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For nonparametric univariate regression under a monotonicity constraint
on the regression function f , we study the coverage of a Bayesian credible
interval for f (x0), where x0 is an interior point. Analysis of the posterior
becomes a lot more tractable by considering a “projection-posterior” distri-
bution based on a finite random series of step functions with normal basis
coefficients as a prior for f . A sample f from the resulting conjugate poste-
rior distribution is projected on the space of monotone increasing functions
to obtain a monotone function f ∗ closest to f , inducing the “projection-
posterior.” We use projection-posterior samples to obtain credible intervals
for f (x0). We obtain the asymptotic coverage of the credible interval thus
constructed and observe that it is free of nuisance parameters involving the
true function. We observe a very interesting phenomenon that the coverage
is typically higher than the nominal credibility level, the opposite of a phe-
nomenon observed by Cox (Ann. Statist. 21 (1993) 903–923) in the Gaussian
sequence model. We further show that a recalibration gives the right asymp-
totic coverage by starting from a lower credibility level that can be explicitly
calculated.

1. Introduction. We consider a nonparametric regression model for a response variable
Y with respect to a predictor variable X ∈ [0,1] given by Y = f (X) + ε, where f is a mono-
tone increasing function on [0,1] and ε is a mean-zero random error with finite variance σ 2.
Inference on f under monotonicity or some other shape restriction may arise naturally in
many fields such as epidemiology, climate change, reliability and biomedical studies. Occa-
sionally, an understanding of the physical phenomenon suggests such a shape restriction. The
restriction needs to be incorporated to draw meaningful conclusions. Moreover, the shape in-
formation often allows inference on the underlying function without requiring global smooth-
ness. Regression under monotonicity restriction is commonly known as isotonic regression.
A graphical representation of isotonic regression in terms of the greatest convex minorant
(GCM) of a cumulative sum diagram can be found in Barlow and Brunk [7]. The Pool-
Adjacent-Violators Algorithm (PAVA) gives successive approximation to the GCM, and is
the most commonly used algorithm to obtain the isotonic regression estimator (see Ayer et al.
[2], pp. 9–15, Section 2.3 of Barlow et al. [6] or Leeuw et al. [24]). If the working model for
the error distribution is Gaussian, the nonparametric maximum likelihood estimator (MLE)
under the monotonicity restriction is given by the isotonic regression estimator. In this paper,
we consider a Bayesian approach to isotonic regression, quantify the uncertainty in the value
of f at a point through a credible interval and study its coverage.

Properties of estimators under a shape restriction were studied by various authors. The
nonparametric MLE of a monotone decreasing density was characterized by Grenander [30].
Rao [47] showed that Grenander’s estimator based on n independent observations, centered
and scaled by n1/3, converges to the Chernoff distribution (Chernoff [22]). Groeneboom and
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Wellner [33] derived the pointwise asymptotic distribution of the MLE of the distribution
function in current status time-to-event data. Brunk [15] derived the asymptotic distribution
of the isotonic regression estimator at an interior point. Similar results can be found in Huang
and Zhang [38] and Huang and Wellner [37], respectively, in the context of a monotone den-
sity and a monotone hazard rate with right-censored data. In all these scenarios, the Chernoff
distribution is obtained as the limit. It can be described as the probability distribution of
Z = arg min{W(t) + t2 : t ∈ R}, where W is a two-sided standard Brownian motion on the
real line with W(0) = 0. The density of Z was obtained by Groeneboom [31] and its quantiles
were computed in Groeneboom and Wellner [34].

Constructing optimally sized confidence regions for a function or its value at a given point
is a challenging problem, primarily because of a bias issue—under the optimal smoothing,
the order of the bias matches with an estimator’s variability, rendering a shift in the limit
distribution causing undercoverage. Such a problem does not happen in the parametric setting
as the order of the bias is smaller than that of the variability. Adapting a confidence region
to smoothness is further complicated by the fact that maintaining coverage at all functions
of different smoothness and adapting the size to the smoothness is not possible (Li [42],
Low [44]). In a multiresolution normal sequence model, Cai and Low [16] obtained a lower
bound for the radius of a confidence region for the mean vector at a resolution level and
of the whole infinite-dimensional vector. They also constructed an adaptive confidence ball
adapting to the Besov smoothness with the center at an adaptive estimator. Robins and van
der Vaart [49] constructed a confidence region for a parameter in a subset of a Hilbert space
by estimating the risk of an adaptive estimator, and also obtained a lower bound for the
size. Gine and Nickl [29] constructed a uniform confidence band for a density under a self-
similarity-type condition (Picard and Tribouley [46]). Hoffmann and Nickl [36] obtained
the necessary and sufficient condition under which an adaptive uniform confidence band is
possible. Patchkowski and Rohde [45] obtained locally adaptive confidence regions under
weaker restrictions.

