, and that Rb,λ1

and Rb,λ2
are geometrically non-isomorphic for λ1 ̸= λ2.

We will use this equivalence in both directions. We note that proving the second
part is easier, because there are in general many ways to prove that two sheaves
are non-isomorphic, and we can in fact handle most cases using byproducts of the
arguments involved in the proof of irreducibility.

For this irreducibility statement, we begin by computing directly the diagonal
average over λ of the sum R in the case λ1 = λ2 = λ, and the average of R
over all b in the special case λ1 = λ2 = 0 (in [52, Proposition 4.3 and (3.4)]).
These computations reveal that the restrictions of the sheaf R to certain higher
dimensional spaces are irreducible.

In general, estimating the average value of a sum such as R will give very little
concrete information on any of it specific values. The geometric analogue of this
operation here is to show that the restriction of an irreducible sheaf on some variety
to a proper subvariety remains irreducible, and this turns out to be often tractable.
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The proof of irreducibility requires different methods in the λ = 0 and λ ̸= 0
cases.

For λ = 0, an elementary computation shows that the values of the R sum are
independent of the choice of additive character used to define Kloosterman sums.
The geometric analogue of this fact is that the sheaf R (specialized to λ = 0) may
be defined without the use of additive character sheaves [52, Lemma 4.27]. Since
it turns out that this is the only part of the construction that requires working in
positive characteristic q, we deduce that the sheaf Rλ=0 can actually be constructed
over the integers and over the complex numbers. Over C, we may apply topological
arguments to study the irreducibility of the sheaf, and it is then possible to derive
the same conclusion for sufficiently large prime characteristic q. (It is actually
ultimately more convenient to apply the argument in characteristic q, using only
the intuitions from topology; the integrality property of the sheaf is used in [52, §4.4]
to show that it is tamely ramified, and the topological properties and arguments
carry over to the tamely ramified case).

To be a bit more precise we may view the complex version of the sheaf Rλ=0

as a representation of the fundamental group of the open subset X of C5 (with
coordinates (r, b)) where it is lisse. We can think of this space as a family of
punctured Riemann surfaces parametrized by b. Over the open subset of this
parameter space X where the punctures do not collide, we can “follow” a loop in
one Riemann surface into a loop in any other, so their fundamental groups are equal
(as subgroups of the fundamental group π1(X) of the total space) and thus have
the same action on the sheaf. An immediate consequence of this is that, if one fiber
of the sheaf over some b is irreducible, then all fibers are irreducible. However, we
can do better, because the (common) fundamental group of our Riemann surfaces
is a normal subgroup of π1(X), with quotient isomorphic to the fundamental group
of the base, minus the set Y of points whose fibers are empty. We can show that
the variety Y of points whose fibers are empty has codimension 2, so the quotient is
in fact the fundamental group of C4, which is trivial, hence our subgroup is in fact
equal to the whole group π1(X). Since the representation associated to the sheaf
Rλ=0 is an irreducible representation of π1(X), it is therefore irreducible on each
fiber, away from the points where the punctures collide. (Note that in practice, the
argument is phrased using Galois theory, instead of loops, but the conclusion is the
same.)

Remark 3.8. In the special case of Kl2, one can compute that the rank of R
over points where λ = 0 is 2. As a rank 2 sheaf whose trace function takes values in
Q, it looks very much like the sheaf of Tate modules of a family of elliptic curves,
and it is possible that there exists an argument reducing the R-sum for λ = 0 to
the number of points on a family of elliptic curves. If this is so, then checking the
irreducibility property would be the same as checking that the j-invariant of this
family is nonconstant. However, such an argument is unlikely to apply for k ⩾ 3.

For λ ̸= 0, the sum R depends on the choice of additive character, and is in
general an element of Q(µp) and not Q. Geometrically, the associated sheaf has wild
ramification. This causes difficulties if one tries a direct analogue of the previous
argument. Indeed, the argument that, if one fiber of the sheaf is irreducible, then
all are irreducible, is not valid in the wildly ramified setting without additional
work. What’s more, our previous argument that one fiber of the sheaf is irreducible
also does not generalize to the λ ̸= 0 setting.



60 3. ALGEBRAIC EXPONENTIAL SUMS

Instead, we use (in [52, §4.5]) arguments from the theory of vanishing cycles.
After interpreting the irreducibility at a given λ ̸= 0 in terms of the rank of the stalks
of a suitable auxiliary sheaf E (namely, the sheaf R tensored by its dual), Deligne’s
semicontinuity theorem gives a tool to check that the irreducibility is independent
of λ ̸= 0. The key input that is needed is the proof that the Swan conductors of the
local monodromy representations associated to E, which are numerical invariants
of wild ramification, are themselves independent of λ. (In the tame case, the Swan
conductors are always zero, which explains partly why it is easier to handle).

In order to check this constancy property, we must compute the local mon-
odromy representations at every singular point. These are known for Kloosterman
sheaves (by work of Katz) and for additive character sheaves (by elementary means)
and it is easy to combine this information when taking tensor products. The main
difficulty is to understand the local monodromy representations after taking co-
homology (which amounts to computing the sum over s that defines the R-sum).
This is precisely what the theory of vanishing cycles achieves in situations where
the local geometry is sufficiently “nice”.

In our case of interest when λ ̸= 0, the singularities of the one-variable spe-
cialized sheaf Rb,λ are those r where we can “see” that the sum degenerates in
an obvious way, namely those r such that r + bi = 0, and r = ∞. One can then
compute that the local monodromy representation where r+ bi = 0 is tame (so has
Swan conductor 0), and the local monodromy at ∞ is wild, with large but constant
Swan conductor [52, Lemma 4.32, Corollary 4.37].

The computation of the local monodromy representation at ∞ also allows us
to prove irreducibility for generic λ, because the problem still involves restricting
an irreducible representation to a normal subgroup, making it isotypic (up to con-
jugacy). Because of this, if it were not irreducible, then the unique isomorphism
class of its irreducible components would be repeated with multiplicity at least
two. Then, when we restrict further to the local monodromy group at ∞, each
irreducible component must have multiplicity at least two. But the explicit com-
putation (using vanishing cycles) allows us to detect an irreducible component of
multiplicity one, which is not conjugate to any other.

Finally, combining these arguments, we prove irreducibility for every value of
λ. We require some fairly elementary arguments to conclude the proof by excluding
that some specialized sheaves are isomorphic for different values of λ. The most
difficult case is when λ2 = −λ1 and we are dealing with the generalization of (3.6)
to hyper-Kloosterman Klk with k odd, in which case some extra steps are needed.

3.4. Trace functions and their Mellin transforms

Let ℓ be a prime distinct from q. Let F be a geometrically irreducible ℓ-
adic sheaf on A1

Fq
, which we assume to be a middle-extension of weight 0. The

complexity of F is measured by its conductor c(F), in the sense of [20]. Among its
properties, we mention that |t(x)| ⩽ c(F) for all x ∈ Fq.

An important property is that if we denote

t̂(x) =
1
√
q

∑
a∈Fq

t(a)e
(ax
q

)
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the discrete Fourier transform of a function t : Fq → C, then unless the trace
function t is proportional to e(ax/p) for some a, then we have

|t̂(x)| ≪ 1

where the implied constant depends only on c(F), as a consequence of Deligne’s
general form of the Riemann Hypothesis over finite fields; see the statement and
references in [19, Th. 4.1]. More precisely, if F is not geometrically isomorphic

to an Artin-Schreier sheaf, then t̂ is itself the trace function of a geometrically
irreducible middle-extension ℓ-adic sheaf of weight 0, whose conductor is bounded
(polynomially) in terms of c(F) only (see the survey previously mentioned and [20,

Prop. 8.2] for the bound on the conductor), so that t̂ ≪ 1 is a special case of the
assertion that a trace function is bounded by its conductor.

Similarly, if we define the Mellin transform of t by

t̃(χ) =
1
√
q

∑
a∈F×

q

t(a)χ(a)

for any Dirichlet character χ modulo q, then we have

|t̃(χ)| ≪ 1

where the implied constant depends only on c(F), unless t is itself proportional to
a Dirichlet character (loc. cit.).

Example 3.9. (1) Let k ⩾ 2 be an integer. The function x 7→ Klk(x; q) defined
by (3.2) is a trace function (for any ℓ ̸= q) of a sheaf Kℓk with conductor bounded
by a constant depending only on k. These sheaves, constructed by Deligne and
extensively studied by Katz, are called Kloosterman sheaves ; they are fundamental
in the proof of Theorem 3.7.

(2) Let f ∈ Z[X] be a polynomial and χ (mod q) a non-trivial Dirichlet charac-
ter. Define

t1(x) = e
(f(x)

q

)
, t2(x) = χ(f(x)).

Then t1 and t2 are trace functions, with conductor depending only on deg(f). If
f has degree 1, then t1 is associated to an Artin-Schreier sheaf, and if f = aX for
some a ̸= 0, then f is associated to a Kummer sheaf.

Below we will use the following definition:

Definition 3.10. A Mellin sheaf over Fq is a geometrically irreducible, geo-
metrically non-constant, middle-extension sheaf of weight 0 on Gm,Fq that is not
geometrically isomorphic to a Kummer sheaf.

By orthogonality of characters, we have the discrete Mellin inversion formula∑
χ (mod q)

t̃(χ)χ(x) =
q − 1
√
q
t(x−1)

for x ∈ F×
q . Similarly, we get∑

χ (mod q)

t̃(χ)χ(x)ε2χ =
q − 1
√
q

(t ⋆Kl2)(x)
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by opening the Gauß sums (this is also a case of the discrete Plancherel formula),
where

(t1 ⋆ t2)(x) =
1
√
q

∑
ab=x

t1(a)t2(b)

is the multiplicative convolution of two functions on F×
q .

We will need:

Lemma 3.11. Let F be a Mellin sheaf with trace function t. Then one of the
following two conditions holds:

(1) There exists a Mellin sheaf G with conductor ≪ c(F)4 with trace function
τ such that

(t ⋆Kl2)(x) = τ(x) +O(q−1/2)

for x ∈ F×
q , where the implied constant depends only on c(F).

(2) The sheaf F is geometrically isomorphic to a pullback [x 7→ a/x]∗Kℓ2 of a
Kloosterman sheaf for some a ∈ F×

q , in which case there exists α ∈ C with modulus
1 such that

t(x) = αKl2(ax̄; q)

for all x ∈ F×
q . We then have

t̃(χ) = αχ(a)ε−2
χ

for all χ.

Proof. If F is not geometrically isomorphic to a pullback [x 7→ a/x]∗Kℓ2 of
a Kloosterman sheaf, then the “shriek” convolution F ⋆! Kℓ2 has trace function
t ⋆ Kl2, and the middle-convolution G = F ⋆mid Kℓ2 of F and Kℓ2 is a sheaf with
trace function t ⋆ Kl2 + O(q−1/2), as a consequence of the properties of middle-
convolution [40, Ch. 2].

The middle-convolution is a Mellin sheaf in this case: indeed, it is geometrically
irreducible because Kℓ2 is of “dimension” one in the Tannakian sense, so (F ⋆mid
Kℓ2)[1] is an irreducible object in the Tannakian sense, which implies the result
by [40, p. 20]). In that case, we obtain (1), where the conductor bound is a special
case of the results from the Appendix by Fouvry, Kowalski and Michel to P. Xi’s
paper [83].

□

Remark 3.12. (1) The “error term” in Case (1) of this lemma is linked to the
possible existence of Frobenius eigenvalues of weight ⩽ −1 in the “naive” convolu-
tion. One can think of the middle-convolution here as the “weight 0” part of this
naive convolution.

(2) Using a more intrinsic definition of the conductor than the one in [20], one
could obtain a better exponent that c(G) ≪ c(F)4 (see [75]).

In Chapter 9, we will use the following variant of Lemma 3.11.

Lemma 3.13. Let F be a geometrically irreducible ℓ-adic that is not geomet-
rically isomorphic to a Kummer sheaf, an Artin-Schreier sheaf or the pull-back of
an Artin-Schreier sheaf by the map x 7→ x−1. There exists a Mellin sheaf G with
conductor bounded polynomially in terms of c(F), not geometrically isomorphic to
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[x 7→ a/x]∗Kℓ2 for any a ∈ F×
q , such that the trace function τ of G satisfies

(3.8) τ(x) =
1
√
q

∑
y∈F×

q

t(y)e
(
− x̄y
p

)
+O(q−1/2)

where the implied constant depends only on c(F).

Proof. The principle is the same as in Lemma 3.11. We denote by L the
Artin-Schreier sheaf with trace function x 7→ e(x/p) and its Tannakian dual L∨

with trace function x 7→ e(−x̄/p). We consider the middle-convolution object
F ⋆mid L

∨. Because F is not an Artin-Schreier sheaf, this object is associated to
a middle-extension sheaf G of weight 0, which is geometrically irreducible because
L∨ is of Tannakian dimension 1.

Middle-convolution of G with L gives back the input sheaf F (again because L

is of dimension 1 with dual L∨ in the Tannakian sense). Thus, because F is not
geometrically isomorphic to a Kummer sheaf, so is G. And because F is not the
pull-back of an Artin-Schreier sheaf by the map x 7→ x−1, the sheaf G is not of the
form [x 7→ a/x]∗Kℓ2.

Finally, as in Lemma 3.11, the sheaf G has trace function satisfying (3.8) and
has conductor bounded in terms of the conductor of F. □

3.5. The equidistribution group of a Mellin transform

In a remarkable recent work, Katz [40] has shown that the discrete Mellin
transforms of quite general trace functions satisfy equidistribution theorem similar
to those known for families of exponential sums indexed by points of an algebraic
variety.

Katz’s work relies in an essential way on deep algebraic-geometric ideas, espe-
cially on the so-called Tannakian formalism. We will minimize what background is
needed by presenting this as a black-box, with examples. We refer, besides Katz’s
book, to the recent Bourbaki report of Fresán [22] for an accessible survey.

Let F be a Mellin sheaf over Fq as in Definition 3.10. Katz [40, p. 11] defines
two linear algebraic groups related to F, its arithmetic and geometric Tannakian
monodromy groups, the geometric one being a normal subgroup of the arithmetic
one under our assumptions [40, Th. 6.1]. In equidistribution statements, it is often
simpler to assume that they are equal, and Katz frequently does so.

Definition 3.14. We say that F has Property EAGM (“Equal Arithmetic and
Geometric Monodromy”) if the two groups defined by Katz in [40, p. 11] are equal.
We then call a maximal compact subgroup K of (the base change from Qℓ to C
of) this common group the equidistribution group of the Mellin transform of F. We
denote by K♯ the space of conjugacy classes in K.

Assuming that F has EAGM, Katz [40, p. 12–13] defines a subset Xq of the
set of characters of F×

q , of cardinality ⩽ 2 rk(F) ⩽ 2 c(F), and for any χ /∈ Xq, he

defines a conjugacy class θχ ∈ K♯ such that the Mellin transform t̃ of the trace
function of F satisfies

t̃(χ) = tr(θχ)

for χ /∈ Xq. It will be convenient for us to enlarge Xq to always include the trivial
character.



64 3. ALGEBRAIC EXPONENTIAL SUMS

The key result that we need is the following further consequence of the work of
Katz. It can be considered as a black box in the next section.

Theorem 3.15. Let π be an irreducible representation of the equidistribution
group K of the Mellin sheaf F, which is assumed to have Property EAGM. Then
one of the following properties holds:

(1) There exists a Mellin sheaf π(F), as in Definition 3.10, with Property
EAGM, such that for any χ /∈ Xq, we have

tr(π(θχ)) = t̃π(χ),

where tπ is the trace function of π(F), and such that the conductor of π(F) is
bounded in terms of π and c(F) only.

(2) There exists a ∈ F×
q such that

tr(π(θχ)) = χ(a)

for all χ. Moreover, if d is the order of the finite group of characters of finite order
of K, then a is a d-th root of unity in F×

q .

Proof. The existence of the sheaf π(F) as an object in the Tannakian category
associated to F by Katz is part of the Tannakian formalism [40, Ch. 2]. By
construction, this object is irreducible in the Tannakian sense over F̄q. By the
classification of the geometrically irreducible objects [40], it is either “punctual”,
in which case we are in Case (2) (because π is then a finite order charcter of
K), or there exists a geometrically irreducible ℓ-adic sheaf G on Gm,Fq

such that
π(F) = G. By construction of the Tannakian category, this sheaf is not geometrically
isomorphic to a Kummer sheaf (loc. cit.) and it is of weight 0. Hence it is a Mellin
sheaf.

Still in this second case, the Tannakian groups of π(F) are the image by (the
algebraic representation corresponding to π) of the groups associated to F, and are
therefore equal, so that π(F) has Property EAGM. The bound for the conductor
follow easily from the computations in [40, Ch. 28, Th. 28.2]. □

Remark 3.16. (1) The second case will be called the “punctual” case.
(2) The conductor bounds resulting from [40, Th. 28.2] are relatively weak

because they rely on bounds for tensor products and on embedding the representa-
tion π in a tensor product of tensor powers of the standard representation and its
dual. A much stronger estimate (which would be essential for strong quantitative
applications, such as “shrinking targets” problems) has been proved by Sawin [75]:
we have

c(G) ⩽ 2 + dim(π)(1 + w(π) rk(F))

where w(π) is the minimum of a+ b over pairs (a, b) of non-negative integers such
that π embeds in ϱ⊗a ⊗ ϱ∨⊗b, where ϱ is the representation of K corresponding to
F itself. In turn w(π) is bounded by an affine function of the norm of the highest
weight vectors of the restriction of π to K0.

Example 3.17. (1) (The Evans sums, see [40, Ch. 14]). Let

t(x) = e
(x− x̄

q

)
for x ∈ F×

q . Then t is the trace function of a Mellin sheaf Fe of conductor bounded
independently of q, and Katz [40, Th. 14.2] proves that Fe has Property EAGM,
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and that its equidistribution group K is SU2(C) with Xq = ∅. By definition, each
value of the Mellin transform

t̃e(χ) =
1
√
q

∑
x∈F×

q

χ(x)e
(x− x̄

q

)
is the Evans sum associated to χ.

(2) (The Rosenzweig-Rudnick sums, see [40, Ch. 14]). Let

t(x) = e
( (x+ 1)(x− 1)

q

)
for x ∈ F×

q such that x ̸= 1 and t(1) = 0. Then t is the trace function of a Mellin
sheaf Frr of conductor bounded independently of q, and Katz [40, Th. 14.5] proves
that Frr has Property EAGM, and that its equidistribution group K is also SU2(C)
with Xq = ∅. Each value of the Mellin transform

t̃rr(χ) =
1
√
q

∑
x∈F×

q

χ(x)e
( (x+ 1)(x− 1)

q

)
is the Rosenzweig-Rudnick sum associated to χ.

(3) (Unitary examples, see [40, Ch. 17]) Katz gives many examples where the
equidistribution group is UN (C) for some integer N ⩾ 1. For instance, fix a non-
trivial multiplicative character η modulo q, of order d. Let n ⩾ 2 be an integer
coprime to d, and let P ∈ Fq[X] be a monic polynomial of degree n with distinct
roots in F̄q, and with P (0) ̸= 0. Write

P = Xn + an−1X
n−1 + · · · + a1X + a0,

and assume that gcd({i : ai ̸= 0}) = 1. 1. Then t(x) = η(P (x)) is the trace
function of a Mellin sheaf with Property EAGM, for which the equidistribution
group is Un(C) by [40, Th. 17.5].

If, on the other hand, P has degree coprime to q, and if P ′ has n − 1 distinct
roots α ∈ F̄q, if the set S = {P (α) | P ′(α) = 0} has n − 1 distinct points (i.e., P
is “weakly super-morse”), and if in addition S is not invariant by multiplication by
any constant ̸= 1, then the “solution counting” function

t(x) =
∑

P (y)=x

1 − 1

is the trace function of a Mellin sheaf with Property EAGM and with equidistri-
bution group Un−1(C) (see [40, Th. 17.6]). The discrete Mellin transform in that
case is

t̃(χ) =
1
√
q

∑
y∈Fq

χ(P (y))

(see [40, Remark 17.7]).
(4) For further examples including groups like SUn(C) for some n, O2n(C), G2

or products, see [40].





CHAPTER 4

Computation of the first twisted moment

Besides stating and proving the general form of the first moment formulas
twisted by characters that we will need in our main result, we will also consider in
this chapter the first moment twisted by more general discrete Mellin transforms of
trace functions over finite fields, in the sense of Section 3.4. We present these last
results in a separate section for greater readability; it may be safely omitted in a
first reading and is only used in Section 6.7.

4.1. Introduction

In this chapter, we will prove Theorem 1.16, which we first recall. We fix f as
in Section 1.2, i.e. a primitive (holomorphic or Maaß) cusp form for Γ0(|r|) with
trivial nebentypus, and recall Convention 1.3 on signed levels.

Given ℓ ∈ (Z/qZ)× and k ∈ Z, we consider

(4.1) L(f ; ℓ, k) =
1

φ∗(q)

∑⋆

χ (mod q)

εkχχ(ℓ)L(f ⊗ χ, 1/2),

(cf. (1.8) and our convention to drop the parameter s if it equals 1/2). We first
observe that

(4.2) L(f ; ℓ, k) = ε(f)L
(
f ; (−1)kℓr,−(k + 2)

)
.

Indeed, for any non-trivial character χ (mod q), we have εχ = εχ
−1 = χ(−1)ε−1

χ ,
and moreover

L(f ⊗ χ, 1/2) = ε(f)χ(r)ε2χL(f ⊗ χ, 1/2) = ε(f)χ(r)ε−2
χ L(f ⊗ χ, 1/2),

by the functional equation (cf. (2.3)), which implies the formula.
It is therefore sufficient to evaluate L(f ; ℓ, k) for k ⩾ −1 in order to handle all

values of k. In this case we will prove a slightly more precise version of Theorem
1.16.

Theorem 4.1. There exists an absolute constant B ⩾ 0 such that for k ⩾ −1,
ℓ ∈ (Z/qZ)× and any ε > 0, we have

L(f ; ℓ, k) = δk=0
λf (ℓq)

ℓ
1/2

q

+Of,ε((1 + |k|)Bq−1/8+ε),

where ℓq denotes the unique integer in the interval [1, q] satisfying the congruence

ℓℓq ≡ 1 (mod q).

Combining this theorem with the formula (4.2), we obtain

67
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Corollary 4.2. There exists an absolute constant B ⩾ 0 such that, for k ∈ Z
and ℓ ∈ (Z/qZ)×, we have

L(f ; ℓ, k) = δk=0
λf (ℓq)

ℓ
1/2

q

+ δk=−2ε(f)
λf ((ℓr)q)

(ℓr)
1/2
q

+Of,ε((1 + |k|)Bq−1/8+ε).

where we denote by (ℓr)q the unique integer in [1, q] representing the congruence
class ℓr (mod q).

Remark 4.3. Observe that for 1 ⩽ ℓ < q1/2, we have ℓq ⩾ q1/2 unless ℓ = 1, so
that the main term for k = 0 can be absorbed in the error term. Hence for k ⩾ −1,
and (ℓ, q) = 1 with 1 ⩽ ℓ < q1/2, we obtain

L(f ; ℓ, k) = δk=0δℓ=1 +Of,ε((1 + |k|)Bq−1/8+ε).

4.2. Proof

The first moment decomposes into the sum over the even and odd characters

L(f ; ℓ, k) =
1

2
L+(f ; ℓ, k) +

1

2
L−(f ; ℓ, k)

where

L±(f ; ℓ, k) =
2

φ∗(q)

∑±

χ (mod q)
χ primitive

εkχχ(ℓ)L(f ⊗ χ, 1/2).

We evaluate the “even” first moment L+(f ; ℓ, k) in detail, the odd part is entirely
similar.

The approximate functional equation (2.24), (3.4) and (2.3) give (using nota-
tions of Convention 2.20)

L+(f ; ℓ, k) =
∑
±
q−1/2

∑
(n,q)=1

Klk(±ℓn; q)
λf (n)

n1/2
Vf,1/2

( n

q
√
|r|

)
+ ε(f)

∑
±
q−1/2

∑
(n,q)=1

Klk+2(±|r|ℓn; q)
λf (n)

n1/2
Vf,1/2

( n

q
√

|r|

)
+O

(∑
n

|λf (n)|
n1/2

∣∣∣Vf,1/2( n

q
√
|r|

)∣∣∣q−1−|k|/2
)
.

(4.3)

The error term is Of (q−(1+|k|)/2). Since k ⩾ −1, we have k + 2 ̸= 0, so that it
follows from Proposition 3.4 (after applying a smooth partition of unity into dyadic
intervals to the n-sum) that

q−1/2
∑
n⩾1

(n,q)=1

Klk+2(±|r|ℓn; q)
λf (n)

n1/2
Vf,1/2

( n

q
√
|r|

)
≪ε,f (1 + |k|)Bq−1/8+ε.

If k ̸= 0, the same bound holds for the first term on the right-hand side of (4.3),
and otherwise this term equals∑
±

∑
n≡±ℓ (mod q)

λf (n)

n1/2
Vf,1/2

(
n

q
√

|r|

)
=
∑
±

λf (ℓ
±
q )

(ℓ
±
q )1/2

Vf,1/2

(
ℓ
±
q

q
√
|r|

)
+Of (qε+θ−1/2),
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where ℓ
±
q denotes the unique solution n of the equation

ℓn ≡ ±1 (mod q)

contained in the interval [1, q]. By (2.29) and (2.16) we have

(4.4)
λf (ℓ

±
q )

(ℓ
±
q )1/2

Vf,1/2

(
ℓ
±
q

q
√
|r|

)
=
λf (ℓ

±
q )

(ℓ
±
q )1/2

+Of,ε(q
ε+θ−1/2).

We have therefore proven that

L+(f ; ℓ, k) = δk=0

∑
±

λf (ℓ
±
q )

(ℓ
±
q )1/2

+Of,ε(q
−1/8+ε).

for k ⩾ −1. Similarly we have

L−(f ; ℓ, k) = δk=0

∑
±

(±1)
λf (ℓ

±
q )

(ℓ
±
q )1/2

+Of,ε(q
−1/8+ε).

Combining the two equations above, we obtain Theorem 4.1.

4.3. First moment with trace functions

Let q be a prime, and F a Mellin sheaf over Fq as in Definition 3.10. Let

t : F×
q → C be its trace function and t̃ its discrete Mellin transform. Fix f as in

Section 1.2.

Theorem 4.4. Assume that we are not in case (2) of Lemma 3.11. Then, for
any integer ℓ ⩾ 1, we have1

(4.5)
1

φ∗(q)

∑∗

χ (mod q)

L(f ⊗ χ, 12 )χ(ℓ)t̃(χ) ≪ q−1/8+ε

for any ε > 0, where the implied constant depends on f and ε, and polynomially on
c(F).

Proof. We may assume that ℓ is coprime to q. For any non-trivial character
χ, by the approximate functional equation (2.24) and (2.26), we have

L(f ⊗ χ, 1/2) =
∑
n⩾1

λf (n)

n1/2
χ(n)V

( n

q
√

|r|

)
+ ε(f)χ(r)ε2χ

∑
n⩾1

λf (n)

n1/2
χ(n)V

( n

q
√
|r|

)
where V = Vf,χ(−1),1/2. Distinguishing according to the parity of χ, the left-hand
side of (4.5) is

1

φ∗(q)

∑+

χ (mod q)
χ ̸=1

L(f ⊗ χ, 12 )χ(ℓ)t̃(χ) +
1

φ∗(q)

∑−

χ (mod q)

L(f ⊗ χ, 12 )χ(ℓ)t̃(χ).

1Here, the integer ℓ is not related to the auxiliary prime used in defining the sheaf F.
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We consider the sum over non-trivial even characters, since the case of odd charac-
ters is (as usual) entirely similar. We have

1

φ∗(q)

∑+

χ (mod q)
χ ̸=1

L(f ⊗ χ, 12 )χ(ℓ)t̃(χ)

=
∑
n⩾1

λf (n)

n1/2
V
( n

q
√
r

)
T1(n, ℓ) + ε(f)

∑
n

λf (n)

n1/2
V
( n

q
√
r

)
T2(n, ℓ, r)

where

T1(n, ℓ) =
1

φ∗(q)

∑+

χ (mod q)
χ ̸=1

t̃(χ)χ(nℓ)

T2(n, ℓ, r) =
1

φ∗(q)

∑+

χ (mod q)
χ ̸=1

ε2χχ(rℓ)χ̄(n)t̃(χ).

By (3.1) and discrete Mellin inversion, we compute

T1(n, ℓ) =
α(q)

2

(
t(nℓ) + t(−nℓ)

)
− 1

φ∗(q)
t̃(1)δ(n,q)=1

T2(n, ℓ, r) =
α(q)

2

(
(t ⋆Kl2)(rℓn) + (t ⋆Kl2)(−rℓn)

)
− ε21
φ∗(q)

t̃(1)δ(n,q)=1

where

α(q) =
φ(q)

φ∗(q)
√
q
∼ 1

√
q
.

Since t̃(1) ≪ 1, the contribution of the trivial character to the first moment is
≪ q−1, where the implied constant depends only on c(F).

