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We consider the nonparametric multivariate isotonic regression problem,
where the regression function is assumed to be nondecreasing with respect to
each predictor. Our goal is to construct a Bayesian credible interval for the
function value at a given interior point with assured limiting frequentist cov-
erage. A natural prior on the regression function is given by a random step
function with a suitable prior on increasing step-heights, but the resulting
posterior distribution is hard to analyze theoretically due to the complicated
order restriction on the coefficients. We instead put a prior on unrestricted
step-functions, but make inference using the induced posterior measure by
an “immersion map” from the space of unrestricted functions to that of mul-
tivariate monotone functions. This allows for maintaining the natural conju-
gacy for posterior sampling. A natural immersion map to use is a projection
with respect to a distance function, but in the present context, a block iso-
tonization map is found to be more useful. The approach of using the induced
“immersion posterior” measure instead of the original posterior to make in-
ference provides a useful extension of the Bayesian paradigm, particularly
helpful when the model space is restricted by some complex relations. We
establish a key weak convergence result for the posterior distribution of the
function at a point in terms of some functional of a multiindexed Gaussian
process that leads to an expression for the limiting coverage of the Bayesian
credible interval. Analogous to a recent result for univariate monotone func-
tions, we find that the limiting coverage is slightly higher than the credibility,
the opposite of a phenomenon observed in smoothing problems. Interestingly,
the relation between credibility and limiting coverage does not involve any
unknown parameter. Hence, by a recalibration procedure, we can get a prede-
termined asymptotic coverage by choosing a suitable credibility level smaller
than the targeted coverage, and thus also shorten the credible intervals.

1. Introduction. Nonparametric inference often involves a regression function or a den-
sity function in modeling. Commonly, a smoothness assumption on a function of interest is
imposed, but in some applications, qualitative information, such as monotonicity, unimodal-
ity and convexity, on the shape of the function may be available. This leads to a control on
the complexity of the function space analogous to what a smoothness assumption does, al-
lowing convergence without requiring the latter. Monotonicity is the simplest and the most
extensively studied shape restriction, especially in the univariate case. In regression analy-
sis, this problem is commonly referred to as isotonic regression when the conditional mean
function of the response variable is assumed to be nondecreasing. Starting from the early
works on monotone shape-restricted problems, such as [1, 10], research on non-Bayesian
approaches, mainly on the least squares estimator (LSE) and the nonparametric maximum
likelihood estimator (MLE), has been fruitful; see [4, 31, 32, 46]. Assuming a nonzero deriva-
tive, the pointwise asymptotic distribution of the MLE or the LSE turns out to be the rescaled
Chernoff distribution, that is, the minimizer of a quadratically drifted standard two-sided

Received February 2022; revised May 2023.
MSC2020 subject classifications. Primary 62G08; secondary 62F15, 62G05, 62G20.
Key words and phrases. Isotonic regression, credible interval, limiting coverage, Gaussian process, Block iso-

tonization, immersion posterior.

1376

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/23-AOS2298
http://www.imstat.org
mailto:kwang22@ncsu.edu
mailto:sghosal@stat.ncsu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


BAYESIAN MULTIVARIATE ISOTONIC REGRESSION 1377

Brownian motion [11, 32, 45, 56]. The same limiting distribution can also be found in other
problems where monotonicity is implied, such as the monotone hazard rate estimation with
randomly right-censored observations in survival analysis [39, 40], and many statistical in-
verse problems, including the current status model and deconvolution problems [33]. Global
properties of shape-restricted estimators were also studied extensively [32, 42]. The conver-
gence rates and limiting distributional behaviors of Lp- and L∞-distance between monotone
shape-restricted estimators and the true function were investigated by [26, 27]. Nonasymp-
totic risk bounds for the LSE under a monotone shape restriction were derived by [5, 18, 57].
Testing for monotonicity was addressed in [25, 29, 30, 35].

The Bayesian approach to shape-restricted problems was also explored, albeit to a lesser
extent. Neelon and Dunson [44] applied piecewise linear structures to the regression function,
and put monotone restrictions on the priors for the slope values. Cai and Dunson [12] pro-
posed a linear spline model and added an initial Markov random field prior to the coefficients,
and then the monotone constraint was incorporated by considering the relation between the
nonnegative slopes and coefficients. Wang [55] adopted the free-knot cubic regression spline
model, converted the shape restriction to the coefficients and then projected the unconstrained
coefficients with conventional priors to the target set, inducing the constrained priors. Shiv-
ely et al. [52] also used Bayesian splines with constrained normal priors on the coefficients to
comply with the monotone shape restriction. Lin and Dunson [43] addressed this problem by
using a Gaussian process prior and projected unconstrained posterior samples to the mono-
tone function class by a min-max formula. Chakraborty and Ghosal [14, 15, 17] also used
the idea of projection-posterior, making the investigation of frequentist limiting coverage of
credible sets possible. Salomond [48] used a mixture representation of a nonincreasing den-
sity on [0,∞) and obtained the nearly minimax posterior contraction rate for both a Dirichlet
process and a finite mixture prior on the mixing distribution. Bayesian tests for monotonicity
were developed by [15, 17, 49]. A Bayesian credible interval with assured frequentist cover-
age for a monotone regression quantile, and an accelerated rate of contraction for it using a
two-stage sampling were obtained by [16].

Multivariate monotone function estimation was also studied in the literature. Non-
Bayesian works focused on the construction of the LSE with respect to various partial or-
derings on the domain; see [4, 46]. Only the consistency of the isotonic estimator was known
until a recent rise in interest in multivariate shape-restricted problems. In a multivariate iso-
tonic regression model, the L2-risk of the LSE, respectively for d = 2 and for a general
dimension d was studied by [19, 37]. They found that the LSE achieved the optimal minimax
rate up to logarithmic factors, and adapted to the parametric rate for a piecewise constant
true regression function only when d ≤ 2. Han [36] confirmed that the global empirical risk
minimizer is indeed rate-optimal in some set structured models even with rapidly diverging
entropy integral, and thus gave a simpler proof for the optimal convergence rate of the LSE
in the multivariate isotonic regression. Deng and Zhang [22] investigated a block-estimator
proposed by [28] and obtained an Lq -risk bound. This is minimax rate optimal and adapts to
the parametric rate up to a logarithmic factor when the true regression function is piecewise
constant. Pointwise distributional limits for the block-estimator were obtained by [38], which
lays the foundation for subsequent inference.

The Bayesian approach to multivariate isotonic regression is much less developed. Saarele
and Arjas [47] proposed a Bayesian approach to this problem based on marked point pro-
cesses and resulted in piecewise constant realizations of the regression function. Lin and
Dunson [43] mentioned that the method of projecting the Gaussian process posterior can also
be applied in the regression surface case. Nonetheless, the theoretical studies presented in
those works are either lacking or inadequate.
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The construction of confidence regions in function estimation problems was studied by
many authors, mostly in smoothness regimes. For shape-restricted problems, confidence re-
gions using limit theory were constructed by [13, 23, 24, 50]. The natural bootstrap method
does not lead to a valid confidence interval for the function value at a point, but a modified
bootstrap method works [41, 51]. Confidence intervals by inverting the acceptance region
of a likelihood ratio test for the value of a monotone function at a point were obtained by
[2, 3, 34]. This approach has the advantage that no additional nuisance parameters need to be
estimated and plugged into the limit distribution. Deng et al. [21] constructed a confidence in-
terval for multivariate monotone regression from a pivotal limit result for the block-estimator
of [22] relying on the limiting distributional theory by [38].

In this paper, we consider a Bayesian approach to the multivariate monotone regression
problem. Our objective is to construct a Bayesian credible interval for the function value at
an interior point and study its frequentist coverage. As in the univariate problem studied by
[14], we ignore the shape restriction at the prior stage and put a prior on random step functions
without an order restriction, retaining the posterior conjugacy. We then apply corrections to
posterior samples using monotone mapping. This induces a posterior distribution supported
on the space of multivariate monotone functions, by which we can obtain credible intervals.
However, contrasting with the univariate case, the projection-posterior acquired through the
minimization of the empirical L2-metric does not possess a limiting distribution. This is due
to the fact that the partial sum process, which characterizes the empirical L2-projection, is not
tight in the limit; see [38]. We also note that the non-Bayesian confidence interval constructed
in [21] is also not obtained by distance minimization but by a block max-min procedure. We
instead use a map related to the block max-min operation to enforce multivariate monotonic-
ity on posterior samples. As the map immerses a general function into the space of monotone
functions, such a map will be referred to as an immersion map, and the induced posterior will
be termed an immersion posterior.

The rest of the paper is organized as follows. In the next section, we introduce the no-
tion of an immersion posterior distribution, which will be used to address the problem under
study, and is very helpful for similar Bayesian problems with complicated restrictions on the
parameter space. In Section 3, we introduce the model and assumptions, construct a prior dis-
tribution, and obtain the immersion posterior used to make an inference. Our main results are
presented in Section 4. We derive the weak limit of the scaled and centered pointwise immer-
sion posterior distribution. Based on the limit theory, we compute the asymptotic frequentist
coverage of credible intervals. Numerical results are present in Section 5. We include all the
proofs of the main theorems in Section 6. Proofs of all auxiliary lemmas and propositions are
provided in the Supplementary Material.