In shape-restricted inference, confidence sets were constructed by several authors. In a
white noise model, Dümbgen [25] obtained confidence bands for monotone or convex sig-
nals adapting to the smoothness of order 0 < β ≤ 1 and 1 ≤ β ≤ 2, respectively. Cai et al. [17]
obtained a lower bound to the expected length of a confidence interval of the function value at
a point in terms of the local modulus of continuity in the function class and constructed con-
fidence intervals attaining the bounds in monotone and convex regression settings. Dümbgen
and Johns [26] and Schmidt-Hieber et al. [51] constructed confidence regions respectively
for median regression and deconvolution problems. The existence of a Chernoff limit dis-
tribution provides a method for constructing a pointwise confidence interval. However, the
limit depends on the derivative of the true function, estimation of which is a harder prob-
lem. Therefore, methods of uncertainty quantification that avoid the estimation of nuisance
parameters are more desirable. A nuisance parameter-free method to obtain confidence inter-
vals was provided by Banerjee and Wellner [5] in current status models, and by Banerjee [4]
in monotone response models. Their method is based on the asymptotic distribution of the
likelihood ratio statistic for testing H0 : f (x0) = θ0 against H1 : f (x0) �= θ0, and inverting the
test to build confidence intervals for f (x0) based on the quantiles of the limiting distribution.

Testing the hypothesis of monotonicity of a regression function was addressed by Bow-
man et al. [14], Hall and Heckman [35], Ghosal et al. [27], Gijbels et al. [28], and others,
using frequentist methods. Armstrong [1] constructed a test for a sign or shape restriction
in nonparametric heteroschedastic regression under adaptive optimal separation. A Bayesian
test for testing monotonicity of regression was developed by Salomond [50].

The Bayesian paradigm offers a conceptually simpler way of uncertainty quantification
through posterior sampling, which is usually easier to implement with the help of modern
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computers and advanced posterior computational techniques. Credible sets are often formed
using posterior quantiles, giving a range of likely values of the parameter. In parametric mod-
els, credible sets have asymptotically correct frequentist coverages because of the Bernstein–
von Mises (BvM) theorem, which asserts that Bayesian and frequentist measures of uncer-
tainty agree in large samples. In nonparametric models, however, a BvM theorem may not
hold, and credible regions may fail to have adequate asymptotic coverage. For a Gaussian se-
quence model, Cox [23] showed that Bayesian credible sets can have arbitrarily low asymp-
totic coverage under the optimal smoothing. The works of Leahu [41] and Knapik et al.
[39] further clarified the reason behind this “Cox phenomenon” is the bias problem. Posi-
tive coverage results for optimal sized credible sets were obtained by Knapik et al. [39] in
the Gaussian sequence model by undersmoothing the prior, and by Yoo and Ghosal [57] for
smooth multivariate nonparametric regression by inflating an L∞-norm credible region by
an appropriate constant. In both approaches, the coverage tends to one. A different approach
through BvM theorems in negative Sobolev spaces, which gives exact limiting coverage, was
developed by Castillo and Nickl [18, 19], obtaining optimal L2- and L∞-sized credible re-
gions, respectively, in the Gaussian sequence model. Positive coverage results for adaptive
Bayesian credible sets were obtained in the Gaussian sequence model by Szabó et al. [54]
under a “polished tail” condition, and by Belitser [8] for an empirical Bayes procedure under
a more general “excessive bias restriction” condition. Both papers use inflation of a credible
region and show that the coverage tends to one while maintaining the optimal order for the
size of the region. An adaptive size credible set was obtained by Ray [48] by extending the
approach of weak Bernstein–von Mises theorem of Castillo and Nickl [18] in the adaptive
setting using spike-and-slab priors, under a stronger “self-similarity” condition, but with the
exact asymptotic coverage. Sniekers and van der Vaart [53] obtained adaptive credible sets
for nonparametric regression under an analog of the polished tail condition in the regression
setting. Following the approach of Belitser [8], Belitser and Nurushev [11] and Belitser and
Ghosal [9], respectively, obtained adaptive credible regions for sparse normal sequence mod-
els and sparse regression under the excessive bias restriction condition. Castillo and Szabó
[20] considered a different empirical Bayes approach, provided coverage results for adaptive
credible sets, and showed the necessity of the excessive bias restriction condition. Adap-
tive credible regions with adequate coverage in a general framework of projection structures
encompassing the above-discussed models and more under an excessive bias restriction con-
dition were recently obtained in Belitser and Nurushev [10].

The goal of the present paper is to develop an easy-to-use Bayesian method for construct-
ing credible intervals for the function value f (x0) at an interior point x0 of a monotone
regression function f , and obtain the asymptotic frequentist coverage of the resulting inter-
val. Although incorporating the monotonicity constraint into the prior appears a natural way
to comply with the constraint, it is also very challenging to analyze the asymptotic prop-
erties of the resulting posterior. For this reason, we use an unconstrained conjugate prior
on f , and project posterior samples on the space of monotone functions using the PAVA to
obtain an induced posterior distribution, to be called the “projection-posterior.” The idea of
embedding the parameter space in a larger space where the posterior is easier to compute
and analyze, and then applying the projection to obtain the induced posterior distribution for
inference, was earlier also used by Lin and Dunson [43] and Bhaumik and Ghosal [12, 13],
respectively, for monotone regression and regression models driven by ordinary differential
equations. In this paper, the projection-posterior will be used to obtain credible intervals for
monotone regression with an asserted asymptotic frequentist coverage.