Since we are in Case (1) of Lemma 3.11, we see that, up to negligible error, the
even part of the first moment is the sum of four expressions of the type

γα(q)
∑
n⩾1

(n,q)=1

λf (n)

n1/2
Vf,+,1/2

( n

q
√

|r|

)
τ(n)

with γ = 1 or γ = ε(f), where τ is (by Lemma 3.11 in the cases involving t ⋆Kl2)
a trace function of a geometrically irreducible middle-extension sheaf of weight
0 with conductor ≪ 1. By [20, Th. 1.2], each of these sums is ≪ q−1/8+ε (cf.
Proposition 3.4 for a special case), where the implied constant depends only on ε,
f and polynomially on c(F). □

Remark 4.5. Case (2) in Lemma 3.11 leads to a first moment

1

φ∗(q)

∑⋆

χ (mod q)

L(f ⊗ χ, 1/2)χ(aℓ)ε−2
χ ,

which is evaluated asymptotically in Theorem 4.1.
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Computation of the second twisted moment

5.1. Introduction

In this chapter, we prove Theorem 1.18, which we will now state with precise
main terms.

We fix f as in Section 1.2. Let g be a primitive cusp form of signed level r′

coprime to q and trivial central character; we allow the possibility that g = f . We
recall that we use Convention 1.3 concerning the signed levels of cusp forms. We
will use the approximate functional equation (2.25), and the corresponding test
functions Wf,g,±,s (see (2.27)) and “signs” ε(f, g,±, s) (see (2.26)).

Recall that we consider the twisted second moments

(5.1) Q(f, g, s; ℓ, ℓ′) =
1

φ∗(q)

∑∗

χ (mod q)

L(f ⊗ χ, s)L(g ⊗ χ, s)χ(ℓ)χ(ℓ′)

for integers 1 ⩽ ℓ, ℓ′ ⩽ L ⩽ q1/2 (say), with (ℓℓ′, qrr′) = (ℓ, ℓ′) = 1, and s ∈ C with
|Re s − 1/2| < (log q)−1. We write σ = Re s, and we may assume without loss of
generality that q ⩾ e10, say.

We write |r| = ϱδ, |r′| = ϱ′δ with δ = (r, r′) ⩾ 1 and (ϱ, ϱ′) = 1. In particular,
note that ϱ and ϱ′ are positive.

Theorem 5.1. We have

Q(f, g, s; ℓ, ℓ′) = MT(f, g, s; ℓ, ℓ′) +O(|s|O(1)L3/2q−1/144+ε),

where the main term is given by

MT(f, g, s; ℓ, ℓ′) =
1

2
MT+(f, g, s; ℓ, ℓ′) +

1

2
MT−(f, g, s; ℓ, ℓ′)

with

(5.2) MT±(f, g; ℓ, ℓ′) =
1

2

∑
n⩾1

λf (ℓ′n)λg(ℓn)

ℓ′sℓsn2σ
Wf,g,±,s

( ℓℓ′n2
q2|rr′|

)
+
ε(f, g,±, s)λf (ϱ)λg(ϱ

′)

2ϱ1−s(ϱ′)1−s

∑
n⩾1

λf (ℓn)λg(ℓ
′n)

ℓ1−s(ℓ′)1−sn2−2σ
Wf,g,±,1−s

(ℓℓ′n2
q2δ2

)
.

If r = r′ and ε(f)ε(g) = −1, then Q(f, g, s; 1, 1) = 0.

In the rest of this chapter, to simplify notation, we will not display the s
dependency and will write Q(f, g; ℓ, ℓ′) for Q(f, g, s; ℓ, ℓ′). Moreover if f = g, we will
just write Q(f ; ℓ, ℓ′).

We first justify the last assertion of the theorem concerning the exact vanishing
of the untwisted second moment when r = r′ and ε(f)ε(g) = −1. Indeed, in that
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case we have

L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ) = −L(f ⊗ χ, 12 )L(g ⊗ χ, 12 )

for all χ, by (2.5). If χ is real, this shows that L(f ⊗ χ, 12 )L(g ⊗ χ, 12 ) = 0, and
otherwise, the sum of the values for χ and χ is zero.

5.2. Isolating the main term

This moment decomposes as the sum of its even and odd part

Q(f, g; ℓ, ℓ′) =
1

2

∑
±

Q±(f, g; ℓ, ℓ′)

where

Q±(f, g; ℓ, ℓ′) =
2

φ∗(q)

∑±

χ (mod q)
χ primitive

L(f ⊗ χ, s)L(g ⊗ χ, s)χ(ℓ/ℓ′).

We give the details for the even second moment Q+(f, g, ℓ, ℓ′); the treatment of the
odd second moment is identical.

We apply the approximate functional equation (2.25). A simple large sieve
argument shows that Q+(f, g, ℓ, ℓ′) = Of,g(|s|O(1)), so that replacing φ∗(q) by φ(q)

introduces an error of Of,g(|s|O(1)q−1). Adding and subtracting the contribution
of the trivial character using the bound∑

(nm,q)=1

λf (m)λg(n)

(mn)1/2
Wf,g,+,s

( nm

q2|rr′|

)
≪f,g |s|O(1),

and applying orthogonality (3.1), we obtain

Q+(f, g; ℓ, ℓ′) =
1

2

∑
±

∑∑
ℓm≡±ℓ′n (mod q)

(mn,q)=1

λf (m)λg(n)

msns
Wf,g,+,s

(
mn

q2|rr′|

)

+ ε(f, g,+, s)
1

2

∑
±

∑
rℓn≡±r′ℓ′m (mod q)

(mn,q)=1

λf (m)λg(n)

m1−sn1−s
Wf,g,+,1−s

(
mn

q2|rr′|

)

+O

(
|s|O(1)

q

)
.

The contribution of the terms such that q | m (and therefore q | n) is bounded
trivially by ≪ |s|O(1)q−1+2θ+o(1) so we can remove the constraint (mn, q) = 1.

Let ε = ±1 be the sign of rr′. The contribution of the terms satisfying

ℓm = ℓ′n

in the first sum, and
rℓn = εr′ℓ′m

in the second sum, forms the main term, and is denoted MT+(f, g; ℓ, ℓ′). (Note
that the corresponding equations with opposite signs have no solutions). We write
as above |r| = ϱδ, |r′| = ϱ′δ with δ = (r, r′) ⩾ 1 and (ϱ, ϱ′) = 1. Since ℓ, ℓ′ are
coprime and coprime to ϱϱ′, the solutions n ⩾ 1, m ⩾ 1, of the second equation are
parameterized in all cases by

n = ϱ′ℓ′k, m = ϱℓk,
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where k ⩾ 1. The main term is then

1

2

∑
n⩾1

λf (ℓ′n)λg(ℓn)

ℓ′sℓsn2σ
Wf,g,+,s

( ℓℓ′n2
q2|rr′|

)
+
ε(f, g,+, s)

2

∑
n⩾1

λf (ϱℓn)λg(ϱ
′ℓ′n)

(ϱℓ)1−s(ϱ′ℓ′)1−sn2−2σ
Wf,g,+,1−s

(ℓℓ′n2
q2δ2

)
.

Moreover, since ϱ | r and ϱ′ | r′, we have λf (ϱℓn) = λf (ϱ)λf (ℓn) and λg(ϱ
′ℓ′n) =

λg(ϱ
′)λg(ℓ

′n), hence this main term becomes

(5.3)
1

2

∑
n⩾1

λf (ℓ′n)λg(ℓn)

ℓ′sℓsn2σ
Wf,g,+,s

( ℓℓ′n2
q2|rr′|

)
+
ε(f, g,+, s)

2

λf (ϱ)λg(ϱ
′)

ϱ1−s(ϱ′)1−s

∑
n⩾1

λf (ℓn)λg(ℓ
′n)

ℓ1−s(ℓ′)1−sn2−2σ
Wf,g,+,1−s

(ℓℓ′n2
q2δ2

)
.

The first term of this sum equals
(5.4)

1

2

1

2iπ

∫
(2)

L∞(f,+, s+ u)

L∞(f,+, s)

L∞(g,+, s+ u)

L∞(g,+, s)
L(f × g, 2s, u; ℓ′, ℓ)G(u)(q2|rr′|)u du

u
,

where

(5.5) L(f × g, 2s, u; ℓ′, ℓ) =
∑
n⩾1

λf (ℓ′n)λg(ℓn)

ℓ′s+uℓs+un2σ+2u
, Re(2σ + 2u) > 1,

and the second term equals

(5.6)
ε(f, g,+, s)λf (ϱ)λg(ϱ

′)

2ϱ1−s(ϱ′)1−s
1

2iπ

∫
(2)

L∞(f,+, 1 − s+ u)

L∞(f,+, 1 − s)

× L∞(g,+, 1 − s+ u)

L∞(g,+, 1 − s)
L(f × g, 2 − 2s, u; ℓ, ℓ′)G(u)(q2δ2)u

du

u
.

Similarly, the odd part of the second moment Q−(f, g, ℓ, ℓ′) yields the second
part of the main term, namely

MT−(f, g; ℓ, ℓ′) =
1

2

∑
n⩾1

λf (ℓ′n)λg(ℓn)

ℓ′sℓsn2σ
Wf,g,−,s

( ℓℓ′n2
q2|rr′|

)
+
ε(f, g,−, s)λf (ϱ)λg(ϱ

′)

2ϱ1−s(ϱ′)1−s

∑
n⩾1

λf (ℓn)λg(ℓ
′n)

ℓ1−s(ℓ′)1−sn2−2σ
Wf,g,−,1−s

(ℓℓ′n2
q2δ2

)
,

where the first term equals
(5.7)

1

2

1

2iπ

∫
(2)

L∞(f,−, s+ u)

L∞(f,−, s)
L∞(g,−, s+ u)

L∞(g,−, s)
L(f × g, 2s, u; ℓ′, ℓ)G(u)(q2|rr′|)u du

u
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and the second

(5.8)
ε(f, g,−, s)λf (ϱ)λg(ϱ

′)

2ϱ1−s(ϱ′)1−s
1

2iπ

∫
(2)

L∞(f,−, 1 − s+ u)

L∞(f,−, 1 − s)

× L∞(g,−, 1 − s+ u)

L∞(g,−, 1 − s)
L(f × g, 2 − 2s, u; ℓ, ℓ′)G(u)(q2δ2)u

du

u
.

At this stage, we can therefore write

Q(f, g, s; ℓ, ℓ′) = MT(f, g, s; ℓ, ℓ′) + (error term)

as in Theorem 5.1, with

MT(f, g, s; ℓ, ℓ′) =
1

2
MT+(f, g, s; ℓ, ℓ′) +

1

2
MT−(f, g, s; ℓ, ℓ′),

and with an error term that we will estimate in the next sections to conclude the
proof of the theorem.

It is not necessary (or, indeed, useful) to evaluate the mains terms very precisely
in general, since in most applications (as in later chapters) we will perform further
averages or combinations of them.

However, the special case ℓ = ℓ′ = 1 and s = 1
2 (i.e., the “pure” second moment)

is important, so we transform the main term in that case. We recall the notation
L∗(f ⊗ g, 1) from (2.7) and (2.9), and recall in particular that these are non-zero.

Proposition 5.2. If f = g, then we have

MT(f, f ; 1
2 , 1, 1) = 2

∏
p|r

(1 + p−1)−1L
∗(Sym2f, 1)

ζ(2)
log q + βf +O(q−2/5)

for some constant βf . If f ̸= g, then

MT(f, g, 12 ; 1, 1) =
(

1 + ε(f)ε(g)
λf (ϱ)λg(ϱ

′)

(ϱϱ′)1/2

)
L∗(f ⊗ g, 1) +O(q−2/5),

where the leading constant has modulus ⩽ 2, and is non-zero unless ϱ = ϱ′ = 1 and
ε(f)ε(g) = −1.

Proof. The formulas follow easily from shifting the contour in (5.4), (5.6),
(5.7), (5.8) to Reu = −1/5 and applying the residue theorem, involving only a pole
at u = 0 occurs, since by definition (see (2.7) and (2.8)), we have

L(f × g, 1, u; 1, 1) = L∗(f ⊗ g, 1 + 2u),

and

L(f × f, 1, u; 1, 1) =
ζ(r)(1 + 2u)

ζ(r)(2 + 4u)
L∗(Sym2f, 1 + 2u),

and moreover ε(f, g,±, 12 ) = ε(f)ε(g) (see (2.28)).
If f ̸= g, then since ϱ | r and ϱ′ | r′, we have

|λf (ϱ)λg(ϱ
′)|√

ϱϱ′
⩽

1√
ϱϱ′

.

We deduce first that ∣∣∣1 + ε(f)ε(g)
λf (ϱ)λg(ϱ

′)

(ϱϱ′)1/2

∣∣∣ ⩽ 2,

and next that the leading constant can only be zero if ϱ = ϱ′ = 1, and then only if
ε(f)ε(g) = −1 (recall that L∗(f ⊗ g, 1) ̸= 0 by Lemma 2.6). □
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5.3. The error term

The contributions to the error term are of the form

ET(f, g; ℓ,±ℓ′) =
∑∑

ℓm≡±ℓ′n (mod q)
ℓm ̸=ℓ′n

λf (m)λg(n)

msns
Wf,g,±,s

(
mn

q2

)

or ET(f, g; rℓ,±r′ℓ′). The following bound then implies the theorem.

Theorem 5.3. Let s ∈ C be a complex number such that |σ− 1/2| ⩽ (log q)−1.
Let L ⩽ q1/2. For any coprime integers ℓ and ℓ′ such that 1 ⩽ ℓ, ℓ′ ⩽ L, we have

ET(f, g; ℓ,±ℓ′) ≪ (rr′|s|)O(1)L3/2q−1/144+ε.

The proof proceeds as in [4]. Using a partition of unity on the m,n variables
and a Mellin transform to separate the variables m and n in the weight function,
we reduce to the evaluation of O(log2 q) sums of the shape

ET(M,N ; ℓ,±ℓ′) =
1

(MN)1/2

∑
ℓm≡±ℓ′n (mod q)

ℓm ̸=ℓ′n

λf (m)λg(n)W1

(m
M

)
W2

( n
N

)

test functions for W1,W2 satisfying (2.1) and for parameters 1 ⩽ M,N such that
MN ⩽ q2+ε (where we have removed f, g from the notation for simplicity). As in
[4] the weight functions W1,W2 depend on a parameter of size (log q)2.

We will explain the proof of the estimate for ET(M,N ; ℓ, ℓ′). The case of
ET(M,N ; ℓ,−ℓ′) is very similar, and left to the reader.

We first note that we may assume that |r| + |r′| + |s| ≪ qε, since otherwise
Theorem 5.3 holds trivially.

We will bound the sums ET(M,N ; ℓ, ℓ′) in different ways, according to the
relative sizes of M,N . We may assume without loss of generality that M ⩽ N .
Then we have at our disposal the following three bounds.

5.4. The trivial bound

Using (2.16) and (2.14), and distinguishing the cases 4LN < q (in which case
the equation ℓm ≡ ±ℓ′n (mod q), ℓm ̸= ℓ′n has no solutions) and 2LN ⩾ q, we
have

(5.9) ET(M,N ; ℓ, ℓ′) ≪ qεMθ M

(MN)1/2
LN

q
≪ qεLNθ (MN)1/2

q
.

5.5. The shifted convolution bound

Next we appeal to the shifted convolution estimate of Proposition 2.26. Setting

M ′ = min(ℓM, ℓ′N) ⩽ LM, N ′ = max(ℓM, ℓ′N) ⩽ LN,

and using the bounds

M ′N ′ ⩽ L2q2+ε, M ⩽ min(N, q1+ε),
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we see that ET(M,N ; ℓ, ℓ′) is

≪ qε

(MN)1/2

((
N ′

q1/2
+
N ′3/4M ′1/4

q1/4

)(
1 +

(M ′N ′)1/4

q1/2

)
+
M ′3/2+θ

q

)

≪ qε

(MN)1/2

((
N

q1/2
+
N3/4M1/4

q1/4

)
L3/2 +

(LM)
3/2+θ

q

)

≪ qεL3/2

((
N

qM

(
1 +

N

qM

))1/4

+
Lθ

q1/2−θ

)
.(5.10)

5.6. Bilinear sums of Kloosterman sums

This is similar to [4, §6.2]. We apply the Voronoi summation formula of Corol-
lary 2.22 to the n variable. We will do so only under the assumption

(5.11) N > 4LM,

so that the summation condition ℓm ̸= ℓ′n is automatically satisfied. This expresses
ET(M,N ; ℓ, ℓ′) as the sum of two terms. The first one is

1

q(MN)1/2

∑∑
m,n

λf (m)λg(n)W1

(m
M

)
W2

( n
N

)
≪ qε

q(MN)1/2
,

which is very small, and the second is

ε(g)
∑
±

N

q|r|1/2
1

(qMN)1/2

∑
m,n⩾1

λf (m)λg(n)

×W1

(m
M

)
W̃2,±

( n

N∗

)
Kl2(±|r′|ℓℓ′mn; q),

where N∗ = q2|r|/N .

By Lemma 2.23, the function W̃2,±(y) has rapid decay for y ⩾ qε. By a further
partition of unity, we reduce to bounding quantities of the shape

E =
(1 +N∗/N ′)2θ+ε

(qMN∗)1/2
B(Kl2,α.β)

with coefficient sequences

α =
(
λf (m)W1(m/M)

)
m⩽2M

and β =
(
λg(n)W̃2,±(n/N∗)

)
n⩽N ′

that are supported on [1, 2M ] and [1, 2qεN∗], respectively, and where

B(Kl2,α,β) =
∑∑
m,n

αmβn Kl2(amn; q)

with a = ±|r′|ℓℓ′ coprime to q, as in (3.5).
Bounding the Kloosterman sums trivially and using (2.14) we obtain first

(5.12) E ≪ qε
MN∗

(qMN∗)1/2
= qε

(
qM

N

)1/2

.
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Using instead Proposition 3.5, with the sequence β viewed as a sequence of
length N∗, we obtain

E ≪ qε
MN∗

(qMN∗)1/2

(
1

M
+ q−

1
32

( q

MN∗

)3/8)1/2

≪ qε
(
qM

N

)1/2(
1

M
+ q−1/32

( N

qM

)3/8)1/2

,(5.13)

under the assumptions that

M ≪ qε+1/4N∗, MN∗ ≪ q5/4

or equivalently

(5.14) MN ⩽ qε+9/4, q3/4 ⩽ N/M.

Observe that the first inequality is always satisfied.

5.7. Optimization

Set η = 1/144. We have now derived the four basic bounds (5.9), (5.10), (5.12)
and (5.13), all of which provide estimates for ET(M,N, ℓ, ℓ′). We define β, λ, µ, ν
so that the identities

M = qµ, N = qν , L = qλ, ET(M,N, ℓ, ℓ′) = qβ ,

µ∗ = 2 − µ, ν∗ = 2 − ν.

Our objective is to prove that

(5.15) β ⩽ ε+
3

2
λ− η,

which will conclude the proof of Theorem 5.3. We use the same method as in
[4, §6.2].

We have

0 ⩽ µ ⩽ ν, µ+ ν ⩽ 2 + ε, µ ⩽ 1 + ε,

−1 − ε ⩽ 1 + µ− ν ⩽ 1,

and assume that λ ⩽ 1
2 . By the trivial bound we have

β ⩽ ε+ λ+ θν +
1

2
(µ+ ν − 2).

We may therefore assume that

2 − 2η − 2θν ⩽ µ+ ν ⩽ 2 + ε

(otherwise (5.15) holds) and therefore

(5.16) −2η − 2θν ⩽ µ− ν∗ ⩽ ε.

Applying the shifted convolution estimate (5.10), we obtain

β ⩽ ε+
3

2
λ+ sup

(1

4
(ν − µ− 1),

1

2
(ν − µ− 1), (λ+ 1)θ − 1

2

)
,

so that (5.15) holds unless

(5.17) 1 − 4η ⩽ ν − µ or equivalently µ+ ν∗ ⩽ 1 + 4η.

This inequality implies that (5.11) and (5.14) both hold. We may therefore apply
(5.12) and (5.13).
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Applying (5.12) we obtain

β ⩽ ε+
1

2
(1 + µ− ν) = ε+

1

2
(µ+ ν∗ − 1)

which establishes (5.15) unless

1 − 2η ⩽ µ+ ν∗.

This inequality together with (5.16) implies that

(5.18) µ ⩾
1

2
− 2η − θν.

Applying now (5.13) we obtain

β ⩽ ε+
1

2
(µ+ ν∗ − 1) + max

(
−1

2
µ,− 1

64
− 3

16
(µ+ ν∗ − 1)

)
⩽ ε+ max

(
3η +

1

2
θν − 1

4
,

5

16
4η − 1

64

)
by (5.17) and (5.18), resp. (5.17)). This concludes the proof of (5.15), since the first
term in the maximum is < −η (recall that θ ⩽ 7/64 and ν ⩽ 2) and the second is
equal to −η.



CHAPTER 6

Non-vanishing at the central point

6.1. Introduction

In this chapter, we will prove Theorem 1.8 using the mollification method. We
fix f as in Section 1.2. Recall that by “interval” in R/πZ, we mean the image of
an interval of R under the canonical projection, and its measure is the probability
Haar measure µ of this image. The statement to prove is:

Theorem 6.1. Let I ⊂ R/πZ be an interval of positive measure µ(I). There
exists a constant η = ηI > 0 such that, as q → +∞ among the primes, we have

1

φ∗(q)

∣∣∣{χ (mod q) non-trivial | |L(f⊗χ, 1/2)| ⩾ 1

log q
, θ(f⊗χ) ∈ I

}∣∣∣ ⩾ η+of,I(1).

Furthermore this formula remains true with the following choice of η

η = ηI =
µ(I)2

1443 ζ(2)
.

In Section 6.7, which may be omitted in a first reading, we will also prove a
positive proportion of non-vanishing for central values of the twisted L-functions
with characters satisfying conditions on the discrete Mellin transform of a quite
general trace function.

6.2. The Cauchy-Schwarz inequality

Let I ⊂ R/πZ be an interval with positive measure µ(I) and characteristic
function χI . Let χ 7→ M(f ⊗ χ,xL) be a function defined for Dirichlet characters
modulo q (later, it will be the “mollifier”), depending on the fixed cusp form f and
on some additional data xL.

By the Cauchy-Schwarz inequality, we have

(6.1)

∣∣∣∣∣ 1

φ∗(q)

∑∗

χ (mod q)

δ|L(f⊗χ,1/2)|⩾(log q)−1

θ(f⊗χ)∈I
L(f ⊗ χ, 1/2)M(f ⊗ χ,xL)

∣∣∣∣∣
2

⩽ Q(f ;xL) ×
( 1

φ∗(q)

∑∗

χ (mod q)

δ|L(f⊗χ,1/2)|⩾(log q)−1

θ(f⊗χ)∈I

)
,

where

(6.2) Q(f ;xL) :=
1

φ∗(q)

∑∗

χ (mod q)

|L(f ⊗ χ, 1/2)M(f ⊗ χ,xL)|2.

79
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On the left-hand side of (6.1), we remove the condition |L(f ⊗ χ, 1/2)| ⩾
(log q)−1 in a trivial manner,

(6.3)
1

φ∗(q)

∑∗

χ (mod q)

δ|L(f⊗χ,1/2)|⩾(log q)−1

θ(f⊗χ)∈I
L(f ⊗ χ, 1/2)M(f ⊗ χ,xL) =

L (f ;xL, χI) +O
( 1

q log q

∑∗

χ (mod q)

|M(f ⊗ χ,xL)|
)

where, for any function ψ : R/πZ → C, we have defined

(6.4) L (f ;xL, ψ) :=
1

φ∗(q)

∑∗

χ (mod q)

ψ(θ(f ⊗ χ))L(f ⊗ χ, 1/2)M(f ⊗ χ,xL).

Given δ with 0 < δ < 1, let

ψ(θ) = ψI,δ(θ) =
∑

|k|⩽kδ

ψ̂(2k)e2ikθ

be a trigonometric polynomial of period π such that

(6.5)

∫ π

0

|χI − ψ|2 dθ ⩽ δ.

Since Gauß sums are equidistributed in R/2πZ (as follows by Weyl’s criterion
from the formula (3.3) and Deligne’s bound for hyper-Kloosterman sums), we have
in particular

1

φ∗(q)

∑∗

χ (mod q)

|χI(θ(f ⊗ χ)) − ψ(θ(f ⊗ χ))|2 ≪ δ.

By the definitions (6.2) and (6.4), the Cauchy-Schwarz inequality provides us with
the approximation

L (f ;xL, χI) = L (f ;xL, ψ) +O
(
δ1/2Q(f ;xL)1/2

)
.

6.3. Choosing the mollifier

As customary in the mollification method, we choose the function M(f⊗χ,xL)
to be a suitable Dirichlet polynomial of length L = qλ, for some sufficiently small
absolute positive constant λ ⩽ 1/2. Given some complex tuple xL = (xℓ)ℓ⩽L, we
set

(6.6) M(f ⊗ χ,xL) =
∑
ℓ⩽L

xℓ
χ(ℓ)

ℓ1/2
.

We assume throughout that xℓ = 0 unless (ℓ, r) = 1. We recall that (µf (n)) denotes
the convolution inverse of the Hecke eigenvalues (λf (n)). We consider coefficients
(xℓ)ℓ⩽L of the shape

(6.7) xℓ = µf (ℓ)P
( log(L/ℓ)

logL

)
δℓ⩽Lδ(ℓ,r)=1,

where P : [0, 1] → C is a real-valued polynomial satisfying P (1) = 1, P (0) = 0.
In particular, as a consequence of (2.15) and (2.16), we have the inequalities

|xℓ| ≪ε ℓ
θ+ε
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for any ε > 0, and

(6.8)
∑
ℓ⩽L

|xℓ|2 ≪f L.

Indeed, to prove (6.8) we first notice that the definition of the multiplicative function
n 7→ µf (n) given in (2.31) implies that for p ∤ r, we have the equalities

|µf (p)| = |λf (p)|, µf (p2) = 1, µf (pk) = 0 (k ⩾ 3).

In the sum studied in (6.8), we factorize each ℓ as ℓ = ℓ1ℓ2 where ℓ1 and ℓ2 are
coprime, ℓ1 is squarefull and ℓ2 is squarefree. We can now write the inequalities∑

ℓ⩽L

|xℓ|2 ≪
∑
ℓ1⩽L

(ℓ1,r)=1

|µf (ℓ1)|2
∑

ℓ2⩽L/ℓ1
(ℓ2,r)=1

|µf (ℓ2)|2

≪
∑
ℓ1⩽L

(ℓ1,r)=1

∑
ℓ2⩽L/ℓ1
(ℓ2,r)=1

|λf (ℓ2)|2

≪
∑
ℓ1⩽L

(ℓ1,r)=1

(L/ℓ1) ≪ L,

by appealing to (2.15).
Next we have

Lemma 6.2. We have

1

φ∗(q)

∑∗

χ (mod q)

|M(f ⊗ χ,xL)| ≪ (log q)1/2.

Proof. By the Cauchy-Schwarz inequality we have∑∗

χ (mod q)

|M(f ⊗ χ,xL)| ⩽ φ∗(q)1/2
( ∑∗

χ (mod q)

|M(f ⊗ χ,xL)|2
)1/2

and, as a consequence of (6.8), we have

1

φ∗(q)

∑∗

χ (mod q)

|M(f ⊗ χ,xL)|2 ⩽
φ(q)

φ∗(q)

∑
ℓ≡ℓ′ (mod q)

|xℓx′ℓ|
(ℓℓ′)1/2

=
φ(q)

φ∗(q)

∑
ℓ⩽L

|xℓ|2

ℓ
≪ logL

since L < q. □

We conclude from (6.1), (6.3) and Lemma 6.2 that

(6.9)
1

φ∗(q)
|{χ (mod q) non-trivial | |L(f ⊗ χ, 1/2)| ⩾ (log q)−1, θ(f ⊗ χ) ∈ I}|

⩾

∣∣L (f ;xL, ψI,δ) +Of ((log q)−1/2 + δ1/2Q(f ;xL)1/2)
∣∣2

Q(f,xL)
.
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6.4. Computation of the first mollified moment

In this section we evaluate L (f ;xL, ψI,δ). Since

(6.10) exp(2iθ(f ⊗ χ)) = ε(f)χ(r)ε2χ

by (2.4), we have

(6.11) L (f ;xL, ψ) =
∑

|k|⩽kδ

ψ̂(2k)ε(f)k
∑
ℓ⩽L

xℓ
ℓ1/2

L(f ; rkℓ, 2k)

where L(f ; rkℓ, 2k) is the first moment defined in (4.1).

Remark 6.3. It is at this point that our restriction to intervals modulo π
instead of modulo 2π intervenes: because of the factor 2 on the left-hand side
of (6.10), we are not able to evaluate a first moment of L(f ⊗ χ, 12 ) twisted by
e(kθ(f ⊗ χ)) for k odd.

By (4.2), Theorem 4.1 and (6.8), the total contribution, denoted by Sk ̸=0,−1,
of the terms k ̸= 0,−1 to the sum (6.11) satisfies

(6.12) Sk ̸=0,−1 ≪δ,I,f,ε q
ε+λ/2−1/8.

In particular, this contribution is negligibly small if λ < 1/4, which we assume from
now on.