2. Immersion posterior. Consider a general statistical model with observation X ∼ Pθ ,
where θ ∈ �0. Suppose that the parameter space �0 is a complicated subset of a larger,
but simpler to represent, set �. This is often the case for shape-restricted inference, where
structural constraints, such as monotonicity, convexity and log-concavity, are imposed on
a regression function or a density function. In differential equation models, the parameter
space is implicitly described as the set of solutions of a system of ordinary or partial dif-
ferential equations involving some unknown parameters. In a vector autoregressive process,
the set of autoregression coefficients leading to stationary processes may be the parameter
space of interest, but it is described by many complicated constraints. Because of the compli-
cated restrictions on �0, a prior for θ with support on �0 may be hard to construct, and the
corresponding posterior may be difficult to compute. More importantly, the corresponding
posterior may be hard to analyze from a frequentist perspective. This may be particularly im-
portant for studying delicate properties such as the limiting coverage of a Bayesian credible
region.
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Often, the distribution Pθ makes sense for any θ ∈ �, so that �0 can be embedded in
�, keeping the statistical problem meaningful. For shape-restricted models, this becomes the
standard nonparametric regression or the density estimation problem. A differential equation
model also embeds in a nonparametric regression model. A prior distribution � may be
specified on �, initially disregarding the restriction of θ to �0. This is typically a standard
problem, and often a conjugate prior distribution can be identified. The resulting posterior
distribution �(·|X) thus resides in the whole of �, and hence is not appropriate to make an
inference about θ , which is known to live in �0. The requirement can be met by considering
the random measure induced by a mapping ι from � to �0, in that, we consider the random
measure �∗(B|X) = �(ι(θ) ∈ B|X) to make an inference on θ . The map ι immerses θ into
the desirable space �0, and hence will be referred to as the immersion map. The induced
posterior �∗ will be referred to as the immersion posterior. This provides an extension of the
Bayesian paradigm since the identity map as the immersion map for the situation �0 = �

reduces the immersion posterior to the classical Bayesian posterior.
The approach has been successfully used in several works including [14–17, 43] for shape-

restricted problems, and by [6–9] for differential equation models. These authors used a pro-
jection map p obtained by minimizing a certain distance from the posterior sample to the
restricted space, and the resulting induced random measure is called the projection posterior
distribution. The projection map p satisfies the appealing property p(θ) = θ for all θ ∈ �0.

While a projection map with respect to an appropriate distance is a natural choice for an
immersion map, the restriction to a projection map is unnecessary for the concept to be used.
Depending on the aspect to be studied, there may not be a natural distance associated with
it. This happens, for instance, if we are interested in studying the posterior distribution of
the function value at a given point. It is also not necessary for the immersion map ι to satisfy
ι(θ) = θ for all θ ∈ �0. Neither �0 needs to be a subset of �, nor the immersion map needs to
be defined all over �. All that is needed is that an alternative parameter space � exists where
the model distribution Pθ makes sense, a prior � can be put on � such that the posterior
distribution can be computed relatively easily, and the random distribution induced by a map
ι from the support of the posterior distribution �(·|X) to �0 can be analyzed theoretically to
establish some desirable properties. In most situations, the family of measures {Pθ : θ ∈ �}
is dominated, so the support of the posterior distribution �(·|X) is contained in the support
of the prior distribution �. The immersion map may be allowed to depend on the sample
size like a prior distribution may be allowed to depend on the sample size. Even dependence
of ι on the data X may be allowed. Although there is no uniqueness in the choice of the
immersion map, the main purpose is to increase flexibility in the posterior measure to achieve
a targeted asymptotic frequentist property, such as coverage of a credible region. A choice
of an immersion map is therefore guided by a desirable frequentist property. Even if �0 and
� coincide, the flexibility of the immersion posterior may be helpful to satisfy a desirable
convergence property of the immersion posterior that the classical Bayesian posterior may
lack.

In many applications, the prior distribution may be actually a sequence of prior distribu-
tions specified through a sieve indexed by a discrete variable J = Jn depending on the sample
size n. Let �J stand for the sieve (typically a finite-dimensional subset of �) and �J stand
for the prior at that stage concentrated on �J . Then the computation of the posterior in the
unrestricted space reduces to a finite-dimensional computation, often also aided by posterior
conjugacy. It is then typical that the immersion map ι on �J has the range in �0 ∩�J so that
the computation of the immersion posterior involves finite-dimensional computations only.
Most examples from the existing literature, as well as the method used in this paper, fall in
this setting.
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3. Notation, model, prior and posterior distribution.

3.1. Notation. We summarize the notation we shall use in this paper. The notation R,
N and Z will stand for the real line, the set of natural numbers and the set of all integers,
respectively. The positive half-line with and without 0, and the set of nonnegative integers
are respectively denoted by R≥0, R>0 and Z≥0. Bold Latin or Greek letters will be used
to indicate column vectors and the nonbold letter with a subscript will denote a coordinate
of the corresponding vector. For example, ai is the ith coordinate of a ∈ R

d . Let 1 denote
the d-dimensional all-one column vector and 0 the all-zero column vector. Let AT denote
the transpose of a matrix or a vector A. For an arbitrary set A, the indicator function will
be denoted by 1A(·), and #A will denote the cardinality of a finite set A. Let 	a
 stand
for the smallest integer greater than or equal to a real number a. The symbol � will stand
for an inequality up to an unimportant constant multiple. For two positive real sequences
an and bn, we also use an � bn, or equivalently, bn � an if an = o(bn). For a, b ∈ R, let
a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a, b ∈ R

d , let a ∧ b = (a1 ∧ b1, . . . , ad ∧ bd)T,
a ∨ b = (a1 ∨ b1, . . . , ad ∨ bd)T and the pointwise product a ◦ b = (a1b1, . . . , adbd)T. For a
vector a ∈ R

d , the Euclidean and the maximum norms are respectively denoted by ‖a‖ and
‖a‖∞ = max{|ak| : 1 ≤ k ≤ d}. Let [j1 : j2] = {j ∈ Z

d : j1,k ≤ jk ≤ j2,k, for all 1 ≤ k ≤ d}
stand for the lattice with boundaries j1,j2 ∈ Z

d .
For a multivariate function f : Rd → R, let ∂l

kf (x) = ∂lf (x)/∂xl
k for k ∈ {1, . . . , d} and

l ∈ Z≥0 at a suitable point x ∈ R
d . For a multiple index l = (l1, . . . , ld)T ∈ Z

d≥0, we use ∂ l =
∂

l1
1 · · · ∂ld

d , l! = l1! · · · ld ! and xl = x
l1
1 · · ·xld

d . We adopt the coordinatewise partial ordering
on R

d , that is, for x,y ∈ R
d , x � y if and only if xk ≤ yk for all 1 ≤ k ≤ d . We say that a

function f on R
d is multivariate monotone if f (x) ≤ f (y) for all x � y. The class of all

multivariate monotone functions on [0,1]d will be denoted by M. Let Lp[a,b], 1 ≤ p ≤ ∞,
stand for the Lebesgue Lp-space on a multivariate interval [a,b]. Convergence in probability
under a measure P is denoted by →P. Distributional equality will be denoted by =d and weak
convergence by �.

3.2. Model. We observe n independent and identically distributed random samples Dn =
((X1, Y1), . . . , (Xn, Yn)) from the nonparametric multiple regression model,

Y = f (X) + ε,(3.1)

where Y is the response variable, X is a d-dimensional predictor and ε is a random error with
mean 0 and finite variance σ 2, independent of X. Instead of assuming any global smoothness
condition on f , we assume that f is a multivariate monotone function. To construct the
likelihood function, we assume that ε is normally distributed, but the actual data-generating
process need not be so.

The first assumption is about the local regularity of the true regression function f0 near
a point of interest x0. This assumption, as in [38], is an essential ingredient to establish the
limiting distribution.

ASSUMPTION 1. Let f0 ∈ M. For x0 ∈ (0,1)d and 1 ≤ k ≤ d , let βk be the or-
der of the first nonzero derivative of f at x0 along the kth coordinate, that is, βk =
minl≥1{l : ∂l

kf0(x0) �= 0} and βk = ∞ if ∂l
kf0(x0) = 0 for all l ≥ 1. Without loss of gen-

erality, we may assume that f0 depends on its first s arguments locally at x0, that is,
1 ≤ β1, . . . , βs < ∞, and that βs+1 = · · · = βd = ∞ for some 0 ≤ s ≤ d . Define an index
set L = {l : 0 <

∑s
k=1 lk/βk ≤ 1 and lk = 0, for k = s + 1, . . . , d}. For a positive sequence
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ωn ↓ 0, set rn = (ω
1/β1
n , . . . ,ω

1/βs
n ,1, . . . ,1)T. For any t > 0,

lim
ωn↓0

ω−1
n sup

x∈[0,1]d ,
|xk−x0,k |≤trn,k,

1≤k≤d

∣∣∣∣f0(x) − f0(x0) −∑
l∈L

∂ lf0(x0)

l! (x − x0)
l

∣∣∣∣= 0.(3.2)

Assumption 1 takes into account varying convergence rates across different coordinates,
according to their respective smoothness levels. Each term in the expansion contributes to-
ward approximation rates larger than or equal to ωn. Let

L0 =
{
l : 0 <

s∑
k=1

lk/βk < 1 and lk = 0 for k = s + 1, . . . , d

}
,(3.3)

L∗ =
{
l :

s∑
k=1

lk/βk = 1 and lk = 0 for k = s + 1, . . . , d

}
.(3.4)

Under Assumption 1, a unique feature for functions in M is that the derivatives of order
l ∈ L0 are zero (see Lemma 1 of [38]). Only those derivatives corresponding to the index
set L∗ can be nonzero. Thus, the nonzero terms in the expansion of (3.2) contribute the
same approximation rate ωn. However, Assumption 1 cannot exclude the nonzero mixed
derivatives. Additional assumptions will be needed when we want to eliminate the mixed
derivative terms.

Next, we make the following assumption on the distributions of the covariate X and the
error ε from the data generating process (3.1).

