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Abstract: We consider the nonparametric regression problem with mul-
tiple predictors and an additive error, where the regression function is as-
sumed to be coordinatewise nondecreasing. We propose a Bayesian ap-
proach to make inferences on the multivariate monotone regression func-
tion, obtain the posterior contraction rate, and construct a universally con-
sistent Bayesian testing procedure for multivariate monotonicity. To facil-
itate posterior analysis, we temporarily set aside the shape restrictions,
and endow a prior on blockwise constant regression functions with inde-
pendently normally distributed heights. The unknown variance of the error
term is either estimated by the marginal maximum likelihood estimate,
or is equipped with an inverse-gamma prior. Then the unrestricted block-
heights are a posteriori also independently normally distributed given the
error variance, by conjugacy. To comply with the shape restrictions, we
project samples from the unrestricted posterior onto the class of multivari-
ate monotone functions, inducing the “projection-posterior distribution”,
to be used for making an inference. Under an L1-metric, we show that the
projection-posterior based on n independent samples contracts around the
true monotone regression function at the optimal rate n−1/(2+d). Then we
construct a Bayesian test for multivariate monotonicity based on the pos-
terior probability of a shrinking neighborhood of the class of multivariate
monotone functions. We show that the test is universally consistent, that
is, the level of the Bayesian test goes to zero, and the power at any fixed
alternative goes to one. Moreover, we show that for a smooth alternative
function, power goes to one as long as its distance to the class of multivari-
ate monotone functions is at least of the order of the estimation error for a
smooth function. To the best of our knowledge, no other test for multivari-
ate monotonicity is available in the Bayesian or the frequentist literature.
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1. Introduction

Shape restricted inference is an important nonparametric statistical technique
with a long history. Functions with qualitative shape restrictions, such as mono-
tonic functional relationships between variables, are quite common in natural
sciences, sociology, economics and many other areas. Shape restrictions on the
function space can also serve as a relaxation to restricted parametric models,
such as log-concave density estimation. The shape constraints themselves yield
function estimators with good statistical properties without resorting to the
subjective selection of the smoothness level, such as in kernel or spline smooth-
ing. Starting from early works on statistical inference under order restrictions,
problems with monotonicity constraints on parameters of interest, regression
functions, and probability densities were extensively studied. For the univariate
monotone function estimation problem, the least squares estimator for an iso-
tonic regression function and the maximum likelihood estimator for a decreasing
density function have interesting geometrical representations respectively as the
slope of the greatest convex minorant and the least concave majorant of a cu-
mulative sum diagram. The limit distribution at an interior point on which the
function has a positive derivative is well known as the rescaled Chernoff’s distri-
bution; see Grenander [18], Prakasa Rao [30], Brunk [4], Groeneboom [19, 20],
Barlow et al. [2], and Robertson et al. [31]. Asymptotic global behaviors of the
least squares estimators under monotone constraints are well developed with re-
spect to various metrics; see Groeneboom [19], Kukilov and Lopuhaä [25], Durot
[12], and Durot et al. [13]. Zhang [44] and Bellec [3] studied the non-asymptotic
risk bounds of the least squares estimators. Testing for monotonicity was studied
in the univariate case by Akakpo et al. [1], Hall and Heckman [21] and Ghosal
et al. [16]. Applications of shape-restricted inference in various areas, like causal
inference, genetics, and material science, are still of growing interest; more de-
tails can be found in Westling et al. [42], Luss and Rosset [27] and Vittorietti
et al. [40].

Compared to the well-studied case of univariate monotone shape-restricted
inference, convergence results for multivariate monotonicity were lacking until
recent years. Among different possible multivariate monotonicity restrictions,
coordinatewise monotonicity is popularly considered. This naturally arises in
some modeling contexts studied in Robertson et al. [31], Saarlera and Arjas [32]
and Fokianos et al. [15]. In the frequentist literature, the least squares estimator
based on independent and identically distributed (i.i.d.) under the multivariate
coordinatewise monotonicity constraint has received the most attention. For
both a fixed grid design or a random design, the minimax rate is given by
n− min{2/(d+2),1/d} with respect to the squared empirical L2-metric when the
true regression function is coordinatewise nondecreasing and is of bounded vari-
ation (Chatterjee et al. [8], Han et al. [23]). Han [22] showed that some special
global empirical risk minimizers, such as the least squares estimator in mul-
tivariate isotonic regression, are rate optimal even when the entropy integral
concerned therein diverges rapidly. For d ≥ 2 and p ≥ 1, the minimax risk un-
der the general empirical Lp-loss n−1 ∑n

i=1 E|f̂(xi) − f(xi)|p of the estimator f̂
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of a function f for deterministic predictors on a grid, and the integrated Lp-risk∫
E|f̂(x) − f(x)|pdG(x) for a random predictor X ∼ G, are bounded below by

a multiple of n− min{1/d,p/(d+2)} under some conditions on the signal-to-noise
ratio and the error term; see Deng and Zhang [11]. In addition to the least
squares estimator or the empirical risk minimization estimators, other estima-
tors, such as a block-estimator modifying the min-max formula for the isotonic
least squares solution (Robertson et al. [31]), have been proposed and studied;
see Fokianos et al. [15], Deng and Zhang [11] and Han and Zhang [24]. The
computation of isotonic regression with respect to a general partial ordering
minimizing the Lq-metric also attracted attention. One solution is to put this
question under the framework of convex optimization with linear constraints;
see, for example, Dykstra and Robertson [14], de Leeuw [10] and Meyer [28]. A
sequential partitioning algorithm is designed for isotonic regression under the
weighted L1-metric that computes in O(n log n) time for the coordinatewise iso-
tonic regression with 2-dimensional grid designs and in O(n2 log n) time for the
d ≥ 3 case; see Stout [37] for details. Stout [38] gave another algorithm with
better computation time under the L1-metric for the unweighted data. In terms
of the L2-metric, which leads to the usual isotonic least squares estimator, the
algorithm in Spouge et al. [36] can compute in O(n2) time for a two-dimensional
grid data.

Bayesian approaches to isotonic regression are also available in the literature.
Most of these approaches deal with a univariate isotonic regression function.
Neelon and Dunson [29] modeled the regression function as a piecewise linear
function and incorporated the monotonicity constraints in the priors of the se-
quential slopes. Shivley et al. [35] considered Bayesian regression splines under
the monotonicity constraint, which is incorporated into the spline coefficients
through a mixture of a constrained normal distribution and a probability dis-
tribution on the boundary of the constrained parameter set. Lin and Dunson
[26] considered a Gaussian process prior, and projected posterior samples on the
space of monotone functions to obtain an induced posterior distribution, which
is subsequently used to make inferences. Chakraborty and Ghosal [5, 6, 7] used
the same idea with a piecewise constant prior and obtained results on poste-
rior contraction and frequentist coverage of Bayesian credible intervals. For the
multivariate monotone regression, Saarela and Arjas [32] used marked point
processes to construct piecewise constant sample paths for the function. They
considered a homogeneous Poisson process prior on the random point positions
and endowed the associated marks, i.e., the function value at the point, with
the uniform distribution prior supported on the allowed interval restricted by
the shape constraints. Chipman et al. [9] applied a constrained sum-of-trees
to model monotone regression functions. To obtain posterior samples, Markov
chain Monte Carlo (MCMC) methods are used for each method mentioned
above. The Bayesian testing procedure for monotonicity in the univariate case
has also been proposed by a few authors. Salomond [33] and Chakraborty and
Ghosal [5, 7] developed tests based on the posterior distribution of a discrepancy
of the function from the unrestricted posterior with its monotone projection.
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Scott et al. [34] used smoothing splines and regression splines to model the re-
gression function, and incorporated the monotonicity constraints into the prior
for the coefficients. To test for monotonicity, they considered the Bayes factor
and converted the monotonicity hypothesis to a condition on the minimum of
the derivative functions. To the best of our knowledge, no test for multivariate
monotonicity, Bayesian or frequentist, is yet available in the literature.