The contribution Sk=0 of the term k = 0 to (6.11) is equal to

Sk=0 := ψ̂(0)
∑
ℓ⩽L

xℓ
ℓ1/2

L(f ; ℓ, 0) = ψ̂(0)
∑
ℓ⩽L

xℓ
ℓ1/2

{λf (ℓ̄q)

ℓ̄
1/2
q

+Of,ε(q
ε−1/8)

}
,

by Theorem 4.1. We treat separately the cases ℓ = 1 and 2 ⩽ ℓ ⩽ L. The first case
contributes by

(6.13) ψ̂(0)x1 +O(q−1/8+ε) = µ(I) +Of,ε(δ
1/2 + qε−1/8),

by (6.5).
To deal with the cases 2 ⩽ ℓ ⩽ L we exploit the inequalities

|λf (ℓ̄q)ℓ̄
−1/2
q | ⩽ ℓ̄θ−1/2

q ⩽ (q/ℓ)θ−1/2,

since ℓ satisfies 1 < ℓ < q1/2. From this we deduce that the contribution of the
2 ⩽ ℓ ⩽ L satisfies

≪ qθ−1/2L1−θ + qε−1/8L1/2 ≪ qε−1/8L1/2.

Gathering with (6.13), we proved the equality

(6.14) Sk=0 = µ(I) +Of,ε(δ
1/2 + qε+λ/2−1/8)

Next, by Corollary 4.2, if q is large enough (depending on the level r), the
contribution Sk=−1 of the term k = −1 equals

(6.15) Sk=−1 = ψ̂(−2)
∑
ℓ⩽L

xℓλf (ℓq)

ℓ1/2ℓ
1/2
q

+Oδ,I,f,ε(q
ε+λ/2−1/8)

= ψ̂(−2)
∑
ℓ⩽L

(ℓ,r)=1

µf (ℓ)λf (ℓq)

ℓ1/2ℓ
1/2
q

P
( log(L/ℓ)

logL

)
+Oδ,I,f,ε(q

ε+λ/2−1/8)

where as before ℓq denotes the unique integer in [1, q] representing the congruence
class ℓ (mod q). Since 1 ⩽ ℓ ⩽ L < q, we have ℓq = ℓ.
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We now use the following lemma, which is stated in slightly greater generality
than needed here, for later reference in Section 6.7.

Lemma 6.4. Let a ⩾ 1 be an integer. There is some constant c > 0, depending
only on f , such that∑

ℓ⩽L
(ℓ,r)=1

xℓ√
ℓ

λf (aℓ)√
aℓ

=
∑
ℓ⩽L

(ℓ,r)=1

µf (ℓ)λf (aℓ)

a1/2ℓ
P
( log(L/ℓ)

logL

)
≪f exp(−c

√
λ log q)

uniformly in a.

Proof. We can write∑
(ℓ,r)=1

µf (ℓ)λf (aℓ)ℓ−s =
∑
d|a

(d,r)=1

µ(d)λf (a/d)d−s
∑

(ℓ,r)=1

λf (ℓ)µf (dℓ)ℓ−s.

In turn, since µf is supported on cubefree numbers, for d squarefree and coprime
to r we have∑

(ℓ,r)=1

λf (ℓ)µf (dℓ)ℓ−s =
∏
p∤dr

(
1 − λf (p)2

ps
+
λf (p2)

p2s

) ∏
p|d, p∤r

(−λf (p))
(

1 − 1

ps

)
.

We can therefore write the equality∑
(ℓ,r)=1

λf (ℓ)µf (dℓ)ℓ−s =
Hd(s)

T (s)

where T is defined in (2.30) and where Hd(s) is an Euler product that converges
absolutely for Re(s) > 3/4 and is bounded by dθ. This gives analytic continuation
of the Dirichlet series ∑

(ℓ,r)=1

λf (ℓ)µf (dℓ)ℓ−s

in the zero-free region of the Rankin-Selberg L-function (Proposition 2.11), and
moreover the value of this function at s = 1 is zero. We then obtain the result of
Lemma 6.4 by a standard contour integration and by a partial summation. □

Returning to (6.15), we deduce that Sk=−1 satisfies the bound

Sk=−1 ≪ exp(−c
√

log q).

Gathering this bound with (6.12) and (6.14) and supposing that 0 < λ < 1/4, we
deduce the equality

(6.16) L (f ;xL, ψ) = µ(I) +O
(
δ1/2 + exp(−c

√
log q)

)
.

We obtain now the lower bound

(6.17)
1

φ∗(q)
|{χ (mod q) non-trivial | |L(f ⊗ χ, 1/2)| ⩾ (log q)−1, θ(f ⊗ χ) ∈ I}|

⩾
µ(I)2 +Of,δ,I

(
(log q)−1/2

)
+Of

(
δ1/2(1 + Q(f ;xL))

)
Q(f ;xL)

.

using (6.9). It remains to evaluate Q(f ;xL).
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6.5. Computation of the second mollified moment

In this section we compute

Q(f ;xL) =
∑
ℓ,ℓ′⩽L

xℓxℓ′

(ℓℓ′)1/2
Q(f, f, 1/2, ℓ, ℓ′)

=
∑
d

∑
(ℓ,ℓ′)=1

xdℓxdℓ′

d(ℓℓ′)1/2
Q(f, f, 1/2; ℓ, ℓ′),

which is enough for our purpose, since Q(f, f, 1/2; dℓ, dℓ′) = Q(f, f, 1/2; ℓ, ℓ′) (recall
that the twisted second moment is defined in (5.1)).

Proposition 5.2 is not sufficient for our purpose since we will sum over ℓ and ℓ′.
So we use Theorem 1.18 which evaluates Q(f, f, 1/2; ℓ, ℓ′) for (ℓ, ℓ′) = 1 with two
main terms given in (5.2). Since ε(f, f,±, 1/2) = 1 and ϱ = ϱ′ = 1, δ = |r| = |r′|,
we obtain by (5.4), (5.6), (5.7), (5.8) that

(6.18) Q(f ;xL) =
1

2iπ

∫
(2)

(L∞(f, 1/2 + u)2

L∞(f, 1/2)2
+
L∞(f, 3/2 + u)2

L∞(f, 3/2)2

)
G(u)

×
( ∑
d,(ℓ,ℓ′)=1

xdℓxdℓ′

d(ℓℓ′)1/2
L(f × f, 1, u; ℓ, ℓ′)

)
(|r|q)2u du

u
+O

(
L5/2q−1/144+ε

)
,

where

L(f × f, 1, u; ℓ, ℓ′) =
∑
n⩾1

λf (ℓn)λf (ℓ′n)

(ℓℓ′n2)1/2+u
,

(see (5.5)). We apply Mellin inversion to the sum over ℓ and ℓ’. For any polynomial

Q(X) =
∑
k

akX
k,

and any L > 1, we introduce the polynomial Q̂L(v) defined by

(6.19)
Lv

v
Q̂L(v) =

∫ L

0

Q

(
log(L/x)

logL

)
xv−1dx =

∑
k

ak
k!Lv

vk+1(logL)k
.

With this notation, the main term of Q(f,xL) equals

(6.20)
1

(2πi)3

∫
(2)

∫
(2)

∫
(2)

(L∞(f, 1/2 + u)2

L∞(f, 1/2)2
+
L∞(f, 3/2 + u)2

L∞(f, 3/2)2

)
×G(u)L(f, u, v, w)P̂L(v)P̂L(w)Lv+w(|r|q)2u du

u

dv

v

dw

w

where
(6.21)

L(f, u, v, w) =
∑∑
d,ℓ,ℓ′,n

(ℓ,ℓ′)=(dℓℓ′,r)=1

µf (dℓ)λf (ℓn)µf (dℓ′)λf (ℓ′n)

ℓ1+u+vℓ′1+u+wd1+v+wn1+2u
= L( 1

2 ,
1
2 ,

1
2 , u, v, w),

in terms of the auxiliary function introduced in (2.32).
Recall that T (s) is defined in (2.30) as T (s) = L(f⊗f, s). From Corollary 2.25,

we obtain the meromorphic continuation of this function to the domain

Reu,Re v,Rew > −η
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for some η > 0, given by

L(f, u, v, w) =
T (1 + 2u)T (1 + v + w)

T (1 + u+ v)T (1 + u+ w)
D(u, v, w)

= η3(u, v, w)
(u+ v)(u+ w)

u(v + w)
,

where D is an Euler product absolutely convergent for Reu,Re v,Rew ⩾ −η and
η3 is holomorphic and non-vanishing in a neighborhood of (u, v, w) = (0, 0, 0).

We shift the v, w-contours and then u-contour to the left of u = v = w = 0,
using again the standard zero-free regions for Rankin-Selberg L-functions (Propo-
sition 2.11) together with the rapid decay of Gamma-quotients. In this way we see
that the triple integral in (6.20) equals

(6.22) 2η3(0, 0, 0) res
u=v=w=0

P̂L(v)P̂L(w)Lv+w(|r|q)2u (u+ v)(u+ w)

u2(v + w)vw
+O

(
1

logL

)
.

We write

(6.23)
(u+ v)(u+ w)

u2(v + w)vw
=

1

(v + w)vw
+

1

uvw
+

1

u2(v + w)
.

Our plan is now to compute the residue coming from each of the three terms on the
right–hand side of (6.23). For this purpose, we gather in one lemma the contents
of [50, Lemma 9.1-Corollary 9.4]. We have

Lemma 6.5. For M > 1, P and Q polynomials, let P̂M and Q̂M be defined by
(6.19). We then have the equalities1

res
s=0

MsQ̂M (s)

s
= Q(1),

and

res
s1=s2=0

Ms1+s2Q̂M (s1)Q̂M (s2)

s1s2(s1 + s2)
= (logM)

(∫ 1

0

P (x)Q(x) dx
)
.

Up to terms of size O((logL)−1), the contribution from the first term of the
right side of (6.23) is zero while the contribution from the second term is equal to
2η3(0, 0, 0)P (1)2 = 2η3(0, 0, 0), as a consequence of the first part of Lemma 6.5.

To deal with the residue coming from the third term, we first note the equality
(recall that P (0) = a0 = 0)

vwP̂L(v)P̂L(w) =
1

log2 L

(∑
k⩾1

kak
(k − 1)!

(v logL)k−1

)(∑
k⩾1

kak
(k − 1)!

(w logL)k−1

)

=
P̂ ′
L(v)P̂ ′

L(w)

log2 L
,

1We take this opportunity to mention a misprint in the statement of [50, Lemma 9.4] (in
that paper the formula was used in its correct form): the formula should read

res
s1,s2=0

Ms1+s2 P̂M (s1)Q̂M (s2)

s1s2(s1 + s2)
=

(∫ 1

0
P (x)Q(x)dx

)
(logM).
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The second part of Lemma 6.5 implies that we have

2η3(0, 0, 0) res
u=v=w=0

P̂L(v)P̂L(w)Lv+w(|r|q)2u

u2(v + w)

= 2η3(0, 0, 0)
2 log q

logL

(∫ 1

0

P ′(x)2dx
)

+O
( 1

logL

)
.

Altogether, (6.22) equals

2η3(0, 0, 0)
(
P (1)2 +

2 log q

logL

∫ 1

0

P ′(x)2dx
)

+O
( 1

logL

)
.

Taking L = qλ with 0 < λ < 2/5 × 1/144 = 1/360 to deal with the error term in
(6.18) and P = X, it remains to recall (6.17) to obtain:

Proposition 6.6. Let xL be defined as above with P (X) = X, let 0 < λ <
1/360 be fixed. For any δ > 0, we have

Q(f ;xL) = 2η3(0, 0, 0)(1 + 2λ−1) +O(log−1 q)

and

1

φ∗(q)
|{χ (mod q) non-trivial | |L(f ⊗ χ, 1/2)| ⩾ (log q)−1, θ(f ⊗ χ) ∈ I}|

⩾
1

2η3(0, 0, 0)
· µ(I)2

1 + 2λ−1
+Of,δ,I

( 1

log1/2 q

)
+Of (δ1/2).

To conclude the proof of Theorem 1.8, it remains to observe that

(6.24) η3(0, 0, 0) ⩽ ζ(2).

Indeed, this follows from the factorization

η3(0, 0, 0) =
∏
p

Lp(f, 0, 0, 0)

where the local factors Lp(f, u, v, w) of L(f, u, v, w) are defined in (6.21) and satisfy

(6.25) Lp(f, 0, 0, 0) ⩽ (1 − p−2)−1 if p | r,
and

(6.26) Lp(f, 0, 0, 0) = 1 if p ∤ r.
To prove (6.25) and (6.26) we will use the following identities where p is arbitrary:

λf (p) = α+ β, where αβ = χr(p)

λf (pk) = αk + αk−1β + · · · + αβk−1 + βk

µf (1) = 1, µf (p) = −λf (p), µf (p2) = χr(p), µf (pk) = 0, k ⩾ 3.

In the case of (6.25) we see that the definition (6.21) and the condition p | r imply
the equality

Lp(f, 0, 0, 0) =
∑
n|p∞

λ2f (n)

n
=
∑
k⩾0

λ2kf (p)

pk
= (1 − λ2f (p)/p)−1.

It remains to appeal to (2.17) to complete the proof of (6.25).
The proof of (6.26) requires more attention. When p ∤ r we write the local

factor as



6.7. NON-VANISHING WITH MELLIN CONSTRAINTS 87

Lp(f, 0, 0, 0) =
∑∑
d,ℓ,ℓ′,n|p∞
(ℓ,ℓ′)=1

µf (dℓ)λf (ℓn)µf (dℓ′)λf (ℓ′n)

ℓℓ′dn

=
∑∑
δ,λ,λ′,ν⩾0
λ.λ′=0

µf (pδ+λ)λf (pλ+ν)µf (pδ+λ
′
)λf (pλ

′+ν)

pδ+λ+λ′+ν

= 2
∑∑
δ,λ,ν⩾0

µf (pδ+λ)λf (pλ+ν)µf (pδ)λf (pν)

pδ+λ+ν
−
∑∑
δ,ν⩾0

µf (pδ)2λf (pν)2

pδ+ν
.(6.27)

As a consequence of the vanishing of the function µf , the first multiple sum can be
restricted to the six subcases

(δ, λ) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0),

and the second one to the three subcases

δ = 0, 1, 2.

For instance, the contribution of the terms with (δ, λ) = (0, 0) to the first multiple
sum on the right–hand side of (6.27) can be expressed as

2
∑
ν⩾0

1

pν

(αν+1 − βν+1

α− β

)2
=

2

(α− β)2

( α2

1 − α2/p
+

β2

1 − β2/p
− 2

1 − 1/p

)
.

The other contributions are computed similarly. By straightforward computa-
tions (most easily performed by computer–assisted symbolic calculations) we obtain
(6.26). This completes the proof of Theorem 6.1.

6.6. Improvement of Theorem 1.8

We quickly explain Remark 1.9 (1) which asserts that the lower bound (log q)−1

in the statement of Theorem 1.8 and Theorem 6.1 can be improved in (log q)−α for
every α > 1/2. Indeed if, in the left–hand side of (6.1), we replace the condition
|L(f ⊗ χ, 1/2)| ⩾ (log q)−1 by |L(f ⊗ χ, 1/2)| ⩾ (log q)−α, then the coefficient
1/(q log q) in the error term of the right–hand side of the equality (6.3) has to be
replaced by 1/(q logα q). A direct application of Lemma 6.2 bounds this error term
by O((log q)1/2−α). In order to make the method work, we only require to this error
term to be negligible when compared with the main term L (f ;xL, χI) of (6.3) as q
tends to infinity. The order of magnitude of L (f ;xL, χI) is known by the equality
(6.16) and we are led to the sufficient condition α > 1/2.

6.7. Non-vanishing with Mellin constraints

The goal of this section is to generalize the positive proportion of non-vanishing
to incorporate certain conditions on χ, which are roughly of the form

t̃(χ) ∈ A,

where A ⊂ C and

t̃(χ) =
1
√
q

∑
x∈F×

q

χ(x)t(x)
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is the discrete Mellin transform of some suitable function t : F×
q → C. The functions

t that we can handle are some of the trace functions over Fq described in Section 3.4.
Let C ⩾ 1 be a real number and K be a compact Lie group. For each prime q

(large enough), fix a Mellin sheaf Fq over Fq as in Definition 3.10 with conductor
⩽ C, with Property EAGM and with equidistribution group K (see Definition 3.14).
Examples of such families, with K = SU2(C) and C = 5, are provided by the
sheaves related to Evans or Rosenzweig-Rudnick sums, see Example 3.17.

We denote by Xq the set of exceptional characters modulo q as described in
Section 3.5; we recall that its size is bounded independently of q. For a Dirichlet
character χ /∈ Xq, we denote by θq,χ ∈ K♯ (or simply θχ) the conjugacy class
associated to the Mellin transform of Fq at χ.

Theorem 6.7. With assumptions as above, let A ⊂ K♯ be a measurable set
with non-empty interior. Then

lim inf
q→+∞

1

φ∗(q)
|{χ /∈ Xq | |L(f ⊗ χ, 12 )| ⩾ (log q)−1 and θχ ∈ A}| > 0.

Proof. Let d ⩾ 1 be the order of the finite group of finite-order characters of
K. Let ϕ0 : K♯ → [0, 1] be a non-zero continuous function supported in an open
subset contained in A. Let further ϕ be a finite linear combination of characters
of irreducible representations of K such that ∥ϕ − ϕ0∥ < δ, where δ > 0 will be
specified later; such a function exists by the Peter-Weyl Theorem.

Fix q so that F = Fq is defined. Let L = qλ with

(6.28) 0 < λ < min
(1/2 − θ

2d
,

1

360

)
and consider the mollifier

M(f ⊗ χ,xL) =
∑
ℓ⩽L

xℓ√
ℓ
χ(ℓ)

as in Section 6.3 (see (6.6) and (6.7)). Let

L =
1

φ∗(q)

∑
χ/∈Xq

ϕ0(θχ)L(f ⊗ χ, 12 )M(f ⊗ χ,xL).

We then have

L = L′ +O((log q)−1/2)

by Lemma 6.2, where

L′ =
1

φ∗(q)

∑
χ/∈Xq

|L(f⊗χ,1/2)|⩾(log q)−1

ϕ0(θχ)L(f ⊗ χ, 12 )M(f ⊗ χ,xL).

On the other hand, we have

|L′|2 ⩽ NQ,

where

N =
1

φ∗(q)
|{χ /∈ Xq | |L(f ⊗ χ, 12 )| ⩾ (log q)−1 and θχ ∈ A}
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(since ϕ0(θχ) ̸= 0 implies that θχ ∈ A) and

Q =
1

φ∗(q)

∑
χ/∈Xq

|ϕ0(θχ)|2|L(f ⊗ χ, 12 )|2|M(f ⊗ χ,xL)|2

⩽
1

φ∗(q)

∑∗

χ (mod q)

|L(f ⊗ χ, 12 )|2|M(f ⊗ χ,xL)|2 ≪ 1

by Proposition 6.6 since λ < 1/360.
Hence it suffices to find a lower bound for L′. Let

L′′ =
1

φ∗(q)

∑
χ/∈Xq

ϕ(θχ)L(f ⊗ χ, 12 )M(f ⊗ χ,xL).

Then

|L′′ − L| ⩽ ∥ϕ− ϕ0∥∞ × 1

φ∗(q)

∑∗

χ (mod q)

|L(f ⊗ χ, 12 )M(f ⊗ χ,xL)| ≪ ∥ϕ− ϕ0∥∞

by Proposition 6.6 again. Write

(6.29) ϕ(x) =

∫
K

ϕ+
∑
π ̸=1

ϕ̂(π) tr(π(x))

where the sum ranges over a finite set of non-trivial irreducible representations of
K. Then, if δ is small enough, we have

ϕ̂(1) =

∫
K

ϕ > 0.

The equality (6.29) decomposes L′′ into

(6.30) L′′ = L′′
MT + L′′

ET,

where the main term is given by

L′′
MT =

ϕ̂(1)

φ∗(q)

∑
χ ̸∈Xq

L(f ⊗ χ, 12 )M(f ⊗ χ,xL)

=
ϕ̂(1)

φ∗(q)

∑
χ mod q

L(f ⊗ χ, 12 )M(f ⊗ χ,xL) +O(qλ/2−1/2+ε).

In the line above, the error term is deduced from the fact that |Xq| = O(1), from
the classical bound of L(f ⊗ χ, 12 ) and from (6.8). Finally by the computation in
Section 6.4 with k = 0, we obtain the equality

L′′
MT = ϕ̂(1)

(
1 + oλ(1)

)
,

as q tends to infinity provided that λ satisfies (6.28).
Returning to (6.30), we have the equality

(6.31) L′′
ET =

1

φ∗(q)

∑
π ̸=1

ϕ̂(π)
∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )M(f ⊗ χ,xL).
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Fix π ̸= 1 in the sum. We have

(6.32)
1

φ∗(q)

∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )M(f ⊗ χ,xL)

=
1

φ∗(q)

∑
ℓ⩽L

xℓ
ℓ1/2

∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )χ(ℓ).

We recall first that (6.8) implies

(6.33)
∑
ℓ⩽L

|xℓ|√
ℓ
≪ L1/2+ε

for any ε > 0 and, for the end of the proof, we distinguish three cases.

Case 1. Let d be the order of the finite group of characters of finite order of
K. There exists a such that 1 ⩽ a ⩽ q − 1 and such that tr(π(θχ)) = χ(a) for
all χ /∈ Xq, and moreover a is a non-trivial d-th root of unity modulo q since π
is a non-trivial character of finite order of K. This is the “punctual” case (2) of
Theorem 3.15. By Theorem 4.1, we have

1

φ∗(q)

∑
χ/∈Xq

L(f ⊗ χ, 12 )χ(aℓ) =
λf ((aℓ)q)

((aℓ)q)1/2
+O(q−1/8+ε)

for any ε > 0.
In particular that there are at most d− 1 possible values of a. Let a be such a

root of unity. Write b = aq ∈ [1, q − 1] with the notation as in Theorem 4.1. Since

bd ≡ 1 (mod q), and b ̸= 1, we have b ⩾ q1/d.
We write m = (ℓ)q = (1 + αq)/ℓ for some α ⩾ 0. We then have

0 ⩽ α =
ℓm− 1

q
<
ℓm

q
< ℓ.

Write further bα = δℓ+ ϱ where 0 ⩽ ϱ < ℓ. Then

bm = b
1 + αq

ℓ
=
b+ ϱq

ℓ
+ δq,

and since

0 <
b+ ϱq

ℓ
<
q

ℓ
+
(

1 − 1

ℓ

)
q = q,

we get

(aℓ)q = (bm)q =
b+ ϱq

ℓ
⩾
b

ℓ
⩾ q1/d−λ ⩾ q1/(2d).

Therefore the contribution of this representation to the first moment is

≪ q1/(2d)(−1/2+θ)
∑
ℓ⩽L

|xℓ|
ℓ1/2

≪ qλ/2+1/(2d)(−1/2+θ)+ε → 0

as q → +∞ by (6.28).

If we are not in Case 1, we denote by π(Fq) the Mellin sheaf obtained from
Theorem 3.15. Two more cases appear.

Case 2. Assume that there exists a such that 1 ⩽ a ⩽ q − 1 and π(Fq) is
geometrically isomorphic to [x 7→ a/x]∗Kℓ2, so that tr(π(θχ)) is proportional to
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ε−2
χ χ(a), with the proportionality constant of modulus 1 (see Lemma 3.11). Then,

up to such a constant of modulus 1, the sum (6.32) is equal to∑
ℓ⩽L

xℓ
ℓ1/2

1

φ∗(q)

∑
χ/∈Xq

L(f ⊗ χ, 12 )ε−2
χ χ(aℓ) =

∑
ℓ⩽L

xℓ
ℓ1/2

λf ((aℓr)q)

(aℓr)
1/2
q

+O(L1/2q−1/8+ε)

for any ε > 0 by Corollary 4.2, where m = (aℓr)q is the representative between
1 and q of the residue class of aℓr modulo q. If there doesn’t exist ℓ0 such that
1 ⩽ ℓ0 ⩽ L and (aℓ0r)q ⩽ L2, then, by (6.33), we get∑

ℓ⩽L

xℓ
ℓ1/2

λf ((aℓr)q)

(aℓr)
1/2
q

≪ 1

L1−θ

∑
ℓ⩽L

|xℓ|
ℓ1/2

≪ L−1/2+θ.

If there does exist ℓ0 such that 1 ⩽ ℓ0 ⩽ L and 1 ⩽ m0 = (aℓ0r)q ⩽ L2, then we
get

a ≡ m0ℓ0r.

We can write

a =
m0 + α0q

ℓ0r

for some α0 ⩾ 0. If α0 = 0, then we have ℓ0r | m0 and a ⩽ L2. Then (aℓr)q = aℓr
for all ℓ ⩽ L, if q is large enough. Thus∑

ℓ⩽L

xℓ
ℓ1/2

λf ((aℓr)q)

(aℓr)
1/2
q

=
∑
ℓ⩽L

xℓ
ℓ1/2

λf (aℓr)

(aℓr)1/2
≪ exp(−c

√
logL)

for some c > 0, by Lemma 6.4.
Now assume that α0 ⩾ 1. Let ℓ ⩽ L. Then

aℓr =
m0ℓ

ℓ0
+
α0qℓ

ℓ0
.

If ℓ0 divides α0ℓ, it follows that ℓ0 | m0ℓ and

(aℓr)q =
m0ℓ

ℓ0
.

Otherwise, write ℓ = βℓ0 + δ where 1 ⩽ δ < ℓ0. We get

aℓr = βm0 +
m0δ

ℓ0
+ βα0q +

α0δq

ℓ0
= βm0 +

δ(m0 + α0q)

ℓ0
+ α0βq.

Now write α0δ = γℓ0 + ϱ with 0 ⩽ ϱ < ℓ0. We derive

aℓr = βm0 +
δm0 + ϱq

ℓ0
+ γq + α0βq.

We have ϱ ̸= 0, since otherwise ℓ0 | α0ℓ. Since ϱ < ℓ0, for q large enough, we have

βm0 +
δm0 + ϱq

ℓ0
⩽
(

1 − 1

ℓ0

)
q +O(L3) < q,

and hence

(aℓr)q = βm0 +
δm0 + ϱq

ℓ0
⩾
δm0 + ϱq

ℓ0
⩾

q

ℓ0
⩾ qL−1

We conclude that∑
ℓ⩽L

xℓ
ℓ1/2

λf ((aℓr)q)

(aℓr)
1/2
q

=
∑
ℓ⩽L
ℓ0|α0ℓ

xℓ
ℓ1/2

λf (m0ℓ/ℓ0)

(m0ℓ/ℓ0)1/2
+O

(L1−θ+ε

q1/2−θ

)
.
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Write α0 = α1α2 where α1 | ℓ∞0 . Define ℓ1 = ℓ0/(ℓ0, α1). Then ℓ0 | α0ℓ if and only
if ℓ1 | ℓ. Moreover, since this condition holds for ℓ = ℓ1, we have ℓ0 | m0ℓ1, which
implies that (ℓ0, α1) | m0. Let m1 = m0/(ℓ0, α1). Then, by applying Lemma 6.4,
we have ∑

ℓ⩽L

xℓ
ℓ1/2

λf ((aℓr)q)

(aℓr)
1/2
q

=
∑

ℓ⩽L/ℓ1

xℓℓ1
(ℓℓ1)1/2

λf (m1ℓ)

(m1ℓ)1/2
+O

(L1−θ+ε

q1/2−θ

)
≪ ℓ

−1/2
1 exp(−c

√
log(L/ℓ1)) → 0

as q → +∞.

Case 3. In the final case, let tπ(x) be the trace function of Theorem 3.15, so

that t̃π(χ) = tr(π(θχ)) for χ /∈ Xq. Since we are not in Case 2, the sheaf π(Fq) is
not of the type of Case (2) of Lemma 3.11.

For each individual character χ modulo q for every positive ε, we have the
bound

|t̃π(χ)L(f ⊗ χ, 12 )χ(ℓ)| ≪f,π,ε q
3/8+ε

by the subconvexity estimate of Blomer and Harcos [5, Th. 2] since |t̃π(χ)| ≪ 1.
Hence we can add the characters in Xq to the sum and obtain

1

φ∗(q)

∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )χ(ℓ)

=
1

φ∗(q)

∑∗

χ (mod q)

t̃π(χ)L(f ⊗ χ, 12 )χ(ℓ) +O(q−5/8+ε).

Since we are in Case (1) in Lemma 3.11, we deduce by Theorem 4.4,

1

φ∗(q)

∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )χ(ℓ) ≪ q−1/8+ε

for any ε > 0, where the implied constant depends on f , C, π and ε. Using these
bounds in (6.32) we deduce that

1

φ∗(q)

∑
χ/∈Xq

tr(π(θχ))L(f ⊗ χ, 12 )M(f ⊗ χ,xL) ≪f,π,ε L
1/2+εq−1/8+ε → 0

as q → +∞.
Collecting the bounds from all the three cases above, we conclude (see (6.31))

that under assumption (6.28)
L′′

ET → 0

as q → +∞. If we choose δ > 0 small enough, depending only on ϕ0, it follows
from (6.30) that

lim inf
q→+∞

|L′′| > 0,

hence the result. □



CHAPTER 7

Extreme values of twisted L-functions

7.1. Introduction

In this chapter we prove Theorems 1.11 and 1.12, which establish the existence
of very large values of twisted L-functions. We fix f as in Section 1.2.