ASSUMPTION 2. The covariate X has a density g such that a1 ≤ g(x) ≤ a2 for all
x ∈ [0,1]d and 0 < a1 ≤ a2 < ∞. Suppose g is continuous in a neighborhood of the set
{(x0,1, . . . , x0,s , xs+1, . . . , xd) : xk ∈ [0,1], for s + 1 ≤ k ≤ d}. The random error ε, with
mean 0 and variance σ 2

0 , has a finite 2(
∑s

k=1 β−1
k + 1)th moment.

3.3. Prior. We put a prior distribution on f through a sieve of piecewise constant
functions with gradually refining intervals of constancy, forming a partition of [0,1]d . For
J ∈ Z

d
>0, let Ij = ∏d

k=1((jk − 1)/Jk, jk/Jk] be a hyperrectangle in [0,1]d , indexed by
a d-dimensional vector j , for j ∈ [1 : J ]\{1} and I1 = ∏d

k=1[0,1/Jk]. Then {Ij }j∈[1:J ]
forms a partition of [0,1]d . We define a class of piecewise constant functions KJ := {f =∑

j∈[1:J ] θj1Ij : θj ∈R}. As we follow the immersion posterior approach, we do not initially
impose the order restriction. A prior is imposed on f = ∑j∈[1:J ] θj1Ij in KJ by giving
independent Gaussian priors to θj , namely,

(3.5) θj ∼ N
(
ζj , σ 2λ2

j

)
independently for all j ∈ [1 : J ],

where maxj |ζj | < ∞ and minj λ2
j ≥ b > 0.

The values of the prior parameters, ζj and λj , will not affect our asymptotic results. How-
ever, in practice, when very little prior information is available, it is sensible to choose ζj = 0
and λj large for all j .

3.4. Posterior distribution. We use the Gaussian distribution

(3.6) Yi ∼ N
( ∑

j∈[1:J ]
θj1{Xi ∈ Ij }, σ 2

)
,
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which leads to, in the unrestricted parameter space, a Gaussian joint likelihood for (θj : j ∈
[1 : J ]) without any cross-product terms in the exponent. This gives independent Gaussian
posterior distribution for each θj , given σ , such that by conjugacy,

(3.7) θj |Dn, σ ∼ N
((

Nj Ȳ |Ij + ζjλ−2
j

)
/
(
Nj + λ−2

j

)
, σ 2/

(
Nj + λ−2

j

))
,

where Nj = #{i : Xi ∈ Ij } and Ȳ |Ij =∑n
i=1 Yi1{Xi ∈ Ij }/Nj .

The parameter σ 2 can be estimated by maximizing the marginal likelihood function given
by (

2πσ 2)−n/2 ∏
j∈[1:J ]

(
1 + λ2

jNj
)−1/2

× exp

[
− 1

2σ 2

{
n∑

i=1

(
Yi − ∑

j :Xi∈Ij

ζj

)2
− ∑

j∈[1:J ]

N2
j (Ȳ |Ij − ζj )2

Nj + λ−2
j

}]
,

and the resulting estimator

σ̂ 2
n = 1

n

[
n∑

i=1

(
Yi − ∑

j :Xi∈Ij

ζj

)2
− ∑

j∈[1:J ]

N2
j (Ȳ |Ij − ζj )2

Nj + λ−2
j

]
,(3.8)

may be plugged into the expression (3.7). Alternatively, in a fully Bayesian framework, we
can give σ 2 an inverse-Gamma prior IG(b1, b2) with parameters b1 > 0, b2 > 0, and obtain
that the posterior distribution of σ 2 is given by IG(b1 + n/2, b2 + nσ̂ 2

n /2). It will be shown
in Lemma B.5 of [54] that the marginal maximum likelihood estimator of σ 2 as well as the
posterior for σ 2 concentrate in a shrinking neighborhood of its true value σ 2

0 . Then it easily
follows that the asymptotic behavior of the posterior distribution of f is identical with that
when σ is known to be σ0. Hence, it suffices to study the asymptotic behavior of the posterior
distribution given σ .

The unrestricted posterior distribution of f given σ is induced from (3.7) by the rep-
resentation f =∑j∈[1:J ] θj1Ij . To obtain the immersion posterior distribution to make an
inference, we consider three possible immersion maps.

Define

MJ =
{
f = ∑

j∈[1:J ]
θj1Ij : θj ∈ R and θj1

≤ θj2
if j1 � j2

}
,(3.9)

consisting of the coordinatewise nondecreasing functions taking constant value on every Ij .
Based on the isotonization procedure introduced in [28], consider transformations ι and ι

acting on f =∑j∈[1:J ] θj1Ij ∈ KJ mapping to an element of MJ defined by

ι(f )(x) = max
j1�j0(x)

min
j0(x)�j2
N[j1:j2]>0

∑
j∈[j1:j2] Njθj

N[j1:j2]
,(3.10)

ι(f )(x) = min
j0(x)�j2

max
j1�j0(x)
N[j1:j2]>0

∑
j∈[j1:j2] Njθj

N[j1:j2]
,(3.11)

where j0(x) = 	x ◦ J 
, N[j1:j2] =∑j∈[j1:j2] Nj , and x ∈ [0,1]d , for j1, j2 in Z
d . The

immersion posterior can be derived through the immersion map, ι, which is chosen to be
either ι or ι. This is determined by examining the resulting induced distribution of

f∗ = ι(f ),(3.12)

f ∗ = ι(f ).(3.13)
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It is obvious that ι(f ) ∈ MJ and ι(f ) = f if f ∈ MJ and Nj > 0 for all j ∈ [1 : J ].
Generally, ι(f )(x) ≤ ι(f )(x) for any x ∈ [0,1]d , but this may fail to hold if Nj = 0 for
some j , see [21]. To neutralize the effect stemming from the order of minimization and
maximization, we propose using the average of ι and ι, leading to another immersion map
ι = (ι + ι)/2, by which f is mapped to

f̃ = (f∗ + f ∗)/2.(3.14)

The projection map for the univariate case is typically computed by the pool adjacent
violator algorithm (see Section 2.3 of [4]), which requires O(J ) computations for a function
with J steps. The computation of f∗ or f ∗ requires no more than (

∏d
k=1 Jk)

3 operations by
the brute-force search utilizing the block max-min or min-max formulas.

3.5. Effect of the immersion map. To see the effect of the immersion map on the posterior
distribution of the function value at a point x0 = (0.5,0.5) ∈ [0,1]2, we conduct a small sim-
ulation study and compare the unrestricted and immersion posterior density for a randomly
generated sample of three different sizes n = 100,200 and 500, and three different regres-
sion functions: (i) f0(x1, x2) = x1 + x2; (ii) f0(x1, x2) = √

x1 + x2; (iii) f0(x1, x2) = 1{x1 <

1/3}+ 21{1/3 ≤ x1 < 2/3}+ 31{x1 ≥ 2/3}. Let X1 and X2 be distributed independently and
uniformly on [0,1] and error ε ∼ N(0, σ 2) with true value of σ to be 0.1. We choose the num-
ber of grid points J1 = J2 = J = 	n1/4 log10 n
. The random heights, {θ(j1,j2) : j1, j2 ≤ J },
are endowed with the independent Gaussian prior N(0,1000σ 2). The variance σ 2 is estimated
using the maximum marginal likelihood method. We plot both the unrestricted posterior den-
sity and the estimated immersion posterior density in the same figure. The latter is based on
2000 posterior samples transformed by the immersion map (ῑ + ι)/2.

As evident from Figure 1, the immersion posterior density functions exhibit lower variance
across all instances, albeit to varying degrees depending on the true regression functions and
sample sizes. Furthermore, the modes of the immersion posterior are nearer to the true value.
The impacts of the other immersion maps, ῑ and ι, on the posterior were found to be similar.

4. Coverage of credible intervals. Let x0 ∈ (0,1)d be fixed. Suppose that we want to
make an inference on f (x0). For a given 0 < γ < 1, consider a (1−γ )-credible interval with
endpoints the γ /2 and (1 − γ /2) quantiles of f∗(x0), f ∗(x0), or f̃ (x0) defined in (3.12)–
(3.14). To obtain the limiting frequentist coverage of these credible intervals, we obtain the
weak limit of the immersion posterior distributions of f for all three immersion maps ι, ι and
(ι + ι)/2 at x = x0.

Let H1 and H2 be two independent centered Gaussian processes indexed by (u,v) ∈ R
d≥0 ×

R
d≥0 with the covariance kernel

s∏
k=1

(
uk ∧ u′

k + vk ∧ v′
k

)
Ds

(
u ∧ u′,v ∧ v′),(4.1)

where Dd(u,v) = g(x0), where g is the probability density function of X, and for s =
0, . . . , d − 1, and Ds(u,v) is given by∫

xk∈[(x0−u)k,(x0+v)k]∩[0,1]
s+1≤k≤d

g(x0,1, . . . , x0,s, xs+1, . . . , xd)dxs+1 · · · dxd.(4.2)

Additionally, we define a Gaussian process

U(u,v) = σ0H1(u,v)∏s
k=1(uk + vk)Ds(u,v)

+ σ0H2(u,v)∏s
k=1(uk + vk)Ds(u,v)

+ ∑
l∈L∗

∂ lf0(x0)

(l + 1)!
s∏

k=1

v
lk+1
k − (−uk)

lk+1

uk + vk

(4.3)
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FIG. 1. Unrestricted and immersion posterior density functions of f (x0). The solid black line stands for the
immersion posterior density, while the black dashed line represents the unrestricted posterior density. The true
function value is indicated by the red dotted vertical line. The rows correspond to functions (i), (ii) and (iii),
respectively, while the columns represent sample sizes of n = 100,200 and 500.

indexed by (u,v) ∈ R
d≥0 ×R

d≥0, and its functionals

Z∗ = sup
u�0

uk≤x0,k

s+1≤k≤d

inf
v�0

vk≤1−x0,k

s+1≤k≤d

U(u,v), Z∗ = inf
v�0

vk≤1−x0,k

s+1≤k≤d

sup
u�0

uk≤x0,k

s+1≤k≤d

U(u,v).(4.4)

The following result describes the asymptotic behavior of the normalized immersion pos-
terior distributions of f (x0). Recall that Dn represents the data and rn,k in Assumption 1 is
the convergence rate along the kth direction through adjusting the overall rate ωn according
to the local smoothness levels. The weak limit of the normalized immersion posterior dis-
tribution function plays a central role in the study of the limiting coverage of the credible
intervals based on the immersion posterior quantiles.