Our findings suggest that the coverage of credible regions behaves very differently from the
situation when models are indexed by smooth functions. We find that the limiting coverage of
a projection-posterior credible interval for f (x0) is given by a functional of two independent
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two-sided standard Brownian motions W1 and W2, provided that the true f is differentiable
at x0 with a positive derivative. For a one-sided (1 − γ )-level credible interval, the limit is
A(1 − γ ) := P(ZB ≤ 1 − γ ), where ZB = P(arg min{W1(t) + W2(t) + t2 : t ∈ R} ≤ 0|W1).
It is interesting to note that the limit is free of the true regression function and depends only
on γ . Although an analytic evaluation of the function A seems difficult at present, a numeri-
cal evaluation through simulations is possible. Numerical evaluations based on Monte Carlo
show that A(1 − γ ) is larger than the nominal coverage level (1 − γ ), at least for all val-
ues where this function has been evaluated. This is the opposite of the Cox phenomenon for
smoothness regimes. Moreover, the evaluation of the function A allows recalibration of the
nominal credibility using a back-calculation. A targeted coverage (1−α) may be obtained by
starting with a lower credibility level (1 − γ ) such that A(1 − γ ) = 1 − α. A similar conclu-
sion remains valid for two-sided credible intervals. For instance, a two-sided 95%-credible
interval approximately yields 96.5% coverage in large samples, while 95% asymptotic cov-
erage is obtained from a 93.2%-credible interval. These conclusions are also supported by
our simulation experiments.

An important aspect of our approach to uncertainty quantification is that credible intervals
are obtained directly through (projection) posterior sampling, without requiring us to estimate
any normalizing constant, as in Banerjee [3]. The asymptotic coverage is free of constants
involving the true f or its derivative. We provide a comparison with an analog of his method.

The rest of the paper is organized as follows. Section 2 introduces some notation, assump-
tions and the prior on f and σ . Results on coverage of credible intervals are presented in
Section 3. Computation procedures for the cut-offs of the credible intervals are discussed in
Section 4. A simulation experiment, comparing coverage and size of unadjusted and adjusted
credible intervals with those of the confidence interval obtained by inverting the likelihood
ratio, is also given in this section. Proofs of the results are provided in Section 5. Some aux-
iliary results are given in the Appendix, and the rest in the Supplementary Material [21].

2. Notation, assumptions and the prior. In this section, we describe the notation and
assumptions used in the paper. For two sequences of real numbers an and bn, an � bn or
an = O(bn) means that an/bn is bounded, an � bn or an = o(bn) means that an/bn → 0. For
a sequence of random variables Zn with distribution P , Zn = OP (an) means that P(|Zn| >

Cnan) → 0 for every Cn → ∞. Let Im stand for the m × m identity matrix.
We say that Z ∼ NJ (μ,�) if Z has a J -dimensional normal distribution with mean μ and

covariance matrix �. The probability distribution of a random element Z will be denoted by
L(Z). Let the space of real-valued monotone increasing functions on [0,1] be denoted by
F , and the space of monotone increasing functions on [0,1] bounded in absolute value by
K > 0 be denoted by F(K). For T ⊂ R, L∞(T ) denotes the set of all uniformly bounded
real functions on T . The indicator function of a set U is denoted by 1U . For f : [0,1] �→ R

and d a distance on real-valued functions, let the projection of f on F be the function f ∗
that minimizes d(f,h) over h ∈ F .

For a random variable Y and a sequence of random variables Xn, Xn � Y means that Xn

converges in distribution to Y , Xn →P Y means that Xn converges to Y in P -probability. For

random variables X and Y , X
d= Y means that X and Y have the same distribution. The ε-

covering number of a set A with respect to a metric d , denoted by N (ε,A,d), is the minimum
number of balls of radius ε needed to cover A.

We make the following assumption on the data generating process P0.

ASSUMPTION D. The predictor variables X1, . . . ,Xn are independent and identically
distributed (i.i.d.) with a probability measure G having a positive and continuous density g

on [0,1], the response variables are Yi = f0(Xi) + εi , and the random errors ε1, . . . , εn are
i.i.d. sub-Gaussian with mean 0 and variance σ 2

0 .
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Let 0 < a1 < a2 be such that a1 ≤ g(x) ≤ a2 for all x ∈ [0,1]. With a slight abuse of
notation, we let G denote the corresponding distribution function as well. Let E0(·) and
Var0(·) be the expectation and variance operators taken under the true distribution P0. We
write Y = (Y1, . . . , Yn), X = (X1, . . . ,Xn), Dn = (Y ,X), F 0 = (f0(X1), . . . , f0(Xn)) and
ε = (ε1, . . . , εn). Let Pn denote the empirical measure.