More precisely, we will prove the following refined statements:

Theorem 7.1. Let I ⊆ R/πZ be an interval of positive measure. Then, for
every sufficiently large prime modulus q, there exist primitive characters χ of con-
ductor q such that∣∣L(f ⊗ χ, 12

)∣∣ ⩾ exp

(( 1√
8

+ o(1)
)√ log q

log log q

)
and θ(f ⊗ χ) ∈ I.

In fact, for every 3 ⩽ V ⩽ 3
14

√
log q/ log log q, we have∣∣{χ mod q |

∣∣L(f ⊗ χ, 12
)∣∣ ⩾ eV and θ(f ⊗ χ) ∈ I

}∣∣
⩾

φ(q)

log2 q
exp

(
− (12 + o(1))

V 2

log
(

log q/(16V 2 log V )
)).

We can also consider a product of twisted L-functions of two different cusp
forms.

Theorem 7.2. Let g ̸= f be a fixed primitive cusp of conductor r′ and trivial
central character, holomorphic or not. There exists a constant C > 0 such that
for every sufficiently large prime modulus q, there exists a primitive character χ of
conductor q that satisfies∣∣L(f ⊗ χ, 12

)
L
(
g ⊗ χ, 12

)∣∣ ⩾ exp

((
C + o(1)

)√ log q

log log q

)
.

Remark 7.3. The constant C depends on f and g and is effective. In particular,
“generically”, we can take C = (6

√
10)−1 (see Remark 7.20, which explains what

is meant by generic). Note that we assumed that g ̸= f , since otherwise the first
theorem gives a stronger result.

We prove Theorems 7.1 and 7.2 using Soundararajan’s method of resonators.
We draw inspiration for Theorem 7.1 from Hough’s paper [34]; however, our results
are more modest (in that we are unable to detect angles in R/2πZ) due to our
inability to evaluate second moments twisted by powers of Gauß sums and more in
line with the previously available results on extreme values with angular restrictions.

We develop the method of resonators in a form ready for use in general arith-
metic situations in Section 7.2. Section 7.3 combines this input with our eval-
uations of moments of twisted L-functions to prove asymptotics for moments of

93
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L-functions twisted by resonator and amplifier polynomials and we then use the
results of Section 2.4 to evaluate the resulting main terms and prove the existence
of large L-values. Theorem 7.1 is proved in Section 7.4, while Theorem 7.2 is proved
in Section 7.5.

7.2. Background on the resonator polynomial

The resonator method, originally introduced by Soundararajan [80], is a flexible
tool that has been used in many contexts including (for extreme values in the t-
aspect) the entire Selberg class (see, for example, [1]), subject as usual to the
Ramanujan conjecture. The method itself is by now standard and relies on a
specific multiplicative arithmetic function, the “resonator sequence”, which can
take slightly different forms depending on the range of large values aimed for.

We refer the reader to Section 1.1.5 in the introduction for a general description
of the resonator method for a family of forms f ∈ FN . This relies on the comparison
of the sizes of quantities

Q1 = EN (|R(f)|2) and Q2 = EN

(
|R(f)|2L(f, 12 )

)
,

with the resonator polynomial R(f) constructed from the “resonator sequence” α(ℓ)
and the arithmetic factors such as λf (ℓ) or their variations. Following custom, in
this chapter we denote such a resonator polynomial by R(f) =

∑
n⩽N r(n)λf (n).

(To avoid confusion, we remind the reader that our specific Theorems 7.1 and 7.2
concern the family of twisted forms f ⊗χ which are naturally indexed by primitive
characters χ modulo q, and the above averages are over χ, while f , g are fixed
forms; in particular a resonator such as R(χ) =

∑
n⩽N r(n)λf (n)χ(n) is used.)

In each application, to obtain large values in a family of L-functions (or other
arithmetic objects), two steps are required.

(1) The first step is analysis of averages in the family that to some degree
isolates the terms contributing to the main term (usually the diagonal
terms). Opening the sum in R(f), evaluating the averages in Q1 and Q2

asymptotically involves first executing averages of (products of) arithmetic
factors and twisted moments of L-functions, or variations of these, in the
given family.

(2) The second step is application of the resonator method, with the specific
resonator constructed so as to reflect the main term contributions (which
typically involve arithmetic factors such as, in the context of Theorems 7.1
and 7.2, Hecke eigenvalues of the fixed form(s)). In this step, the sum over
the resonator polynomial is executed, leading in the main terms to sums of
the form (7.6) and (7.7) below, and then to a lower bound on the quotient
|Q2|/Q1 as in Lemma 7.5 below. Owing to the multiplicative nature of
the resonator, optimizing this lower bound is seen to heavily depend on
average information on the arithmetic factors over the primes, such as
(7.2) and (7.3) below and their variations.

Step (1) is the key arithmetic input and heavily depends on the family of
L-functions considered. In this section, we focus on step (2), the application of
the resonator method, and make two points: first, one only needs a fairly limited
amount of information about the arithmetic factors, and, second, the machinery
of the resonator method can be developed in abstract, with no reference to the
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specific family and relying only on fairly general assumptions about the arithmetic
factors. While probably known to the experts, these facts do not seem to be in the
literature in a ready-to-use form and we take the opportunity of this memoir to
expose them here.

Soundararajan [80] introduced two variants of the resonator sequence, with
each being more efficient depending on whether one is aiming for the highest possible
values afforded by the resonator method or for many values of slightly smaller size.
We develop both variants abstractly in the two sections below.

7.2.1. Extreme values range. In the extreme values range, we use a res-
onator polynomial similar to that used by Soundararajan [80] and Hough [34],
which involves the multiplicative function r(n) supported on square-free numbers
and defined at primes by

(7.1) r(p) =


L

√
p log p

, L2 ⩽ p ⩽ exp(log2 L),

0, otherwise,

where L is a large parameter.
In this section, we prove the two key claims for the application of the resonator

method in the extreme values range, Lemmas 7.4 and 7.5.
We consider two non-negative multiplicative arithmetic functions ω, ω′ satisfy-

ing the following conditions.
There exists aω, a

′
ω′ > 0, 0 < δ, δ′ ⩽ 1, such that for all Y ⩾ 2X ⩾ 4, we have∑

X⩽p⩽Y

ω(p)

p log p
⩽ aω

(
1

logX
− 1

log Y

)
+Oω

(
1

log2X

)
,(7.2)

∑
X⩽p⩽Y

ω′(p)

p log p
⩾ a′ω′

(
1

logX
− 1

log Y

)
+Oω′

(
1

log2X

)
,(7.3)

∑
p⩽X

ω(p)δω′(p) ≪ω,ω′,δ X(logX)δ,
∑
p⩽X

ω′(p)1+δ
′
≪ω′,δ′ X

1+δ′/2.(7.4)

For the first lemma, we actually require only the following very generous upper
bound:

(7.5)
∑
p⩽X

ω′(p)

p
≪ω′

e
√
logX

logX
,

which a consequence of (7.4).
In the sequel the implied constant may depend on ω, ω′ although we will not

always mention explicitly such dependency.

Lemma 7.4. Let the arithmetic function r(n) be as in (7.1) and let ω(n) ⩾ 0 be
a multiplicative arithmetic function satisfying (7.2). Then, for every N such that

L ⩽
√
a−1
ω logN log logN , we have

(7.6)
∑
n⩽N

r(n)2ω(n) =
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p)

)
,



96 7. EXTREME VALUES OF TWISTED L-FUNCTIONS

and if, additionally, ω′(n) ⩾ 0 is a multiplicative arithmetic function satisfying
(7.5), then
(7.7)∑

nm⩽N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

=
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
.

Here the notation o⋆(1) is a shortcut to

OC
(
N−C/(log logN)3

)
for any C > 0.

Lemma 7.5. Let the arithmetic function r(n) be as in (7.1) and let ω(n), ω′(n) ⩾
0 be multiplicative arithmetic functions satisfying (7.3) and (7.4) (for some 0 <
δ, δ′ ⩽ 1.) Then∏

p

(
1 +

r(p)ω′(p)
√
p
(
1 + r(p)2ω(p)

))≫ exp

((
a′ω′ + o⋆(1)

) L

2 logL

)
,

Here the notation o⋆(1) is a shortcut to

O
(
1/(logL)min(δ,δ′)

)
.

The relevance of Lemma 7.5 is clear in the light of Lemma 7.4: it gives a lower
bound for the quotient of the right-hand sides of (7.7) and (7.6).

Remarks. (1) The resonator method as originally formulated is a first
moment method, but it can be adapted for applications to products of
L-functions such as our Theorem 7.2. For clarity, we prove the corre-
sponding variation of (7.7) separately in Lemma 7.6 below, while (7.6)
and Lemma 7.5 are ready to use in their current form.

(2) In the original setup of the resonator method to obtain large values of
ζ( 1

2 +it) [80], one takes ω = ω′ = 1, in which case aω = a′ω′ = 1. Constant
sequences ω and ω′ are similarly appropriate for some other families (such
as the family of quadratic characters or the family of holomorphic cusp
forms of large weight in [80]). As a point of reference, in a situation like
Theorems 7.1 and 7.2 where the family consists of twists of a fixed cusp
form f , choices that could be of interest include ω(n) = 1, ω′(n) = |λf (n)|
and ω(n) = ω′(n) = |λf (n)|2; we discuss the specific choices for that
application in Section 7.4.1. For now we stress that all of our conditions
involve only averages of ω(p), ω′(p) over at least dyadic intervals (and
in fact we only apply them in intervals much longer than dyadic). The
conditions (7.2) and (7.3) in particular are only non-empty for Y ≫ X
with a sufficiently large implied constant.

(3) The error terms in (7.2)– (7.4) are one choice that works, and other choices
are possible; for example, any oω′(1/ logX) in (7.3) would suffice with an
adjustment in the explicit o⋆-terms in Lemma 7.5, and (7.2) can similarly
be relaxed with a possibly adjusted size of L (compare the critical com-
putation (7.8) below). Often, it is possible to obtain (7.2) and (7.3) with
no error term whatsoever by just changing the corresponding constant to
aω + ε and a′ω′ − ε; this need not harm the final extreme value result since
one can always take ε→ 0 at the very end.
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(4) Finally, the conditions (7.2) and (7.3) can be written simply as∑
p∼X

ω(p) ≪ X

logX
≪
∑
p∼X

ω′(p)

if one is not concerned about the precise values of the constants aω and
a′ω′ ; however, these constants have a direct impact on the exponent in the
final result (such as our Theorem 7.1), so they can be of significance.

Proof of Lemma 7.4. First, we prove (7.6) by following [34, 80]. Using
Rankin’s trick with a suitable (soon to be chosen) α > 0, we have that∑

n>N

r(n)2ω(n) ⩽ N−α
∞∑
n=1

nαr(n)2ω(n) ⩽ N−α
∏
p

(
1 + pαr(p)2ω(p)

)
.

Moreover, for 0 ⩽ α≪ 1/ log2 L,

log
∏
p

(
1 + pαr(p)2ω(p)

)
− log

∏
p

(
1 + r(p)2ω(p)

)
=
∑
p

log

(
1 +

(pα − 1)r(p)2ω(p)

1 + r(p)2ω(p)

)
⩽ α

∑
p

log p · r(p)2ω(p) +O

(
α2
∑
p

log2 p · r(p)2ω(p)

)
Using the definition of the resonator sequence r(p), (7.2), and summation by parts,
this quantity is seen to be

= αL2
∑

L2⩽p⩽exp(log2 L)

ω(p)

p log p
+O

(
α2L2

∑
L2⩽p⩽exp(log2 L)

ω(p)

p

)

⩽ αaω · L2

2 logL
+Oω

(
α

L2

log2 L
+ α2L2 log logL

)
,

For 0 ⩽ α ≪ω 1/(log2 L log logL), the second error term may be absorbed in

Oω(αL2/ log2 L). Given that L ⩽
√
a−1
ω logN log logN , this estimate is further

(7.8)

= αaω · a−1
ω logN log logN

log logN + log log logN +Oω(1)
+Oω

(
α

logN

log logN

)
= α

(
logN − logN log log logN

log logN
+Oω

(
logN

log logN

))
.

Combining everything, we have that∑
n>N

r(n)2ω(n)

⩽
∏
p

(
1 + r(p)2ω(p)

)
exp

(
−α logN log log logN

log logN
+Oω

(
α

logN

log logN

))
.

Picking, say, α = c/(log2 L log logL) = (4c + o(1))/((log logN)2 log log logN), we
thus have ∑

n>N

r(n)2ω(n) ⩽
∏
p

(
1 + r(p)2ω(p)

)
exp

(
− C logN

(log logN)3

)
,
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for an arbitrary C > 0 (simply by choosing an appropriate c > 0). In particular,∑
n⩽N

r(n)2ω(n) =
∏
p

(
1 + r(p)2ω(p)

)
−
∑
n>N

r(n)2ω(n)

=
(
1 +O

(
N−C/(log logN)3

))∏
p

(
1 + r(p)2ω(p)

)
,

completing the proof of (7.6).
The proof of (7.7) is analogous. First of all,∑

n,m⩾1
(n,m)=1

r(n)2ω(n) · r(m)ω′(m)√
m

=
∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
.

Further, for every α > 0,∑
nm>N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

⩽ N−α
∑
n,m⩾1
(n,m)=1

(
r(n)2ω(n)nα

)(
r(m)ω′(m)mα−1/2

)
= N−α

∏
p

(
1 + r(p)2ω(p)pα + r(p)ω′(p)pα−1/2

)
.

Further, for every 0 ⩽ α≪ 1/ log2 L,

log
∏
p

(
1 + r(p)2ω(p)pα + r(p)ω′(p)pα−1/2

)
− log

∏
p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)

=
∑
p

log

(
1 +

(pα − 1)
(
r(p)2ω(p) + r(p)ω′(p)/

√
p
)

1 +
(
r(p)2ω(p) + r(p)ω′(p)/

√
p
) )

⩽ α
∑
p

log p

(
r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
+O

(
α2
∑
p

log2 p

(
r(p)2ω(p) +

r(p)
√
p
ω′(p)

))
.

Using the definition of the resonator sequence r(p), (7.2), (7.5), and summation by
parts, this quantity is seen to be

= αL2
∑

L2⩽p⩽exp(log2 L)

ω(p)

p log p
+ αL

∑
L2⩽p⩽exp(log2 L)

ω′(p)

p

+O

(
α2L2

∑
L2⩽p⩽exp(log2 L)

ω(p)

p
+ α2L

∑
L⩽p⩽exp(log2 L)

ω′(p)

p
log p

)

⩽ αaω · L2

2 logL
+Oω,ω′

(
α

L2

log2 L
+ α2L2 log logL

)
,
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As before, for 0 ⩽ α ≪ω,ω′ 1/(log2 L log logL), the second term is absorbed in the

first one, and with L ⩽
√
a−1
ω logN log logN , the above is

= α

(
logN − logN log log logN

log logN
+Oω,ω′

(
logN

log logN

))
.

As above, with α = c/(log2 L log logL) for a suitable c > 0, this leads to the
combined estimate∑

nm>N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

⩽
∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
exp

(
− C logN

(log logN)3

)
for an arbitrary C > 0. As a consequence,∑

nm⩽N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

=
(
1 +O

(
N−1/(log logN)3

))∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
,

proving (7.7). □

Proof of Lemma 7.5. Let

L :=
∏
p

(
1 +

r(p)ω′(p)
√
p
(
1 + r(p)2ω(p)

)).
Using 1/(1+x) = 1+Oδ(x

δ) and log(1+x) = x+Oδ′(x
1+δ′), which hold uniformly

for all x > 0 (including for trivial reasons possibly large values of x),

logL =
∑
p

[
r(p)ω′(p)

√
p

+Oδ

(
r(p)1+2δω(p)δω′(p)

√
p

)
+Oδ′

(
r(p)1+δ

′
ω′(p)1+δ

′

p(1+δ′)/2

)]
.

Using (7.3), (7.4), and summation by parts, we find that∑
p

r(p)ω′(p)
√
p

= L
∑

L2⩽p⩽exp(log2 L)

ω′(p)

p log p
⩾ a′ω′

L

2 logL
+Oω′

(
L

log2 L

)
,

as well as∑
p

r(p)1+2δω(p)δω′(p)
√
p

= L1+2δ
∑

L2⩽p⩽exp(log2 L)

ω(p)δω′(p)

p1+δ log1+2δ p
≪ω,ω′,δ

L

(logL)1+δ
,

∑
p

r(p)1+δ
′
ω′(p)1+δ

′

p(1+δ′)/2
= L1+δ′

∑
L2⩽p⩽exp(log2 L)

ω′(p)1+δ
′

(p log p)1+δ′
≪ω′,δ′

L

(logL)1+δ′
.

Combining everything, we obtain the statement of Lemma 7.5. □

Finally we prove a variation of (7.7) that is useful in applying the method of
resonators to products of several L-functions.
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Lemma 7.6. Let the arithmetic function r(n) be as in (7.1), let ω(n) ⩾ 0 be a
multiplicative arithmetic function satisfying (7.2), and let ω′

1(n), . . . , ω′
s(n) ⩾ 0 be

multiplicative arithmetic functions each satisfying (7.5). Then, for every N ⩾ 20

such that L ⩽
√
a−1
ω logN log logN ,

(7.9)

∑
n⩽N

r(n)2ω(n)
∑

· · ·
∑

m1,...,ms⩽N/n
(n,mi)=1, (mi,mj)=1

s∏
i=1

r(mi)ω
′
i(mi)√
mi

=
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p

s∑
i=1

ω′
i(p)

)
,

with o⋆(1) = OC,ω
(
N−C/(log logN)3

)
for an arbitrary C > 0.

Proof. The proof is a straightforward adaptation of the proof of (7.7). Using
Rankin’s trick, we have that∑

n⩽N

r(n)2ω(n)
∑

· · ·
∑

m1,...,ms⩽N/n
(n,mi)=1, (mi,mj)=1

s∏
i=1

r(mi)ω
′
i(mi)√
mi

=
∑∑

· · ·
∑

n,m1,...,ms⩾1
(n,mi)=1, (mi,mj)=1

r(n)2ω(n)

s∏
i=1

r(mi)ω
′
i(mi)√
mi

+O

(
N−α

∑∑
· · ·
∑

n,m1,...,ns⩾1
(n,mi)=1, (mi,mj)=1

r(n)2ω(n)nα
s∏
i=1

r(mi)ω
′
i(mi)m

α−1/2
i

)
.

Using multiplicativity, the above expression equals∏
p

(
1+r(p)2ω(p)+

r(p)ω′(p)
√
p

)
+O

(
N−α

∏
p

(
1+r(p)2ω(p)pα+r(p)ω′(p)pα−1/2

))
,

with ω′(p) =
∑s
i=1 ω

′
i(p). From this point on, we proceed as in the proof of (7.7) in

Lemma 7.4 and conclude that, with the choice α = c/(log2 L log logL) for a suitable

c > 0, the ratio of the error term to the main term is O
(
N−C/(log logN)3

)
; this in

turn proves the lemma. □

7.2.2. Many high values range. Sections 7.2.1 and 7.2.2 prepare ground in
general for two different applications of Soundararajan’s resonator method (which
are demonstrated in the two claims of Theorem 7.1). The first of these, subject of
section 7.2.1, is to show the existence of some extremely high values of L-functions
in a family. The second is to prove that many L-functions in the family attain
high values well beyond the generic size (conjecturally in the sense of any power
average) and only slightly below the extreme values range. Such results require a
bit different resonator sequence, whose application we develop in abstract here.

Let X0 > 0 be a large parameter (namely sufficiently large so that (7.11)–(7.14)
and (7.15) below hold). Let A > 0 be arbitrary, and let

A0 = max(A,X0).
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Similarly as in [80], let r(n) be a multiplicative arithmetic function supported on
square-free numbers and defined at primes by

(7.10) r(p) =


A
√
p
, A2

0 ⩽ p ⩽ N c/A2
0 ,

0, otherwise,

where N > 0 is a large parameter, and c > 0 is a suitable constant (its value will
be controlled by (1) in Lemma 7.7). Note that this resonator (which is optimized
for the purpose of exhibiting many large values in a family of L-functions) differs
somewhat from the one in (7.1) and that it directly depends on N . Also note that

the sequence r(n) can only be non-empty for A0 ⩽
√

(c+ o⋆(1)) logN/ log logN ,
with o⋆(1) = O(log log logN/ log logN). Although the sequence r(n) is different
from the one in (7.1), we keep the same notation since some of the evaluations take
literally the same form.

As in Section 7.2.1, the sequence r(n) will be combined with arithmetic factors
ω(n) and ω′(n) in the particular application of the resonator method. We make the
following assumptions on these sequences for all Y ⩾ 2X, X ⩾ X0:∑

p⩽X

ω(p) log p

p
⩽ bω logX +Oω(1),

∑
p⩽X

ω′(p) log p

p
= Oω′(logX),(7.11)

∑
X⩽p⩽Y

ω′(p)

p
⩾ b′ω′ log

log Y

logX
+Oω′

(
1

logX

)
,(7.12)

∑
p⩽X

ω(p)ω′(p) = Oω,ω′

(
X

logX

)
,

∑
p⩽X

ω′(p)2 = Oω′

(
X3/2

logX

)
,(7.13)

∑
X⩽p⩽Y

ω(p)

p
⩽ bω2 log

log Y

logX
+Oω

(
1

logX

)
.(7.14)

We remark that, of the two upper bounds in (7.11), the first one easily follows from
(7.14) but perhaps with a suboptimal value of bω, while the second one would follow
from a sharpened form of the second condition in (7.13) Oω′(X/ logX), in which
the latter would be typically expected. We keep (7.11) to get the tightest constants
and minimal conditions.

Analogously as in Lemmas 7.4 and 7.5, the following statement summarizes the
resonator-related inputs into obtaining a large number of high values.

Lemma 7.7. Let the arithmetic function r(n) be as in (7.10). Then:

(1) If multiplicative arithmetic functions ω(n), ω′(n) ⩾ 0 satisfy (7.11), then
the basic evaluations (7.6) and (7.7) hold for every

(7.15) c < b−1
ω , X0 ≫ω,ω′ (1 − cbω)−1, 0 < A≪ω,ω′,c

√
logN,

with o⋆(1) = O
(

exp(−δ̃A2
0)
)
for some fixed δ̃ > 0 depending on ω, ω′, c

only.
(2) If multiplicative arithmetic functions ω(n), ω′(n) ⩾ 0 satisfy (7.12) and

(7.13), then∏
p

(
1 +

r(p)ω′(p)
√
p
(
1 + r(p)2ω(p)

))≫ exp

(
Ab′ω′ log

c logN

2A2
0 logA0

+ o⋆(A)

)
,

with o⋆(A) = Oω,ω′(A/ logA0).
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(3) For every multiplicative function a(n) and ω(n) = |a(n)|2, we have for
every integer K ⩾ 1 and N ⩽ q1/K

1

φ(q)

∑
χ mod q

∣∣∣∣ ∑
n⩽N

r(n)a(n)χ(n)

∣∣∣∣2K ⩽
∏
p

(
1 + r(p)2ω(p)

)K2

.

If ω(n) satisfies (7.14), then

∏
p

(
1 + r(p)2ω(p)

)
≪ exp

(
A2bω2 log

c logN

2A2
0 logA0

+Oω

(
A2

logA0

))
.

Proof. Claim (1) is proved analogously as Lemma 7.4. We prove the basic
evaluation (7.7) by using Rankin’s trick as in the proof of Lemma 7.4. Critically,
for every 0 ⩽ α≪ A2

0/ logN , we estimate using (7.11)

∑
p

log

(
1 +

(pα − 1)
(
r(p)2ω(p) + r(p)ω′(p)/

√
p
)

1 +
(
r(p)2ω(p) + r(p)ω′(p)/

√
p
) )

⩽ α
∑
p

log p

(
r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
+O

(
α2
∑
p

log2 p

(
r(p)2ω(p) +

r(p)
√
p
ω′(p)

))
= αA2

∑
A2

0⩽p⩽N
c/A2

0

ω(p) log p

p
+ αA

∑
A2

0⩽p⩽N
c/A2

0

ω′(p) log p

p

+O

(
α2A2

∑
A2

0⩽p⩽N
c/A2

0

ω(p) log2 p

p
+ α2A

∑
A2

0⩽p⩽N
c/A2

0

ω′(p) log2 p

p

)

⩽ cbω
αA2

A2
0

logN +Oω,ω′

(
αA2 +

αA

A2
0

logN +
α2A2

A4
0

log2N

)
.

Recall that c < b−1
ω . Choosing α = δω,ω′,cA

2
0/ logN for a sufficiently small δω,ω′,c >

0, in light of our conditions (7.15) the above quantity is seen to be ⩽ (1−δ′)α logN
for some (fixed and depending on ω, ω′, c only) δ′ > 0. Thus, upon application of
Rankin’s trick,

∑
nm>N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

⩽ N−δ′α
∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
,

which in turn suffices to prove (7.7) in claim (1). The basic evaluation (7.6) follows
analogously simply by omitting the missing terms in the above argument.

In claim (2), we simply compute using (7.12), (7.13), and summation by parts,

∑
p

r(p)ω′(p)
√
p

= A
∑

A2
0⩽p⩽N

c/A2
0

ω′(p)

p
⩾ Ab′ω′ log

c logN

2A2
0 logA0

+Oω′

(
A

logA0

)
,
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as well as ∑
p

r(p)3ω(p)ω′(p)
√
p

= A3
∑

A2
0⩽p⩽N

c/A2
0

ω(p)ω′(p)

p2
≪ω,ω′

A3/A2
0

logA0
,

∑
p

r(p)2ω′(p)2

p
= A2

∑
A2

0⩽p⩽N
c/A2

0

ω′(p)2

p2
≪ω′

A2/A0

logA0
.

Finally we prove the claim (3). By orthogonality, the condition N ⩽ q1/K ,
multiplicativity, and the fact that r(n) is supported on square-free integers, we
have that

1

φ(q)

∑
χ mod q

∣∣∣∣ ∑
n⩽N

r(n)a(n)χ(n)

∣∣∣∣2K
=

∑
n1,...,n2K⩽N

n1···nK=nK+1···n2K

r(n1) · · · r(n2K)a(n1) · · · a(nK)a(nK+1) · · · a(n2K)

⩽
∏
p

( K∑
k=0

(
K

k

)2

r(p)2kω(p)k
)

⩽
∏
p

( K2∑
k=0

(
K2

k

)
r(p)2kω(p)k

)
=
∏
p

(
1 + r(p)2ω(p)

)K2

.

Using (7.14), we easily find that

log
∏
p

(
1 + r(p)2ω(p)

)
⩽
∑
p

r(p)2ω(p) = A2
∑

A2
0⩽p⩽N

c/A2
0

ω(p)

p

⩽ A2bω2 log
c logN

2A2
0 logA0

+Oω

(
A2

logA0

)
.

This completes the proof of Lemma 7.7. □

7.3. Evaluation of the moments

In addition to the setup of the resonator method, the crucial input for an
application of this method is the evaluation of the first moment twisted by the
square of the resonator polynomial. In this section, we complete this and associated
steps for the family of twisted L-functions L(f ⊗ χ, s).

7.3.1. Moment evaluations. In this section, we present evaluations of the
twisted first and second moments in the form in which they will be used in the
application of the resonator method.

Lemma 7.8. There is an absolute constant A ⩾ 0 such that for any N < q, any
integers 1 ⩽ n1, n2 ⩽ N and any κ ∈ Z, the twisted first moment L(f ;n1r

κn̄2, 2κ)
defined in (4.1) satisfies

(7.16) L(f ;n1r
κn̄2, 2κ) = δκ=0,

n2=n1m

λf (m)√
m

+ δκ=−1,
n1=n2m

λf (m)√
m

+Of,ε,A

(
(|κ| + 1)Aqε

(
q−1/8 + (q/N)θ−1/2

))
.
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In the first term of the right-hand side the equality n2 = n1m means that the term
is zero unless n1 divides n2 (and the quotient is defined as m) and similarly for the
second term.

Proof. By Corollary 4.2,

L(f ;n1r
κn̄2, 2κ) = Of,ε,A

(
(|κ| + 1)Aq−1/8+ε

)
unless κ = 0 or −1, in which case the additional terms

(7.17) δκ=0
λf (a)√

a
or δκ=−1ε(f)

λf (b)√
b

appear, where

a = (n1n̄2)q

is the representative in [1, q] of the congruence class n1n̄2 modulo q, and

b = (n1n̄2)q

is the representative of the congruence class n1n̄2 modulo q.
Assume that κ = 0. Then the congruence a ≡ n1n̄2 (mod q) implies either that

n2 = n1a (so n1 | n2) or that n1a > q. In the second case, we have a > q/N , and
the first term of (7.17) is ≪ (q/N)−(1/2−θ+ε) for any ε > 0.

Assume that κ = −1. Then the congruence b ≡ n1n̄2 (mod q) implies similarly
either that n1 = n2b, or that b > q/N , in which case the second term of (7.17) is
≪ (q/N)−(1/2−θ+ε) for any ε > 0. The lemma follows. □

Consider now two distinct primitive cusp forms f and g of signed level r and
r′ respectively, with trivial central character. Let q be a prime not dividing rr′.
We refer to Section 5.2 for the definition of some of the quantities below. We recall
Convention 1.3 concerning the signed level of cusp forms. As in Chapter 5, we write
δ = (r, r′) ⩾ 1 and |r| = ϱδ, |r′| = ϱ′δ.