THEOREM 4.1. Let ωn = n−1/(2+∑s
k=1 β−1

k ) and let rn = (ω
1/β1
n , . . . ,ω

1/βs
s ,1, . . . ,1)T.

Suppose that J satisfies Jk � r−1
n,k , for each k = 1, . . . , d , and

∏d
k=1 Jk � nωn. Under As-
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sumptions 1 and 2, for any z ∈ R, we have

�
(
ω−1

n

(
f∗(x0) − f0(x0)

)≤ z|Dn

)
� P(Z∗ ≤ z|H1);(4.5)

�
(
ω−1

n

(
f ∗(x0) − f0(x0)

)≤ z|Dn

)
� P
(
Z∗ ≤ z|H1

);(4.6)

�
(
ω−1

n

(
f̃ (x0) − f0(x0)

)≤ z|Dn

)
� P
((

Z∗ + Z∗)/2 ≤ z|H1
)
.(4.7)

Furthermore, for any (z1, z2) ∈ R
2,

�
(
ω−1

n

(
f∗(x0) − f0(x0)

)≤ z1,ω
−1
n

(
f ∗(x0) − f0(x0)

)≤ z2|Dn

)
� P
(
Z∗ ≤ z1,Z

∗ ≤ z2|H1
)
.

(4.8)

REMARK 1. We make some remarks on Theorem 4.1.

1. The weak limit is understood in the usual sense for random variables since we consider
the limiting behavior of the random probability measure of a fixed set (−∞, z]. We refer to
the proof technique of [38], which provides the distributional theory for the block-estimator
in general multivariate isotonic regression, especially the small and large deviation arguments
therein.

2. For the choice of Jk , the lower bound r−1
n,k is essential for Theorem 4.1. That eliminates

the effect of the roughness of piecewise constant function approximation in view of the local
contraction rate. But the upper bound, nωn in Theorem 4.1, is not fundamentally necessary
for the validity of the weak limit. Instead, we can set the hyperparameters λj large enough,
specifically, minλ2

j � ω−1
n

√
n, to obtain the limiting theory. The rest of the proof of The-

orem 4.1 will not be affected much without such an upper bound except for the treatment
of σ 2. The estimation of σ 2 is not a hard problem and any consistent procedure will work.
For any βk ≥ 1 and any 0 ≤ s ≤ d , we observe that rk ≤ n−1/3 for all 1 ≤ k ≤ d . Without
the local smoothness information, we can choose Jk � n1/3. On the other side, if we admit
that βk = 1, 1 ≤ k ≤ d , is the leading case for the multivariate regression function, we can
then choose Jk � n1/(2+d). One may raise concerns that selecting J in this manner seems
not optimal when the true regression function is less smooth. However, this concern typically
does not pose a big issue in practice. When lacking prior information about the regression
function, an appropriately large Jk can be chosen and an uninformative prior should be ap-
plied to θj , such as a normal prior with a large variance. Our empirical study indicates that
opting for a larger J can indeed enhance the performance of our method. For practical appli-
cations, we recommend selecting Jk no less than 15, particularly when dealing with a smaller
sample size. Notably, J is not a tuning parameter in this context; the immersion posterior is
governed by shape restrictions rather than a tuning process like bandwidth selection in ker-
nel smoothing. The choice of J does not influence the contraction rate or the distributional
theory, distinguishing it from typical tuning parameters.

3. It is also important to note that we employ a working normal model to derive the poste-
rior distribution. The validity of this method remains intact even when the model is misspec-
ified. The finite-moment condition for the random error ε can be relaxed to the second order,
as in [38], by selecting a sufficiently large λ2

j as in the last point.

The covariance kernels of the processes H1 and H2 depend on g, and the limiting Gaussian
process also involves the derivative values of f0 at x0. A considerable simplification happens
in some special cases where the parameters appear through a scale parameter in the kernel.
It will be seen shortly that this fact has a far-reaching implication in that the limiting cover-
age of a credible interval constructed from the immersion posterior is free of the unknown
parameters of the model. If L∗ defined by (3.4) only contains βkek for k = 1, . . . , s, where
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ek denotes the standard unit vector in R
d with one in the kth component and zero elsewhere,

then the limiting processes in Theorem 4.1 can be further simplified by self-similarity. A fac-
tor depending on f0 comes out as a multiplicative constant, and the remaining factor is only
a known functional of H1 and H2. The case s = d stands for the regular case that all direc-
tional derivatives of f0 at x0 are positive at a certain order. Then the covariance kernel further
simplifies as a completely known function and a factor involving derivatives of the regression
function and predictor density g. The result is precisely formulated in the result below.

PROPOSITION 4.1. If L∗ = {βkek : 1 ≤ k ≤ s}, then
sup
u�0

inf
v�0

{
σ0H1(u,v)∏s

k=1(uk + vk)Ds(u,v)
+ σ0H2(u,v)∏s

k=1(uk + vk)Ds(u,v)

+
s∑

k=1

[
∂

βk

k f0(x0)

(βk + 1)! · v
βk+1
k − (−uk)

βk+1

uk + vk

]}

=d Aβ · sup
u�0

inf
v�0

{
H1(u,v)∏s

k=1(uk + vk)Ds(u,v)
+ H2(u,v)∏s

k=1(uk + vk)Ds(u,v)

+
s∑

k=1

v
βk+1
k − (−uk)

βk+1

uk + vk

}
,

where Aβ = (σ 2
0
∏s

k=1(
∂

βk
k f0(x0)

(βk+1)! )1/βk )1/(2+∑s
k=1 β−1

k ).
Furthermore, if s = d , then the above expression further simplifies to

Ãβ sup
u�0

inf
v�0

{
H̃1(u,v)∏d

k=1(uk + vk)
+ H̃2(u,v)∏d

k=1(uk + vk)
+

d∑
k=1

v
βk+1
k − (−uk)

βk+1

uk + vk

}
,

where Ãβ = (
σ 2

0
g(x0)

∏d
k=1(

∂
βk
k f0(x0)

(βk+1)! )1/βk )1/(2+∑d
k=1 β−1

k ), and H̃1 and H̃2 are two independent

centered Gaussian processes with covariance kernel given by
∏d

k=1(uk ∧ u′
k + vk ∧ v′

k),
(u,v), (u′,v′) ∈ R

d≥0 ×R
d≥0.

The same conclusion also applies to the inf sup-functional obtained by switching the po-
sitions of the supremum and the infimum.

REMARK 2 (Univariate case). We specialize to the univariate case s = d = 1, with a
general β , expanding from the case β = 1 studied by [14]. Then

H̃i(u, v) =d Wi(v) + Wi(−u) =d Wi(v) − Wi(−u), (u, v) ∈ R
2≥0,(4.9)

where W1, W2 are two independent standard two-sided Brownian motions starting from 0.
Observe that the sup-inf functional

sup
u>0

inf
v>0

{
H̃1(u, v)

u + v
+ H̃2(u, v)

u + v
+ vβ1+1 − (−u)β1+1

u + v

}

=d sup
u>0

inf
v>0

{
(W1(v) + W2(v) + vβ1+1) − (W1(−u) + W2(−u) + uβ1+1)

v − (−u)

}
,

coincides with the slope of the greatest convex minorant of the process W1(t)+W2(t)+ tβ+1.
By the switching relation (cf. [33], page 56), for any z ∈ R,

P
(
Ãβ sup

u>0
inf
v>0

{
H̃1(u, v)

u + v
+ H̃2(u, v)

u + v
+ vβ+1 − (−u)β+1

u + v

}
≤ z

)

= P
(
arg min

{
W1(t) + W2(t) + tβ+1 − Ã−1

β zt : t ∈R
}≥ 0

)
.
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If β = 1, the last display can be further simplified by applying the change of variable, t =
s + z/(2Ã1), and is equal to

P
(
2Ã1 arg min

{
W1(s) + W2(s) + s2 : s ∈R

}≤ z
)
,

with Ã1 = (σ 2
0 f ′(x0)/(2g(x0)))

1/3. This reproduces the main result of [14].

Now we are ready for the evaluation of the limiting coverage of an immersion posterior
credible interval for f (x0). Let

Q(1)
n,γ = inf

{
z : �(f∗(x0) ≤ z|Dn

)≥ 1 − γ
}

(4.10)

stand for the (1−γ )-quantile of f∗(x0). Similarly, let Q
(2)
n,γ and Q

(3)
n,γ stand for that of f ∗(x0)

and f̃ (x0), respectively. Let Ũ (u,v) stand for the Gaussian process

H̃1(u,v)∏d
k=1(uk + vk)

+ H̃2(u,v)∏d
k=1(uk + vk)

+
d∑

k=1

v
βk+1
k − (−uk)

βk+1

uk + vk

(4.11)

indexed by (u,v) ∈ R
d≥0 ×R

d≥0.
The following result gives the ultimate conclusion of the paper about asymptotic coverage

of credible intervals for the regression function value at an interior point.

THEOREM 4.2. Under the assumed setup, Assumptions 1 and 2, and the condition that
L∗ = {βkek : 1 ≤ k ≤ s}, the asymptotic coverage of the quantile-based one-sided credible
interval (−∞,Q

(1)
n,γ ] is given by

P

(
P

(
sup
u�0

inf
v�0

{
H1(u,v)∏s

k=1(uk + vk)Ds(u,v)
+ H2(u,v)∏s

k=1(uk + vk)Ds(u,v)

+
s∑

k=1

v
βk+1
k − (−uk)

βk+1

uk + vk

}
≤ 0
∣∣∣H1

)
≤ 1 − γ

)
.