We represent f as a piecewise constant function on [0,1] with J = Jn the number of
pieces, and the regression model as Y = Bθ + ε. For a deterministic J , let Ij = ((j −
1)/J, j/J ] be the j th interval and its count Nj = ∑n

i=1 1{Xi ∈ Ij }, 1 ≤ j ≤ J . Let f =∑J
j=1 θj1Ij

. We use the prior θ ∼ NJ (ζ , σ 2�) where ‖ζ‖∞ is bounded, and � a J ×J diag-

onal matrix with diagonal entries λ2
1, . . . , λ

2
J , with B1 < λj < B2 for some B1,B2 > 0. Given

σ , θj are a posteriori independently distributed as N((Nj Ȳj +ζj /λ
2
j )/(Nj +1/λ2

j ), σ
2/(Nj +

1/λ2
j )).

The error variance σ 2 may be estimated by maximizing the marginal likelihood of σ .
Observe that (Y |σ) ∼ Nn(Bζ , σ 2(B�BT + In)). Therefore, the MLE is σ̂ 2

n = n−1(Y −
Bζ )T(B�BT + In)

−1(Y − Bζ ). The plug-in posterior distribution of f is obtained by sub-
stituting σ̂n for σ . A fully Bayes alternative is to endow σ 2 with an inverse-gamma prior
IG(β1, β2) with parameters (β1, β2) for some β1 > 2 and β2 > 0.

3. Uncertainty quantification in pointwise estimation. Let x0 ∈ (0,1) be such that
f ′(x0) exists and f ′(x0) > 0. Without loss of generality, we assume that X1 ≤ · · · ≤ Xn. The
isotonic regression estimator of f is obtained by minimizing the sum of squares

∑n
i=1(Yi −

f (Xi))
2 subject to the constraint that f is nondecreasing on [0,1]. The resulting estimator of

f is a nondecreasing step function, constant on the pieces (Xi−1,Xi], with X0 defined to be
zero. The estimated value of f (x0) is given by the left derivative of the greatest convex mi-
norant of the graph of the line segments connecting {(0,0), (1/n,Y1/n), (2/n, (Y1 + Y2)/n),

. . . , (1, (
∑n

i=1 Yi)/n)}, at the point i(x0)/n, where i(x0) is the integer such that Xi−1 < x0 ≤
Xi .

Now suppose that f is a monotone increasing piecewise constant function on [0,1].
For J > 1, let f = ∑J

j=1 qj1Ij
, where (q1, . . . , qJ ) ∈ R

J with q1 ≤ · · · ≤ qJ . Con-

sider a sieve �J = {f = ∑J
j=1 qj1Ij

: q1 ≤ · · · ≤ qJ }, where Ij = ((j − 1)/J, j/J ], 1 ≤
j ≤ J . We define the sieve-maximum likelihood estimator f̂n of f , as the element of

�J that maximizes the likelihood function using the working model hypothesis εi
i.i.d.∼

N(0, σ 2). This amounts to minimizing the error sum of squares
∑n

i=1(Yi − f (Xi))
2, in

f ∈ �J . Now
∑n

i=1(Yi − f (Xi))
2 = ∑J

j=1
∑

i:Xi∈Ij
(Yi − qj )

2, which can be decomposed

as
∑J

j=1
∑

i:Xi∈Ij
(Yi − Ȳj )

2 + ∑J
j=1 Nj(Ȳj − qj )

2, where Ȳj = N−1
j

∑
i:Xi∈Ij

Yi . The first
term here is free of q1, . . . , qJ , so it suffices to minimize the weighted sum of squares∑J

j=1 Nj(Ȳj − qj )
2 subject to the ordering constraint q1 ≤ · · · ≤ qJ . Using the algorithm

for weighted isotonic regression, we get that the optimal value of qj is the left deriva-

tive at
∑j

k=1 Nk/n of the greatest convex minorant of the graph of the lines connecting
{(0,0), (N1/n,N1Ȳ1/n), . . . , (

∑J
j=1 Nj/n,

∑J
j=1 Nj Ȳj /n)}.

The following result tells us that for a certain range for J , the sieve-MLE at x0 has the same
rate of convergence and asymptotic distribution as those of the isotonic regression estimator
at x0.

THEOREM 3.1. Let n1/3 � J � n2/3 and Assumption D hold. Then the sieve-MLE
f̂n satisfies P0(n

1/3(f̂n(x0) − f0(x0)) ≤ z) → P(C0Z ≤ z) for every z ∈ R, where Z =
arg min{W1(t) + t2 : t ∈ R}, and C0 = 2b(a/b)2/3 with a =

√
σ 2

0 /g(x0) and b = f ′
0(x0)/2,

and W1 is a two-sided Brownian motion on R with W1(0) = 0.
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The asymptotic distribution of the sieve-MLE under the condition n1/3 � J � n2/3 is the
same as that of the MLE, that is, the Chernoff distribution, and hence both have the same
level of accuracy. However, the joint treatment of the estimator and the posterior distribution
is easier with the latter, ostensibly due to their structural similarity.