We define arithmetic functions λ∗f and λ∗g such that they are supported on
squarefree integers and satisfy

(7.18) λ∗f (p) = λf (p) − λg(p)/p and λ∗g(p) = λg(p) − λf (p)/p.

We note that these functions depend on both f and g, and that λ∗f and λ∗g
satisfy (2.22), i.e.

λ∗f (p) = λf (p) +O(pθ−1), λ∗g(p) = λg(p) +O(pθ−1).

In particular, Corollary 2.17 applies to them.

Lemma 7.9. For any integers 1 ⩽ ℓ, ℓ′ ⩽ L ⩽ q1/2 such that ℓℓ′ is squarefree
and coprime to rr′, the twisted second moment Q±(f, g; ℓ, ℓ′) defined in Sections 5.1
and 5.2 satisfies

(7.19) Q±(f, g; ℓ, ℓ′) = MT±(f, g; ℓ, ℓ′) +O
(
L3/2q−1/144

)
,

where

MT±(f, g; ℓ, ℓ′) =
1

2
L∗(f ⊗ g, 1)

(λ∗f (ℓ′)λ∗g(ℓ)

(ℓℓ′)1/2

+ ε(f)ε(g)
λf (ϱ)λg(ϱ

′)λ∗f (ℓ)λ∗g(ℓ
′)

(ϱϱ′ℓℓ′)1/2

)
+O

(
q−1/2+ε

)
.
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Proof. By the argument in Section 5.2 (see also Proposition 5.2), we obtain
the asymptotic formula (7.19) with main term MT±(f, g; ℓ, ℓ′) given by (5.4), (5.6),
(5.7), (5.8), namely

MT±(f, g; ℓ, ℓ′) =
1

2

1

2iπ

∫
(2)

L±
∞( 1

2 + u)
D(1 + 2u; ℓ′, ℓ)

(ℓℓ′)1/2+u
G(u)(q2|rr′|)u du

u

+
ε(f)ε(g)λf (ϱ)λg(ϱ

′)

2(ϱϱ′)1/2
1

2iπ

∫
(2)

L±
∞( 1

2 + u)
D(1 + 2u; ℓ, ℓ′)

(ℓℓ′)1/2+u
G(u)(q2|rr′|)u du

u
,

where

L±
∞(s) =

L∞(f,±, s)
L∞(f,±, 12 )

L∞(g,±, s)
L∞(g,±, 12 )

and D(s; ℓ, ℓ′) is the Dirichlet series

D(s; ℓ, ℓ′) =
∑
n⩾1

λf (ℓn)λg(ℓ
′n)

ns
,

which is absolutely convergent for Re(s) > 1.
Since ℓ and ℓ′ are squarefree and coprime, we have by multiplicativity the

formula

D(s; ℓ, ℓ′) =
∏
p∤ℓℓ′

L∗
p(f ⊗ g, s)

∏
p|ℓ

Ap(f, g; s)
∏
p|ℓ′

Ap(g, f ; s)

where

Ap(f, g; s) =
∑
k⩾0

λf (pk+1)λg(p
k)

pks
.

Using the Hecke relation, we obtain the relation

Ap(f, g; s) = λf (p)L∗
p(f ⊗ g, s) − 1

ps
Ap(g, f ; s).

Applying it twice, this leads to the formula

Ap(f, g; s) = (1 − p−2s)−1
(
λf (p) − λg(p)

ps

)
L∗
p(f ⊗ g, s).

It follows that

D(s; ℓ, ℓ′) = L∗(f ⊗ g, s)
∏
p|ℓℓ′

(1 − p−2s)−1
∏
p|ℓ

(
λf (p) − λg(p)

ps

)∏
p|ℓ′

(
λg(p) −

λf (p)

ps

)
.

Now, moving the contour of integration to Reu = − 1
4 + 1

2ε, and recalling that
f ̸= g, so that L∗(f ⊗ g, s) is holomorphic inside the contour, we obtain by the
residue theorem the formula

MT±(f, g; ℓ, ℓ′) =
1

2
L∗(f ⊗ g, 1)

(λ∗f (ℓ′)λ∗g(ℓ)

(ℓℓ′)1/2

+ ε(f)ε(g)
λf (ϱ)λg(ϱ

′)λ∗f (ℓ)λ∗g(ℓ
′)

(ϱϱ′ℓℓ′)1/2

)
+O

(
q−1/2+ε

)
for any ε > 0, after picking the simple pole at u = 0. □
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7.3.2. Asymptotics involving the resonator polynomial. Let r(n) be
one of the following two resonator sequences:

(7.20)
Let L be a large parameter, and let r(n) be as in (7.1), or

Let N be a large parameter, let A, c > 0, and let r(n) be as in (7.10).

The values of L, A, c will eventually be restricted by the conditions in Section 7.2,
but for now we leave them general. We also set, in each case respectively,

(7.21)
o⋆(1) = OC

(
N−C/(log logN)3

)
with an arbitrary C > 0, or

o⋆(1) = Oδ(e
−δA2

) for some suitable fixed δ > 0, respectively.

Let af (n) be a multiplicative arithmetic function supported on square-free pos-
itive integers such that

(7.22) sgn af (n) = sgnλf (n) whenever af (n)λf (n) ̸= 0.

For example, we could pick af (n) = µ2(n)λf (n), or af (n) = µ2(n) sgnλf (n). For
practical purposes, we only need to be concerned with defining af (n) for n such
that r(n) ̸= 0. Define

(7.23) ω(n) = |af (n)|2, ω′(n) = af (n)λf (n);

in view of (7.22), ω, ω′ are non-negative multiplicative functions.
For every Dirichlet character χ modulo q, we define our resonator polynomial

by

(7.24) R(χ) =
∑
n⩽N

r(n)af (n)χ(n).

We also recall the definition of the argument (cf. (2.4))

(7.25) eiθ(f⊗χ) :=

{
L
(
f ⊗ χ, 12

)
/
∣∣L(f ⊗ χ, 12

)∣∣, L
(
f ⊗ χ, 12

)
̸= 0,

1, else.

and the formula

(7.26) e2iθ(f⊗χ) = ε(f ⊗ χ) = ε(f)χ(r)ε2χ.

To exhibit the desired large values of L(f ⊗ χ, 12 ) with θ(f ⊗ χ) in desired
angular segments, we will evaluate the following two character averages.

Lemma 7.10. Let q be a prime modulus, let N ⩽ q, let r(n) be as in (7.20),
let af (n) be an arbitrary multiplicative function supported on square-free integers
satisfying (7.22), and, for every primitive character χ of conductor q, let R(χ) be
as in (7.24).

Assume that r(n) and the multiplicative function ω(n) = |af (n)|2 satisfy the
basic evaluation (7.6). Then, with o⋆(1) as in (7.21),

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2 =
(
1 + o⋆(1) +O(N/q)

)∏
p

(
1 + r(p)2ω(p)

)
.
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Proof. By orthogonality of characters and the Cauchy–Schwarz inequality,

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2 =
1

φ∗(q)

∑
χ mod q

∣∣∣∣ ∑
n⩽N

r(n)af (n)χ(n)

∣∣∣∣2

− 1

φ∗(q)

∣∣∣∣ ∑
n⩽N

r(n)af (n)

∣∣∣∣2 =
(
1 +O(N/q)

) ∑
n⩽N

r(n)2ω(n),

since N ⩽ q. Applying the basic evaluation (7.6), we have that∑
n⩽N

r(n)2ω(n) =
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p)

)
,

and this in turn yields Lemma 7.10. □

In the next lemma, we consider functions ψ : R/2πZ → C which are π-anti-
periodic, namely that satisfy ψ(θ+ π) = −ψ(θ) for all θ. The Fourier expansion of
such a function has the form

ψ(θ) =
∑
κ∈Z

ψ̂(2κ+ 1)ei(2κ+1)θ.

We set

I(ψ) :=
1

π

∫
R/2π

ψ(θ) cos(θ)dθ = ψ̂(1) + ψ̂(−1).

If ψ is smooth, then for any integer B ⩾ 0, we denote the B-Sobolev norm of ψ by

∥ψ∥B =
∑
κ∈Z

(|κ| + 1)B |ψ̂(1 + 2κ)|.

Lemma 7.11. Let q be a prime modulus, let N < q, let r(n) be as in (7.20), and
let af (n) be an arbitrary multiplicative function supported on square-free integers
satisfying (7.22). For every primitive character χ of conductor q, let R(χ) be as in
(7.24).

Let ψ be a smooth π-anti-periodic function.
Assume that r(n) and the multiplicative functions ω, ω′ given in (7.23) satisfy

the basic evaluation (7.7). Then, for a sufficiently large absolute B ⩾ 0 and with
o⋆(1) as in (7.21), we have

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2
∣∣L(f ⊗ χ, 12

)∣∣ψ(θ(f ⊗ χ))

= I(ψ)
(
1 + o⋆(1)

)
·
∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
+Of,ε,B

(
qεN

(
q−1/8 + (q/N)θ−1/2

)
∥ψ∥B ·

∏
p

(
1 + r(p)2ω(p)

))
.
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Proof. The quantity to evaluate is equal to∑
n1,n2⩽N

r(n1)r(n2)af (n1)af (n2)
∑
κ∈Z

ψ̂(2κ+ 1)

× 1

φ∗(q)

∑∗

χ mod q

L
(
f ⊗ χ, 12

)
ei2κθ(f⊗χ)χ(n1n̄2)

=
∑

n1,n2⩽N

r(n1)r(n2)af (n1)af (n2)
∑
κ∈Z

ψ̂(2κ+ 1)ε(f)κL(f ;n1r
κn̄2, 2κ)

by (7.26).
Using (7.16), (7.23), and keeping in mind that the resonator sequence r(n) is

supported on square-free integers, there exists an constant B ⩾ 0 such that this is
in turn equal to

(ψ̂(1) + ψ̂(−1))
∑

nm⩽N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

+Of,ε,A

(
qε
(
q−1/8 + (q/N)θ−1/2

)
∥ψ∥B

( ∑
n⩽N

r(n)|af (n)|
)2)

.

Applying the basic evaluation (7.7) to the double (n,m)-sum, we have that∑
nm⩽N
(n,m)=1

r(n)2r(m)ω(n)ω′(m)√
m

=
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)
√
p
ω′(p)

)
.

Finally, by the Cauchy–Schwarz inequality,

(7.27)

( ∑
n⩽N

r(n)|af (n)|
)2

⩽ N
∑
n⩽N

r(n)2ω(n) ≪ N
∏
p

(
1 + r(p)2ω(p)

)
.

Lemma 7.11 follows by combining these estimates. □

We now turn our attention to large values of the product of twisted L-functions
of two distinct primitive cusp forms f and g of signed levels r and r′. We use the
same notation as before, including ϱ and ϱ′.

We begin with an auxiliary lemma.

Lemma 7.12. With notation as above, there exists a squarefree integer u ⩾ 1
coprime to rr′ such that

λg(u) + ε(f)ε(g)
λf (ϱ)λg(ϱ

′)λf (u)

(ϱϱ′)1/2
̸= 0.

Proof. If ϱ or ϱ′ is not 1, then this holds for u = 1 (see Proposition 5.2).
Otherwise, we need to find u ⩾ 1 squarefree and coprime to rr′ such that

λg(u) + ε(f)ε(g)λf (u) ̸= 0,

and the existence of a prime u with this property follows from Rankin-Selberg
theory and multiplicity one. □
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Remark 7.13. We need to involve u in the resonator method, because otherwise
it could be the case that

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
is zero because of the cancellation between a character and its conjugate, although
the individual terms have no reason to vanish, or their product to be small (see
the last part of Theorem 5.1). In that case, the resonator method would not apply.
However, if u ̸= 1, we consider instead

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
χ(u)

where the symmetry between χ and χ̄ is broken, leading to a non-trivial sum.

We now fix an integer u as given by Lemma 7.12.
We assume given a multiplicative function ϖ(n), supported on squarefree pos-

itive integers coprime to urr′, such that

sgnϖ(n) = sgnλf (n) = sgnλg(n) whenever ϖ(n)λf (n)λg(n) ̸= 0.

This gives rise to the non-negative multiplicative functions ω, ω′
1, ω

′
2 and the res-

onator polynomial R(χ), defined by

ω(n) = |ϖ(n)|2, ω′
1(n) = ϖ(n)λ∗f (n), ω′

2(n) = ϖ(n)λ∗g(n),(7.28)

R(χ) =
∑
n⩽N

r(n)ϖ(n)χ(n),(7.29)

where λ∗f (n) and λ∗g(n) are the multiplicative functions defined before Lemma 7.9.

Lemma 7.14. With notation as above, assume that N ⩽ q1/2. Assume that
r(n) and the multiplicative functions ω, ω′

1, ω
′
2 defined in (7.28) satisfy the basic

evaluation (7.9). Then, with ω′(p) = ω′
1(p) +ω′

2(p) and with o⋆(1) as in (7.21), we
have

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
χ(u)

= L∗(f ⊗ g, 1)
(
ν + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)
+O

(
N5/2q−1/144

∏
p

(
1 + r(p)2ω(p)

))
,

where ν ̸= 0.
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Proof. Applying the definition or R(χ) and Lemma 7.9, it follows that

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
=

1

φ∗(q)

∑
n1,n2⩽N

r(n1)r(n2)ϖ(n1)ϖ(n2)
∑∗

χ mod q

L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
χ(un1n̄2)

=
1√
u
L∗(f ⊗ g, 1)

(
X + ε(f)ε(g)Y

)
+O

(
N3/2q−1/144

( ∑
n⩽N

r(n)|ϖ(n)|
)2)

where

X = λg(u)
∑

n1,n2⩽N

r(n1)r(n2)ϖ(n1)ϖ(n2)
λ∗f (n2)λ∗g(n1)

(n1n2)1/2

and

Y = λf (u)
λf (ϱ)λg(ϱ

′)

(ϱϱ′)1/2

∑
n1,n2⩽N

r(n1)r(n2)ϖ(n1)ϖ(n2)
λ∗f (n1)λ∗g(n2)

(n1n2)1/2

otherwise. Using the Cauchy–Schwarz inequality and the multiplicativity of ω(n)
to estimate the resulting sum by a product over primes (as in (7.27)), we see that
the error term is

≪ N5/2q−1/144
∏
p

(
1 + r(p)2ω(p)

)
.

We write

X = λg(u)
∑
n⩽N

|r(n)|2|ϖ(n)|2

∑∑
m1,m2⩽N/n

(n,m1)=(n,m2)=(m1,m2)=1

r(m1)ϖ(m1)λ∗g(m1)r(m2)ϖ(m2)λ∗f (m2)

(m1m2)1/2

and similarly for Y . By the basic evaluation (7.9), we obtain

X = λg(u)
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)
,

and similarly

Y = λf (u)
λf (ϱ)λg(ϱ

′)

(ϱϱ′)1/2
(
1 + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)
,

(since the function ω′ plays the same role in both cases). The result follows, with
ν ̸= 0 by the defining property of u given by Lemma 7.12. □

7.3.3. Asymptotics involving an amplifier. In lower ranges for V in The-
orem 7.1, we will be using an amplifier instead of a resonator polynomial. In this
section, we prove moment asymptotics that will be useful in this treatment.

We may write

(7.30)
∞∑
ℓ=1

µ2(ℓ)
|λf (ℓ)|2

ℓs
= L(f ⊗ f, s)Gf (s),
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where Gf (s) is a certain Euler product absolutely convergent for Re(s) > 1
2 . The

Dirichlet series on the left thus has a simple pole at s = 1, and we write

(7.31) cf = res
s=1

L(f ⊗ f, s) ·Gf (1) > 0.

In view of (7.30) and (7.31), we have the asymptotic

(7.32)
∑
ℓ⩽L

µ2(ℓ)
|λf (ℓ)|2

ℓ
= cf logL+Of (1).

Let L ⩽ q and

(7.33) Af (χ) =
∑
ℓ⩽L

λf (ℓ)√
ℓ
µ2(ℓ)χ(ℓ).

We will prove the following two claims.

Lemma 7.15. Let q be a prime modulus, let L ⩽ q, and, for every primitive
character χ of conductor q, let Af (χ) be as in (7.33). Then, with cf > 0 as in
(7.31),

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|2 = cf logL+Of (1), for L ⩽ q;(7.34)

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|4 ⩽ c4f log4 L+Of (log3 L), for L ⩽ q1/2.(7.35)

Proof. By orthogonality, asymptotic (7.32), and the Cauchy–Schwarz in-
equality,

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|2 =
∑
ℓ⩽L

µ2(ℓ)
|λf (ℓ)|2

ℓ
− 1

φ∗(q)

∣∣∣∣∑
ℓ⩽L

µ2(ℓ)
λf (ℓ)√

ℓ

∣∣∣∣2
= cf logL+Of (1).

Similarly,

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|4 = M4(f, L) − 1

φ∗(q)

∣∣∣∣∑
ℓ⩽L

µ2(ℓ)
λf (ℓ)√

ℓ

∣∣∣∣4
= M4(f, L) +Of

(
log4 L/q

)
,

where

|M4(f, L)| =

∣∣∣∣ ∑
ℓ1ℓ2=ℓ3ℓ4
ℓi⩽L

µ2(ℓ1)µ2(ℓ2)µ2(ℓ3)µ2(ℓ4)
λf (ℓ1)λf (ℓ2)λf (ℓ3)λf (ℓ4)√

ℓ1ℓ2ℓ3ℓ4

∣∣∣∣
⩽

(∑
ℓ⩽L

µ2(ℓ)
|λf (ℓ)|2

ℓ

)4

= c4f log4 L+Of (log3 L). □

Lemma 7.16. Let ψ : R/2πZ → C be a π-anti-periodic smooth function. Let
q be a prime modulus. Let 0 < θ < 1

2 be an admissible exponent toward the

Ramanujan–Petersson conjecture for f , and let 0 < η < 1
4 be such that

(7.36) (1 − η)(θ − 1
2 ) + 1

2η < 0.
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Let L = qη, and, for every primitive character χ of conductor q, let Af (χ) be as in
(7.33), and let θ(f ⊗ χ) be as in (7.25). Then, with cf > 0 as in (7.31),

1

φ∗(q)

∑∗

χ mod q

∣∣L( 12 , f ⊗ χ
)∣∣Af (χ)ψ(θ(f ⊗ χ)) = cf ψ̂(1) logL+Of,η(1).

Regarding condition (7.36), we remark that any θ < 1
2 is sufficient to obtain

this inequality for some η > 0, which is all we really need. On the other hand,
θ < 1

3 is known, so any η < 1
4 will be acceptable for this condition.

Proof. Using the evaluation (7.17), we have similarly as in Lemma 7.11

1

φ∗(q)

∑∗

χ mod q

∣∣L( 12 , f ⊗ χ
)∣∣Af (χ)ψ(θ(f ⊗ χ))

=
∑
ℓ⩽L

λf (ℓ)

ℓ1/2
µ2(ℓ)

∑
κ∈Z

ψ̂(1 + 2κ)ε(f)κL(f ; ℓ̄rκ, 2κ)

= ψ̂(1)
∑
ℓ⩽L

µ2(ℓ)
|λf (ℓ)|2

ℓ
+ ψ̂(−1)ε(f)

+Of,ε,A

(
qε
(
q−1/8 + (q/L)θ−1/2

)
∥ψ∥A

(∑
ℓ⩽L

|λf (ℓ)|√
ℓ

))
.

Using the asymptotic (7.32) and keeping in mind the condition (7.36), this equals

cf ψ̂(1) logL+Of,ε

(
1 + qε

(
q−1/8 + (q/L)θ−1/2

)
L1/2

)
= cf ψ̂(1) logL+Of,η(1). □

7.4. Extreme values with angular constraints

By comparing the main terms in Lemmas 7.10 and 7.11, we see that if N is not
too large compared to q, we can obtain values of L(f⊗χ, 12 ) with ψ(θ(f⊗χ)) > 0 as
large as the quotient of these main terms. This quotient has a lower bound provided
by Lemma 7.5 or Lemma 7.7 (2) (depending on which r(n) is used), which in turn
depends on the arithmetic sequence af (n) used in the construction of the resonator
polynomial R(χ) in (7.24), subject to the sign condition (7.22).

In this section, we construct an essentially optimal sequence af (n) for exhibiting
extreme values of L(f ⊗ χ, 12 ), verify that it is allowable for Lemmas 7.4 and 7.5,
and then use it to prove the extreme values claim of Theorem 7.1.

7.4.1. Choice of the resonator polynomial. For the purpose of exhibiting
extreme values of L(f ⊗ χ, 12 ) in Theorem 7.1, we use the resonator sequence r(n)
given by (7.1) that is studied in Section 7.2.1. Construction of the resonator poly-
nomial R(χ) rests on multiplicative arithmetic factors af (n), subject to the sign
condition (7.22). From these, we defined (see (7.23))

(7.37) ω(n) = |af (n)|2, ω′(n) = af (n)λf (n)

for square-free n.
There are a priori many reasonable choices of arithmetic factors af (n) satis-

fying the sign condition (7.22). For a moment, we put aside the issue of actually
verifying conditions (7.2)–(7.4), and consider the question of optimizing the choice
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of ω(n) and ω′(n). To get the highest possible lower bound in Lemma 7.5 for a
given N (whose allowable size is in turn dictated by computations unrelated to the
specific application of the resonator method), one chooses

L =

√
a−1
ω logN log logN

in Lemma 7.4 and thus obtains in Lemma 7.5 a lower bound of the shape

exp

(( a′ω′√
aω

+ o(1)
)√ logN

log logN

)
.

Maximizing the ration a′ω′/
√
aω (keeping in mind the conditions (7.2), (7.3), and

the definition (7.37)) is tantamount to asymptotically maximizing the ratio

(7.38)

∣∣∣∣ ∑
X⩽p⩽Y

af (p)λf (p)

p log p

∣∣∣∣2/ ∑
X⩽p⩽Y

|af (p)|2

p log p
.

By the Cauchy–Schwarz inequality, we see that the choice

(7.39) af (n) = µ2(n)λf (n), ω(n) = ω′(n) = µ2(n)|λf (n)|2

is actually essentially optimal.
It remains to verify that conditions (7.2)–(7.4) are satisfied for this choice. This

is the content of the following lemma, which is a special case of Corollary 2.15.

Lemma 7.17. For any primitive cusp form f with trivial central character, we
have for 4 ⩽ 2X ⩽ Y ∑

p⩽X

|λf (p)|2 log p

p
= logX +Of (1),

∑
X⩽p⩽Y

|λf (p)|2

p log p
=

(
1

logX
− 1

log Y

)
+Of

(
1

log2X

)
,

∑
X⩽p⩽Y

|λf (p)|2

p
= log

( log Y

logX

)
+Of

(
1

logX

)
,

∑
p⩽X

|λf (p)|4 ≪f
X

logX
.

This lemma shows that the multiplicative arithmetic functions

ω(n) = ω′(n) = µ2(n)|λf (n)|2

do satisfy the conditions (7.2)–(7.4) and (7.11)–(7.14) with δ = δ′ = 1 and

aω = a′ω′ = 1, bω = bω2 = b′ω = 1.

7.4.2. The extreme values claim in Theorem 7.1. In this section, we
prove the first part of Theorem 7.1, which is concerned with extreme values of
L(f ⊗ χ, 12 ).

We use a resonator polynomial (7.24), with the resonator sequence as in (7.1),
and arithmetic factors af (n) as in (7.39). According to the previous section, the
resulting multiplicative arithmetic functions

ω(n) = ω′(n) = µ2(n)|λf (n)|2
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satisfy the conditions (7.2)–(7.4) with aω = a′ω′ = 1. According to Lemma 7.4, ω
and ω′ satisfy the basic evaluations (7.6) and (7.7).

As in Lemma 7.11, choose an arbitrary smooth π-anti-periodic function ψ :
R/2π → C such that

(7.40) suppψ ∩
]
−π

2 ,
π
2

[
⊆ I, ψ|I ⩾ 0,

∫
I

ψ(θ) dθ = 1.

In particular, we have then I(ψ) > 0.
Fix an arbitrary δ > 0, and apply Lemmas 7.10 and 7.11 with

N = q1/8−δ

and L =
√

logN log logN . Using the available estimate θ < 5
14 , we have that

N(q/N)θ−1/2 = q(θ−1/2)(7/8+δ)+1/8−δ < q−(8/7)δ < q−δ. Therefore, Lemmas 7.10
and 7.11 give

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2 ∼
∏
p

(
1 + r(p)2|λf (p)|2

)
,

and

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2
∣∣L(f ⊗ χ, 12

)∣∣ψ(θ(f ⊗ χ))

= I(ψ)
(
1 + o(1)) ·

∏
p

(
1 + r(p)2|λf (p)|2 +

r(p)
√
p
|λf (p)|2

)
+O

(
q−δ+ε ·

∏
p

(
1 + r(p)2|λf (p)|2

))
∼ I(ψ)L

∏
p

(
1 + r(p)2|λf (p)|2

)
,

with implicit constants depending on f , δ, ε, and ψ, and

L =
∏
p

(
1 +

r(p)|λf (p)|2
√
p
(
1 + r(p)2|λf (p)|2

)).
It follows that, for sufficiently large q, there exists at least one primitive character
χ of conductor q such that ψ(θ(f ⊗ χ)) > 0 (and so a fortiori θ(f ⊗ χ) ∈ I) and∣∣L(f ⊗ χ, 12

)∣∣≫ L.

Finally, applying Lemma 7.5, and keeping in mind the present choices

L =
√

logN log logN

and N = q1/8−δ (made below (7.40)) and a′ω′ = 1, we obtain a lower bound

L ≫ exp

((
1 + o⋆(1)

) L

2 logL

)
=

((
1√
8
− δ + o⋆(1)

)√ log q

log log q

)
,

with o⋆(1) = O(log log log q/ log log q). The omega-statement of Theorem 7.1 fol-
lows since we may take δ > 0 as small as we please.
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7.4.3. Many large values. In this section, we prove the second part of The-
orem 7.1 about the number of primitive characters χ of conductor q such that
|L(f ⊗ χ, 12 )| ⩾ eV for a sizable V . The argument is an adaptation of that in
[80]; here we focus on the specific requirements on the sequences ω(n) and ω′(n)
and on the few aspects that require some modification (such as the treatment of
moderately large V ).

Let cf > 0 be as in (7.31), and let 0 < η < 1
4 satisfy the condition (7.36).

Choose an arbitrary smooth π-anti-periodic function ψ : R/2πZ → C as in (7.40).

We have then, |ψ̂(1)| > 0. Let c̃ = c̃f,ψ,η > 0 be an arbitrary constant such that

(7.41) c̃ <
√
cfη

|ψ̂(1)|
2∥ψ∥∞

.

We consider two cases, depending on V .

Case 1. The range V ⩽ 1
2 log log q + log c̃. In this range, the second part of

Theorem 7.1 states that |L(f ⊗ χ, 12 )| achieves moderately high values for a very
large number of χ. This is in a sense a complementary range; instead of the method
of resonators, we prove Theorem 7.1 by a comparison of moments, including the
amplified first moment as follows.

Let L = qη, and, for every primitive character χ of conductor q, let the amplifier
Af (χ) be as in (7.33). Then, according to Lemma 7.16,

I1,f,ψ,L(q) =
1

φ∗(q)

∑∗

χ mod q

∣∣L( 1
2 , f ⊗ χ

)∣∣Af (χ)ψ(θ(f ⊗ χ))

= cfηψ̂(1) log q +Of,ψ,η(1).

Note that, in this range, eV ⩽ c̃
√

log q. We split the sum

I1,f,g,L(q) = I01,f,ψ,L(q) + I+1,f,ψ,L(q)

where I01,f,ψ,L restricts to those χ such that |L(f⊗χ, 12 )| ⩽ c̃
√

log q. By the Cauchy–
Schwarz inequality, we have

|I01,f,ψ,L(q)| ⩽ c̃
√

log q∥ψ∥∞
1

φ∗(q)

∑∗

|L(f⊗χ,1/2)|⩽c̃
√
log q

|Af (χ)|

⩽ c̃
√

log q∥ψ∥∞
(

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|2
)1/2

.

Using (7.34) of Lemma 7.15 and recalling that c̃ satisfies (7.41), we deduce that

|I01,f,ψ,L(q)| ⩽ c̃
√
cfη∥ψ∥∞ log q +Of,ψ(1)

⩽ 1
2cf |ψ̂(1)|η log q ⩽ 1

2 |I1,f,ψ,L(q)|

for sufficiently large q. This shows that, for sufficiently large q,

(7.42) |I+1,f,ψ,L(q)| ⩾ 1
2 |I1,f,ψ,L(q)| = 1

2cfη|ψ̂(1)| log q +Of,ψ,η(1).
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On the other hand, using Hölder’s inequality, we estimate

(7.43) |I+1,f,ψ,L(q)| ⩽ ∥ψ∥∞
1

φ∗(q)

∑∗

|L(f⊗χ,1/2)|>c̃
√
log q

g(θ(f⊗χ)) ̸=0

∣∣L(f ⊗ χ, 12
)∣∣|Af (χ)|

⩽ ∥ψ∥∞
(

1

φ∗(q)

∑∗

χ mod q

∣∣L(f ⊗ χ, 12
)∣∣2)1/2(

1

φ∗(q)

∑∗

χ mod q

|Af (χ)|4
)1/4

×
(

1

φ∗(q)

∣∣∣{χ (mod q) |
∣∣L( 12 , f ⊗ χ

)∣∣ > c̃
√

log q, θ(f ⊗ χ) ∈ I
}∣∣∣)1/4

.