In this paper, we consider a Bayesian approach to multivariate monotone
regression, using the projection technique. We show that the resulting induced
posterior supported on block-wise constant multivariate monotone function con-
tracts at the optimal rate with respect to an L1-metric. The basis of the result is
a new L1-approximation property for multivariate monotone functions by piece-
wise constant functions. We then construct a test for multivariate monotonicity
based on the posterior probability of a slight enlargement of the set of multivari-
ate monotone functions. We show that the resulting Bayesian test is universally
consistent in that the size of the test goes to zero, and the power goes to one at
any fixed alternative, as the sample size increases to infinity. We further show
that, even for alternatives approaching the null region, the power can go to
one, provided that the alternative maintains a distance of at least a sufficiently
large multiple of the posterior contraction rate determined by its smoothness.
These results generalize the testing results of Chakraborty and Ghosal [5] to
multidimensional predictors.

The rest of this paper is organized as follows. In Section 2, we describe the
prior distribution and the projection-posterior approach. Posterior contraction
rates and the properties of the Bayesian test for monotonicity are presented in
Section 3. Simulation studies to judge the qualities of the proposed estimation
and testing procedure in finite sample sizes are conducted in Section 4. Proofs
are deferred to Section 5. Certain auxiliary results and their proofs are presented
in the appendix.

2. Setup, prior and posterior

We shall use the following notations and symbols throughout the paper. The
notation R stands for the real line, Z for the set of integers, and Z> for the
set of positive integers. Vectors and matrices will be denoted by bold letters,
and the default form of a vector is assumed to be in the column form. For
a ∈ R

d, let ak denote the k-th coordinate, k = 1, . . . , d. The symbols 1 and 0
will respectively denote the d-dimensional all-one and all-zero vectors. For a real
x, �x� (respectively, �x	) will stand for the greatest integer less (respectively, the
smallest integer greater) than or equal to x. The indicator function of a set A
is denoted by 1A(·). For p > 0, let Lp(μ) denote the set of real-valued functions
defined on [0, 1]d with respect to a measure μ whose pth power is integrable. For
p ≥ 1 and f ∈ Lp(μ), the Lp-norm of f is denoted by ‖f‖p,μ. For a distance ρ on
functions, a function f and a set of functions F , let ρ(f, F) = inf{ρ(f, g) : g ∈
F}. The symbol � will stand for an inequality up to a constant multiple, and �
will stand for equality in order. For two positive real sequences, an and bn, we
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also say an � bn if bn = o(an). Let N(ν, σ2) stand for the normal distribution
with mean ν and variance σ2.

Consider the natural partial ordering 
 on R
d given by: x1 
 x2 if x1,k ≤ x2,k

for every 1 ≤ k ≤ d and (x1, x2) ∈ R
d ×R

d and we also use x2 � x1 if x1 
 x2.
For (j1, j2) ∈ Z

d × Z
d and j1 
 j2, let [j1 : j2] = {j ∈ Z

d : j1 
 j 
 j2}.

Definition 1. A function f : I → R, where I ⊂ R
d, is called multivariate

monotone if f(x1) ≤ f(x2) whenever x1 
 x2.

The space of all multivariate monotonic functions on [0, 1]d will be denoted
by M.

We consider the nonparametric multivariate regression model

Y = f(X) + ε, (2.1)

where X is the d-dimensional predictor and ε is an error term with zero mean
and finite variance, independent of X. We shall assume, essentially without loss
of generality, that the domain of X is [0, 1]d. Instead of a traditional smooth-
ness assumption on the regression function f , we assume that f is multivariate
monotonic.

We observe the data Dn consisting of n samples (X1, Y1), . . . , (Xn, Yn) inde-
pendently from the model. The predictor variable X may be deterministic or
obtained independently from a fixed distribution G, independent of the random
error variable ε. To make an inference on f , we adopt a Bayesian approach
by putting an appropriate prior distribution on f and other parameters of the
model. The main objective of this paper is to study the contraction rate of
the posterior distribution and construct a Bayesian test for multivariate mono-
tonicity with some desirable large sample frequentist properties. To facilitate
Bayesian inference, we construct a likelihood based on the working model as-
sumption that εi

i.i.d.∼ N(0, σ2), although the actual distribution may be non-
normal. For a given f , let pf,σ(y|x) = (

√
2πσ)−1 exp[−(y − f(x))2/(2σ2)] stand

for the conditional density of Y given X = x.
Let Gn = n−1 ∑n

i=1 δXi denote the empirical distribution of X. For a deter-
ministic predictor variable X, this is a sequence of deterministic distributions,
while for a random X, this sequence is random. Let f0 stand for the true value of
the regression function f , σ0 stand for the true value of σ, and let P0 denote the
true distribution of (X, Y ). The expectation with respect to P0 will be denoted
by E0.

The usual approach to Bayesian inference for model (2.1) with f ∈ M would
be to put a prior on f supported within M, and obtain the posterior distribu-
tion to make an inference. However, the shape restriction in M forbids certain
natural priors, such as the one on step functions with the step-heights indepen-
dently normally distributed, which allows fast calculations through conjugacy. A
compliant prior will have to maintain the order restriction on the step-heights,
which makes the posterior computation more challenging. More importantly,
this will make frequentist analyses such as posterior contraction rates and lim-
iting coverage of credible regions are extremely hard. The projection-posterior
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approach provides a simple tool to “correct” a non-compliant posterior distri-
bution by projecting posterior samples on the relevant parameter space and
uses the resulting induced distribution to make inference, as in Lin and Dunson
[26] and Chakraborty and Ghosal [5, 7]. A generalization of this approach using
a broader “immersion map” was used by Wang and Ghosal [41] to study the
coverage of a Bayesian credible interval of a multivariate monotone regression
function at a given point.

To obtain posterior contraction rate in terms of a global metric like an
L1-distance, we follow the projection-posterior approach, as in the univari-
ate case of Chakraborty and Ghosal [5]. Given J ∈ Z>0, let I1 = [0, J−1]d
and Ij =

∏d
k=1((jk − 1)/J, jk/J ] for j ∈ [1 : J ]\{1}. Let FJ = {f : f =∑

j∈[1:J ] θj1Ij
, θj ∈ R}, the set of piecewise constant functions. If f were unre-

stricted, a conjugate prior for the model (2.1) is given by letting

θj
ind∼ N(ζj , σ2λ2

j), j ∈ [1 : J ], (2.2)

where ζj , λj are hyperparameters, and then either by choosing J deterministi-
cally (increasing with n) or by putting a prior on J . The prior and the resulting
posterior are both supported within FJ , and the posterior is given by

θj |(Dn, σ2, J) ind∼ N((Nj Ȳ |Ij
+ ζjλ−2

j )/(Nj + λ−2
j ), σ2/(Nj + λ−2

j )), (2.3)

where Nj =
∑n

i=1 1{Xi ∈ Ij}, the number of observed points falling in the jth
block, and Ȳ |Ij

=
∑n

i=1 Yi1{Xi ∈ Ij}/Nj , j ∈ [1 : J ]. The resulting posterior
for f will be referred to as the “unrestricted posterior”, which is not supported
within M. The projection map then produces an induced distribution suitable
for an inference, to be referred to as the “projection-posterior” distribution.

To study the asymptotic properties of the posterior distribution of f in the
setting of a deterministic predictor, we consider the L1(Gn)-distance, while for a
random predictor arising from a distribution G, we also use the L1(G)-distance.
It will be seen that the projection posterior inherits the convergence properties
of the original posterior if the same metric is used to obtain the projection,
and hence it will be sufficient to study the unrestricted posterior, which can be
done using traditional tools like moment bounding or by applying the general
theory of posterior contraction (cf., Ghosal and van der Vaart [17]). For random
predictors, another alternative is to use the Lebesgue L1-distance. If G admits
a density bounded above and below, then the L1(G)-distance and the Lebesgue
L1-distance are equivalent, and hence they lead to the same rate. It is also
sensible to consider Lp-distances for p different from 1, but the weaker Lp-
approximation property (see Lemma A.2) will lead to a suboptimal contraction
rate n−1/(pd+2) for 1 < p ≤ 2. For the univariate case d = 1, Chakraborty and
Ghosal [5] improved the Lp-rate to the optimal rate n−1/3 up to a logarithmic
factor by using variable knots and by putting a prior on the knots, but the
corresponding improved approximation result does not seem to be obtainable
in the multivariate case.