Now we study the projection-posterior of f with a deterministic J = Jn, depending on
n. We have that f = ∑J

j=1 θj1Ij
, with the posterior of θ1, . . . , θJ being independent Gaus-

sian because of conjugacy. As the posterior samples of f may not be monotone, we impose
monotonicity by projecting each f on F using the PAVA. In particular, we find the f ∗ in
the closest monotone function to f in that it minimizes

∑n
i=1(f (Xi) − f ∗(Xi))

2 subject to
f ∗ ∈ F . Expanding the sum of squares, we get

(3.1)
J∑

j=1

∑
Xi∈Ij

(
f (Xi) − f ∗(Xi)

)2 =
J∑

j=1

∑
Xi∈Ij

(
θj − f ∗(Xi)

)2
.

Now note that for every j ,
∑

Xi∈Ij
(θj − f ∗(Xi))

2 is minimized when f ∗(Xi) values are
the same for all i with Xi ∈ Ij . Thus f ∗ has to be constant on each Ij , and for any f =∑J

j=1 θj1Ij
, the minimization of (3.1) is equivalent to that of

∑J
j=1 Nj(θj − θ∗

j )2 subject to

θ∗
1 ≤ · · · ≤ θ∗

J , yielding a monotone function f ∗ = ∑J
j=1 θ∗

j 1Ij
closest to f . From the theory

of weighted isotonic regression (cf. Lemma 2.1 of Groeneboom and Jongbloed [32]), the
value of θ∗

j is the left derivative at the point
∑j

k=1 Nk/n of the greatest convex minorant of
the graph of the line segments connecting{

(0,0), (N1/n,N1θ1/n), . . . ,

(
J∑

k=1

Nk/n,

J∑
k=1

Nkθk/n

)}
.(3.2)

Our method of uncertainty quantification for the parameter f (x0) is based on using the
quantiles of the pointwise projection-posterior f ∗(x0). For every f generated from the unre-
stricted posterior, we project f on F to obtain a monotone function f ∗ as described above,
and evaluate f ∗(x0). We then form a (1 − γ )-level projection-posterior credible interval us-
ing the γ /2 and (1 − γ /2)th quantiles of f ∗(x0). The projection-posterior credibility of this
interval is therefore (1 − γ ).

While the asymptotic distribution of the MLE or the sieve-MLE of f (x0) allows the con-
struction of confidence intervals for f (x0) to meet a coverage target, the unknown parameters
in the limit distributions still need to be estimated. This inconvenience and its excessive re-
liance on asymptotics make a Bayesian route more appealing, which immediately provides a
credible interval based on easily doable posterior sampling. A natural question that arises here
is whether an analog of the Bernstein–von Mises theorem holds, reconciling the frequentist
and Bayesian measures of uncertainty quantification. However, as the following result shows,
unlike in the Bernstein–von Mises theorem for a regular parametric model, the centered and
scaled posterior distribution of f (x0) does not even converge in probability to a limit, condi-
tioned on the data.

PROPOSITION 3.2. If n1/3 � J � n2/3 and Assumption D holds, then �(n1/3(f ∗(x0)−
f̂n(x0)) ≤ z|Dn) does not converge in probability for any z ∈R.

Note that we scale the projection-posterior f ∗(x0) around f̂n(x0) by n1/3 because the
sieve-MLE f̂n(x0) converges to f0(x0) at the rate n−1/3 by Theorem 3.1. The conclusion of
Proposition 3.2 resonates with the results on the inconsistency of the bootstrap in the Grenan-
der estimator, as shown by Kosorok [40] and Sen et al. [52]. It implies that the conditional
distribution of n1/3(f ∗(x0) − f̂n(x0)) given the data cannot be approximated by a deter-
ministic probability measure. This is confirmed by our simulation study on the behavior of
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FIG. 1. Plot demonstrating that �(n1/3(f ∗(x0) − f̂n(x0)) ≤ 0|Dn) does not have a limit in probability, using
three instances of the data.


n := �(n1/3(f ∗(x0)− f̂n(x0)) ≤ 0|Dn). For the sample size 2000, we obtained 1000 poste-
rior samples of 
n. Figure 1 shows the histograms of 
n for three different sets of simulated
data. It is evident that the posterior probability is not concentrating at any fixed number, and
hence the conditional distribution of n1/3(f ∗(x0) − f̂n(x0)) for an observed sample is not
convergent.

Nevertheless, �(n1/3(f ∗(x0) − f0(x0)) ≤ z|Dn) has a weak limit.

THEOREM 3.3. Let n1/3 � J � n2/3 and Assumption D hold. Let W1,W2 be indepen-
dent two-sided Brownian motions on R where W1(0) = W2(0) = 0, and C0 = 2b(a/b)2/3

with a =
√

σ 2
0 /g(x0) and b = f ′

0(x0)/2. Then �(n1/3(f ∗(x0) − f0(x0)) ≤ z|Dn) �
P(C0 arg min{W1(t) + W2(t) + t2 : t ∈ R} ≤ z|W1) for every z ∈ R.