Combining (7.42), (7.43), the second moment evaluation of Theorem 5.1, and
(7.35) of Lemma 7.15, we conclude that, for sufficiently large q,∣∣∣{χ (mod q) |

∣∣L(f ⊗ χ, 12
)∣∣ > c̃

√
log q, θ(f ⊗ χ) ∈ I

}∣∣∣≫f,ψ,I
φ∗(q)

log2 q
,

which more than suffices for the second part of Theorem 7.1 for

3 ⩽ V ⩽ 1
2 log log q + log c̃

and any η < 1
4 .

Remark 7.18. In place of Hölder’s inequality above, one could use the Cauchy–
Schwarz inequality and then estimate from above the amplified second moment for
sufficiently small η > 0; this would yield a lower bound of the same form save for
the numerical values of various constants. We chose the above treatment which is
softer and perhaps more universally applicable.

Case 2. The range 1
2 log log q + log c̃ ⩽ V ⩽ 3

14

√
log q/ log log q. In this

principal range, we use the resonator method to prove Theorem 7.1, proceeding
analogously as in [80]. We will be using a resonator sequence r(n) of type (7.10),
as studied in Section 7.2.2. For the arithmetic factors af (n) in the resonator poly-
nomial R(χ), we make the same choice as in (7.39), namely

(7.44) af (n) = µ2λf (n), ω(n) = ω′(n) = µ2(n)|λf (n)|2,
which satisfies the sign condition (7.22). As in Section 7.4.1, this choice is essentially
optimal: an inspection of (7.48) shows that in generic ranges it allows a choice
A ≈ V/(b′ω′ logQ) and eventually to the lower bound

≫f,ψ,c1 φ
∗(q) exp

(
−12(bω2/b

′2
ω′)
(
V 2/ logQ

))
in (7.51). Minimizing the constant in this estimate is tantamount to asymptotically
maximizing the same ratio (7.38) as in Section 7.4.1, and by the Cauchy–Schwarz
inequality leads to the same asymptotically optimal choice (7.44).

We have verified after Lemma 7.17 that the choice (7.44) satisfies conditions
(7.11)–(7.14) with bω = bω2 = b′ω′ = 1.

Fix an arbitrary δ > 0 (which will be chosen suitably small under (7.48)), and
as in Section 7.4.2 let

N = q1/8−δ.

Using the available estimate θ < 5
14 , we have that N(q/N)θ−1/2 < q−δ as in Section

7.4.2. Further, set

c < 1 and X0 ≫f (1 − c)−1, A≪f,c

√
logN as in (7.15),
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where A will be suitably chosen later, c < 1 will be chosen suitably close to 1
under (7.48), and we additionally take X0 sufficiently large (depending on f , c

only) so that the term o⋆(1) = O
(
e−δ̃X

2
0

)
in Lemma 7.7(1) is ⩽ 1

10 . With these
choices, let the resonator sequence r(n) be as in (7.10) and the arithmetic factors
af (n) and the resulting multiplicative functions ω(n), ω′(n) be as in (7.44), and
define the resonator polynomial R(χ) as in (7.24). Let

M1(q) =
1

φ∗(q)

∑∗

χ mod q

|R(χ)|2,

M2,f,ψ(q) =
1

φ∗(q)

∑∗

χ mod q

|R(χ)|2
∣∣L(f ⊗ χ, 12

)∣∣ψ(θ(f ⊗ χ)).

According to Lemma 7.7(1), the basic evaluations (7.6) and (7.7) hold. Lem-
mas 7.10 and 7.11 then give

(7.45)
M1(q) =

(
1 + o⋆(1) +O(q−7/8)

)
·NW,

M2,f,ψ(q) =
[
I(ψ)(1 + o⋆(1))A +Of,ψ,ε(q

−δ+ε)
]
·NW,

where o⋆(1) = O
(
eδ̃A

2
0

)
and, according to Lemma 7.7(2) and (3),

(7.46)

NW =
∏
p

(
1 + r(p)2|λf (p)|2

)
⩽ exp

(
A2 log

c logN

2A2
0 logA0

+Of

(
A2

logA0

))
,

A =
∏
p

(
1 +

r(p)|λf (p)|2
√
p(1 + r(p)2|λf (p)|2)

)
⩾ exp

(
A log

c logN

2A2
0 logA0

+Of

(
A

logA0

))
.

In particular, since our choice of X0 ensures that o⋆(1) ⩽ 1
10 in (7.45), we have that

for sufficiently large q,

(7.47) 4
5I(ψ)AM1(q) ⩽M2,f,ψ(q).

Let Cf denote an implicit constant sufficient for both asymptotics in (7.46). In
the following claim, we now specify our choice of the parameter A.

Claim. With suitable δ > 0 and 0 < c < 1, for sufficiently large q we can
choose A≪f,c

√
logN satisfying

(7.48)

A ⩽
V

logQ
, Q =

c logN

2V 2 log V
such that

A log
c logN

2A2
0 logA0

= V + log
2∥ψ∥∞
I(ψ)

+ Cf
A

logA0
.

For easier reading, we postpone the proof of this technical claim to the end of
this section. With our choice of A satisfying (7.48), we find that

I(ψ)A ⩾ exp

(
A log

c logN

2A2
0 logA0

+ log I(ψ) − Cf
A

logA0

)
= exp

(
V + log(2∥ψ∥∞)

)
= 2∥ψ∥∞eV .
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Then, separating the summands in M2,f,ψ(q) according to whether we have
L(f ⊗ χ, 12 ) ⩽ eV or not, we can write

(7.49) M2,f,ψ(q) = M0
2,f,ψ(q) +M+

2,f,ψ(q),

where

(7.50) |M0
2,f,ψ(q)| ⩽ eV ∥ψ∥∞

1

φ∗(q)

∑∗

χ:|L(f⊗χ,1/2)|⩽eV
|R(χ)|2 ⩽ 1

2I(ψ)AM1(q).

Combining (7.47), (7.49), (7.50), and Hölder’s inequality, we then deduce that

3

10
I(ψ)AM1(q) ⩽ |M+

2,f,ψ(q)| ⩽ ∥ψ∥∞
1

φ∗(q)

∑∗

|L(f⊗χ,1/2)|>eV ,
ψ(θ(f⊗χ)) ̸=0

|R(χ)|2
∣∣L(f ⊗ χ, 12

)∣∣

⩽ ∥ψ∥∞
(

1

φ∗(q)

∑∗

χ mod q

|R(χ)|8
)1/4(

1

φ∗(q)

∑∗

χ mod q

∣∣L(f ⊗ χ, 12
)∣∣2)1/2

×
(

1

φ∗(q)

∣∣∣{χ (mod q) |
∣∣L(f ⊗ χ, 12

)∣∣ > eV , θ(f ⊗ χ) ∈ I
}∣∣∣)1/4

.

According to part (3) of Lemma 7.7, and using our evaluation of the second moment
of twisted L-functions, we conclude that∣∣∣{χ (mod q) |

∣∣L(f ⊗ χ, 12
)∣∣ > eV , θ(f ⊗ χ) ∈ I

}∣∣∣≫f,ψ
φ∗(q)

log2 q

(
AM1(q)

)4 1

NW 16

≫f,ψ
φ∗(q)

log2 q
exp

(
(4A− 12A2) log

c logN

2A2
0 logA0

− Cf
4A+ 12A2

logA0

)
.

With our choice (7.48), the right-hand side of this estimate is

≫f,ψ,c
φ∗(q)

log2 q
exp

(
(4 − 12A)(V +Mψ) − 12CfA

2/ logA0

)
≫ψ φ

∗(q) exp

(
− 12(1 + o⋆(1))

V 2

logQ

)
,(7.51)

with o⋆(1) = Of,ψ(1/V + 1/(logQ logA0)) = Of,ψ(1/ log log q). This concludes the
proof of Case 2, hence of the theorem. It only remains to prove the technical claim.

Proof of Claim. Let A1 = V/ logQ, Mψ = log(2∥ψ∥∞/I(ψ)), and

ϕ(A) := A

(
log

c logN

2A2
0 logA0

− Cf
logA0

)
.

We will verify that, for sufficiently large q, ϕ(A1) > V +Mψ; this is tedious but not
difficult. Note that 2.72 < 196

72 c(1− 8δ) < Q ⩽ c logN for a sufficiently small δ > 0
and a c < 1 suitably close to 1, and in particular we have, with an absolute δll > 0,

1 < logQ, A1 < V, X0 < V, 0 < δll ⩽ log logQ,

logQ ⩽ log log q +O(1) < (2 + δ)V

for sufficiently large q.
Let X1 = max(X0,Mψ/δll). If A1 ⩾ X0, then

A0 = A1, 2A
2
0 logA0 ⩽ 2V 2 log V/ log2Q,
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and thus

ϕ(A1) ⩾
V

logQ

(
logQ+ 2 log logQ− Cf

logA0

)
= V +

V

logQ

(
2 log logQ− Cf

logA0

)
.

This is in particular the case if V ⩾ (1 + δ)X1 log log q, when for sufficiently
large q, A1 ⩾ X1. If log logQ ⩾ Cf/ logX0, then the second term exceeds
δllV/ logQ = δllA1 ⩾ Mψ, and we are done. If log logQ < Cf/ logX0, we have
that V 2 log V ≫Cf ,X0,c logN and thus logA1 ⩾ ( 1

2 − oCf ,X0,c(1)) log log q, and for
sufficiently large q the second term exceeds V (log logQ/ logQ) ≫Cf ,X0

V > Mψ.
For V ⩽ (1 + δ)X1 log log q, we have that logQ = (1 + o(1)) log log q. If A1 ⩾

X0, then the above lower bound holds, with the second term ⩾ (2 + δ)−1((2 +
o(1)) log log log q − Cf/ logX0) > Mψ for sufficiently large q. Otherwise A0 = X0

and

ϕ(A1) ⩾ V +
V

logQ

(
2 log(V/X0) − Cf

logX0

)
,

and the second term is again ⩾ (2+δ)−1((2+o(1)) log log log q−Cf/ logX0) > Mψ

for sufficiently large q.
On the other hand, forQ0 = (c logN)/(2X2

0 logX0) andA2 = (V+Mψ)/ logQ0,
we clearly have that ϕ(A2) ⩽ V +Mψ. Thus the existence of A ∈ [A2, A1] satisfying
(7.48) follows simply by continuity. Note that A ⩽ V/ logQ < V guarantees the
required condition A≪f,c

√
logN for sufficiently large q. □

7.5. Large values of products

In this section, we prove Theorem 7.2. With the resonator sequence of the
form (7.1), Section 7.5.1 is devoted to the construction of arithmetic factors and
verification that they satisfy conditions for the application of the resonator method.
The proof of Theorem 7.2 then follows in Section 7.5.2.

7.5.1. Choice of the resonator polynomial. Let λ∗f and λ∗g be the mul-

tiplicative functions supported on squarefree integers and defined by (7.18) and
let

G :=
{
n ⩾ 1 | λ∗f (n)λ∗g(n) ̸= 0, sgn(λ∗f (n)) = sgn(λ∗g(n)

}
.

We construct a multiplicative arithmetic function ϖ(n) supported on square-
free positive integers, subject to the condition

(7.52)

{
ϖ(n) = 0, n ̸∈ G,

ϖ(n) = 0 or sgnϖ(n) = sgnλ∗f (n) = sgnλ∗g(n), n ∈ G.

This multiplicative function ϖ(n) is entirely determined by the sequence of values
ϖ(p). We base our construction of the sequence ϖ(p) on the simple observation
that, for any two x, y ∈ R,

xy(x+ y)2 = 0 or sgn(xy) = sgn
(
xy(x+ y)2

)
.

In particular,

λ∗f (p)λ∗g(p)
(
λ∗f (p) + λ∗g(p)

)2
> 0 =⇒ p ∈ G.

We define

(7.53) ϖ(p) =

{
sgn(λ∗f (p))λ∗f (p)λ∗g(p)

(
λ∗f (p) + λ∗g(p)

)
, p ∈ G,

0, p ̸∈ G.
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Then, the multiplicative arithmetic function ϖ(n) satisfies the sign condi-
tion (7.52), and hence

(7.54) ω(n) = |ϖ(n)|2, ω′(n) = ϖ(n)
∏
p|n

(
λ∗f (p) + λ∗g(p)

)
⩾ 0

are non-negative multiplicative functions supported within G. In the following
lemma, we verify that ω, ω′ satisfy the conditions for application of the resonator
method.

Lemma 7.19. Let f , g be two primitive cusp forms of signed levels r and r′

respectively and trivial central character, and let ϖ be the multiplicative arithmetic
function supported on square-free integers and defined on primes by (7.53); in par-
ticular, ϖ satisfies (7.52).

Then, for every δ̃ > 0 there exists an X0 = X0(δ̃, f, g) such that, for every
X ⩾ X0 and every Y ⩾ 2X, the non-negative multiplicative functions ω, ω′ ⩾ 0
supported on square-free integers and defined by (7.54) satisfy conditions (7.2)–(7.4)
with δ = 1

4 , δ
′ = 1

3 , and

(7.55)
aω = n4,2 + 2n3,3 + n2,4 + 4δ̃,

a′ω′ = n3,1 + 2n2,2 + n1,3 − 4δ̃,

where nk,k′ are the non-negative integers defined in Corollary 2.15. We have

n3,1 + 2n2,2 + n1,3 ⩾ 2n2,2 ⩾ 2.

Proof. We use Corollary 2.17 with various values of the parameters (k, k′)

and the given δ̃ > 0 to verify that (7.2)–(7.4) are satisfied with the stated values of

the parameters aω and a′ω′ . Choose X0 = X0(δ̃, f, g) ⩾ 4 so that

∑
x⩽p⩽y

λf (p)kλg(p)
k′

p log p
⩾
(
nk,k′ − δ̃

)( 1

log x
− 1

log y

)
and ∣∣∣ ∑

x⩽p⩽y

λf (p)kλg(p)
k′

p log p

∣∣∣ ⩽ (nk,k′ + δ̃
)( 1

log x
− 1

log y

)
for 1 ⩽ k, k′ ⩽ 4, and for y ⩾ 2x ⩾ 2X0 ⩾ 4, which is possible by (2.21).

First, we find that for Y ⩾ 2X ⩾ 42, we have

∑
X⩽p⩽Y

ω(p)

p log p
⩽

∑
X⩽p⩽Y

λ∗f (p)2λ∗g(p)
2(λ∗f (p)2 + 2λ∗f (p)λ∗g(p) + λ∗g(p)

2)

p log p

⩽
(
n4,2 + 2n3,3 + n2,4 + 4δ̃

)( 1

logX
− 1

log Y

)
.

This verifies (7.2) with aω = n4,2 + 2n3,3 + n2,4 + 4δ̃.
We proceed to the proof of (7.3). Keeping in mind that

λ∗f (p)λ∗g(p)(λ
∗
f (p) + λ∗g(p))

2 ⩽ 0
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if p ̸∈ G, we deduce that

∑
X⩽p⩽Y

ω′(p)

p log p
=

∑
X⩽p⩽Y
p∈G

λ∗f (p)λ∗g(p)
(
λ∗f (p) + λ∗g(p)

)2
p log p

⩾
∑

X⩽p⩽Y

λ∗f (p)λ∗g(p)(λ
∗
f (p)2 + 2λ∗f (p)λ∗g(p) + λ∗g(p)

2)

p log p

⩾
(
n3,1 + 2n2,2 + n1,3 − 4δ̃

)( 1

logX
− 1

log Y

)

for Y ⩾ 2X ⩾ 4. This verifies (7.3) with a′ω′ = n3,1 + 2n2,2 + n1,3 − 4δ̃ ⩾ 2 − 4δ̃.
Finally, we check that (7.4) holds. Recalling the choice δ = 1

4 and using a
simple dyadic subdivision, we first find that∑

p⩽X

ω(p)δω′(p) ⩽
∑
p⩽X

∣∣λ∗f (p)λ∗g(p)
∣∣1+2δ(|λ∗f (p)| + |λ∗g(p)|

)2+2δ

≪
(
n4,2 + n4,0 + n2,4 + n0,4 + 4δ̃

) X

logX
,

with an absolute implied constant. Similarly recalling that δ′ = 1
3 , we obtain

∑
p⩽X

ω′(p)1+δ
′
⩽
∑
p⩽X

∣∣λ∗f (p)λ∗g(p)
∣∣1+δ′(|λ∗f (p)| + |λ∗g(p)|

)2+2δ′

≪
(
n4,2 + n4,0 + n2,4 + n0,4 + 4δ̃

) X

logX
. □

7.5.2. Proof of Theorem 7.2. In this section, we complete the proof of
Theorem 7.2.

Proof. We use a resonator polynomial (7.29), with the resonator sequence
r(n) as in (7.1), and arithmetic factors ϖ(n) chosen as in (7.53) in Section 7.5.1.
Let multiplicative functions ω, ω′

1, ω′
2, and ω′ be as in (7.28) and (7.54). Using

Lemma 7.19, we have that ω′
1 and ω′

2 satisfy (7.5), while ω and ω′ satisfy the
conditions (7.2)–(7.4) with aω, a′ω′ as in (7.55).

Fix an arbitrary δ > 0, and apply Lemmas 7.10 and 7.14 with

N = q1/360−δ

and L =
√
a−1
ω logN log logN . According to Lemma 7.4, ω satisfies the basic

evaluation (7.6); according to Lemma 7.6, ω and ω′ satisfy the basic evaluation (7.9).
In turn, Lemmas 7.10 and 7.14 give

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2 ∼
∏
p

(
1 + r(p)2ω(p)

)
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and

1

φ∗(q)

∑∗

χ mod q

|R(χ)|2L
(
f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)
= L∗(f ⊗ g, 1)(ν + o⋆(1)

)∏
p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)
+O

(
N5/2q−1/144

∏
p

(
1 + r(p)2ω(p)

))
,

where ν ̸= 0 depends only on f and g, with implicit constants depending on
(f, g, δ, ε). According to Lemma 7.5,∏

p

(
1 + r(p)2ω(p) +

r(p)ω′(p)
√
p

)
≫ exp

((
a′ω′ + o⋆(1)

) L

2 logL

)∏
p

(
1 + r(p)2ω(p)

)
.

Since L∗(f⊗g, 1) ̸= 0 (Lemma 2.6), it follows that there exists at least one primitive
character χ of conductor q such that∣∣L(f ⊗ χ, 12

)
L
(
g ⊗ χ̄, 12

)∣∣≫ exp

((
1

6
√
10

√
1 − 360δ + o⋆(1)

) a′ω′√
aω

√
log q

log log q

)
,

with o⋆(1) = O(log log log q/ log log q). Since we may take δ and δ̃ (implicit in aω
and a′ω′) as small as we wish, this proves the first statement of Theorem 7.2 with
the constant

(7.56) Cf,g :=
1

6
√

10
C0
f,g, C0

f,g :=
nf,g,3,1 + 2nf,g,2,2 + nf,g,1,3

(nf,g,4,2 + 2nf,g,3,3 + nf,g,2,4)1/2

in the exponent. It is clear that there is an absolute lower bound C > 0 for n0f,g. □

Remark 7.20. It is clear that, in determining C > 0, it suffices to consider the
case when f and g are not scalar multiples of each other, for otherwise Theorem 7.2
follows, for example, from Theorem 7.1 (with a better exponent).

In a generic situation, where neither f nor g are of polyhedral type (in par-

ticular, Symkπf , Symkπg are cuspidal for all k ⩽ 4) and if Symkπf ̸≃ Symkπg for
every k ⩽ 4, then

C0
f,g = (0 + 2 + 0)/(2 + 0 + 2)1/2 = 1

and consequently
Cf,g = 1

6
√
10

in (7.56) and Theorem 7.2.
Any of the terms in (7.56), including nf,g,k,k′ when k and k′ are not both

even, can take values larger than the generic ones, for several distinct reasons:
first, some of Symkπf , Symkπg might not be cuspidal, and the classification of
their isobaric components is quoted in Section 2.3.4; second, it is possible to have
Symkπf ≃ Symkπg if f and g are character twists of each other (necessarily by

a quadratic character due to the trivial central character); and, third, Sym3πf ≃
Sym3πg can happen even if f and g are not character twists of each other (see
Ramakrishnan’s paper [69]; for this case, while the known examples arise from



7.5. LARGE VALUES OF PRODUCTS 123

icosahedral representations, and are conjectured to be exhaustive, this is not known
unconditionally).

Thus, in most cases, cusp forms f and g for which this happens can be explicitly
classified, and then the constant Cf,g can probably be improved by using custom-
made arithmetic factors; however, since such a classification is not available in
at least one of the cases, and since getting a tight universal lower bound for our
C0
f,g involves an uninspiring case-by-case computation, we are satisfied simply with

stating the existence of such a lower bound.





CHAPTER 8

Upper bounds for the analytic rank

8.1. Introduction

In this chapter, we prove Theorem 1.13. We again fix f as in Section 1.2, and
we recall the statement.

Theorem 8.1. There exist constants R ⩾ 0, c > 0 such that

(8.1)
1

φ∗(q)

∑∗

χ (mod q)

exp(c rkan(f ⊗ χ)) ⩽ exp(cR)

for all primes q.

The proof follows the method of Heath-Brown and Michel, who established a
version of Theorem 1.13 for the analytic rank in the family of Hecke L-functions of
primitive holomorphic cusp forms of weight 2 and level q ([31, Thm 0.1 & Cor 0.2]).
This method is robust and general and could be axiomatized (using the definition
of families of L-functions as provided in [47,74]); we will merely indicate where to
modify the original argument of [31, §2, p. 497].

8.2. Application of the explicit formula

The basic principle is to use the explicit formula of Weil (Proposition 2.5) to
bound the analytic rank by a sum over the primes.

Let ϕ be a smooth non-negative function, compactly supported in [−1, 1]. We
denote by

ϕ̂(s) =

∫
R

ϕ(t)estdt

its Fourier-Laplace transform, which is an entire function of s ∈ C.
In this chapter, we assume that such a function ϕ is chosen once and for all, with

the properties that ϕ̂(0) = 1 and Re(ϕ̂(s)) ⩾ 0 for all s ∈ C such that |Re(s)| ⩽ 1.
(The existence of such functions is standard, see, e.g., [36, Prop. 5.55].)

Proposition 8.2. Let ξ > 1/10000 be some parameter. We have the inequality

(8.2) ξ rkan(f ⊗ χ) ⩽ 2ϕ(0) log q − S(f ⊗ χ) − S(f ⊗ χ) − 2 ξ Ξ(f ⊗ χ) +Oϕ,f (ξ)

where

S(f ⊗ χ) =
∑
p

χ(p)λf (p) log p

p1/2
ϕ
( log p

ξ

)
and

Ξ(f ⊗ χ) =
∑

Re(ϱ− 1
2 )⩾

1
ξ

Re
{
ϕ̂
(
ξ(ϱ− 1

2
)
)}

where ϱ ranges over the non-trivial zeros of L(f ⊗ χ, s).

125
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Proof. We apply (2.6) to the function

φ(y) =
1
√
y
ϕ
( log y

ξ

)
,

with Mellin transform

φ̃(ϱ) = ϕ̂
(
ξ
(
ϱ− 1

2

))
.

On the side of the sum over powers of primes, we easily get∑
l⩾2

∑
p

χ(p)lΛf (pl)

pl/2
ϕ
( l log p

ξ

)
≪ ξ

by distinguishing the case l = 2 (for which one applies Corollary 2.15 after noting
that Λf (p2) = (λSym2f (p) − 1) log p for p ∤ r) and the case l ⩾ 3 (when the series
can be extended to all primes and converges absolutely). The same bound holds
for the corresponding sum with χ̄. Then S(f ⊗χ) +S(f ⊗χ) is the contribution of
the primes themselves to the explicit formula.

On the side of the zeros, the assumption on the test function shows that the
contribution of any subset of the zeros of L(f ⊗χ, s) may be dropped by positivity
from the explicit formula to obtain an upper bound as in the statement of the
proposition. □

Remark 8.3. Note that from (8.2), by taking ξ = 1 and a suitable ϕ (see
[60, p.217 Example]), one obtains the pointwise bound

(8.3) rkan(f ⊗ χ) ⩽ 2 log q +Of (1).

8.2.1. Bounds for moments of the analytic rank. Theoerem 8.1 is a
consequence of the following proposition which bound the moments of the analytic
ranks:

Proposition 8.4. There exists an absolute constant C such that for all (suf-
ficiently large) primes q and for all integers k ⩾ 1, one has

(8.4)
1

φ∗(q)

∑∗

χ (mod q)

rkan(f ⊗ χ)2k ≪f (Ck)2k.

Assuming (8.4), we deduce (8.1): fix A > 0 such AC < 1/3; then∑
k⩾0

(ACk)k

k!
<∞,

by Stirling’s formula, and we therefore obtain

1

φ∗(q)

∑∗

χ (mod q)

exp(A rkan(f ⊗ χ)) <∞

for all primes q, as desired. □
It remains to prove Proposition 8.4.
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8.2.2. Reduction to a mean square estimate. In this section we reduce
the proof of Proposition 8.4 to a ”second moment” upper bound (Theorem 8.5
below) .

To prove Proposition 8.4 we observe first that because of (8.3), we may assume
that

k ⩽ log(q/2).

Now for any k ∈ [1, log(q/2)], we set

ξ =
log(q/2)

k
⩾ 1.

By Proposition 8.2, it is enough to prove that there exists a constant C > 0,
depending only on ϕ, such that

1

φ∗(q)

∑∗

χ (mod q)

|S(f ⊗ χ)|2k ≪f,ϕ (Ckξ)2k(8.5)

1

φ∗(q)

∑∗

χ (mod q)

|Ξ(f ⊗ χ)|2k ≪f,ϕ (Ck)2k.(8.6)

We can quickly deal with the first bound as in [31, §2.1 (6)]. Since exp(ξ) <
q1/k, for any prime numbers pi ⩽ exp(ξ) for 1 ⩽ i ⩽ 2k, we have the equivalence

p1 · · · pk ≡ pk+1 · · · p2k (modq) ⇐⇒ p1 · · · pk = pk+1 · · · p2k,
hence the left-hand side of (8.5) is bounded by

φ(q)

φ∗(q)

∑∑
p1,··· ,p2k

2k∏
i=1

λf (pi) log pi

p
1/2
i

ϕ
( log pi

ξ

)
δp1···pk=pk+1···p2k ,

which is

⩽
φ(q)

φ∗(q)
k!
∑

· · ·
∑

p1,...,pk

k∏
i=1

λf (pi)
2 log2 pi
pi

ϕ
( log pi

ξ

)2
=

φ(q)

φ∗(q)
k!
(∑

p

λf (p)2 log2 p

p
ϕ
( log p

ξ

)2 )k
≪ (Ckξ)2k

by Corollary 2.15. This proves (8.5).
The control of the sum over the zeros in (8.6), is achieved by reducting to a

second moment estimate. This reduction follows general principles and is explained
in [31, Th. 0.4, §2.2].

Let 0 < λ < 1/360 be fixed. Define

(8.7) L = qλ

and for x ⩾ 0, let

P (x) =

{
2x if 0 ⩽ x ⩽ 1/2

1 if 1/2 ⩽ x ⩽ 1.

Define furthermore
xL := (xl)l⩽L,

where the xl are defined in (6.7). Let then M(f ⊗ χ,xL) be as in (6.6). The
reduction step mentioned above (which relies in particular on an important lemma
of Selberg, see [31, Lemma 1.1]) shows that (8.6) follows from:
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Theorem 8.5. For every 0 < λ < 1/360 there exists η = η(λ) > 0, such that
for any prime q ⩾ 2 and any σ − 1

2 ⩾ − 1
log q , we have

1

φ∗(q)

∑∗

χ (mod q)

∣∣∣L(f ⊗ χ, s)M(f ⊗ χ,xL) − 1
∣∣∣2 ≪ |s|O(1)q−η(σ−

1
2 ),

where L = qλ.

8.3. Proof of the mean-square estimate

The rest of this chapter is devoted to the proof of Theorem 8.5.

8.3.1. Application of the twisted second moment formula. By defini-
tion of the mollifier M(f ⊗ χ,xL), we have for Re s = σ ⩾ 2 and any ε > 0 the
equality

L(f ⊗ χ, s)M(f ⊗ χ,xL) = 1 +
∑

m>L1/2

(λf · χ ∗ xL)(m)

ms
= 1 +Oε(L

− 1
2 (σ−1)+ε),

where (λf · χ ∗ xL)(m) denotes the multiplicative convolution

(λf · χ ∗ xL)(m) :=
∑
nℓ=m
ℓ⩽L

λf (n)χ(n)xℓ.

From the definition of the (xℓ)ℓ⩽L (cf. (6.7)) we see that for such s we have

1

φ∗(q)

∑∗

χ (mod q)

∣∣∣L(f ⊗ χ, s)M(f ⊗ χ,xL) − 1
∣∣∣2 ≪ q−η(σ−

1
2 )

for some absolute η > 0. This suffices to establish Theorem 8.5 for σ ⩾ 2.
By the Phragmen–Lindelöf convexity argument for subharmonic functions, it

is then sufficient to show that

(8.8)
1

φ∗(q)

∑∗

χ

∣∣∣L(f ⊗ χ, s)M(f ⊗ χ,xL)
∣∣∣2 ≪ |s|O(1)

for

σ =
1

2
− 1

log q
.