If Q
(1)
n,γ is replaced by Q

(2)
n,γ , the above limit is changed by swapping the order of the supre-

mum and infimum operations. If Q
(1)
n,γ is replaced by Q

(3)
n,γ , the above limit is changed by

replacing the expression on the right-hand side with the average of the sup inf and inf sup
operations.

Moreover, if s = d:

(i) P0(f0(x0) ≤ Q
(1)
n,γ ) → P(Z

(1)
B ≤ 1 − γ );

(ii) P0(f0(x0) ≤ Q
(2)
n,γ ) → P(Z

(2)
B ≤ 1 − γ );

(iii) P0(f0(x0) ≤ Q
(3)
n,γ ) → P(Z

(3)
B ≤ 1 − γ ),

where Z
(1)
B = P(supu�0 infv�0 Ũ (u,v) ≤ 0|H̃1), Z

(2)
B = P(infv�0 supu�0 Ũ (u,v) ≤ 0|H̃1)

and Z
(3)
B = P(1

2{supu�0 infv�0 Ũ (u,v) + infv�0 supu�0 Ũ (u,v)} ≤ 0|H̃1).

PROOF. We observe that f0(x0) ≤ Q
(1)
n,γ if and only if

�
(
f∗(x0) ≤ f0(x0)|Dn

)= �
(
ω−1

n

(
f∗(x0) − f0(x0)

)≤ 0|Dn

)≤ 1 − γ.

Hence, by Theorem 4.1 and Proposition 4.1, as the multiplicative positive constant in the
limiting process can be dropped because the interval (−∞,0] remains invariant under a scale-
change, the first conclusion follows immediately. The special cases follow from the second
part of Proposition 4.1. �
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REMARK 3. For d = 1, Z
(1)
B , Z

(2)
B and Z

(3)
B all coincide, and may be simply denoted by

ZB as in [14].

The distributions of Z
(1)
B and Z

(2)
B are related, as shown next.

PROPOSITION 4.2. For any z ∈ [0,1], we have P(Z
(1)
B ≤ z) = P(Z

(2)
B ≥ 1 − z), and Z

(3)
B

is symmetrically distributed about 1/2.

From Theorem 4.2 and Proposition 4.2, it follows that the limiting coverage of a one-sided
Bayesian credible interval for f (x0) using one of the three proposed immersion posteriors
can be evaluated, is free of the true regression function (and also is free of the density g of the
predictor if s = d , and hence depends only on the credibility level), but in general, need not be
equal to the credibility. Nevertheless, a targeted limiting coverage can be obtained by starting
with a certain credibility level that can be explicitly computed by back-calculation. As in the
univariate monotone problems studied by [14, 15], numerical calculations show that the re-
quired credibility to obtain a specific limiting coverage is less than the targeted coverage, the
opposite of the phenomenon [20] observed for smoothing problems. However, unlike in the
univariate case where the limiting Bayes–Chernoff distribution determining the asymptotic
coverage of the credible interval is symmetric, the corresponding random variables Z

(1)
B and

Z
(2)
B for the posterior based on the immersion maps ι and ι appearing in the multivariate case

are not symmetric. This has implications for the limiting coverage of a two-sided credible in-
terval, which is more commonly used in practice. For instance, for 0 < γ < 1/2, a two-sided
(1−γ )-credible interval [Qn,1−γ /2,Qn,γ /2] based on the immersion posterior using the map

ι, the limiting coverage is given by P(Z
(1)
B ≤ 1 − γ /2) − P(Z

(1)
B ≤ γ /2). The corresponding

limit for the immersion posterior using the map ι is P(Z
(2)
B ≤ 1 − γ /2) − P(Z

(2)
B ≤ γ /2).

Interestingly, a separate table for the distribution function of Z
(2)
B is not needed, as it can

be obtained from that of Z
(1)
B in view of Proposition 4.2. The symmetry of Z

(3)
B , however,

implies that the credibility level 1 − γ needed to make the asymptotic coverage of an equal-
tailed (1−γ )-credible interval 1−α is obtained by choosing 1−γ = 1−2F−1

Z
(3)
B

(α/2), which

is readily obtained once the cumulative distribution function F
Z

(3)
B

of Z
(3)
B is tabulated.

5. Numerical results.

5.1. Distribution of ZB . In this section, we present tables detailing the distribution and
quantiles of ZB for the case d = 1 when β = 1,3,5, as well as those for Z

(1)
B , Z

(2)
B , Z

(3)
B for

the case d = 2 when β = (1,1), (1,3), (3,3). The distributions of these variables are simu-
lated using the Monte Carlo method, with the Gaussian processes concerned being generated
by discrete approximation. The quantile table can function as a recalibration reference to
achieve the exact frequentist asymptotic coverage.

5.1.1. Case d = 1. First, we generate approximations to the Gaussian processes H̃1 and
H̃2. Let H̃ denote either H̃1 or H̃2. To approximate H̃ , we generate 14m independent standard
Gaussian random variables, specifically {ζj : j = 1, . . . ,7m} and {ζ ′

j : j = 1, . . . ,7m}, where
m = 50. Then H̃ can be approximated as follows:

H̃ (u, v) ≈ 1√
m

[	mu
∑
j=1

ζj +
	mv
∑
j=1

ζ ′
j

]
,(5.1)
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FIG. 2. Distribution functions of ZB .

for u, v ∈ [0,7]. Given each instance of H̃1, we generate 500 realizations of H̃2. For each
realization, we compute the sup-inf functional. The proportion of nonpositive outcomes then
serves as a sample value of ZB . We repeat the generation process 50,000 times to obtain the
approximate distribution function of ZB .

In Figure 2, we draw the simulated distribution functions of ZB with β = 1,3 and 5. We
give the values of P(ZB ≤ z) with different smoothness levels for selected z values in Table 1
and the values of the quantiles of ZB ’s distribution in Table 2.

5.1.2. Case d = 2. To approximate H̃ (u,v), for u,v ∈ R
2, we generate 4 random ma-

trices ζ (1), ζ (2), ζ (3) and ζ (4) with independent standard Gaussian random variables. The
dimensions of these 4 matrices are 	mt1
 × 	mt2
, 	ms1
 × 	mt2
, 	ms1
 × 	ms2
 and
	mt1
 × 	ms2
, for m = 5 and t1 = t2 = s1 = s2 = 5. H̃ (u,v) is then approximated by

1

m

(	mv1
∑
i=1

	mv2
∑
j=1

ζ
(1)
ij +

	mu1
∑
i=1

	mv2
∑
j=1

ζ
(2)
ij +

	mu1
∑
i=1

	mu2
∑
j=1

ζ
(3)
ij +

	mv1
∑
i=1

	mu2
∑
j=1

ζ
(4)
ij

)
,

for u1, u2, v1, v2 ∈ [0,5].
To get a sample of any one of Z

(1)
B , Z

(2)
B or Z

(3)
B , we first generate a sample of H̃1. Given

this sample, we generate 500 realizations of H̃2. We then compute the three functionals that
define Z

(1)
B , Z

(2)
B and Z

(3)
B . The conditional probabilities are approximated by the frequency

TABLE 1
Values of P(ZB ≤ z)

z 0.700 0.750 0.800 0.850 0.900 0.950 0.975 0.990 0.995

β = 1 0.719 0.772 0.826 0.875 0.923 0.965 0.985 0.994 0.997
β = 3 0.715 0.768 0.821 0.870 0.921 0.963 0.983 0.994 0.997
β = 5 0.716 0.768 0.820 0.869 0.919 0.962 0.983 0.993 0.997

TABLE 2
Values of q = inf{z : P(ZB ≤ z) ≥ p}

p 0.700 0.750 0.800 0.850 0.900 0.950 0.975 0.990 0.995

β = 1 0.683 0.730 0.777 0.825 0.878 0.932 0.964 0.994 0.997
β = 3 0.687 0.734 0.781 0.829 0.882 0.935 0.966 0.986 0.992
β = 5 0.686 0.734 0.782 0.831 0.882 0.936 0.966 0.986 0.994
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TABLE 3
Values of P(ZB ≤ z) for various z and β , and ZB = Z

(1)
B ,Z

(2)
B ,Z

(3)
B

β = (1,1) β = (3,1) β = (3,3)

z Z
(1)
B Z

(2)
B Z

(3)
B Z

(1)
B Z

(2)
B Z

(3)
B Z

(1)
B Z

(2)
B Z

(3)
B

0.700 0.705 0.752 0.725 0.704 0.741 0.721 0.708 0.735 0.718
0.750 0.762 0.803 0.778 0.760 0.791 0.773 0.762 0.787 0.771
0.800 0.817 0.851 0.832 0.814 0.842 0.827 0.817 0.838 0.825
0.850 0.871 0.898 0.880 0.868 0.889 0.877 0.868 0.885 0.874
0.900 0.921 0.939 0.927 0.917 0.932 0.924 0.918 0.930 0.922
0.950 0.966 0.975 0.968 0.964 0.971 0.966 0.964 0.970 0.965
0.975 0.985 0.989 0.987 0.983 0.987 0.986 0.984 0.986 0.985
0.990 0.995 0.997 0.995 0.995 0.997 0.995 0.995 0.996 0.994
0.995 0.997 0.998 0.998 0.998 0.998 0.998 0.997 0.998 0.997

of nonpositive functional values. This process is repeated 50,000 times for β = (1,1), (3,1)

and (3,3) to estimate the distribution of Z
(1)
B , Z

(2)
B or Z

(3)
B .