We make the following assumption throughout.
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Assumption 1 (Design). The predictor variables X1, . . . , Xn are deterministic
and that max{Nj : j ∈ [1 : J ]} � n/Jd, or are sampled i.i.d. from a distribution
G with bounded density g.
Assumption 2 (Data). The true regression function f0 ∈ M and the true dis-
tribution of the regression error ε has mean zero and true variance σ2

0 .
Assumption 3 (Prior). The parameters ζj and λj in the prior on the coefficients
θj satisfy maxj |ζj | < ∞ and 0 < minj λ2

j ≤ maxj λ2
j < ∞.

If the number J of steps in each direction is not chosen deterministically,
then it is given a prior supported on Z>0 satisfying the tail condition

exp{−b2Jd log J} ≤ π(J) ≤ exp{−b1Jd log J}, (2.4)

where b1 and b2 are positive hyperparameters.
To deal with the parameter σ2, we can plug in the marginal maximum likeli-

hood estimator (MLE) of σ2. Under the Gaussian working model, the marginal
MLE is given by

σ̂2
n = 1

n

⎡
⎣ n∑

i=1

(
Yi −

∑
j:Xi∈Ij

ζj

)2 −
∑

j∈[1:J ]

N2
j (Ȳ |Ij

− ζj)2

Nj + λ−2
j

⎤
⎦ . (2.5)

An alternative is to adopt a fully Bayesian approach, endowing σ2 with an
Inverse-Gamma prior IG(β1, β2), for some β1 > 0, β2 > 0. By conjugacy, the
marginal posterior distribution is

σ2|Dn ∼ IG(β1 + n/2, β2 + nσ̂2
n/2). (2.6)

Let MJ = FJ ∩ M. To comply with the shape constraints, we project the
posterior of f onto the monotone function space MJ through the map

f �→ f∗ ∈ arg min{ρ(f, h) : h ∈ MJ}, (2.7)

provided the minimizer exists, where ρ is the metric of interest. Note that for
f =

∑
j∈[1:J ] θj1Ij

∈ FJ , the condition of monotonicity is equivalent to that
the array of the coefficients lies in the convex cone

C = {θ = (θj : j ∈ [1 : J ]) : θj1 ≤ θj2 , if j1 
 j2}. (2.8)

In this paper, ρ will be taken as the Lp(G∗)-distance for a distribution G∗ on
[0, 1]d, possibly depending on n (such as Gn), and some p ≥ 1, usually 1. By
minimizing the Lp(G∗)-distance over MJ , we will get the projection posterior
samples, and the corresponding induced distribution as the projection-posterior
distribution to make an inference. Let the Lebesgue measure on [0, 1]d be de-
noted by λ. The following result shows that the projection posterior given by
the Lp(λ)-projection onto M charges only MJ .

Proposition 2.1. For any f in FJ and p ≥ 1, its Lp(λ)-projection onto M, f∗,
exists, and f∗ is also the solution of the minimization problem min{‖f − h‖p,λ :
h ∈ MJ}.
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However, for a general distribution G∗, the Lp(G∗)-projection of f ∈ FJ onto
MJ is not necessarily the Lp(G∗)-projection onto M. That means, given f ∈ FJ ,
the minimization problem min{‖f −h‖p,G∗ : h ∈ M} may possess no solution in
FJ , as the minimization problem also depends on the weighting distribution G∗.
This is different from the univariate case, where the same minimizing problem
always has solutions in MJ .

We focus on the Lp(G∗)-projection onto MJ . For f ∈ FJ , the minimizing
problem then becomes,

min
θ∗∈C

∑
j∈[1:J ]

|θj − θ∗
j |pG∗(Ij). (2.9)

The solution of isotonic optimization problem in (2.9) is available in some R
packages like ‘isotone’, see de Leeuw [10]. It is a convex optimization prob-
lem with a set of linear constraints in (2.8), so a general convex optimization
algorithm, such as an active-set method or an interior-point method, can be ap-
plied. However, algorithms specially designed for isotonic regression may obtain
the solution faster. By the algorithms given in Stout [37], problem (2.9) can be
solved in O(Jd log J) steps when d = 2, and in O(J2d log J) steps when d ≥ 3. It
is clear that the solution is unique if p > 1 and G∗(Ij) > 0 for all j, by the strict
convexity of the Lp(G∗)-norm. For the L1(G∗)-norm, the solution may not be
unique, but any solution may be chosen to define the projection-posterior. The
convergence properties are not affected by the choice. For the choice G∗ = Gn

primarily used in this paper, the minimization in (2.9) reduces to

min
θ∗∈C

∑
j∈[1:J ]

Nj |θ∗
j − θj |p, (2.10)

while the use of the Lebesgue measure leads to the unweighted isotonization
problem of the minimization of

∑
j∈[1:J ] |θ∗

j − θj |p subject to the restriction
that θ∗ ∈ C.

3. Main results

Let a sample from the projection-posterior defined by the minimization of an
L1-distance, be denoted by f∗ =

∑
j∈[1:J ] θ∗

j1j . The first part of the following
theorem under abstract conditions gives the projection-posterior contraction
rates with respect to a variety of L1-metrics. In the second part of the theorem,
the conclusion is specialized to the empirical L1-metric or the L1-metric with
respect to the distribution of the predictor under easily verifiable conditions.

Theorem 3.1. Let J be deterministic, Assumptions 2–3 hold and let G∗ be a
distribution on [0, 1]d possibly depending on n and X1, . . . , Xn satisfying the
conditions that

E
[

max
j∈[1:J ]

G∗(Ij)
]
� J−d, E

[ ∑
j∈[1:J ]

G∗(Ij)(Nj + 1)−1]
� Jd/n. (3.1)
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Let f∗ be the L1(G∗)-projection of f sampled from the unrestricted posterior
on FJ . Moreover, assume that either σ is known, or a consistent estimator
is plugged-in, or that the posterior distribution of σ is consistent. Then for
εn = max{

√
Jd/n, J−1}, we have that

E0Π(‖f∗ − f0‖1,G∗ > Mnεn|Dn) → 0 for any Mn → ∞. (3.2)

The optimal L1(G∗)-rate n−1/(2+d) is obtained above by choosing J � n1/(2d+1).
Further, let Assumption 1 hold, and if the predictor is random, assume that

Jd(log n)/n → 0. Then the assertion (3.2) holds for G∗ the empirical distribu-
tion Gn for both deterministic and random predictor, and also for G∗ = G if
the predictor is random with distribution G.

The optimal rate above reduces to the L1-optimal rate n−1/3 in the univariate
case obtained by Chakraborty and Ghosal [5]. We may also like to study the
posterior contraction rate with respect to the Lp-metric. However, for p > 1,
the Lp-approximation rate by the step function fJ is weaker, only J−1/p, at
monotone functions with jumps; see Remark A.1. Hence the Lp-contraction
rate of the corresponding procedure will be suboptimal.

The distribution of a random predictor X is often unknown, but we can
compute the L1(Gn)-projection. The following corollary asserts that for ran-
dom predictors with density bounded and bounded away from 0, the L1(Gn)-
projection posterior achieves the same posterior contraction rate with respect to
the L1(λ)-metric (and hence also under the L1(G)-metric, which is equivalent
under the assumed condition).

Corollary 3.2. Let X1, . . . , Xn be i.i.d. with distribution G admitting a den-
sity function g bounded and bounded away from 0. Let J be deterministic,
J → ∞ and Jd(log n)/n → 0. Then under Assumptions 2 and 3, for εn =
max{

√
Jd/n, J−1} and any Mn → ∞, E0Π(‖f∗ − f0‖1,λ > Mnεn|Dn) → 0

where f∗ is the L1(Gn)-projection of f sampled from the unrestricted posterior.