For this we will use the results of Chapter 5.
To establish (8.8), we decompose the sum along even and odd characters. In

the sequel, we will evaluate in detail only the contribution of the even characters
(multiplied by 2), namely

Q+(f, s;xL) =
2

φ∗(q)

∑+

χ non-trivial

∣∣∣L(f ⊗ χ, s)M(f ⊗ χ,xL)
∣∣∣2

since the treatment of the contribution of odd characters is entirely similar.
We recall that (xℓ)ℓ⩽L is supported on integers coprime to r. By Theorem 5.1,

we have
Q+(f, s;xL) = MT+(f, s;xL) + ET

where, with notations of Chapter 5, the main term is given by (cf. (5.2))

MT+(f, s;xL) =
∑
d⩾1

∑
(ℓ1,ℓ2)=1

xdℓ1xdℓ2
d2σℓs1ℓ2

s
MT+(f, s; ℓ1, ℓ2)
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and the error term is bounded by

ET ≪ε |s|O(1)
(
q−1 +

∑
d

∑
(ℓ1,ℓ2)=1

|xdℓ1xdℓ2 |
d(ℓ1ℓ2)1/2

L3/2q−1/144+ε
)

≪ |s|O(1)L5/2q−1/144+2ε

(see (6.18) in Section 6.5 for a similar bound).
Before proceeding further we simplify some notations: we set

L∞(s) := L∞(f, s)

and

R(ℓ1, ℓ2, s) :=
∑
n⩾1

λf (ℓ1n)λf (ℓ2n)

(ℓ1ℓ2n2)s
.

Note that we already encountered this function in earlier sections since, with the
notation of (5.5), we have the equality

R(ℓ1, ℓ2, s) = L
(
f × f, 1, s− 1

2 ; ℓ1, ℓ2
)
.

We can then write MT+(f, s; ℓ1, ℓ2) in the form

MT+(f, s; ℓ1, ℓ2) =
1

2
M(s, ℓ1, ℓ2) +

1

2
ε(f,+, s)M(1 − s, ℓ1, ℓ2),

where

(8.9) M(s, ℓ1, ℓ2) =
1

2iπ

∫
(2)

L∞(s+ u)2

L∞(s)2
R(ℓ1, ℓ2, s+ u)G(u)(q2|r|)u du

u
.

We rename s into s0 = σ0 + it0. In order to prove Theorem 8.5 it suffices to
prove the following estimate:

Proposition 8.6. There exist two constants C1 and C2, such that, for every
prime q, for every s0 = σ0 + it0 satisfying

(8.10) σ0 =
1

2
± 1

log q
and t0 real,

we have the inequality

(8.11)
∣∣∣∑
d⩾1

∑
(ℓ1,ℓ2)=1

xdℓ1xdℓ2
d2σ0ℓs01 ℓ

s̄0
2

M(s0, ℓ1, ℓ2)
∣∣∣ ⩽ C1 |s0|C2 .

We emphasize that σ0 may be taken to be < 1
2 in this result.

Remark 8.7. The upper bound (8.8) for the mollified second moment has
many similarities with the evaluation of the mollified second moment at 1/2 dis-
cussed Section 6.5. A chief difference, is that in that section, we were looking for a
asymptotic formula (see Proposition 6.6) while here, an upper bound of the correct
order of magnitude his sufficient for our purpose; another important difference is
that the complex variable s, while close to the critical line, is not necessarily lo-
cated near the central point 1/2, but range along the whole critical line. As we will
see below, this significantly complicates the evaluation of the main term (see also
Remark 8.12).
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8.3.2. Beginning of the proof of Proposition 8.6. For the proof of the
result, we consider s0 fixed and write simply M(ℓ1, ℓ2) = M(s0, ℓ1, ℓ2).

For dℓ ⩽ L, the definition of P and the standard formula

1

2iπ

∫
(2)

yv
dv

v2
=

{
log y if y ⩾ 1,

0 if 0 < y ⩽ 1.

show that we have

P
( log(L/dℓ)

logL

)
=

1

2iπ

∫
(2)

HL(v)(dℓ)−v
dv

v

where HL is the entire function defined by

HL(v) = 2
Lv/2(Lv/2 − 1)

v logL

for v ̸= 0 and HL(0) = 1.
We insert this integral in the left-hand side of (8.11), obtaining (see (8.9)) the

formula

(8.12) M = M(s0) :=
∑
d⩾1

∑
(ℓ1,ℓ2)=1

xdℓ1xdℓ2
d2σ0ℓs01 ℓ

s0
2

M(s0, ℓ1, ℓ2)

=
1

(2πi)3

∫
(2)

∫
(2)

∫
(2)

L∞(s0 + u)2

L∞(s0)2
G(u)

× L(s0, s0, s̄0, u, v, w)HL(v)HL(w)(q2|r|)u du
u

dv

v

dw

w

where the auxiliary function L is given by (2.32), namely

L(s, z, z′, u, v, w) =
∑∑
d,ℓ1,ℓ2,n

(ℓ1,ℓ2)=(dℓ1ℓ2,r)=1

µf (dℓ1)λf (ℓ1n)µf (dℓ2)λf (ℓ2n)

ℓs+z+u+v1 ℓ2
s+z′+u+wdz+z′+v+wn2s+2u

.

With this definition, based on integrals, our purpose (see (8.11)) is to prove the
inequality

(8.13)
∣∣M∣∣ ⩽ C1|s0|C2 ,

for some absolute C1 and C2, uniformly for s0 satisfying (8.10).
To prove (8.13), we proceed by shifting the three contours slightly to the left

of the product of lines

Reu = Re v = Rew = 0.

In the sequel we decompose the complex variables u, v and w into their real and
imaginary parts as

u = σu + itu, v = σv + itv, w = σw + itw.

It will also be useful to set

L = (log q)−1.

We will need estimates for the various factors in the integral (8.12). We start
with HL(v).
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Lemma 8.8. Let 0 < λ < 1/360 and B > 0 be two constants. Let L be defined
by (8.7). Then there exists a constant C3 depending only on λ and B, such that
uniformly for σv ⩽ BL, we have the inequality∣∣HL(v)

∣∣ ⩽ C3 L
σv/2 min

(
1,

L

|v|

)
.

Proof. This is an easy combination of the two bounds Lv/2−1 = O(|v| logL),
valid uniformly for |v| log q ⩽ 1, and Lv/2 − 1 = OB(1), valid uniformly for σv ⩽
BL. □

Next we provide bounds for the Gamma factors (see (2.2) for the definition of
L∞).

Lemma 8.9. Let G(u) be the function defined in (2.23). Then there exists a
constant αf depending only on f , such that, uniformly for s0 satisfying (8.10) and
for u = σu + itu with σu ∈ [−1/4, 2] and tu real, we have the bound(L∞(s0 + u)

L∞(s0)

)2
G(u) ≪f (1 + |t0|)αf e−3π|tu|.

Proof. In both cases (f holomorphic or not), we have the equalities (see the
definition (2.2))

L∞(s) = ξf π
−s
∏
i=1,2

Γ
(s+ µf,i

2

)
where ξf = 1 if f is a Hecke–Maaß form, and ξf = π−1/22(k−3)/2 if f is holomorphic
with weight k. Furthermore, the µf,i are the archimedean Langlands parameters
of the automorphic representation attached to f as in Section 2.2, i.e.

µf,1 = −k − 1

2
, µf,2 = −k

2

if f is holomorphic of weight k ⩾ 2 and

µf,1 =
1 − κf

2
+ itf , µf,2 =

1 − κf
2

− itf

if f is a Maaß form with Laplace eigenvalue λf (∞) = ( 1
2 + itf )( 1

2 − itf ) and parity
κf ∈ {±1}. This implies that, in both cases, we have

1

16
⩽ Re

(s0 + µf,i + u

2

)
≪f 1,

under the assumptions of Lemma 8.9.
Decompose µf,i as µf,i = σf,i + itf,i. Then by Stirling’s formula [27, formula

8.328, page 895] we have for 1/5 ⩽ σ ⩽ 3

L∞(s) ≍ (1 + |t+ tf,1|)
σ
2 +

σf,1
2 − 1

2 e−
π
4 |t+tf,1| × (1 + |t+ tf,2|)

σ
2 +

σf,2
2 − 1

2 e−
π
4 |t+tf,2|

≍f (1 + |t|)σ+
σf,1+σf,2

2 −1e−
π
2 |t|.

Therefore, since for σu ∈ [−1/4, 2] we have Re(s0 + u) ∈ [1/5, 3], we deduce the
inequality

L∞(s0 + u)2

L∞(s0)2
G(u) ≪f

(1 + |t0 + tu|)2σ0−2+σf,1+σf,2+2σu

(1 + |t0|)2σ0−2+σf,1+σf,2
e−π(|t0+tu|−|t0|) e−4π|tu|.
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To control the size of the numerator of the above fraction, we will use either
the lower bound 1+ |tu+t0| ⩾ 1 or the upper bound 1+ |tu+t0| ⩽ (1+ |tu|)(1+ |t0|)
according to the sign of the exponent and we will consider two cases:

Case 1. For |tu| ⩾ |t0|, using |tu + t0| ⩾ |tu| − |t0|, we have

L∞(s0 + u)2

L∞(s0)2
G(u) ≪ (1 + |tu|)αf eπ|tu|e−4π|tu| = (1 + |tu|)αf e−3π|tu|

for some absolute αf ⩾ 0.
Case 2. For |tu| ⩽ |t0|, using the inequality |tu + t0| ⩾ |t0| − |tu|, we get

L∞(s0 + u)2

L∞(s0)2
G(u) ≪f (1 + |t0|)αf eπ|tu| e−4π|tu| ≪f (1 + |t0|)αf e−3π|tu|

again for some absolute constant αf ⩾ 0. □

As in (2.30) we now denote by

T (s) = L(f ⊗ f, s) = ζ(s)L(Sym2f, s)

the Rankin-Selberg L-function of f , and by

Tp(s) = Lp(f ⊗ f, s) = ζp(s)Lp(Sym2f, s)

its local factor at p.
The analytic properties of T (s) have been reviewed in Section 2.3. Recall in

particular that T (s) is holomorphic on C− {1} and has a simple pole at s = 1; its
residue there is denoted κf . Lemma 2.24 implies that there exists η > 0 and an
analytic continuation and factorization of L(s, z, z′, u, v, w) of the form

L(s, z, z′, u, v, w) =
T (2s+ 2u)T (z + z′ + v + w)

T (s+ z + u+ v)T (s+ z′ + u+ w)
D(s, z, z′, u, v, w).

in the region R(η) ⊂ C6 defined by the inequalities

Re s >
1

2
− η, Re z >

1

2
− η, Re z′ >

1

2
− η,

Reu > −η, Re v > −η, Rew > −η,
where D(s, z, z′, u, v, w) is holomorphic and bounded on R(η).

8.3.3. Study of M. We now start the proof of (8.13), which will eventually
prove Proposition 8.6.

Let us recall that M is an integral in three variables (varying along vertical lines)
whose integrand contains factors involving translates of Riemann’s zeta function
ζ(s) and of the symmetric square L-function L(Sym2f, s). The strategy is similar
to that of Section 6.5: we are going to shift contours to the left so that the integrals
along the new contours contribute as error terms and to evaluate the residues of the
poles that we have met in the process. That would be reasonably easy to do under
the Generalised Riemann Hypothesis; however to obtain unconditional results, we
need to use the standard Hadamard-de la Vallée-Poussin zero free region. The proof
is a bit tedious so we give and overview of what is coming up.

(1) We first reduce (up to an admissible error term) to evaluating a truncated
version of M in which the imaginary parts of the variables are bounded by
a power of log q and the real part is such that the arguments at which the
various L-functions are evaluated, stay slightly to the right of the critical
strip: this is the content of Lemma 8.10.
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(2) We shift the contour of one of the variables to the left so that one still
remains on the right of the zero free region of any L-function involved
in the denominator. We show that the resulting integral contribute a
negligible error term and it remains to deal with the contributions of the
poles encountered in the process: this is the content of Section 8.3.4 ending
with (8.27).

(3) In Section 8.3.5 we describe the contributions of the two poles (these are
integrals in two variables) with the aim to bounding them. The target
bound is (8.29). We focus on one integral, the treatment of the other
being entirely similar.

(4) In Section 8.3.6 we perform a contour shift on one of the remaining vari-
ables along the same line as in Step (2). The outcome is the integral along
the new contour J1 and two contributions from poles met in the process
J2, J3. The target bound for any of these terms is (8.31).

(5) We prove (8.31) for J1 in Sections 8.3.7 and 8.3.8.
(6) The proofs of (8.31) for J2 and J3 (which are integrals in one variable) are

spread over Sections 8.3.9, 8.3.10 and 8.3.11. Unlike Section 6.5 we don’t
need to perform a final contour shift and evaluate the residue: as we only
need an upper bound, we simply split the integral into pieces and apply
different bounds depending on the position of the piece with respect to
the other parameters.

We start with Step (1) which is a reduction to another estimate for the following
truncated triple integral: for C ⩾ 1 and

(8.14) V0 := (log q)C ,

we define

(8.15) M(V0) :=
1

(2πi)3

∫
(3L)

|tw|⩽2V0

∫
(3L)

|tv|⩽V0

∫
(3L)

|tu|⩽V0

L∞(s0 + u)2

L∞(s0)2

× T (2s0 + 2u)T (2σ0 + v + w)

T (2s0 + u+ v)T (2σ0 + u+ w)

× E(s0, u, v, w)G(u)HL(v)HL(w)(q2|r|)u du
u

dv

v

dw

w

Lemma 8.10. The bound (8.13) follows from the following bound: for any C ⩾ 1
we have uniformly for |t0| ⩽ log q

(8.16) |M(V0)| ≪ |s0|C
′
,

where C ′ depends on C and the implicit constant on f and C

For the proof of Lemma 8.10 and later arguments will repeatedly use the follow-
ing Lemma which combines (a special case of) Corollary 2.14 and the Phragmen-
Lindelöf principle:

Lemma 8.11. There exists two constants c = cf > 0 and A∗ = A∗
f ⩾ 0 such

that

• For s = σ + it in the region

(8.17) σ ⩾ − c

log(2 + |t|)
,
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we have T (1 + s) ̸= 0 and the inequalities

(8.18) log−A∗
(2 + |s|) ≪ s

1 + s
T (1 + s) ≪ logA

∗
(2 + |s|).

• For s = σ + it such that σ ⩾ −1/2, we have the inequality

(8.19)
∣∣∣ s

s+ 1
T (1 + s)

∣∣∣≪ max
(
1, (1 + |s|)max(0,4(1/2−σ))+ε).

for any ε > 0 where the constants implied depend only on f and ε.

Proof. (of Lemma 8.10) Recall that M is defined in (8.12). We use Lemma
2.24 and set

E(s, u, v, w) = D(s, s, s̄, u, v, w).

With these notations, the function L in (8.12) can be written as

L(s0, s0, s̄0, u, v, w) =
T (2s0 + 2u)T (2σ0 + v + w)

T (2s0 + u+ v)T (2σ0 + u+ w)
E(s0, u, v, w).

We first shift the three lines of integration in (8.12) to

Re(u) = Re(v) = Re(w) = 3L.

There is no pole encountered in this shift, so that the triple integral M, defined in
(8.12), satisfies the equality

M =
1

(2πi)3

∫
(3L)

∫
(3L)

∫
(3L)

L∞(s0 + u)2

L∞(s0)2
· T (2s0 + 2u)T (2σ0 + v + w)

T (2s0 + u+ v)T (2σ0 + u+ w)

× E(s0, u, v, w)G(u)HL(v)HL(w)(q2|r|)u du
u

dv

v

dw

w
.

First, using straightforwardly Lemma 2.24 to bound the E–function, Lemma
8.11 (inequality (8.18)) to bound the T–functions or their inverses, Lemma 8.9 to
bound the L∞ and G-factors, and Lemma 8.8 for the HL–functions, we can already
deduce the rough bound

(8.20) M ≪ |s0|O(1)(log q)O(1).

In particular, in order to prove (8.13), we may now assume that

(8.21) |t0| ⩽ log q.

This being done we consider the integral truncated in the variable u

M0(V ) :=
1

(2πi)3

∫
(3L)

|tw|⩽2V

∫
(3L)

|tv|⩽V

∫
(3L)

L∞(s0 + u)2

L∞(s0)2

× T (2s0 + 2u)T (2σ0 + v + w)

T (2s0 + u+ v)T (2σ0 + u+ w)

× E(s0, u, v, w)G(u)HL(v)HL(w)(q2|r|)u du
u

dv

v

dw

w
,

where V ⩾ 2 is some parameter. Using the same lemmas as in the proof of (8.20),
we obtain the equality

(8.22) M = M0(V ) +O
( (|s0| log q)C4

V 1/2

)
,
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for some absolute constant C4 ⩾ 0. In view of the inequality (8.13), the error term
in (8.22) is admissible if we fix the value of V to be (8.14) for a sufficiently large
constant C ⩾ 2C4.

By the same techniques which led to (8.22) (particularly the decay at infinity
of the functions HL(v)/v and HL(w)/w, see Lemma 8.8), we approximate M0(V0)
by M(V0) with an admissible error. By combining with (8.22), we finally obtain
the equality

M = M(V0) +O
(
|s0|C4

)
,

where C4 is some absolute constant, where t0 satisfies (8.21) and where V0 is defined
by (8.14), with a sufficiently large C. Lemma 8.10 follows from (8.16). □

8.3.4. Shifting the contours of integration. In the u–plane we consider
the vertical segment:

γu :=
{
u ∈ C | σu = 3L, |tu| ⩽ V0

}
,

and the curve

Γu :=
{
u ∈ C | σu = − cf

log(V 3
0 + |tu|)

, |tu| ⩽ V0
}
,

where cf is the constant appearing in Lemma 8.11. We also introduce two horizontal
segments

Su :=
{
u ∈ C | − cf

log(V 3
0 + V0)

⩽ σu ⩽ 3L, tu = V0
}
,

and its conjugate Su. The hypothesis (8.21) and Lemma 8.11 imply that there is
no zero of the function

u 7→ T (2s0 + u+ v)T (2σ0 + u+ w),

in the interior of the curved rectangle Ru with edges γu, Su, Γu and Su, when the
variables v and w belong to the paths of integration appearing in the definition
(8.15) of M(V0).

Furthermore, when u belongs to Su ∪ Γu ∪ Su and when v and w are as above,
the four numbers

2s0 + 2u− 1, 2σ0 + v + w − 1, 2s0 + u+ v − 1, 2σ0 + u+ w − 1

all satisfy the lower bound (8.17). Finally, the modulus of these four numbers is also
not too small, namely they are ≫ 1/(log q). We then apply (8.18) in the condensed
form

T (2s0 + 2u)T (2σ0 + v + w)

T (2s0 + u+ v)T (2σ0 + u+ w)
≪ (log q)O(1),

uniformly for u, v and w as above and t0 satisfying (8.21).
To shorten notation we rewrite M(V0) into the form

(8.23) M(V0) :=
1

(2πi)3

∫
(3L)

|tw|⩽2V0

∫
(3L)

|tv|⩽V0

∫
(3L)

|tu|⩽V0

T(s0, u, v, w)
du

u

dv

v

dw

w
,
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From this definition of the T–function and bounding the E–function by Lemma
2.24, we deduce the following bound where the variables are now separated

(8.24)
1

(2πi)3

∫
(3L)

|tw|⩽2V0

∫
(3L)

|tv|⩽V0

∫
u∈Su∪Γu∪Su

T(s0, u, v, w)
du

u

dv

v

dw

w

≪ (log q)O(1)
(∫

u∈Su∪Γu∪Su

qσu

∣∣∣L∞(s0 + u)2

L∞(s0)2
G(u)

∣∣∣ · ∣∣∣du
u

∣∣∣)
×
(∫

(3L)
|tv|⩽2V0

∣∣∣HL(v)

v

∣∣∣ |dv|)2.
To bound the integral

∫
Γu

we exploit the fact that σu is negative and satisfies

|σu| ≫ 1/(log log q). When combined with Lemma 8.9, we deduce the bound∫
Γu

(· · · ) ≪ exp
(
−c′f

log q

log log q

)
for some positive constant c′f . To bound

∫
Su

and
∫
Su

, we use the fact that |tu| is

large, that is |tu| = V0, to apply Lemma 8.9. These remarks and easy computations
lead to the following bound

(8.25)

∫
u∈Su∪Γu∪Su

(· · · ) ≪ (log q)O(1) exp
(
−df

log q

log log q

)
,

where df is some positive constant. Furthermore, the inequality

(8.26)

∫
(3L)

|tv|⩽V

∣∣∣HL(v)

v

∣∣∣ |dv| ≪ log q

is a direct consequence of Lemma 8.8. It remains to combine (8.24), (8.25) and
(8.26) to deduce the inequality

(8.27)
1

(2πi)3

∫
(3L)

|tw|⩽2V0

∫
(3L)

|tv|⩽V0

∫
u∈Su∪Γu∪Su

T(s0, u, v, w)
du

u

dv

v

dw

w

≪ exp
(
−df

2
· log q

log log q

)
.

This error term is negligible when compared with the right–hand side of (8.16). By
the residue formula, we are reduced to proving that the contribution of the residues
of the poles which are inside the curved rectangle Ru are also in modulus less than
C1|s0|C2 .

8.3.5. Description of the residues. During the contour shift from γu to
Su ∪ Γu ∪ Su we hit exactly two poles. They are both simple and located at u = 0
(from 1/u) and at u = 1/2 − s0 (from the factor T (2s0 + 2u)). Let us denote by
I0 and I1/2−s0 the contribution of these residues to M(V0). More precisely we have
the equalities

(8.28) I0 :=
T (2s0)

(2πi)2

∫
(3L)

|tw|⩽2V0

∫
(3L)

|tv|⩽V0

T (2σ0 + v + w)

T (2s0 + v)T (2σ0 + w)

× E(s0, 0, v, w)HL(v)HL(w)
dv

v

dw

w
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and

I1/2−s0 :=
κfq

1−2s0G( 1
2 − s0)

(2πi)2( 1
2 − s0)

L∞( 1
2 )2

L∞(s0)2
×∫

(3L)
|tw|⩽2V0

∫
(3L)

|tv|⩽V0

T (2σ0 + v + w)

T (s0 + 1
2 + v)T (σ0 − it0 + 1

2 + w)

× E(s0,
1
2 − s0, v, w)HL(v)HL(w)

dv

v

dw

w
.

From the above discussions, it remains to prove that, uniformly for (8.21), we
have the inequalities

(8.29) |I0|, |I1/2−s0 | ⩽ C1|s0|C2 .

We will concentrate on I0, since the other bound is similar.

8.3.6. Transformation of I0. We return to the definitions (8.28) of I0 and
(8.10) of σ0. We define four paths in the w–plane

γw =
{
w ∈ C | σw = 3L, |tw| ⩽ 2V0

}
,

Γw =
{
w ∈ C | σw = 1 − 2σ0 −

cf
log(V 3

0 + |tw|)
tw = 2V0

}
=
{
w ∈ C | σw = ∓2L− cf

log(V 3
0 + |tw|)

, |tw| ⩽ 2V0
}
,

Sw =
{
w ∈ C | ∓2L− cf

log(V 3
0 + 2V0)

⩽ σw ⩽ 3L, tw = 2V0
}

and its conjugate Sw, where cf is the constant appearing in Lemma 8.11. These
four paths define a curved rectangle Rw. Inside Rw, the function

w 7→ T (2σ0 + v + w)

T (2s0 + v)T (2σ0 + w)
E(s0, 0, v, w)

has only one pole. It is simple and is located at

wv := 1 − 2σ0 − v = ∓2L− v = (−3 ∓ 2)L− itv.

It corresponds to the pole at 1 of the numerator T (2σ0 + v +w). Remark that the
rectangle Rw is defined in order to contain no zero of the function w 7→ T (2σ0 +w).
The function to integrate with respect to w in (8.28) has another pole at w = 0
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and it is simple. By the residue formula, we have the equality

I0 =
T (2s0)

(2πi)2

∫
σv=3L
|tv|⩽V0

∫
w∈Sw∪Γw∪Sw

T (2σ0 + v + w)

T (2s0 + v)T (2σ0 + w)

×E(s0, 0, v, w)HL(v)HL(w)
dw

w

dv

v

+
T (2s0)

2πi

∫
σv=3L
|tv|⩽V0

L(Sym2f, 1)

T (2s0 + v)T (1 − v)
E(s0, 0, v,∓2L− v)

×HL(v)HL(∓2L− v)
dv

v(∓2L− v)
(8.30)

+
T (2s0)

2πi

∫
σv=3L
|tv|⩽V0

T (2σ0 + v)

T (2s0 + v)T (2σ0)
E(s0, 0, v, 0)HL(v)HL(0)

dv

v

:=
T (2s0)

(2πi)2

(
J1 + 2πiJ2 + 2πiJ3

)
.

Hence, in order to prove (8.29), it remains to prove the inequalities

(8.31)
∣∣T (2s0)Ji

∣∣ ⩽ C1|s0|C2 ,

for i = 1, 2 and 3, for some absolute C1, C2 and for any s0 = 1
2 ± L + it0, with t0

satisfying (8.21).

8.3.7. Dissection of J1. We decompose J1 into

(8.32) J1 = J1,1 + J1,2 + J1,3

where J1,1 corresponds to the contribution in the double integral defining J1, of the
w in Γw, and J1,2 (resp. J1,3) corresponds to the contribution of the w in Sw (resp.

w in Sw).
For |tv| ⩽ V0 and |tw| = 2V0, we have |2σ0 + v + w − 1| ⩾ 1. Appealing once

again to Lemma 8.11 to bound each of the three T–factors, we deduce the inequality

J1,2 ≪ (log q)O(1)
(∫

σv=3L
|tv|⩽V0

∣∣∣HL(v)

v

∣∣∣ dv)(∫
w∈Sw

∣∣∣HL(w)

w

∣∣∣dw),
uniformly for t0 satisfying (8.21). We now appeal to Lemma 8.8, which is quite
efficient since |tw| = 2V0 is large, to conclude by the inequality

(8.33) J1,2 ≪ (log q)−10,

by choosing C sufficient large in the definition (8.14) of V0. The same bound holds
true for J1,3

8.3.8. Study of J1,1. To bound J1,1 we will benefit from the fact that σw is
negative and not too small, that is

(8.34) σw < 0 and − σw ≫ 1/(log log q) for w ∈ Γw.

Now remark that, for w ∈ Γw and v with σv = 3L, |tv| ⩽ V0, we have the three
lower bounds

|2σ0 + v + w − 1| ⩾ | ± 2L + σv + σw| ≫ 1/(log log q),

Re(2s0 + v − 1) = ±2L + σv ⩾ L ⩾ −cf/ log(2 + |2t0 + tv|),
and

Re(2σ0 + w − 1) = ±2L− cf/ log(V 3
0 + |tw|) ⩾ −cf/ log(2 + |tw|),
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for sufficiently large q. Appealing one more time to (8.18) and Lemma 2.24 to
bound the E–function, we deduce

J1,1 ≪ (log q)O(1)
(∫

σv=3L
|tv|⩽V0

∣∣∣HL(v)

v

∣∣∣ dv)(∫
w∈Γw

∣∣∣HL(w)

w

∣∣∣dw),
and, finally by Lemma 8.8 and the inequality (8.34), we arrive at the inequality

(8.35) J1,1 ≪ (log q)−10.

Gathering (8.32), (8.33) and (8.35), we obtain the bound

(8.36) J1 ≪ (log q)−10.

Finally, by the definition of s0 and the assumption (8.21), we deduce from (8.19)
the bound

(8.37) T (2s0) ≪ log q.

Combining (8.37) with (8.36) we complete the proof of (8.31) for i = 1.

8.3.9. A first bound for J2 and J3. Recall that these quantities are defined
in (8.30). For v such that σv = 3L and |tv| ⩽ V0, we have the following lower
bounds

Re(2s0 + v − 1) = ±2L + 3L ⩾ −cf/ log(2 + |2t0 + tv|),

Re((1 − v) − 1) = −σv = −3L ⩾ −cf/ log(2 + |tv|),

Re(2σ0 + v − 1) = ±2L + 3L ⩾ −cf/ log(2 + |tv|).
Furthermore, under the same conditions, we have

|v| ≍ | ± 2L− v| ≍ L + |tv|.

These remarks, when inserted in Lemma 8.11 (inequality (8.18)) and Lemma 8.8,
give the following bound for J2

J2 ≪
∫
|tv|⩽V0

L + |2t0 + tv|
1 + L + |2t0 + tv|

· L + |tv|
1 + L + |tv|

× logA
∗(

2 + |2t0 + tv|
)

logA
∗(

2 + |tv|
)

min
(

1,
L

L + |tv|

)2 dtv
(L + |tv|)2

,

which is simplified into

(8.38) J2 ≪ logA
∗
(2 + |t0|)

∫
|tv|⩽V0

L + |2t0 + tv|
1 + |2t0 + tv|

× L2

1 + |tv|
· log2A∗(

2 + |tv|
) dtv

(L + |tv|)3
.