Since in higher-dimensional cases, Z
(1)
B and Z

(2)
B are not equal in distribution and their

distribution functions are not symmetric about 0.5, we give both the values of P(Z
(1)
B ≤ z) and

P(Z
(2)
B ≤ z) for some selected z values in Table 3. The corresponding distribution functions

are plotted in Figure 3. We present the quantiles of Z
(3)
B with different smoothness levels in

Table 4.

FIG. 3. Distribution functions of Z
(1)
B , Z

(2)
B or Z

(3)
B . The three plots in the first row are for β = (1,1); the

second row is for β = (3,1); the last row is for β = (3,3).
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TABLE 4
Values of q = inf{z : P(ZB ≤ z) ≥ p} for various p, and ZB = Z

(1)
B ,Z

(2)
B ,Z

(3)
B

β = (1,1) β = (3,1) β = (3,3)

p Z
(1)
B Z

(2)
B Z

(3)
B Z

(1)
B Z

(2)
B Z

(3)
B Z

(1)
B Z

(2)
B Z

(3)
B

0.700 0.697 0.653 0.677 0.699 0.665 0.681 0.695 0.669 0.684
0.750 0.741 0.699 0.724 0.743 0.711 0.728 0.741 0.715 0.732
0.800 0.787 0.749 0.771 0.789 0.759 0.776 0.787 0.763 0.778
0.850 0.833 0.801 0.819 0.835 0.811 0.823 0.833 0.815 0.825
0.900 0.881 0.855 0.872 0.883 0.865 0.876 0.883 0.869 0.878
0.950 0.933 0.917 0.928 0.937 0.925 0.931 0.935 0.927 0.933
0.975 0.963 0.951 0.959 0.965 0.957 0.962 0.965 0.959 0.964
0.990 0.983 0.977 0.982 0.985 0.981 0.984 0.985 0.983 0.984
0.995 0.991 0.987 0.990 0.991 0.989 0.992 0.993 0.991 0.992

5.2. Comparison with Deng, Han and Zhang’s method. For pointwise inference in multi-
variate isotonic regression, Deng et al. [21] constructed the confidence interval by the asymp-
totic distribution of pivotal statistics. Their method will be referred to as DHZ in the follow-
ing. Let û(x0) and v̂(x0) be such that

f̂ −(x0) = max
u�x0

min
v�x0

#{i:Xi∈[u:v]}>0

Ȳ |[u:v] = min
v�x0

#{i:Xi∈[û(x0):v]}>0

Ȳ |[û(x0):v],

f̂ +(x0) = min
v�x0

max
u�x0

#{i:Xi∈[u:v]}>0

Ȳ |[u:v] = max
u�x0

#{i:Xi∈[u:v̂(x0)]}>0

Ȳ |[u:v̂(x0)],

and f̂ (x0) = (f̂ −(x0) + f̂ +(x0))/2. Under the same data generating conditions as in Theo-
rem 4.2 and additionally assuming X is uniform distributed, Deng et al. [21] showed that√

#{i : Xi ∈ [û(x0) : v̂(x0)]}
σ

(
f̂ (x0) − f (x0)

)
� Kβ,

where Kβ is a universal distribution that depends solely on the local regularity β . Let 1−γ ∈
(0.5,1) be the confidence level. They proposed the following confidence interval for f0(x0):

(5.2)
[
f̂ (x0) − cγ σ̂√

#{i : Xi ∈ [û(x0) : v̂(x0)]}
, f̂ (x0) + cγ σ̂√

#{i : Xi ∈ [û(x0) : v̂(x0)]}
]
,

where cγ is the critical value obtained by simulating the limiting distribution of Kβ and σ̂ is
a consistent estimator of σ .

We consider five regression functions: (1) f1(x1, x2) = (x1 + x2)
2; (2) f2(x1, x2) =√

x1 + x2; (3) f3(x1, x2) = x1x2; (4) f4(x1, x2) = ex1+x2 ; (5) f5(x1, x2) = ex1x2 . Set εi ∼
N(0,1) and X1,X2 ∼ Unif(0,1), mutually independent, for i = 1, . . . , n. We consider sam-
ple sizes n = 200,500,1000 and 2000. To construct credible intervals, we choose J =
	n1/3 log(logn)
. We compare the coverage and length of our immersion credible interval
(IB), the recalibrated credible interval (IB(adj)) and the DHZ’s confidence interval under two
credible/confidence levels 0.95 and 0.90. The coverage percentage and the average length are
calculated over 2000 replications. The result is summarized in Table 5.

The unadjusted credible intervals generally overcover the true function value for larger
sample sizes, whereas the recalibrated credible intervals provide more accurate coverage to
different extents for different functions. DHZ’s method yields more precise coverage at the
given confidence level when the sample sizes are relatively smaller. However, our credible
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TABLE 5
Coverage percentage (C) and length (L) comparison

IB IB(adj) DHZ

f Level n C L C L C L

f1 0.05 200 93.6 0.903 (0.145) 90.0 0.805 (0.132) 92.4 1.138 (0.600)
500 98.8 0.777 (0.111) 97.7 0.692 (0.101) 95.0 0.959 (0.490)

1000 97.0 0.630 (0.086) 94.4 0.562 (0.078) 94.8 0.827 (0.435)
2000 97.4 0.535 (0.072) 95.4 0.476 (0.066) 94.9 0.686 (0.324)

0.10 200 88.1 0.761 (0.126) 81.5 0.668 (0.112) 86.1 0.898 (0.473)
500 96.9 0.656 (0.097) 94.4 0.576 (0.087) 90.0 0.757 (0.387)

1000 92.8 0.532 (0.075) 88.8 0.467 (0.068) 88.8 0.652 (0.343)
2000 94.3 0.451 (0.063) 90.4 0.397 (0.057) 89.7 0.541 (0.256)

f2 0.05 200 91.0 0.503 (0.089) 87.0 0.447 (0.081) 95.2 0.722 (0.339)
500 96.6 0.380 (0.061) 93.8 0.338 (0.055) 95.4 0.546 (0.303)

1000 94.9 0.308 (0.047) 91.7 0.274 (0.043) 94.8 0.439 (0.252)
2000 95.9 0.253 (0.039) 93.3 0.225 (0.035) 95.3 0.357 (0.175)

0.10 200 85.0 0.423 (0.077) 79.0 0.371 (0.068) 89.8 0.570 (0.268)
500 92.7 0.320 (0.052) 88.0 0.280 (0.047) 90.3 0.431 (0.239)

1000 90.0 0.259 (0.040) 84.7 0.227 (0.036) 88.9 0.346 (0.199)
2000 91.8 0.213 (0.033) 87.0 0.186 (0.030) 90.6 0.281 (0.138)

f3 0.05 200 91.8 0.476 (0.084) 87.2 0.423 (0.076) 94.7 0.740 (0.410)
500 96.0 0.371 (0.061) 93.4 0.329 (0.055) 95.0 0.532 (0.246)

1000 95.0 0.293 (0.046) 91.6 0.260 (0.042) 95.4 0.433 (0.207)
2000 95.6 0.242 (0.037) 93.0 0.215 (0.034) 94.8 0.353 (0.165)

0.10 200 84.9 0.400 (0.072) 79.6 0.350 (0.064) 89.4 0.584 (0.323)
500 92.2 0.311 (0.053) 87.8 0.273 (0.047) 89.7 0.419 (0.194)

1000 90.0 0.246 (0.040) 84.7 0.216 (0.036) 90.3 0.341 (0.163)
2000 91.6 0.204 (0.033) 86.9 0.178 (0.029) 89.8 0.279 (0.131)

f4 0.05 200 97.0 1.260 (0.188) 94.4 1.122 (0.170) 89.2 1.234 (0.621)
500 99.8 1.086 (0.133) 99.5 0.968 (0.120) 92.8 1.077 (0.538)

1000 99.0 0.869 (0.100) 97.9 0.774 (0.092) 94.4 0.927 (0.437)
2000 99.7 0.728 (0.083) 98.2 0.649 (0.075) 94.8 0.800 (0.405)

0.10 200 92.8 1.063 (0.162) 87.9 0.932 (0.144) 83.4 0.974 (0.490)
500 99.3 0.917 (0.115) 98.4 0.805 (0.103) 87.0 0.850 (0.424)

1000 97.0 0.733 (0.088) 93.8 0.644 (0.079) 89.1 0.731 (0.345)
2000 97.2 0.615 (0.072) 94.9 0.540 (0.064) 89.3 0.631 (0.320)

f5 0.05 200 94.0 0.540 (0.093) 90.2 0.480 (0.083) 95.4 0.798 (0.398)
500 97.4 0.432 (0.068) 95.6 0.384 (0.062) 94.2 0.597 (0.316)

1000 96.5 0.338 (0.051) 93.4 0.301 (0.047) 95.1 0.491 (0.265)
2000 96.9 0.280 (0.042) 94.4 0.249 (0.038) 95.5 0.401 (0.195)

0.10 200 88.2 0.454 (0.079) 82.6 0.398 (0.070) 90.3 0.629 (0.314)
500 94.4 0.364 (0.059) 90.6 0.319 (0.053) 89.1 0.471 (0.249)

1000 92.2 0.285 (0.045) 87.8 0.249 (0.040) 91.1 0.387 (0.209)
2000 93.4 0.236 (0.036) 89.2 0.207 (0.033) 90.1 0.317 (0.154)

intervals are generally shorter and exhibit less variation compared to DHZ’s confidence in-
tervals. The variation observed in our method across different regression functions may be
attributed to the roughness of the partition used. In practical applications, a slightly larger
J can be set, provided that the credible intervals can be computed within a reasonable
time.
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6. Proofs.