Next, we shall construct a Bayesian test for the multivariate coordinatewise
monotonicity. A natural Bayesian test is based on the posterior probability of
the region under the null hypothesis, that is, reject the hypothesis if Π(f ∈
M|Dn) is less than 0.5. However, such a test cannot be consistent since, non-
monotone functions will also lie in any neighborhood of a monotone function, so
posterior consistency does not imply that the test will be consistent. In numerical
experiments, we observe that the Lebesgue L1-distance between a sample from
the unrestricted posterior and the set M is often positive for sample size up
to 1000. To avoid a false rejection of the null hypothesis, we enlarge the class
of monotone functions to include functions separated by a distance at most
δn, where δn decreases with n appropriately. Then we consider the posterior
probability of the enlarged set, Π(ρ(f, M) ≤ δn|Dn), where ρ is a suitable
metric, usually an L1-distance. This idea was also pursued in Salomond [33] and
Chakraborty and Ghosal [5] for Bayesian tests for monotonicity in the univariate
case, respectively using the L∞- and an L1-distance. Below, we consider random
predictors obtained from a fixed distribution G independently. The following
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result shows that the resulting test is consistent at the null and at all fixed
alternatives, and the power goes to one at an alternative belonging to a Hölder
smooth class H(α, L) (see Definition C.4 of Ghosal and van der Vaart [17]) even
if the alternative approaches the null, provided that happens sufficiently slowly.

Theorem 3.3. Let Assumptions 1–3 hold for a random predictor with distri-
bution G, and let ρ stand for the L1(G)-distance. Let γ ∈ (0, 1) and Mn → ∞
be predetermined and J � n1/(2+d). Then for the test φn = 1{Π(ρ(f, MJ ) ≤
Mnn−1/(d+2)|Dn) < γ}, we have

(i) E0φn → 0 for any fixed f0 ∈ M;
(ii) E0(1 − φn) → 0 for any fixed integrable f0 /∈ M, where M is the L1(G)-

closure of M;
(iii) sup{E0(1 − φn) : f0 ∈ H(α, L), ρ(f0, M) > τn(α)} → 0, where

τn(α) =
{

Cn−α/(2+d), for some C > 0 if α < 1,

CMnn−1/(2+d), for any C > 1 if α = 1.

The separation rate n−α/(2+d) appearing above for consistency at smooth
alternatives is weaker than the corresponding rate n−α/(2α+d) for estimation.
This is because the value of J � n1/(2+d) is optimal for estimating monotone
functions, but is suboptimal for estimating α-smooth functions. The problem
can be avoided simultaneously for all α ≤ 1 by putting a prior on J and using
a larger enlargement in terms of the weaker Hellinger distance on the density

pf,σ(x, y) = (σ
√

2π)−1 exp[−(y − f(x))2/(2σ2)] (3.3)

of (X, Y ) (with respect to the product of G and the Lebesgue measure) with
size dependent on the random J drawn from its posterior distribution. In this
case, the posterior sampling is more involved as the posterior probabilities of
each value of J also need to be obtained, which involves computations of a large
matrix and its determinant, and a stronger separation is needed in terms of the
weaker Hellinger metric.

Theorem 3.4. Let σ be known, Assumptions 1–3 hold for a random predictor
with distribution G, and Lebesgue density g bounded away from zero. Assume ε
is sub-Gaussian. Let ρ stand for the Hellinger metric on the density of (X, Y )
induced on the regression function, that is,

ρ2(f1, f2) = 2
{

1 − (2πσ2)−1/2
∫

exp[−(f1(x) − f2(x))2/(8σ2)]dG(x)
}

. (3.4)

Let J be given a prior satisfying (2.4). Consider the test φn = 1{Π(ρ(f, MJ ) ≤
M0

√
(Jd log n)/n|Dn) < γ}, for a predetermined γ ∈ (0, 1) and a sufficiently

large M0 > 0. Assume that f0 is bounded. Then

(i) for any fixed f0 ∈ M, E0φn → 0;
(ii) for any fixed f0 integrable on [0, 1]d, and f0 /∈ M, E0(1 − φn) → 0, where

M is the L1(G)-closure of M;
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(iii) for alternatives in the Hölder function class, we have for a sufficiently
large constant C > 0,

sup{E0(1 − φn) : f0 ∈ H(α, L), ρ(f0, M) > C(n/ log n)−α/(1+2α)} → 0.

Remark 3.1. In both results on testing, we can allow deterministic predictors
with ρ replaced by the L1(Gn)-distance to derive properties (i) and (iii). This
follows from a similar proof by obtaining posterior contraction with respect to
the L1(Gn)-metric using Theorem 8.26 of Ghosal and van der Vaart [17] for
deterministic predictors.

Remark 3.2. As the distribution G of the random predictor is typically un-
known, the tests used in Theorems 3.3 and 3.4 are not generally computable. If
G admits a density also bounded away from 0, then the L1(G)-metric and the
Hellinger metric given by (3.4) may be respectively replaced by the Lebesgue
L1-metric and by ρ defined by

ρ2(f1, f2) = 2{1 − (2πσ2)−1/2
∫

exp[−(f1(x) − f2(x))2/(8σ2)]dx}. (3.5)

Then the conclusions of the theorems hold. For Theorem 3.3, this follows by
following the same arguments by using Part (iii) of Theorem 3.1 instead of Part
(ii). For Theorem 3.4, we use the equivalence of the metrics (3.4) and (3.5)
under the assumed condition and the equivalence of the projections. Moreover,
the conclusion in Part (iii) of both theorems can be strengthened by replacing
the Hölder class with the corresponding Sobolev class W(α, L); see Definition
C.6 of Ghosal and van der Vaart [17]. This is because the approximation rate
J−α for α-smooth function by step function with J intervals in each direction
holds also for the more general Sobolev class, as the L2-norm is stronger than
the L1-norm.

4. Numerical results

4.1. Simulation for posterior contraction rate

We conduct a numerical study to assess the finite sample performance of the
projection posterior methods for the estimation of isotonic regression functions.
We use the projection posterior sample mean as our Bayesian estimator and
compare the empirical L1-distance between our estimator and the true regression
function with that of the least square estimator on data sets of different sizes.
We consider monotone regression functions:

• f1(x1, x2) = x1 + x2,
• f2(x1, x2) = exp{x1x2},
• f3(x1, x2) = (x1 + x2)2,
• f4(x1, x2) =

√
x1 + x2,

• f5(x1, x2) = (1 + exp{−6(x1 + x2 − 1)})−1,
• f6(x1, x2) = 0.
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For each of sample size n = 100, 200, and 500, and each regression function,
we generate 20 data sets from the true regression model Y = f0(X) + ε with
X uniformly distributed over [0, 1]2 and independent errors ε ∼ N(0, 0.12).
Set J =

⌈
n1/4 log10 n

⌉
, which is chosen slightly larger than the optimal one to

get a better approximation in lower sample sizes. For each data set, we gen-
erate M = 1000 unrestricted posterior sample functions. Then we compute
the L1-projection posterior, by the “activeSet” function in the R package “iso-
tone”. With the projection posterior samples, we then compute the empirical
L1-distance of the projection posterior mean function and the data-generating
regression function. For the least square estimator, we use the same piecewise
constant representation of the regression functions to obtain a function estima-
tor on the whole range of X and to make a fair comparison with our method.
The least squares isotonic estimator is obtained by using the R package “iso-
tonic.pen”. We summarize the results in Table 1.