The weak limit has a key role in obtaining the limiting coverage of the credible interval.
For n ≥ 1, γ ∈ [0,1], let In,γ = [Qn,1−γ /2,Qn,γ /2], where Qn,γ = inf{z ∈ R : �(f ∗(x0) ≤
z|Dn) ≥ 1−γ } is the (1−γ )-quantile of the projection-posterior distribution of f (x0). Then
f0(x0) ≤ Qn,γ if and only if �(f ∗(x0) ≤ f0(x0)|Dn) ≤ 1 − γ , and hence by Theorem 3.3,

P0
(
f0(x0) ≤ Qn,γ

) = P0
(
�

(
n1/3(

f ∗(x0) − f0(x0)
) ≤ 0|Dn

) ≤ 1 − γ
)

→ P
(
P
(
arg min

t∈R
{
W1(t) + W2(t) + t2} ≤ 0|W1

) ≤ 1 − γ
)
,

which can be written as P(ZB ≤ 1 − γ ), where

ZB = P
(
arg min

{
W1(t) + W2(t) + t2 : t ∈ R

} ≤ 0|W1
)
.(3.3)

Note that the unknown constant C0 disappears from the limit. By a similar argument, the
limiting coverage of a two-sided credible interval In,γ is obtained in the following result.
In the Bayesian context, the role of the distribution of ZB is similar to that of the Chernoff
distribution for the MLE, and hence we shall call it the Bayes–Chernoff distribution. The
notable difference is that the former is a distribution on the whole real line, while the latter
is a distribution on the unit interval, but both are symmetric, respectively, around 0 and 1/2
(see Lemma 3.5 below). This leads to the following main conclusion of this paper.

THEOREM 3.4. P0(f0(x0) ∈ In,γ ) → P(γ /2 ≤ ZB ≤ 1 − γ /2).

Thus the limiting coverage of a (1−γ )-credible interval is not (1−γ ), but it can be calcu-
lated from the completely known distribution of ZB . Consider a function A(u) = P(ZB ≤ u),
u ∈ [0,1]. Observe that, A is continuous, strictly increasing and onto [0,1]. This follows by
considering the functions (t − a)2 for different values of a in place of W1(t) to conclude that
all values of ZB are possible. Since all continuous functions are in the support of a Brownian
motion, A is strictly increasing on [0,1]. Thus the inverse function is well-defined and is also
increasing. Moreover, the following result shows that A has a symmetry property.
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TABLE 1
Table of the values of the function A

u 0.700 0.750 0.800 0.850 0.900 0.910 0.920 0.930 0.940
A(u) 0.724 0.779 0.830 0.878 0.923 0.931 0.940 0.948 0.956

u 0.950 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995
A(u) 0.964 0.970 0.974 0.979 0.982 0.986 0.990 0.993 0.997

LEMMA 3.5. The random variable ZB ∈ [0,1] is symmetrically distributed about 1/2,
and hence A(1−u) = 1−A(u), for all u ∈ [0,1], A−1(1−v) = 1−A−1(v) for all v ∈ [0,1],
and that A(1/2) = 1/2 = A−1(1/2).

A recalibration technique will allow us to obtain any desired asymptotic coverage (1 − α)

by starting from a credibility level (1 − γ ) related to, but not the same as, (1 − α). The limit-
ing coverage of a one-sided credible interval (−∞,Qn,γ ] is A(1 − γ ). By choosing γ such
that A(1−γ ) = 1−α, that is, 1−γ = A−1(1−α), where A−1 : [0,1] → [0,1] is the inverse
function, we can achieve the desired coverage target. For a two-sided credible interval, Theo-
rem 3.4 and Lemma 3.5 give us that the asymptotic coverage of In,γ = [Qn,1−γ /2,Qn,γ /2] is
equal to A(1 − γ /2)−A(γ/2) = 2A(1 − γ /2)− 1. Hence a desired coverage (1 −α) can be
obtained by setting 2A(1 − γ /2) − 1 = 1 − α, or 1 − γ /2 = A−1(1 − α/2) = 1 − A−1(α/2),
that is, γ = 2A−1(α/2) and 1 − γ = 1 − 2A−1(α/2).

COROLLARY 3.6. For any 0 < α < 1, P0(f0(x0) ∈ In,2A−1(α/2)) → 1 − α.

The back-calculation of the required credibility level 1 − γ = 1 − 2A−1(α/2) to achieve
a coverage level 1 − α can be obtained from a table of A−1. In the next section, we present
tables of the functions A and A−1. It is also observed from numerical calculations based on
Monte Carlo that A(u) ≥ u for all values of u ≥ 1/2 where the computation has been per-
formed. Hence a credible interval has asymptotic coverage more than its nominal credibility,
leading to the reverse Cox phenomenon mentioned in the Introduction. The undercoverage
phenomenon does not happen here because by the choice J � n1/3, the order of the bias
J−1 is smaller than the rate of variability n−1/3. In this context, the parameter J controls
the complexity and the approximation error, but primarily the regularization is provided by
the isotonization step, which is a global procedure, rather than the smoothing operation reg-
ulated by J . This is clear from the fact that a wide range of values of J leads to the same
rate in Theorems 3.1 and 3.3. In other words, unlike in smoothing problems, the initial under-
smoothing needed to reduce the bias does not lead to an inferior convergence rate. It may be
noted that the asymptotic distribution of the sieve-MLE is also centered, and the weak nature
of the convergence in Theorem 3.3 results in more variation in the posterior than that in the
estimator. This leads to longer posterior credible intervals and higher limiting coverage than
its credibility.