6.1. Proof of Theorem 4.1. For t ∈ R
d , let j (t) = 	(x0 + t ◦ rn) ◦ J 
. Let

f∗,c(x0) = max
c−γ 1�u�c1,

uk≤x0,k,
s+1≤k≤d

min
c−γ 1�v�c1,
vk≤1−x0,k,
s+1≤k≤d

∑
j∈[j (−u):j (v)] Njθj

N[j (−u):j (v)]
,(6.1)

where γ is a positive constant to be determined later. We also introduce the notation W ∗
n =

ω−1
n (f∗(x0) − f0(x0)), W ∗

n,c = ω−1
n (f∗,c(x0) − f0(x0)),

Wc = sup
c−γ 1�u�c1,

uk≤x0,k,
s+1≤k≤d

inf
c−γ 1�v�c1,
vk≤1−x0,k,
s+1≤k≤d

{
σ0H1(u,v)∏s

k=1(uk + vk)Ds(u,v)

+ σ0H2(u,v)∏s
k=1(uk + vk)Ds(u,v)

+ ∑
l∈L∗

∂ lf0(x0)

(l + 1)!
s∏

k=1

v
lk+1
k − (−uk)

lk+1

uk + vk

}
,

W = sup
u�0,

uk≤x0,k,
s+1≤k≤d

inf
v�0,

vk≤1−x0,k,
s+1≤k≤d

{
σ0H1(u,v)∏s

k=1(uk + vk)Ds(u,v)

+ σ0H2(u,v)∏s
k=1(uk + vk)Ds(u,v)

+ ∑
l∈L∗

∂ lf0(x0)

(l + 1)!
s∏

k=1

v
lk+1
k − (−uk)

lk+1

uk + vk

}
.

The proof of the theorem is carried out in several steps using Lemma B.1 of [54], presented
as lemmas below.

LEMMA 6.1. Under the conditions of Theorem 4.1, for every c > 0 and γ > 0,
L(W ∗

n,c|Dn) converges weakly to L(Wc|H1) as random probability measures.

PROOF. For every u,v � 0, we can write

(6.2)

∑
j∈[j (−u):j (v)] Njθj∑
j∈[j (−u):j (v)] Nj

− f0(x0) = An(u,v; θ) + A′
n(u,v) + Bn(u,v),

and then W ∗
n,c = maxc−γ 1�u�c1 minc−γ 1�u�c1{An(u,v; θ) + A′

n(u,v) + Bn(u,v)}, where

An(u,v; θ) = ω−1
n

∑
j∈[j (−u):j (v)] Nj (θj − E[θj |Dn])∑

j∈[j (−u):j (v)] Nj
,(6.3)

A′
n(u,v) = ω−1

n

∑
j∈[j (−u):j (v)] Nj (E[θj |Dn] − Ȳ |Ij )∑

j∈[j (−u):j (v)] Nj
,(6.4)

Bn(u,v) = ω−1
n

(
Y |I[j (−u):j (v)] − f0(x0)

)
.(6.5)

Since the max-min functional is continuous on the space L∞([c−γ 1, c1] × [c−γ 1, c1]), it
suffices to show that An +A′

n +Bn converges weakly in L∞([c−γ 1, c1]×[c−γ 1, c1]), condi-
tional on the data Dn. By Lemma B.2 of [54] and Lemma 6.2, we prove the weak convergence
of An. We show that A′

n converges to zero uniformly in Lemma 6.3. The convergence of Bn

is completed by combining Lemma B.2 of [54], Lemma 6.4 and Lemma 6.5. �
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LEMMA 6.2. Under the conditions of Theorem 4.1, for every c > 0, let H2,n(u,v; θ) =
ωn

∑
j∈[j (−u):j (v)] Nj (θj − E[θj |Dn]). Then H2,n converges weakly to a centered Gaussian

process H2 in L∞([0, c1] × [0, c1]) for every c > 0 in P0-probability.

PROOF. By (3.7), Lemmas B.2, B.4 and B.5 of [54], the covariance kernel of H2,n given
(Dn, σ

2
n ), is given by ω2

nσ
2
n

∑
j∈[j (−u∧u′):j (v∧v′)] N2

j /(Nj + λ−2
j ), which converges in P0-

probability to σ 2
0
∏s

k=1(uk ∧u′
k +vk ∧v′

k)Ds(u∧u′,v∧v′). Thus finite-dimensional distribu-
tions of H2,n converge weakly to those of a centered Gaussian process σ0H2 in P0-probability.

Next, we need to show that L(H2,n(u,v; θ) : (u,v) ∈ [0, c1] × [0, c1]) is tight on
L∞([0, c1] × [0, c1]) for any c > 0 in P0-probability. In view of Theorem 18.14 of [53],
we need to verify that, for every ε > 0 and η > 0, there exists a finite partition {Tp : p ≤ K}
of [0, c1] × [0, c1] with K depending only on ε and η such that

P
(

sup
(u1,v1),(u2,v2)∈Tp

{∣∣H2,n(u1,v1) −H2,n(u2,v2)
∣∣ : 1 ≤ p ≤ K

}
> ε
∣∣Dn

)
< η

with P0-probability tending to 1. Let δ > 0, to be determined later, which depends only on ε

and η. Let 0 = s0 < s1 < · · · < sl = c with (st−1, st ] of equal length at least δ and l ≤ 2c/δ.
We choose a partition {Tp : p ≤ K} of [0, c1] × [0, c1] to be

(6.6) P(δ) =
{

d∏
k=1

(stk−1, stk ] ×
d∏

k=1

(srk−1, srk ] : tk, rk ∈ {1, . . . , l}
}
,

with cardinality K = #P(δ) = l2d . It suffices to verify that, for any p ≤ K ,

P
(

sup
(u1,v1),(u2,v2)∈Tp

{∣∣H2,n(u1,v1) −H2,n(u2,v2)
∣∣}> ε

∣∣Dn

)
< η

(
δ

2c

)2d

.

Let J (u,v) = [j (−u) : j (v)]. For (u1,v1), (u2,v2), we write H2,n(u1,v1)−H2,n(u2,v2) as
the difference of the sums of ωnNj (θj −E[θj |Dn]) over the sets J (u1,v1)\J (u1 ∧u2,v1 ∧
v2) and J (u2,v2) \ J (u1 ∧ u2,v1 ∧ v2), after canceling out the common terms. Thus, its
absolute value can be bounded by the sum of the corresponding absolute values over these
two index sets. To verify tightness, it then suffices to show that

P
(

max
{
ωn

∣∣∣∣ ∑
J (u,v)\J (st−1,sr−1)

Nj
(
θj − E[θj |Dn])

∣∣∣∣ : (u,v) ∈ Tp

}
>

ε

4

∣∣∣Dn

)

is bounded by η(δ/(2c))2d/4, with Tp = ∏d
k=1(stk−1, stk ] ×∏d

k=1(srk−1, srk ], for any st =
(st1, . . . , std ) and sr = (sr1, . . . , srd ).

Let S(−j (−u),j (v)) =∑J (u,v)\J (st−1,sr−1)
Nj (θj − E[θj |Dn]), a collection of random vari-

ables indexed by a 2d-dimensional vector in a finite-index set. The negative sign in front of
j (−u) in the subscript of S is to make the σ -fields,

F (k)
j =

{
σ
〈
Nj
(
θj − E[θj |Dn]) : −(j (st−1)

)
k < −(j (−u)

)
k ≤ j

〉
if k ≤ d,

σ
〈
Nj
(
θj − E[θj |Dn]) : (j (sr−1)

)
k−d <

(
j (v)

)
k−d ≤ j

〉
if k > d.

increase with respect to each of the first d components in the subscript. In the sum above,
all j are in J (st , sr) \ J (st−1, sr−1). We note that for every k ≤ 2d , the random sequence
{S(j1,...,jk−1,j,jk+1,...,j2d ),F

(k)
j } is a martingale. Applying Lemma B.6 of [54] with p = 4d +2,

we can get an upper bound of the probability of the maximal deviation needed to verify
tightness to be a constant multiple of

(ωn/ε)
(4d+2)E

(∣∣∣∣ ∑
J (st ,sr )\J (st−1,sr−1)

Nj
(
θj − E[θj |Dn])

∣∣∣∣4d+2∣∣∣Dn

)
.(6.7)
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Observe that #J (st , sr) ≤∏k(rn,kJk(stk + srk ) + 2), #J (st−1, sr−1) ≥∏k rn,kJk(stk + srk −
2δ). As δ ≤ stk , srk ≤ c and Jk � r−1

n,k , it follows that the cardinality of the index set
J (st , sr) \J (st−1, sr−1) is bounded by a multiple of

d∏
k=1

rn,kJk

(
d∏

k=1

(stk + srk ) −
d∏

k=1

(stk + srk − 2δ)

)
≤ (2dδ)(2c)d−1

d∏
k=1

rn,kJk,

where the last inequality follows from Lemma B.7 of [54].
The variance σ 2

nN2
j /(Nj + λ−2

j ) � n(
∏d

k=1 Jk)
−1 with P0-probability tending to 1 by

Lemma B.4 of [54]. Hence, (6.7) is bounded by a constant multiple of

ε−(4d+2)ω4d+2
n

(
n#(J (st , sr) \J (st−1, sr−1))∏d

k=1 Jk

)2d+1

� ε−(4d+2)ω4d+2
n

(
d∏

k=1

rn,k

)2d+1

n2d+1δ2d+1,

which simplifies to ε−(4d+2)δ2d+1. With δ chosen a sufficiently small constant multiple of
ηε4d+2, the tightness condition is verified. �

LEMMA 6.3. Under the conditions of Theorem 4.1, A′
n(u,v) converges to 0 in P0-

probability uniformly in (u,v).