Table 1

The Lebesgue L1-distance between the Bayesian projection posterior mean regression
function (BP) and the true regression function and between the least squares isotonic

regression function (LS) and the true one with standard deviations across all data sets
marked in the parentheses.

n = 100 n = 200 n = 500
BP LS BP LS BP LS

f1
0.054 0.059 0.045 0.050 0.034 0.041

(0.003) (0.005) (0.003) (0.003) (0.002) (0.002)

f2
0.049 0.051 0.040 0.043 0.030 0.034

(0.004) (0.006) (0.004) (0.004) (0.002) (0.002)

f3
0.085 0.089 0.072 0.074 0.055 0.058

(0.006) (0.011) (0.004) (0.004) (0.002) (0.002)

f4
0.040 0.045 0.032 0.038 0.024 0.030

(0.003) (0.004) (0.003) (0.004) (0.002) (0.002)

f5
0.051 0.052 0.041 0.044 0.032 0.044

(0.005) (0.006) (0.003) (0.002) (0.002) (0.002)

f6
0.032 0.021 0.026 0.018 0.021 0.012

(0.006) (0.009) (0.004) (0.007) (0.004) (0.003)

We can see from the table the Bayesian projection posterior estimator has a
smaller L1-error than the least squares estimator except for the last case of a
constant function.

4.2. Simulation for Bayesian monotonicity testing

To test for H0 : f0 ∈ M, we choose J =
⌈
n1/4⌉

, γ = 0.5 and Mn = a(log n)b,
where a and b are two parameters to be determined. We run the procedure
on several datasets of different sizes with both coordinatewise increasing and
nonincreasing regression functions. Then we obtain the posterior samples of
ρ(f, MJ), denoted by d. We fit a linear model of log(dn1/4) over log log n to
find the estimates of log a and b, which leads to a = 0.237 and b = 0.234. In the
following simulation, we will choose Mn = 0.237(log n)0.234.



810 K. Wang and S. Ghosal

Since a test, frequentist or Bayesian, for multivariate monotonicity does not
seem to exist in the literature before, we consider the following hypothesis testing
procedure as the baseline method. We confine to the normal linear regression
model Y = β0 + β1X1 + β2X2 + εi, i = 1, . . . , n. The hypothesis testing of
multivariate monotonicity for affine functions becomes

H0 : β1 ≥ 0 and β2 ≥ 0, against H1 : β1 < 0 or β2 < 0.

Given the significance level η = 0.05, we use the Bonferroni adjustment since
we have only two parameters to be tested. We reject the null hypothesis when
any one of the t-values of β1 and β2 is smaller than tn−3,1−η/2. To study the
level of these two procedures, we consider functions, f1, . . . , f6 used in the last
section. For the comparison of the power performance, we consider the following
nonincreasing functions on [0, 1]2:

• f7(x1, x2) = (x1 + x2 − 1)2.
• f8(x1, x2) = 2(x1 + x2 − 1)3 − (x1 + x2 − 1).
• f9(x1, x2) = (x1 + x2 − 1)3 − 0.5(x1 + x2 − 1).
• f10(x1, x2) = sin((x1 + x2)π).
• f11(x1, x2) = x1 − x2.
• f12(x1, x2) = exp{−10(x1 + x2 − 1)2} + x1 + x2.

Even though the linear model is misspecified, it can summarize the overall trend
of the regression function through the sign of the coefficients, and hence is
appropriate. We also consider fitting a nonparametric regression using piecewise
linear functions and test for the linear hypothesis that the slope coefficients on
each piece in each direction are all nonnegative. Specifically, we choose J = 3
and consider the partition Ij for j = (1, 1), . . . , (3, 3). On each Ij , we fit a linear
model and test whether any t-value of the slope coefficients β1,j and β2,j is
smaller than tNj−3,1−η/18 by the Bonferroni adjustment.

We generate 200 datasets for each sample size n = 100, 200, and 500. The
predictors X and ε are generated in the same way as in the last subsection.
For the Bayesian procedure, we generate 200 posterior samples for each dataset
and project each posterior sample to the monotone function class M, denoting
the projection posterior sample as f∗. Then ρn(f, M) is obtained by computing
ρn(f, f∗), where ρn is the empirical L1-distance. The results are summarized in
Tables 2 and 3.

We can see from Tables 2 and 3 that all three methods can control the Type
I error rate of the test to a low level, even though the linear regression model
is misspecified in case f2 to f5. That is because the coefficients should be non-
negative when we project any coordinatewise nondecreasing function onto the
linear function space. Noting that the null hypothesis is composite in the linear
regression and the piecewise linear regression methods and the coefficients of
the projected linear functions of f2 to f5 are all strictly greater than zero, it
is thus reasonable that the results in Table 2 looks conservative. However, in
the case of f6, for which the slope coefficients are zero and on the boundary
of the null hypothesis, the Bonferroni adjustment seems not that conservative,
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Table 2

Percentage of rejections to the null hypothesis of Bayesian projection posterior procedure
(BP), linear regression procedure (LR), and piecewise linear fitting (PL) when the true

regression functions are coordinatewise increasing.
n = 100 n = 200 n = 500

BP LR PL BP LR PL BP LR PL
f1 0 0 0 0 0 0 0 0 0
f2 0.5 0 0.5 0 0 0 0 0 0
f3 0 0 0 0 0 0 0 0 0
f4 0.5 0 0 0 0 0 0 0 0
f5 0 0 0.5 0 0 0 0 0 0
f6 0 3 3 0 5 3.5 0 7 3

Table 3

Percentage of rejections to the null hypothesis of Bayesian projection posterior procedure
(BP), linear regression procedure (LR), and piecewise linear fitting (PL) when the true

regression functions are not coordinatewise increasing.
n = 100 n = 200 n = 500

BP LR PL BP LR PL BP LR PL
f7 64.5 8.5 73 93.5 10 99.5 100 10.5 100
f8 100 84.5 83 100 98.5 100 100 100 100
f9 35.5 7.6 28.5 96 94.5 66.5 100 100 100
f10 100 100 100 100 100 100 100 100 100
f11 100 100 98.5 100 100 100 100 100 100
f12 35 0 55 89.5 0 94.5 100 0 100

giving an error rate very close to the nominal level even in the piecewise linear
fitting where there are 18 slope coefficients to be tested. The nonparametric
Bayesian test we proposed controls the Type I error at a very low level, es-
pecially when the sample size is moderately large. We can further adjust the
value of Mn to make the type I error close to the nominal level 0.05 and thus
a higher power would be expected. The nonparametric Bayesian method and
the piecewise linear fitting method both have high power, as they can detect all
kinds of violations to coordinatewise monotonicity, global or local, as the sample
size increases. However, for some regression functions such as f12, where the is
a small bump in the middle of the function graph, the linear regression totally
breaks down as it focuses on the global nature. The same conclusion also applies
in the case of f7. The proposed methods enjoy power enhancement when the
signal-to-noise ratio increases. We can see this by comparing cases of f8 and f9.
From these two cases, we also notice that the proposed Bayesian method has a
better capability of capturing the local violation than others.

5. Proofs

Proof of Proposition 2.1. For a given h, let h̄ =
∑

j∈[1:J ] λ(Ij)−1 ∫
Ij

hdλ · 1Ij
.

Clearly, h̄ ∈ M if h ∈ M. Since f is constant on Ij , for every x ∈ Ij ,

∣∣∣∣
∫

Ij
hdλ

λ(Ij) − f(x)
∣∣∣∣
p

=

∣∣ ∫
Ij

(h − f) dλ
∣∣p

λ(Ij)p
≤

∫
Ij

|h − f |pdλ

λ(Ij) , (5.1)



812 K. Wang and S. Ghosal

by Jensen’s inequality. Taking integrals on both sides of (5.1) over Ij , it follows
that

∫
Ij

∣∣h̄ − f
∣∣p dλ ≤

∫
Ij

|h − f |p dλ. Hence the monotone projection of f ∈ FJ

onto M also belongs to FJ . The existence of f∗ is ensured by the convexity and
the closedness of C and the convexity of Lp-losses.