4. Numerical study. In this section, we numerically obtain the distribution function and
the quantile functions of the Bayes–Chernoff distribution and study the coverage of unad-
justed and adjusted Bayesian credible intervals through a simulation study.

4.1. Calculation of A and A−1. Analytic evaluations of the functions A and A−1 appear
too difficult at this stage, due the to lack of the necessary probabilistic tools. However, as the
functions are probabilistic characteristics of standard Brownian motions, not involving any
unknown parameters, Monte Carlo simulations can compute these approximately.
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TABLE 2
Table of the values of the function A−1

v 0.700 0.750 0.800 0.850 0.900 0.910 0.920 0.930 0.940 0.950 0.960
A−1(v) 0.677 0.723 0.771 0.820 0.874 0.885 0.897 0.909 0.922 0.934 0.946

v 0.965 0.970 0.975 0.980 0.985 0.990 0.995 0.996 0.997 0.998 0.999
A−1(v) 0.952 0.960 0.966 0.973 0.980 0.986 0.993 0.995 0.996 0.997 0.999

A discrete approximation to the standard two-sided Brownian motions on R is obtained by
generating 2m independent standard normal variables {Zj ,Z

′
j }, j = 1, . . . ,m, and computing

W(t) = m−1/2{1(t ≥ 0)
∑�mt�

j=1 Zj + 1(t < 0)
∑�−mt�

j=1 Z′
j }, for t ∈ [−2,2] and m = 104. For

each simulation step, we generate an independent copy W1 of W . For each such instance,
we generate an independent copy W2 of W , form the processes W1(t) + W2(t) + t2 and
compute its argmin. For each W1, we evaluate these 5000 times independently and compute
the proportion of times arg min{W1(t)+W2(t)+ t2} is less than zero to obtain an approximate
sample of size 1 from ZB . We then repeat this M = 30,000 times. In Table 1, we tabulate the
Monte Carlo estimates of the probabilities A(u) = P(ZB ≤ u) up to three decimal values for
u on a fine grid over [0,1]. We evaluate the values of A−1 by numerically inverting the table
of A. We provide the estimated values of A−1(v) for some selected values of v in Table 2.

Thus, to obtain 95%-confidence, the nominal level of credibility should be chosen to be
1 − γ = 2A−1(0.975)− 1 = 2 × 0.966 − 1 = 0.932. The nature of the functional relationship
between the credibility and the coverage is clearly demonstrated by the two plots in Figure 2.

4.2. Simulation. We now study coverage of credible intervals for the value of the regres-
sion function at an interior point through simulations. We generate data from a regression
model with monotone regression function f0(x) = x2 + x/5, x ∈ [0,1], and normal error
with standard deviation 0.1 and the predictor variable X sampled from the uniform distribu-
tion on [0,1]. We study the coverage and size of the proposed Bayesian credible interval for
f0(x0) at x0 = 0.5 in finite sample sizes. We consider a prior supported on piecewise constant
functions with number of intervals J the integer closest to n1/3 logn, where n stands for the
sample size. The prior on the step heights θj is chosen to be independent normal with mean
0 and variance 1000σ̂ 2

n , where σ̂ 2
n is the maximum marginal likelihood estimate of σ 2. We

vary the sample size n over four different values 500, 1000, 1500 and 2000. For each n, we
consider 1000 replications of the simulated data. For each set of data, we generate 1000 pos-
terior samples of θ and obtain the corresponding projection f ∗. Using its α/2 and 1 − α/2

FIG. 2. Plots comparing coverage and credibility of Bayesian credible intervals. The dotted line denotes x = y.
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TABLE 3
Comparison of average length and size of unadjusted and adjusted Bayesian credible intervals and confidence

interval based on inverting the likelihood ratio statistics

1 − α CB(α) LB(α) C∗
B(α) L∗

B(α) CF (α) LF (α) CB(α) LB(α) C∗
B(α) L∗

B(α) CF (α) LF (α)

n = 500 n = 1000
0.99 0.994 0.48 0.983 0.43 0.987 0.56 0.996 0.39 0.991 0.35 0.991 0.41
0.95 0.958 0.38 0.935 0.35 0.951 0.42 0.967 0.30 0.951 0.28 0.949 0.32
0.90 0.911 0.32 0.893 0.30 0.902 0.38 0.929 0.26 0.900 0.24 0.897 0.27

n = 1500 n = 2000
0.99 0.994 0.34 0.984 0.31 0.989 0.35 0.996 0.31 0.988 0.28 0.993 0.33
0.95 0.967 0.27 0.949 0.25 0.955 0.29 0.968 0.25 0.939 0.23 0.952 0.28
0.90 0.914 0.23 0.894 0.21 0.902 0.24 0.914 0.21 0.895 0.19 0.904 0.25

quantiles, we construct the 100(1 − α)% credible interval for 1 − α = 0.99, 0.95 and 0.90.
We also obtain the corresponding recalibrated credible intervals using the A−1(α)/2 and
[1 − A−1(α)]/2 quantiles of f ∗(x0). We then compare the proposed Bayesian procedures
with the confidence intervals obtained by inverting the acceptance region of a likelihood ratio
test in Banerjee [4]. The cut-off values are obtained from the limiting distribution of the like-
lihood ratio statistics in Banerjee [4] and are given in Table 3.3 of Banerjee [3]. For all three
types of intervals, we check whether f0(x0) is contained in there, and estimate the coverage
by Monte Carlo. In Table 3, CB(α), C∗

B(α) and CF (α), respectively, denote the coverage of
(Qn,α/2,Qn,1−α/2), (Qn,A−1(α)/2,Qn,[1−A−1(α)]/2) and that of (1 −α)-confidence interval of
Banerjee [4], and LB(α), L∗

B(α) and LF (α) denote their respective lengths.