Proceeding similarly for J3, we have

J3 ≪
∫
|tv|⩽V0

1 + L + |tv|
L + |tv|

· L + |2t0 + tv|
1 + L + |2t0 + tv|

· L

× logA
∗(

2 + |tv|
)
· logA

∗(
2 + |2t0 + tv|

)
· min

(
1,

L

L + |tv|

) dtv
L + |tv|

,
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which simplifies into

(8.39) J3 ≪ logA
∗
(2 + |t0|)

∫
|tv|⩽V0

L + |2t0 + tv|
1 + |2t0 + tv|

· L2

× log2A∗(
2 + |tv|

) 1 + |tv|
(L + |tv|)3

dtv.

8.3.10. Bound for J2 and J3: the case 1 ⩽ |t0| ⩽ log q. In that case, the
inequality (8.19) asserts the truth of the bound

T (2s0) ≪ |s0|O(1).

Hence, in order to prove (8.31) under the above restriction on t0, it is sufficient to
prove the inequality

(8.40) Ji ≪ |s0|O(1) for i = 2, 3.

We write L0 = log(2 + |t0|).
Estimate of J2. From (8.38), we deduce that

J2 ≪ LA
∗

0

∫
|tv|⩽V0

log2A∗
(2 + |tv|)

L2

(L + |tv|)3
dtv

= LA
∗

0

(∫
|tv|⩽L

+

∫
L<|tv|⩽1

+

∫
1<|tv|⩽V0

)
log2A∗

(2 + |tv|)
L2

(L + |tv|)3
dtv

≪ LA
∗

0

(
1 + 1 + L2

)
≪ |s0|.

This proves (8.40) for J2.

Estimate of J3. From (8.39), we deduce that

J3 ≪ L2 LA
∗

0

(∫
|tv|⩽L

+

∫
L<|tv|⩽1

+

∫
1⩽|tv|⩽V0

)
log2A∗(

2 + |tv|
)
· 1 + |tv|
(L + |tv|)3

dtv

≪ L2 LA
∗

0

(
L−2 + L−2 + 1

)
≪ LA

∗

0 ≪ |s0|.

This proves (8.40) for J3.

8.3.11. Bound for J2 and J3: the case |t0| ⩽ 1. In that case we have the
inequality

T (2s0) ≪ 1

L + |t0|
as a direct consequence of (8.19). Hence, in order to prove (8.31) under the above
restriction on t0, it is sufficient to prove the inequality

(8.41) Ji ≪ L + |t0| for i = 2, 3.

Estimate of J2. We start from (8.38), which in that case simplifies into

J2 ≪
∫
|tv|⩽V0

L + |2t0 + tv|
1 + |2t0 + tv|

· L2

1 + |tv|
· log2A∗(

2 + |tv|
) dtv

(L + |tv|)3
.

We split this integral in three ranges

|tv| ⩽ L, L ⩽ |tv| ⩽ 1, and 1 ⩽ |tv| ⩽ V0.

We have ∫
|tv|⩽L

(· · · ) ≪ L + |t0|
1 + |t0|

∫
|tv|⩽L

L−1 dtv ≪ L + |t0|.
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For the second range, we have∫
L⩽|tv|⩽1

(· · · ) ≪ L2

∫ 1

L

L + |t0| + tv
t3v

dtv

≪ L2
(L + |t0|

L2
+ L−1

)
≪ L + |t0|

and for the last one we get∫
1⩽|tv|⩽V0

(· · · ) ≪ L2

∫
|tv|⩾1

L + |tv + 2t0|
1 + |tv + 2t0|

log2A∗
(2 + |tv|)

dtv
|tv|4

≪ L2 ≪ L + |t0|.
Gathering the three inequalities above, we complete the proof of (8.41) in the case
i = 2.

Estimate of J3. In the case of J3, we first simplify (8.39) into

J3 ≪ L2

∫
|tv|⩽V0

L + |2t0 + tv|
1 + |2t0 + tv|

· log2A∗(
2 + |tv|

) 1 + |tv|
(L + |tv|)3

dtv,

and we again split this integral in three parts, obtaining

L2

∫
|tv|⩽L

(· · · ) ≪ L2

∫ L

0

(L + |t0|)L−3dtv ≪ L + |t0|,

L2

∫
L⩽|tv|⩽1

(· · · ) ≪ L2

∫ 1

L

(L + |t0| + tv)
dtv
t3v

≪ L + |t0|,

L2

∫
1⩽|tv|⩽V0

(· · · ) ≪ L2

∫ ∞

1

log2A∗
(2 + tv)

dtv
t2v

≪ L2 ≪ L + |t0|.

Gathering the three above inequalities, we complete the proof of (8.41) for i = 3.
The proof of (8.41) is now complete. Hence the proof of (8.13) is now complete,
and so is the proof of Proposition 8.6.

Remark 8.12. The informed reader will have noticed that the proof presented
here is slightly different from similar second moment estimates found in other works
(for instance, [49, Propositions 4 and 5]). These other arguments (following earlier
ideas of Selberg) made key use of the positivity of certain complicated terms to
avoid having to evaluate them too precisely (see [49, (67), (68)]). In the present
work – precisely the proof of Proposition 8.6 – positivity is not so evident so we
have to estimate the corresponding sums directly.





CHAPTER 9

A conjecture of Mazur-Rubin concerning modular
symbols

9.1. Introduction

In this chapter, we assume that f is a holomorphic primitive cusp form of
weight 2 and level r. We recall that for q ⩾ 1 and (a, q) = 1, the modular symbol
⟨a/q⟩f is defined by〈a

q

〉
f

= 2πi

∫ a/q

i∞
f(z)dz = 2π

∫ ∞

0

f
( a
q

+ iy
)
dy

and that it only depends on the congruence class a (mod q).
In this chapter we investigate some correlation properties of the family〈a

q

〉
f
, a ∈ (Z/qZ)×

when q is a prime number. In particular, we will prove Theorem 1.15 concerning
the variance of modular symbols.

Our main ingredient is the Birch-Stevens formula that relates the modular
symbols to the central values of the twisted L-functions.

Lemma 9.1. For any primitive Dirichlet χ (mod q), we have

L
(
f ⊗ χ,

1

2

)
=

εχ
q1/2

∑∗

a (mod q)

χ(−a)
〈a
q

〉
f
.

Proof. Observe that since f has real Fourier coefficients, we have

f(x+ iy) = f(−x+ iy), x, y ∈ R, y > 0

so that

(9.1)
〈a
q

〉
f

= 2π

∫ ∞

0

f
(
−a
q

+ iy
)
dy =

〈−a
q

〉
f
.

Now denote

(9.2)
〈a
q

〉±
f

=
1

2

(〈a
q

〉
f
±
〈−a
q

〉
f

)
the even and odd parts of the modular symbols. The Birch-Stevens formula (see [64,
(2.2)] or [59, (8.6)]) states that

L
(
f ⊗ χ,

1

2

)
=

1

εχ q1/2

∑∗

a (mod q)

χ(a)
〈a
q

〉±
f

=
χ(−1) εχ
q1/2

∑∗

a (mod q)

χ(a)
〈a
q

〉±
f

where aa ≡ 1 (mod q), εχ is the normalized Gauß sum of χ (cf. (1.9)), and the
“exponent” ± is χ(−1).
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Inserting (9.2) we obtain

L
(
f ⊗ χ,

1

2

)
=

εχ
q1/2

∑∗

a (mod q)

χ(−a)
〈a
q

〉
f
,

as claimed. □

By performing discrete Mellin inversion, we will be able to use our results on
moments of twisted central values to evaluate asymptotically the first and second
moments of the modular symbols, and in fact also correlations between modular
symbols for two cusp forms.

We define

Mf (q) =
1

φ(q)

∑∗

a (mod q)

〈a
q

〉
f
.

Moreover, we define

fq(z) = f(qz) =
∑
n⩾1

λf (n)n1/2e(nqz).

If g is a holomorphic primitive cusp form of weight 2 and level r′ coprime to q,
and u, v are integers coprime to q, we define

Cf,g(u, v; q) =
1

φ(q)

∑∗

a (mod q)

(〈au
q

〉
f
−Mf (q)

)(〈av
q

〉
g
−Mg(q)

)
(where here and below, the sum is over invertible residue classes modulo q). In
particular, note that the variance in Theorem 1.15 is Vf (q) = Cf,f (1, 1; q), so the
second part of the next result implies that theorem:

Theorem 9.2. Suppose that q is prime. Write the levels r and r′ of f and g
as r = ϱδ and r′ = ϱ′δ where δ = (r, r′) and (ϱ, ϱ′) = 1.

(1) We have

Mf (q) =
( q1/2

q − 1
· Lq(fq, 1/2)

Lq(f, 1/2)
− 1

q − 1

)
L(f, 1/2) = O(q−1/2).

(2) We have

Cf,g(u, v; q) =
q

φ(q)2

∑∗

χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2)χ(u)χ(v).

(3) In particular, if r = r′ and ε(f)ε(g) = −1, then Cf,g(1, 1; q) = 0. Otherwise

Cf,g(1, 1; q) = γf,g
L∗(f ⊗ g, 1)

ζ(2)
+O(q−1/145) if f ̸= g,

Cf,f (1, 1; q) = 2
∏
p|r

(1 + p−1)−1L
∗(Sym2f, 1)

ζ(2)
log q + βf +O(q−1/145),

where βf is a constant, and

γf,g = 1 + ε(f)ε(g)
λf (ϱ)λg(ϱ

′)√
ϱϱ′

is a non-zero constant.
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Part (3) with f = g and u = v = 1 confirms a conjecture of Mazur and Rubin,
as stated by Petridis and Risager [63, Conj. 1.1], in the case of prime moduli q.
Note that their statement of the conjecture involves a quantity which they denote
L(Sym2f, 1) and which should be interpreted as our L∗(Sym2f, 1) (although they
do not state this formally, it is clear from their proof of [63, Th. 1.6] in Section 8
of loc. cit., especially Section 8.2.1). In fact, Theorem 9.2 and the computations
in Section 2.3.3 show that the conjecture would not hold in general if L(Sym2f, 1)
is interpreted as the special value of the automorphic (or “motivic”) symmetric
square.

Remark 9.3. If f ̸= g and u = v = 1, and either r ̸= r′ or ε(f)ε(g) = 1, then
we find by (3) a little bit of correlation between modular symbols as q → +∞: the
modular symbols related to f and g do not become asymptotically independent.

On the other hand, if r = r′, ε(f)ε(g) = −1 and u = v = 1, the correlation
vanishes exactly, but this fact will not persist in general if u or v is not 1 modulo
q, as shown by our evaluation of the twisted second moment (Theorem 5.1). For
instance, using Lemma 7.9, we get a formula with non-zero leading term for suitable
choices of u and v, even if r = r′ and ε(f)ε(g) = −1.

9.2. Proof of the theorem

We observe first that Mf (q) ∈ R because of the relation (9.1). We compute
Mf (q) exactly by analytic continuation from a region of absolute convergence, using
additive twists of modular forms.

Let a be coprime to q. We have

yf
(
z +

a

q

)
= y

∑
n⩾1

λf (n)n1/2e
(
n
(
x+

a

q

))
exp(−2πny).

For any complex number s, we define〈a
q

〉
s,f

= 2π

∫ ∞

0

yf
( a
q

+ iy
)
ys
dy

y
.

As a function of s, this expression is holomorphic in the whole complex plane. On
the other hand, for Re(s) > 1, we have〈a

q

〉
s,f

= (2π)1/2
∑
n⩾1

λf (n)e
(
n
a

q

)∫ ∞

0

(2πny)1/2y1/2+s exp(−2πny)
dy

y

= (2π)−s
∑
n⩾1

λf (n)e(naq )

n1/2+s

∫ ∞

0

y1+se−y
dy

y

= (2π)−sΓ(1 + s)L(f, a, 12 + s)

where

L(f, a, s) =
∑
n⩾1

λf (n)e(naq )

ns

when the series converges absolutely.
Expressing the additive character in terms of multiplicative characters, it fol-

lows that the series L(f, a, s) has analytic continuation to C. Hence the identity
above holds for all s ∈ C. In particular, we obtain〈a

q

〉
f

=
〈a
q

〉
0,f

= L(f, a, 1/2).
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Since q is prime, we deduce by direct computation that

∑∗

a (mod q)

〈a
q

〉
s,f

= (2π)−sΓ(1 + s)

(
q
∑
n⩾1

λf (qn)

(qn)s+1/2
− L(f, s+ 1/2)

)

= (2π)−sΓ(1 + s)
(
q1/2

Lq(fq, s+ 1/2)

Lq(f, s+ 1/2)
− 1

)
L(f, s+ 1/2)

in Re s > 1/2, where

Lq(fq, 1/2) =
∑
α⩾0

λf (qα+1)

qα/2
= λf (q) +

Lq(f, 1/2)

q1/2

(
λf (q2) − λf (q)

q1/2

)
= λf (q) +O(q−1/2).

Hence

Mf (q) =
( q1/2

q − 1
· Lq(fq, 1/2)

Lq(f, 1/2)
− 1

q − 1

)
L(f, 1/2) = O(q−1/2).

This proves the first part of Theorem 9.2.
Next, let u and v be integers coprime to q. From Lemma 9.1, we derive∑∗

χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2)χ(u)χ(v)

=
1

q

∑∗

χ

χ(u)χ(v)
∑∗

a,a′ (mod q)

χ(a)χ(a′)
〈a
q

〉
f

〈a′
q

〉
g

=
1

q

∑
χ

χ(u)χ(v)
∑∗

a,a′ (mod q)

χ(a)χ(a′)
〈a
q

〉
f

〈a′
q

〉
g

− φ(q)2

q
Mf (q)Mg(q)

=
φ(q)

q

∑∗

a,a′ (mod q)
uā≡vā′ (mod q)

〈a
q

〉
f

〈a′
q

〉
g

− φ(q)2

q
Mf (q)Mg(q),

hence, putting b = aū = a′v̄, we get

Cf,g(u, v; q) =
1

φ(q)

∑∗

b (mod q)

(〈ub
q

〉
f
−Mf (q)

)(〈vb
q

〉
g
−Mg(q)

)
=

q

φ(q)2

∑∗

χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2)χ(u)χ(v),

which is the formula in Part (2) of the Theorem 9.2.
If r = r′, u = v = 1 and ε(f)ε(g) = −1, then the second moment vanishes

exactly (see the last part of Theorem 5.1), which proves the first part of Part (3),
and otherwise, we obtain the last statement from Theorem 1.18 and Proposition 5.2.

9.3. Modular symbols and trace functions

As we have seen, the modular symbol ⟨a/q⟩f , as a function of a, depends only
on the congruence class a (mod q) and therefore defines a function on Z/qZ, where
we put ⟨0/q⟩f = 0.
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In the previous sections, we discussed how this function correlates either with
the constant function 1, or with itself, or with the modular symbol attached to
another modular form. In this section, we will see that we can also evaluate easily
the correlations of modular symbols and trace functions t : Fq → C, as described
in Section 3.4.

We consider here the correlation sums

Cf (t) =
1

φ(q)

∑∗

a (mod q)

〈a
q

〉
f
t(a).

We will prove that these are small, except in very special cases. This means that
trace functions do not correlate with modular symbols.

Proposition 9.4. Let t be the trace function of a geometrically irreducible
ℓ-adic sheaf F. We assume that F is not geometrically isomorphic to an Artin-
Schreier sheaf or to the pull-back of such a sheaf by the map x 7→ x−1. Then we
have

Cf (t) ≪ q−1/8+ε,

for any ε > 0, where the implied constant depends only on ε, f and (polynomially)
on the conductor of F.

Remark 9.5. The assumption on the sheaf holds for all the examples in Ex-
ample 3.9, except for t(x) = e(f(x)/q) if the polynomial f has degree ⩽ 1.

Proof. By Lemma 9.1 and Theorem 9.2(1), we have

Cf (t) =
1

φ(q)

∑∗

a (mod q)

〈a
q

〉
f
t(a) =

1

φ(q)2

∑
χ (mod q)

∑∗

a,a′ (mod q)

〈a
q

〉
f
χ(a)χ(a′)t(a′)

=
q1/2

φ(q)3/2

∑∗

χ (mod q)

L(f ⊗ χ, 1/2)χ(−1)εχt̃(χ̄) +O

(
1

q3/2

)

=
1

φ(q)

∑∗

χ (mod q)

L(f ⊗ χ, 1/2)χ(−1)εχt̃(χ̄) +O

(
1

q

)
.

We compute that

εχt̃(χ) =
1
√
q

∑
x

χ(x)e
(x
p

)∑
y

χ(y) t(y)

=
1
√
q

∑
a

χ(a)
∑
y/x=a

e
(x
p

)
t(y),

hence

εχt̃(χ) =
1
√
q

∑
a∈F×

q

χ(a)τ(a)

where

τ(a) =
1
√
q

∑
xy=a

e
(
− x̄
p

)
t(y)

is the convolution of t and x 7→ e(−x−1/p). In other words, χ 7→ εχt̃(χ) is the
discrete Mellin transform of this convolution.

We distinguish two cases. If F is not geometrically isomorphic to a Kummer
sheaf, then our assumptions on F imply that this convolution is the trace function
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of a Mellin sheaf G with conductor bounded polynomially in terms of c(F), and
that G is not geometrically isomorphic to [x 7→ a/x]∗Kℓ2 for any a ∈ F×

q (see
Lemma 3.13). By Theorem 4.4, we have therefore

1

φ(q)

∑∗

χ (mod q)

L(f ⊗ χ, 1/2)χ(−1)εχt̃(χ̄) ≪ q−1/8+ε

for any ε > 0, and hence Cf (t) ≪ q−1/8+ε for any ε > 0.
In the case of a Kummer sheaf, we have t(x) = αχ0(x) for some α ∈ C and

some non-trivial multiplicative character χ0 modulo q and

χ̃0(χ̄) =

{
αφ(q)1/2 if χ = χ0

0 otherwise,

so that we get

Cf (χ0) =
1

φ(q)1/2
χ0(−1)εχ0

L(f ⊗ χ0,
1
2 ) +O(q−1) ≪ q−1/8+ε

by the subconvexity estimate of Blomer and Harcos [5, Th. 2]. □

Remark 9.6. For completeness, we consider the correlations in the exceptional
cases excluded in the previous proposition. We assume that there exists l ∈ F×

q

such that either

(9.3) t(x) = e
(
− lx
q

)
, x ∈ Fq

or

(9.4) t(x) = e
( lx̄
q

)
, x ∈ F×

q , t(0) = 0.

(note that if l = 0, the correlation sum is just the mean-value Mf (q) that we already
investigated).

We follow the steps of the proof of Proposition 9.4 for these specific functions.
In both cases, the Mellin transform t̃ is a multiple of a Gauß sum. More precisely,
we obtain

εχt̃(χ) =
( q

φ(q)

)1/2
χ(l), εχt̃(χ) =

( q

φ(q)

)1/2
χ(l)ε−2

χ

in the case of (9.3) and of (9.4), respectively. Using the notation of Chapter 4, we
therefore have

Cf (t) =
( q

φ(q)

)1/2
L(f ; l, 0), Cf (t) =

( q

φ(q)

)1/2
L(f ; l,−2),

respectively. By Corollary 4.2, we conclude that

Cf (t) =
λf (lq)

l
1/2

q

+Of,ε(q
−1/8+ε), Cf (t) = ε(f)

λf ((lr)q)

(lr)
1/2
q

+Of,ε(q
−1/8+ε),

for any ε > 0, respectively.



Notation index

We list some of the notation used in this book that may not be standard.
Further notation and conventions are explained in Section 2.1. Some notation that
is local to a single chapter are omitted.

FN family of modular form p. 7
EN (·) averaging over FN p. 7
PN (·) probability for FN p. 7
M(f) mollifier p. 12
R(f) resonator p. 13
χr trivial character modulo r p. 16
r level of f p. 16
Fq family of Dirichlet characters modulo q p. 17
φ∗(q) number of primitive characters modulo q p. 17
θ(f ⊗ χ) angle of root numbers in R/2πZ p. 18

t̃e(χ) Evans sums p. 18
rkan(f ⊗ χ) analytic rank p. 20〈a
q

〉
f

modular symbol p. 21

L∗(Sym2f, s) imprimitive symmetric square p. 21
L(f, s; ℓ, k), L(f ; ℓ, k) twisted first moments p. 22
Q(f, s; ℓ, ℓ′), Q(f ; ℓ, ℓ′) twisted second moment p. 22
εχ normalized Gauß sum p. 22
M(f ⊗ χ, s;xL) mollifier p. 22
ℓ̄q integer in [1, q] such that ℓℓ̄q ≡ 1 (mod q) p. 22
MT(f, g, s; ℓ, ℓ′), MT±(f, g, s; ℓ, ℓ′) main term for second moment p. 23, 71
Lp(f, s) local factor at p p. 28
αf,i(p), αf⊗g(p) Satake parameters p. 28, 32
λf (n) Hecke eigenvalues p. 28
κf spectral parameter p. 28
µf,i archimedean parameters p. 28
a parity parameter p. 29
ε(f ⊗ χ), ε(f), ε(f ⊗ g) root numbers p. 29, 33
Λf (n), Λf⊗χ(n) von Mangoldt functions p. 32
L∗(f ⊗ g, s) imprimitive Rankin-Selberg convolution p. 33
Q(π), q(π), Q(π ⊗ π′), q(π ⊗ π′) analytic conductor, conductor p. 35
Vf,±,s(y), Wf,g,±,s weight functions p. 45
ε(f,±, s), ε(f, g,±, s) coefficients p. 45

W̃± Voronoi transform of W p. 46
J± variants of Bessel functions p. 46

K̂ normalized discrete Fourier transform of K p. 46

K

∧

discrete Bessel transform of K p. 46
µf (n) Dirichlet convolution inverse of λf (n) p. 47
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Klk(m; q) hyper-Kloosterman sums p. 54
c(F) conductor of F p. 60

t̃(χ) discrete Mellin transform p. 61
t1 ⋆ t2 multiplicative convolution p. 62
θχ Frobenius conjugacy class p. 63

t̃rr(χ) Rosenzweig-Rudnick sum p. 65
L±(f ; ℓ, k) even and odd twisted first moments p. 68
L(f × g, 2s, u; ℓ′, ℓ) auxiliary Dirichlet series p. 73
ET(f, g; ℓ,±ℓ′) error terms in second moments p. 75
L (f ;xL, ψ) auxiliary first moment p. 80
r(p) auxiliary multiplicative function p. 95
o⋆(1) short-hand asymptotic notation p. 95
λ∗
f , λ

∗
g auxiliary arithmetic functions p. 104

R(χ) resonator p. 106
Af (χ) amplifier p. 111

ϕ̂(s) Fourier-Laplace transform p. 125
R(ℓ1, ℓ2, s) auxiliary Dirichlet series p. 129
Mf (q) average of modular symbols p. 144
fq f(qz) p. 144
Cf,g(u, v; q) correlation of modular symbols p. 144
L(f, a, s) additive twist of L(f, s) p. 145
Cf (t) correlation of t with modular symbols p. 147
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cations”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2013, Presses Univ. Franche-Comté,
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algébriques, Compositio Math. 58 (1986), no. 2, 209–232 (French).

[61] T. Miyake, Modular forms, Springer monographs in mathematics, Springer-Verlag, Berlin,

1989.
[62] C. Moreno, Analytic proof of the strong multiplicity one theorem, Amer. J. Math. (1985),

163–206.

[63] Y. Petridis and M. Risager, Arithmetic statistics of modular symbols, Invent. math. 212
(2018), no. 3, 1–57.

[64] R. Pollack, Overconvergent modular symbols, Computations with modular forms, Contrib.
Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 69–105.

[65] M. Radziwi l l and K. Soundararajan, Moments and distribution of central L-values of qua-

dratic twists of elliptic curves, Invent. math. 202 (2015), no. 3, 1029–1068.
[66] , Selberg’s Central Limit Theorem for log |ζ(1/2 + it)|, L’enseignement math. (to ap-

pear).

[67] , Value distribution of L-functions, Oberwolfach report 40/2017.
[68] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2),

Ann. of Math. (2) 152 (2000), no. 1, 45–111.
[69] , Recovering cusp forms on GL(2) from symmetric cubes, SCHOLAR—a scientific

celebration highlighting open lines of arithmetic research, 2015, pp. 181–189.

[70] G. Ricotta, Real zeros and size of Rankin-Selberg L-functions in the level aspect, Duke Math.
J. 131 (2006), no. 2, 291–350.

[71] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke

Math. J. 81 (1996), no. 2, 269–322.
[72] Z. Rudnick and K. Soundararajan, Lower bounds for moments of L-functions, Proc. Natl.

Acad. Sci. USA 102 (2005), no. 19, 6837–6838.

[73] P. Sarnak, Nonvanishing of L-functions on R(s) = 1, Contributions to automorphic forms,
geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 719–732.

[74] P. Sarnak, S.W. Shin, and N. Templier, Families of L-functions and their Symmetry, Families

of Automorphic Forms and the Trace Formula, Simons Symposia, vol. 12, Springer, 2016,
pp. 531-578.

[75] W. Sawin, Bounds for numerical invariants of sheaves arising from multiplicative convolution
(2018). preprint.

[76] A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I. 1942
(1942), no. 10, 59.

[77] , Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid.

48 (1946), no. 5, 89–155.
[78] S.W. Shin and N. Templier, Sato-Tate theorem for families and low-lying zeros of automor-

phic L-functions, Invent. math. 203 (2016), no. 1, 1–177. Appendix A by R. Kottwitz, and
Appendix B by R. Cluckers, J. Gordon and I. Halupczok.

https://arxiv.org/abs/1910.12798


154 BIBLIOGRAPHY

[79] K. Soundararajan, Moments of the Riemann zeta function, Ann. of Math. (2) 170 (2009),

no. 2, 981–993.

[80] , Extreme values of zeta and L-functions, Math. Ann. 342 (2008), no. 2, 467–486.
[81] T. Stefanicki, Non-vanishing of L-functions attached to automorphic representations of

GL(2) over Q, J. reine angew. Math. 474 (1996), 1–24.

[82] S.M. Voronin, A theorem on the ”universality” of the Riemann zeta–function, Izv. Akad.
Nauk SSSR, Ser. Matem. 39 (1975), 475–486; English transl., Math. USSR Izv. 9 (1975),

no. 3, 443–453.

[83] P. Xi, Large sieve inequalities for algebraic trace functions, Int. Math. Res. Not. IMRN 16

(2017), 4840–4881. With an appendix by Étienne Fouvry, Emmanuel Kowalski, and Philippe

Michel.
[84] M. P. Young, The fourth moment of Dirichlet L-functions, Ann. of Math. (2) 173 (2011),

no. 1, 1–50.
[85] R. Zacharias, Mollification of the fourth moment of Dirichlet L-functions, Acta Arith. 191

(2019), no. 4, 201–257.

[86] , Simultaneous non-vanishing for Dirichlet L-functions, Ann. Inst. Fourier (Grenoble)
69 (2019), no. 4, 1459–1524.


	Chapter 1. The second moment theory of families of L-functions
	1.1. General introduction
	1.2. The family of twists of a fixed modular form
	1.3. Positive proportion of non-vanishing
	1.4. Large central values
	1.5. Bounds on the analytic rank
	1.6. A conjecture of Mazur-Rubin concerning modular symbols
	1.7. Twisted moment estimates
	Outline of the book
	Acknowledgments

	Chapter 2. Preliminaries
	2.1. Notation and conventions
	2.2. Hecke L-functions
	2.3. Auxiliary L-functions
	2.4. Prime Number Theorems
	2.5. Consequences of the functional equations
	2.6. A factorization lemma
	2.7. A shifted convolution problem
	2.8. Partition of unity

	Chapter 3. Algebraic exponential sums
	3.1. Averages over Dirichlet characters
	3.2. Bounds for Kloosterman sums
	3.3. Sketch of the arguments
	3.4. Trace functions and their Mellin transforms
	3.5. The equidistribution group of a Mellin transform

	Chapter 4. Computation of the first twisted moment
	4.1. Introduction
	4.2. Proof
	4.3. First moment with trace functions

	Chapter 5. Computation of the second twisted moment
	5.1. Introduction
	5.2. Isolating the main term
	5.3. The error term
	5.4. The trivial bound
	5.5. The shifted convolution bound
	5.6. Bilinear sums of Kloosterman sums
	5.7. Optimization

	Chapter 6. Non-vanishing at the central point
	6.1. Introduction
	6.2. The Cauchy-Schwarz inequality
	6.3. Choosing the mollifier
	6.4. Computation of the first mollified moment
	6.5. Computation of the second mollified moment
	6.6. Improvement of Theorem 1.8
	6.7. Non-vanishing with Mellin constraints

	Chapter 7. Extreme values of twisted L-functions
	7.1. Introduction
	7.2. Background on the resonator polynomial
	7.3. Evaluation of the moments
	7.4. Extreme values with angular constraints
	7.5. Large values of products

	Chapter 8. Upper bounds for the analytic rank
	8.1. Introduction
	8.2. Application of the explicit formula
	8.3. Proof of the mean-square estimate

	Chapter 9. A conjecture of Mazur-Rubin concerning modular symbols
	9.1. Introduction
	9.2. Proof of the theorem
	9.3. Modular symbols and trace functions

	Notation index
	Bibliography