Proof of Theorem 3.1. Since the posterior for σ is consistent, it is sufficient to
condition on the value of σ lying in a small neighborhood of σ0, unless σ is
known. Let f0,J =

∑
j∈[1:J ] f0(j/J)1Ij

. Then f0,J ∈ MJ . As f∗ is the L1(G∗)-
projection of f onto MJ and f0 ∈ M,

‖f∗ − f0‖1,G∗ ≤ ‖f∗ − f‖1,G∗ + ‖f − f0,J‖1,G∗ + ‖f0,J − f0‖1,G∗

≤ 2‖f − f0,J‖1,G∗ + ‖f0,J − f0‖1,G∗ . (5.2)

By Lemma A.2, ‖f0,J − f0‖1,G∗ � J−1 as G∗(Ij) � J−1 is assumed. Hence it
suffices to bound ‖f − f0,J‖1,G∗ .

Without loss of generality, we assume that Nj > 0 for all j. Let f̄0,J =∑
j∈[1:J ] θ0,j1Ij

, where θ0,j = N−1
j

∑
i:Xi∈Ij

f0(Xi). Then Lemma A.2 applied
twice and the triangle inequality give ‖f0,J − f̄0,J‖1,G∗ � J−1. Therefore it
suffices to show that E0Π(‖f − f̄0,J‖1,G∗ > Mn

√
Jd/n|Dn) → 0.

Applying the Cauchy–Schwarz inequality first and then Markov’s inequality,

Π(‖f − f̄0,J‖1,G∗ > Mn

√
Jd/n|Dn, σ)

= Π(
∑

j∈[1:J ]

G∗(Ij) |θj − θ0,j | > Mn

√
Jd/n|Dn, σ)

≤ Π(
∑

j∈[1:J ]

G∗(Ij) |θj − θ0,j |2 > M2
nJd/n|Dn, σ)

≤ M−2
n J−d

∑
j∈[1:J ]

nG∗(Ij)E[(θj − θ0,j)2|Dn, σ]. (5.3)

We decompose

E[(θj − θ0,j)2|Dn, σ] = Var(θj |Dn, σ) + (E(θj |Dn, σ) − θ0,j)2. (5.4)

We observe that
∑

j∈[1:J ]

nG∗(Ij)Var(θj |Dn, σ) ≤ σ2

min{1, minj{λ−2
j }}

∑
j∈[1:J ]

nG∗(Ij)
Nj + 1 . (5.5)

From (2.3), we know∑
j∈[1:J ]

nG∗(Ij)(E(θj |Dn, σ) − θ0,j)2

=
∑

j∈[1:J ]

nG∗(Ij)
(

Nj ε̄|Ij
+ λ−2

j ζj − θ0,jλ−2
j

Nj + λ−2
j

)2
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�
∑

j∈[1:J ]

nG∗(Ij)N2
j (ε̄|Ij

)2

(Nj + 1)2 +
∑

j∈[1:J ]

nG∗(Ij)
(Nj + 1)2

�
∑

j∈[1:J ]

nG∗(Ij)
Nj + 1 (5.6)

by noting that E[(ε̄|Ij
)2|X, σ] = σ2/Nj . Hence, the expectations of the expres-

sions in (5.5) and (5.6) are bounded by a constant multiple of Jd in view of (3.1).
Combining these with (5.3) and (5.4), it follows that

EΠ(‖f − f̄0,J‖2,G∗ > Mn

√
Jd/n|Dn, σ) � M−2

n , (5.7)

and hence the first part of the theorem is established.
If max{Nj : j ∈ [1 : J ]} � n/Jd, then Lemma A.3 ensures that the esti-

mator and the posterior for σ are consistent. For G∗ = Gn, the condition (3.1)
holds because nGn(Ij)(Nj + 1)−1 ≤ 1. If X1, . . . , Xn are i.i.d. with a bounded
density g, then max{Nj : j ∈ [1 : J ]} � n/Jd by Lemma A.1, provided that
Jd(log n)/n → 0. If G∗ = Gn for either random or deterministic predictors
Xi, (5.5) is bounded by Jd up to some positive constant. If X1, . . . , Xn are
i.i.d. G, then owing to Nj ∼ Bin(n, G(Ij)), we have that

E0[(Nj + 1)−1] =
{

1−(1−G(Ij))n+1

(n+1)G(Ij) , if G(Ij) > 0;
1, if G(Ij) = 0,

(5.8)

so that nG(Ij)E[(Nj + 1)−1] ≤ 1, implying that (3.1) holds for G∗ = G. This
completes the proof of the second part of the theorem.

Proof of Corollary 3.2. For f∗ the L1(Gn)-projection, by the triangle inequality,

‖f∗ − f0‖1,G ≤ ‖f∗ − f̄0,J‖1,G + ‖f̄0,J − f0‖1,G,

where, as in the proof of the last theorem, f̄0,J =
∑

j∈[1:J ] θ0,j1Ij
, with θ0,j =

N−1
j

∑
i:Xi∈Ij

f0(Xi). From Lemma A.2, we know that ‖f̄0,J − f0‖1,G � J−1

under the assumption of bounded density. As f∗ is the L1(Gn)-projection of f
onto MJ , from Theorem 3.1,

E0Π(‖f∗ − f̄0,J‖1,Gn > Mnεn|Dn) → 0, (5.9)

since we also have ‖f̄0,J − f0‖1,Gn � J−1 by Lemmas A.1 and A.2. Thus it
suffices to show that

E0Π(
∣∣‖f∗ − f̄0,J‖1,G − ‖f∗ − f̄0,J‖1,Gn

∣∣ > Mnεn|Dn) → 0. (5.10)

Clearly, we have∣∣‖f∗ − f̄0,J‖1,G − ‖f∗ − f̄0,J‖1,Gn

∣∣
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≤
∑

j∈[1:J ]

Gn(Ij)|θ∗
j − θ0,j | · max

j
|G(Ij)/Gn(Ij) − 1|. (5.11)

Under the additional condition on the lower bound for g, Lemma A.1 implies
that the last factor is OP0(1). Thus (5.11) is bounded by a constant multiple
of ‖f∗ − f̄0,J‖1,Gn on an event with P0-probability tending to 1. Then this
claim follows from Theorem 3.1. As g is bounded and bounded away from 0,
‖f∗ − f0‖1,G � ‖f∗ − f0‖1,λ, then the corollary follows.

Proof of Theorem 3.3. (i) Since ρ(f, MJ) ≤ ‖f−f0,J‖1,G, the conclusion follows
from Theorem 3.1.

(ii) By the definition of projection and the triangle inequality,

ρ(f, MJ) ≥ ‖f0 − f∗‖1,G − ‖f − f0‖1,G ≥ ρ(f0, MJ) − ‖f − f0‖1,G. (5.12)

Thus by the triangle inequality,

Π(ρ(f, M) ≤ Mnn−1/(d+2)|Dn)
≤ Π(‖f − f0‖1,G ≥ ρ(f0, MJ) − Mnn−1/(d+2)|Dn). (5.13)

Since ρ(f0, MJ) ≥ ρ(f0, M) and the latter is a fixed positive constant, to con-
clude the proof, it suffices to show that the posterior for f is consistent at f0
in the L1(G)-metric. Let θ0,j =

∫
Ij

f0dG/G(Ij) and then f0,J =
∑

j θ0,j1Ij
. By

the martingale convergence theorem, ‖f0 − f0,J‖1,G → 0. Proceeding as in the
proof of Theorem 3.1, we conclude that

E0Π(‖f − f0,J‖1,G > Mn

√
Jd/n|Dn) → 0, (5.14)

so posterior consistency holds in terms of the L1(G)-distance.
(iii) For f0 ∈ H(α, L), we have ‖f0 − f0,J‖1,G � J−α. Together with (5.14),

which is valid even when f0 is not fixed, it follows that the L1(G)-posterior
contraction rate at f0 is max{

√
Jd/n, J−α} � n−α/(2+d) for the choice J �

n1/(2+d). For α < 1, the expression on the right hand side of (5.13) is, for
large n, bounded by Π(‖f − f0‖1,G ≥ Cn−α/(2+d)/2) →P0 0, since n−α/(2+d) �
n−1/(2+d). If α = 1, the corresponding bound for the event of interest reduces
to Π(‖f − f0‖1,G ≥ (C − 1)Mnn−1/(d+2)/2|Dn) →P0 0.