PROOF. Let En = {a1n/(2
∏d

k=1 Jk) ≤ Nj ≤ 2a2n/(
∏d

k=1 Jk)} for some a1, a2 > 0 and
ε̄|Ij =∑i∈Ij

εi/Nj . By Lemma B.4 of [54], we have for every T > 0,

P0

(
max

j
|ε̄|Ij | > T

)
≤∑

j

P0
(|ε̄|Ij | > T |En

)+ P0
(
Ec

n

)
.(6.8)

By Assumption 2 and the Marcinkiewicz—-Zygmund inequality,

E
(|ε̄|Ij |2(

∑s
k=1 β−1

k +1)|En

)
�
(
a1n
/(

2
d∏

k=1

Jk

))−(
∑s

k=1 β−1
k +1)

.

Then (6.8) is bounded by a constant multiple of (
∏d

k=1 Jk)
∑s

k=1 β−1
k +2n−(

∑s
k=1 β−1

k +1) + o(1),

which tends to zero because
∏d

k=1 Jk � nωn = n(
∑s

k=1 β−1
k +1)/(

∑s
k=1 β−1

k +2).
On the other hand, maxj |f0(Xi )|Ij | ≤ f0(1). Thus, maxj |Ȳ |Ij | = OP0(1). Because

E[θj |Dn] = (Nj Ȳ |Ij + ζjλ−2
j )/(Nj + λ−2

j ), on the event En,

∣∣A′
n(u,v)

∣∣= ω−1
n

∣∣∣∣
∑

j∈[j (−u):j (v)] λ−2
j Nj (Nj + λ−2

j )−1(ζj − Ȳ |Ij )∑
j∈[j (−u):j (v)] Nj

∣∣∣∣
� ω−1

n

(
max

j
|Ȳ |Ij | + ζj

)(
min

j
Nj

)−1
,

(6.9)

which is of the order of (nωn)
−1∏d

k=1 Jk in P0-probability. As
∏d

k=1 Jk � nωn and
P0(En) → 1, we can conclude A′(u,v) →P0 0 uniformly for any u � 0 and v � 0 provided
that x0 − u ◦ rn and x0 + v ◦ rn in [0,1]d . �

To establish the weak convergence of Bn in L∞([0, c1] × [0, c1]), write

(6.10) Bn(u,v) = ω−1
n

(
ε̄|I[j (−u):j (v)] + f0(X)|I[j (−u):j (v)] − f0(x0)

)
.
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LEMMA 6.4. Let Zni(u,v) = ωnεi1{Xi∈I[j (−u):j (v)]} and H1,n(u,v) = ∑n
i=1 Zni(u,v).

Under the conditions of Theorem 4.1, H1,n(u,v)� σ0H1(u,v) in L∞([0, c1] × [0, c1]).
LEMMA 6.5. Under the conditions of Theorem 4.1, for any c > 0, uniformly in (u,v) ∈

[0, c1] × [0, c1], we have

ω−1
n

(
f0(X)|I[j (−u):j (v)] − f0(x0)

)→P0

∑
l∈L∗

∂ lf0(x0)

(l + 1)!
s∏

k=1

v
lk+1
k − (−uk)

lk+1

uk + vk

.

LEMMA 6.6. Under the conditions of Theorem 4.1, for any Mn ↑ ∞, �(|f∗(x0) −
f0(x0)| > Mnωn|Dn) → 0 in P0-probability.

With the aid of Lemma 6.6, the second condition of Proposition B.1 of [54] is verified by
Lemma 6.7 in the following.

LEMMA 6.7. Let u∗ and v∗ be any pair indexes such that

f∗(x0) = max
u�0

min
v�0

∑
[j (−u):j (v)] Njθj∑
[j (−u):j (v)] Nj

=
∑

[j (−u∗):j (v∗)] Njθj∑
[j (−u∗):j (v∗)] Nj

.(6.11)

Let ωn = n−1/(2+∑s
k=1 β−1

k ) and let rn = (ω
1/β1
n , . . . ,ω

1/βs
s ,1, . . . ,1)T. Suppose that J satis-

fies Jk � r−1
n,k , for each k = 1, . . . , d , and

∏d
k=1 Jk � nωn. Under Assumptions 1 and 2, there

exists γ > 0 such that

lim
c→∞ lim sup

n→∞
�
(
c−γ ≤ min

1≤k≤d

{
v∗
k

}≤ max
1≤k≤d

{
v∗
k

}≤ c
∣∣Dn

)
= 1,

in P0-probability.

The proofs of Lemmas 6.4–6.7 are provided in [54].
The proof of Theorem 4.1 can now be completed. Using arguments similar to Proposition 7

of [38], it can be verified that P(Wc �= W) → 0 as c → ∞. Hence, the proof follows by an
application of Lemma B.1 of [54].

6.2. Proof of Proposition 4.1. This can be shown by the self-similarity property of
Gaussian processes H1 and H2: for t ∈ R

d
>0 such that ts+1 = · · · = td = 1, we have that

Hi(t ◦ u, t ◦ v) =d (
∏s

j=1 tj )
1/2Hi(u,v), i = 1,2. By the choice of t , multiplying a vector

coordinatewise by t does not change the last d − s coordinates, and thus Ds(t ◦ u, t ◦ v) =
Ds(u,v). Then, since a scaling of the domain does not alter suprema and infima, the expres-
sion in the limiting distribution is equal to

sup
u�0

inf
v�0

{
σ0H1(t ◦ u, t ◦ v) + σ0H2(t ◦ u, t ◦ v)∏s

k=1(tkuk + tkvk)Ds(u,v)

+
s∑

k=1

[
∂

βk

k f0(x0)

(βk + 1)! · (tkvk)
βk+1 − (−tkuk)

βk+1

tkuk + tkvk

]}

=d sup
u�0

inf
v�0

{(
σ−2

0

s∏
j=1

tj

)−1/2
H1(u,v) + H2(u,v)∏s
k=1(uk + vk)Ds(u,v)

+
s∑

k=1

[
t
βk

k ∂
βk

k f0(x0)

(βk + 1)! · v
βk+1
k − (−uk)

βk+1

uk + vk

]}
.
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By equating (σ−2
0
∏s

j=1 tj )
−1/2 to t

βk

k ∂
βk

k f0(x0)/(βk + 1)! for each k = 1, . . . , s, we can find
the solution tk to the system of equations, and also the common factor Aβ as stated in the
proposition.

If s = d , then Dd(u,v) = g(x0) and Hi(u,v) =d

√
g(x0)H̃i(u,v). For t ∈ R

d
>0, H̃i(t ◦

u, t ◦ v) =d (
∏d

j=1 tj )
1/2H̃i(u,v), i = 1,2. Hence by self-similarity, the last expression re-

duces to

sup
u�0

inf
v�0

{
σ0√
g(x0)

(
H̃1(t ◦ u, t ◦ v)∏d
k=1(tkuk + tkvk)

+ H̃2(t ◦ u, t ◦ v)∏d
k=1(tkuk + tkvk)

)

+
d∑

k=1

[
∂

βk

k f0(x0)

(βk + 1)! · (tkvk)
βk+1 − (−tkuk)

βk+1

tkuk + tkvk

]}

=d sup
u�0

inf
v�0

{√√√√ σ 2
0

g(x0)
∏d

j=1 tj

(
H̃1(u,v)∏d

k=1(uk + vk)
+ H̃2(u,v)∏d

k=1(uk + vk)

)

+
d∑

k=1

[
t
βk

k ∂
βk

k f0(x0)

(βk + 1)! · v
βk+1
k − (−uk)

βk+1

uk + vk

]}
.

By exploring the equation system for tk as follows:

√√√√ σ 2
0

g(x0)
∏d

j=1 tj
= t

βk

k ∂
βk

k f0(x0)

(βk + 1)! for k = 1, . . . , d,

we can find the common factor Ãβ in a similar way of solving a set of equations.

PROOF OF PROPOSITION 4.2. For 0 ≤ z ≤ 1,

P
(
Z

(1)
B ≤ z

)= P
(
1 − Z

(1)
B ≥ 1 − z

)
= P
(
P
(
− sup

u�0
inf
v�0

Ũ (u,v) ≤ 0
∣∣H̃1

)
≥ 1 − z

)

= P
(
P
(

inf
u�0

sup
v�0

[−Ũ (u,v)
]≤ 0

∣∣H̃1

)
≥ 1 − z

)
.

Note that H̃i(u,v) =d H̃i(v,u) and H̃i =d −H̃i for i = 1,2. Denote H̃ ∗
1 = −H̃1. Then we

have

P
(

inf
u�0

sup
v�0

[−Ũ (u,v)
]≤ 0

∣∣H̃1

)

=d P

(
inf
u�0

sup
v�0

{
H̃ ∗

1 (u,v)∏d
k=1(uk + vk)

+ −H̃2(u,v)∏d
k=1(uk + vk)

+
d∑

k=1

−v
βk+1
k + (−uk)

βk+1

uk + vk

}
≤ 0
∣∣∣− H̃ ∗

1

)

=d P

(
inf
u�0

sup
v�0

{
H̃ ∗

1 (u,v)∏d
k=1(uk + vk)

+ H̃2(u,v)∏d
k=1(uk + vk)

+
d∑

k=1

u
βk+1
k − v

βk+1
k

uk + vk

}
≤ 0
∣∣∣H̃ ∗

1

)
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=d P

(
inf
u�0

sup
v�0

{
H̃ ∗

1 (v,u)∏d
k=1(uk + vk)

+ H̃2(v,u)∏d
k=1(uk + vk)

+
d∑

k=1

u
βk+1
k − v

βk+1
k

uk + vk

}
≤ 0
∣∣∣H̃ ∗

1

)

= P
(

inf
u�0

sup
v�0

Ũ (v,u) ≤ 0
∣∣∣H̃ ∗

1

)
.

Hence, P(Z
(1)
B ≤ z) = P(Z

(2)
B ≥ 1 − z). The symmetry of the distribution of Z

(3)
B holds by

similar arguments. �
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