Proof of Theorem 3.4. With pf,σ defined by (3.3), the Hellinger distance be-
tween pf1,σ and pf2,σ is ρ(f1, f2) and the Kullback-Leibler divergences are given
by

K(pf0,σ; pf,σ) = 1
2σ2 ‖f − f0‖2

2,G, V (pf0,σ; pf,σ) = 1
σ2 ‖f − f0‖2

2,G.

Thus the Kullback-Leibler ball {f : K(pf0,σ; pf,σ) ≤ ε2, V (pf0,σ; pf,σ2) ≤ ε2}
contains the L2(G)-ball {f : ‖f − f0‖2,G ≤ Cε} for some C > 0, and hence
to study posterior contraction at a true f0, it suffices to lower bound the prior
probability of the latter. Since ‖f0 −f0,J‖2

2,G ≤ (f0(1)−f0(0))‖f0 −f0,J‖1,G, to
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keep ‖f0 − f0,J‖2,G within a targeted ε (which may or may not depend on n),
J should be sufficiently large to make ‖f0 − f0,J‖1,G ≤ cε2 for some sufficiently
small c > 0. If a value J̄ , possibly depending on n, achieves this, then using (2.4),
we can lower bound the required L2(G)-prior concentration by

Π(J̄)Π(‖f − f0,J̄‖2,G ≤ Cε|J = J̄)

≥ Π(J̄)Π(∩J̄
j=1{|θj − θ0,j | ≤ C1ε2})

� exp{−b2J̄d log J̄ − C2J̄d log(1/ε)}

for some constant C1, C2 > 0. Let Jn stand for a sufficiently large multiple of
(nε2)1/d. There are two situations to be considered. If ε > 0 is fixed at an ar-
bitrarily small number, then J̄ may be chosen as a sufficiently large constant.
Then the lower bound for prior concentration in ε-neighborhood is a fixed pos-
itive number. Hence it follows that

Π(J ≥ Jn)/Π(‖f − f0‖2,G ≤ Cε) = o(e−2nε2
), (5.15)

and hence by Theorem 8.20 of Ghosal and van der Vaart [17], Π(J > Jn|Dn) →P0

0. If ε = εn → 0 is chosen so that nε2
n → ∞ and the corresponding J̄ = J̄n

satisfies log J̄n � log n, and it holds that log(1/εn) � log n and J̄d
n log n � nε2

n,
then for the choice Jn = L(nε2

n/ log n)1/d for some sufficiently large constant L >

0, it again follows that Π(J ≥ Jn)/Π(‖f − f0‖2,G ≤ Cεn) = o(e−2nε2
n). Hence

by Theorem 8.20 of Ghosal and van der Vaart [17] again, Π(J > Jn|Dn) →P0 0.
First, we establish an auxiliary estimate essential to prove assertions (i), (ii),

and (iii). We claim that for any bounded measurable f0 (not necessarily mono-
tone or smooth) and a given δ > 0, if log Jn � log n, there exists a sufficiently
large constant M0 > 0 such that

E0Π(‖f − f0,J‖2,G ≥ M0

√
Jd(log n)/n, J ≤ Jn|Dn) < δ, (5.16)

when n is large enough. The posterior probability in the expectation of the last
display can be written as

Jn∑
J=1

Π(J |Dn)Π
( ∑

j∈[1:J ]

(θj − θ0,j)2G(Ij) ≥ M2
0 Jd(log n)/n

∣∣Dn

)
. (5.17)

By Markov’s inequality and Assumption 3,

max
J≤Jn

Π
( ∑

j∈[1:Jn]

(θj − θ0,j)2G(Ij) ≥ M2
0 Jd(log n)/n

∣∣Dn

)

≤ max
J≤Jn

n

M2
0 Jd log n

∑
j∈[1:Jn]

G(Ij)
[
Var(θj |Dn) + (E(θj |Dn) − θ0,j)2]

which is bounded in probability by a constant multiple of

max
J≤Jn

n

M2
0 Jd log n

∑
j∈[1:J ]

G(Ij)[(Nj + λ−2
j )−1 + (Ȳ |Ij

− θ0,j)2] (5.18)
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It is clear that G(Ij) � J−d. By Lemma A.1,

P0(
Jn⋂

J=1
{C1n/Jd ≤ min

j
Nj ≤ max

j
Nj ≤ C2n/Jd}) → 1,

provided n/Jn � log Jn, for two constant C1 and C2 > 0. Then Nj � n/Jd

uniformly for all j ≤ J and J . By the union bound of sub-Gaussian variables
(see van der Vaart and Wellner [39], Section 2.2), we have (ε̄|Ij

)2 � (Jd log n)/n
with arbitrarily high probability, provided log Jn � log n. As f0 is bounded, we
have |N−1

j

∑
i:Xi∈Ij

f0(Xi)−θ0,j |2 � Jd(log n)/n uniformly for all j and J with
high probability. Thus we establish the claim in (5.16).

To prove (i), we observe that the L2(G)-approximation rate is J−1/2, and
thus εn � J̄

−1/2
n � (n/ log n)−1/2(d+1), so Jn � (n/ log n)1/(d+1), and Π(J >

Jn|Dn) →P0 0. Since ρ(f, MJ) � ρ(f, M) ≤ ρ(f, f0), the claim follows
from (5.16).

To prove (ii), we choose ε > 0 arbitrarily small but fixed. By the martingale
convergence theorem, ‖f0 − f0,J0‖1,G < ε for any sufficiently large J0. Hence
Jn can be chosen a sufficiently small multiple of (n/ log n)1/d to satisfy (5.15),
and consequently, Π(J > Jn|Dn) →P0 0. Let F∗

n =
⋃Jn

J=1{
∑

j∈[1,Jn] θj1Ij
:

|θj | ≤ n}. Then Π(f �∈ F∗
n) = o(e−cn) for some constant c > 0, and the

L1(G)-covering number of F∗
n is bounded by Jd

n(2n/ε)Jd
n . Thus the ε-metric

entropy is bounded by Jd
n log n ≤ nε2. Hence the posterior distribution at f0 is

consistent with respect to the L1(G)-metric, by an application of the Schwartz
posterior consistency theorem (cf., Theorem 6.23 of Ghosal and van der Vaart
[17]). Therefore, as ρ(f0, MJ) is bounded by a positive fixed constant from
below, by (5.12), it follows that Π(ρ(f, MJ) ≤ M0

√
(Jd log n)/n|Dn) →P0 0.

To prove Part (iii), we observe by Lemma A.2 that the approximation rate
at an f0 ∈ H(α, L) is J−α, so that J̄n � ε

−1/α
n and εn � (n/ log n)−α/(2α+d) and

Jn � (n/ log n)1/(2α+d). Using the sieve F∗
n as defined above with this choice of

Jn, it follows that Π(f �∈ F∗
n) = o(e−Cnε2

n) for a given constant C > 0. The εn-
metric entropy is bounded by Jd

n log n � nε2
n. Hence it follows from Theorem 8.9

of Ghosal and van der Vaart [17] that the L1(G)-posterior contraction rate is
(n/ log n)−α/(2α+d). Thus, as ρ(f0, MJ) ≥ C(n/ log n)−α/(2α+d) for a sufficiently
large constant C > 0, from (5.12) and the probabilistic bound (n/ log n)1/(2α+d)

for J , the conclusion follows.

A. Auxiliary results

Lemma A.1. If X1, . . . , Xn are a random sample from a density g on [0, 1],
J → ∞, and n/Jd � log J . If g is bounded, then for some constants C > 0,

P0(max{Nj : j ∈ [1 : J ]} ≤ Cn/Jd) → 1.

If g is bounded away from zero, then for some constant C ′ > 0, we have

P0(min{Nj : j ∈ [1 : J ]} ≥ C ′n/Jd) → 1.
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Proof. For every j, Nj ∼ Bin(n, G(Ij)). If g is bounded from above by a, then
G(Ij) is bounded by a/Jd. Following the same argument of the proof of Lemma
A.2 of Chakraborty and Ghosal [6], we obtain that, by large deviation probabil-
ity, P0(Nj > Cn/Jd) ≤ 2 exp{−C ′n/Jd}. By the condition n/ log J � Jd, we
have P0(max Nj > Cn/Jd) ≤ 2 exp{−C ′′n/Jd} → 0. The second claim follows
from a similar argument.

Lemma A.2. Let G∗ be a probability measure on [0, 1]d such that max{G∗(Ij) :
j ∈ [1 : J ]} � J−d. For a given f : [0, 1]d → R and J , let fJ : [0, 1]d → R be
defined by fJ(x) =

∑
j∈[1:J ] θj1{x ∈ Ij}, x ∈ [0, 1]d, where θj is any value

between f((j − 1)/J) and f(j/J). Then ‖f − fJ‖p,G∗ � J−1/p. Moreover, for
some appropriate choices of θj , j ∈ [1 : J ], we can ensure that f ∈ M.

Proof. For θj any value between f((j − 1)/J) and f(j/J),

‖f − fJ‖1,G∗ =
∑

j

∫
Ij

|f − θj |dG∗

≤
∑

j

(f(j/J) − f((j − 1)/J))G∗(Ij)

� J−d
∑

j

(f(j/J) − f((j − 1)/J)).

To get the upper bound of the summation in the last inequality, we first de-
compose the index set [1 : J ] in the following way. For every j ∈ [1 : J ],
Let Aj be the largest possible subset of [1 : J ] in the form {. . . , j − 2 · 1, j −
1, j, j + 1, j + 2 · 1, . . .}, which is a chain with respect to the coordinatewise
partial order on the index set. Then we count the number of different Aj . Note
that Aj can be identified by its minimal element. The minimal element of Aj

should satisfy that at least one of its coordinates is 1, otherwise, we can subtract
this element by 1 while the smaller element is still in [1 : J ], thus should be
in Aj , contradicting the fact of the minimal element. The number of different
minimal elements is no larger than dJd−1, by choosing a coordinate equal to 1
among all d coordinates and setting the rest ones free in {1, . . . , J}. The con-
struction of Aj gives

∑
l∈Aj

(f(l/J) − f((l − 1)/J)) ≤ f(1) − f(0). Then we
have ‖f − fJ‖1,G∗ � J−d(dJd−1(f(1) − f(0))) � J−1.

The monotonicity constraint will be maintained by choosing, for j ∈ [1, J ],
θj =

∫
Ij

f(x)dx/G(Ij), or θj = f((j − 1)/J), for instance.
For p > 1, note that ‖f − fJ‖p

p,G∗ ≤ (f(1) − f(0))p−1‖f − fJ‖1,G∗ . Then the
conclusion follows.

Remark A.1. For p > 1, the Lp-approximation rate in Lemma A.2 may not
be improved. To see this, consider f =

∑d
j=1 1{j : xj > cj}, where c is a fixed

vector with irrational coordinates in [0, 1]. Note that c is never on the boundary
of any hypercube used for partitioning. Clearly, f is a multivariate monotone
function with a discontinuity at any x that shares a coordinate with c. Let j∗

be the index such that c ∈ Ij∗ . and generally for a given J , for k = 1, . . . , d,
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min{cj∗
k

− (j∗
k − 1)/J, j∗

k/J − cj∗
k
} � 1/J . For any hypercube Ij used in the

partition such that jk = j∗
k for some k = 1, . . . , d, there is a jump of size at

least 1 within Ij . Hence, no matter how θ is chosen,
∫

Ij
|f − fJ |p � J−d for

all such hypercubes. The number of hypercubes with this property is of the
order Jd−1, and hence it follows that

∫
|f − fJ |p � J−1. This shows that the

approximation order cannot be improved using only equispaced knot points to
form the hypercubes for the piecewise constant approximation.

Remark A.2. In view of Lemma A.1, if Jd(log n)/n → 0, then the empirical
distribution satisfies the condition max{Gn(Ij) : j ∈ [1 : J ]} � J−d in probabil-
ity, and hence ‖f − fJ‖1,Gn � J−d, and the implicit constant of proportionality
in � does not depend on f .

Lemma A.3. Suppose J is deterministic and satisfies J → ∞ and Jd/n → 0.
For X either deterministic or random, under Assumptions 1–3, we have

(i) σ̂2
n converges in probability to σ2

0 at the rate of max{n−1/2, Jd/n, J−1}.
(ii) If we endow σ2 with an Inverse-Gamma prior IG(β1, β2) for some β1 >

0, β2 > 0, σ2 contracts around σ2
0 as the same rate max{n−1/2, Jd/n, J−1}.

Proof. Let θ0,j = N−1
j

∑
i:Xi∈Ij

f0(Xi). By (2.5),

σ̂2
n = 1

n

n∑
i=1

ε2
i + 1

n

n∑
i=1

(f0(Xi) − θ0,�XiJ�)2 + 1
n

∑
j∈[1:J ]

Nj(θ0,j − ζj)2

+ 2
n

n∑
i=1

εi(f0(Xi) − θ0,�XiJ�) + 2
n

∑
j∈[1:J ]

Nj ε̄|Ij
(θ0,j − ζj)

+ 2
n

n∑
i=1

(f0(Xi) − θ0,�XiJ�)(θ0,�XiJ� − ζ�XiJ�)

− 1
n

∑
j∈[1:J ]

N2
j (θ0,j − ζj)2 + N2

j (ε̄|Ij
)2 + 2N2

j ε̄|Ij
(θ0,j − ζj)

Nj + λ−2
j

= 1
n

n∑
i=1

ε2
i + 1

n

n∑
i=1

(f0(Xi) − θ0,�XiJ�)2 + 2
n

n∑
i=1

εi(f0(Xi) − θ0,�XiJ�)

+ 2
n

n∑
i=1

(f0(Xi) − θ0,�XiJ�)(θ0,�XiJ� − ζ�XiJ�)

+ 1
n

∑
j∈[1:J ]

λ−2
j Nj(θ0,j − ζj)2

Nj + λ−2
j

+ 2
n

∑
j∈[1:J ]

λ−2
j Nj ε̄|Ij

(θ0,j − ζj)
Nj + λ−2

j

+ 1
n

∑
j∈[1:J ]

N2
j (ε̄|Ij

)2

Nj + λ−2
j

.

Note that λ−2
j , ζj and f0 are all bounded. Then we can bound |σ̂2

n − σ2
0 | up to
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a constant by

∣∣ 1
n

n∑
i=1

ε2
i − σ2

0
∣∣ + 1

n

n∑
i=1

|f0(Xi) − θ0,�XiJ�| + 1
n

∑
j∈[1:J ]

(θ0,j − ζj)2

+ 1
n

∣∣ ∑
j∈[1:J ]

Nj ε̄|Ij
(θ0,j − ζj)

Nj + λ−2
j

∣∣ + 1
n

∑
j∈[1:J ]

Nj(ε̄|Ij
)2.

(A.1)

The first term of (A.1) is OP0(n−1/2). By the monotonicity of f0, the second
term is bounded by n−1 ∑

j∈[1:J ] Nj(f0(j/J)−f0((j −1)/J)). By Remark A.2,
following the same argument of the proof of Lemma A.2, we have the second
term is OP0(J−1) for random X and O(J−1) for deterministic X under As-
sumption 1. The third term is bounded by a constant multiple of Jd/n since the
hyperparameters ζj and θ0,j are bounded. Noting that E[(ε̄|Ij

)2|X] = σ2
0/Nj ,

by Markov inequality, we know that the last term is OP0(Jd/n). For the fourth
term, by Cauchy–Schwarz inequality, we have

∣∣ ∑
j∈[1:J ]

Nj ε̄|Ij

Nj + λ−2
j

(f0(X)|Ij
− ζj)

∣∣ � Jd/2
√ ∑

j∈[1:J ]

(ε̄|Ij
)2 = OP0(Jd).

Combine all of the results and the first claim follows.
Given the first claim, we can prove the second one by following the same

proof of Proposition 4.1 (b) of Yoo and Ghosal [43].
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