5. Proofs. As Theorem 3.1 and Proposition 3.2 are results of independent interest and
are not of the primary of this paper, we present their proofs in the Supplementary Material
[21]. In this section, we present the proof of Theorem 3.3 and auxiliary results needed in the
proof. We frequently use the “switch relation”: for a lower semicontinuous function � on
an interval I with �∗ its GCM, and �∗l denoting the left derivative of �∗, for every t ∈ I ,
v ∈R, {

�∗l(t) > v
} = {

arg min
{
�(s) − vs : s ∈ I

}
< t

}
,(5.1)

where “arg min” selects the maximum of the minimizers when multiple minimizers exist; see
page 56 of Groeneboom and Jongbloed [32] for the details regarding the switch relations.

Throughout the proof section, we use the notation Jn,t = {�x0J � + 1, . . . , �(x0 +
n−1/3t)J �}. If t < 0, we interpret a sum over Jn,t as that over {�(x0 + n−1/3t)J � +
1, . . . , �x0J �} but with a negative sign.

PROOF OF THEOREM 3.3. Since f ∗ is piecewise constant on each Ij , f ∗(x0) = θ∗�x0J �.

Let sj = ∑j
k=1 Nk/n, ωj = ∑j

k=1(Nk/n)θk for 1 ≤ j ≤ J , and s0 = 0, ω0 = 0. Let G denote
the graph obtained by joining the points {(s0,ω0), (s1,ω1), . . . , (sJ ,ωJ )}, and define G(s) =
0 for s ≤ 0 and G(s) = ωJ for s ≥ 1. Then f ∗(�x0J �/J ) = θ∗�x0J � is the left derivative of the
GCM of G at s�x0J �. For z ∈ R, by the switch relation (5.1),

(5.2)
{
n1/3(

f ∗(x0) − f0(x0)
) ≤ z

} = {
θ∗�x0J � ≤ f0(x0) + n−1/3z

}
As G(s) − (f0(x0) + n−1/3z)s is piecewise linear in (sj−1, sj ], it is minimized at one of the
points in S = {s0, s1, . . . , sJ }. Therefore, the event in (5.2) is{

arg min
{
G(s) − (

f0(x0) + n−1/3z
)
s : s ∈ [0,1]} ≥ s�x0J �

}
= {

arg min
{
ωj − (

f0(x0) + n−1/3z
)
sj : j ∈ {0,1, . . . , J }} ≥ �x0J �}.
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Now define two stochastic processes Vn and Gn on R, such that Vn(s) = Gn(s) = 0 for
s ≤ 0, and Vn(t) = ω�tJ�, Gn(t) = s�tJ�, 0 ≤ t ≤ 1. Also let Vn(t) = ωJ and Gn(t) = 1 for
t ≥ 1. Thus Vn and Gn are random step functions with jumps at the points j/J , 1 ≤ j ≤ J .
Therefore,{

arg min
{
ωj − (

f0(x0) + n−1/3z
)
sj : 0 ≤ j ≤ J

} ≥ �x0J �}
= {

arg min
{
Vn(j/J ) − (

f0(x0) + n−1/3z
)
Gn(j/J ) : 0 ≤ j ≤ J

} ≥ �x0J �}
= {

arg min
{
Vn(s) − (

f0(x0) + n−1/3z
)
Gn(s) : s ∈ [0,1]} ≥ �x0J �/J }

= {
arg min

{
Vn(s) − (

f0(x0) + n−1/3z
)
Gn(s) : s ∈ R

} ≥ �x0J �/J }
.

The last step follows from the fact that Vn and Gn are constants on s ≤ 0 and s ≥ 1. As the
location of the minimum does not change upon addition of a constant or multiplication by a
positive constant,{

arg min
{
Vn(s) − (

f0(x0) + n−1/3z
)
Gn(s) : s ∈ R

} ≥ �x0J �/J }
=

{
arg min

{
n2/3

g(x0)

(
Vn(s) − Vn(x0)

)
(5.3)

− n2/3

g(x0)

(
f0(x0) + n−1/3z

)(
Gn(s) − Gn(x0)

) : s ∈ R

}
≥ �x0J �

J

}
.

We make a change of variable s = x0 + n−1/3t . Then the right-hand side of (5.3) can then be
written as {

arg min
t∈R

{
n2/3

g(x0)

∑
j∈Jn,t

Nj

n
θj − n2/3

g(x0)

(
f0(x0) + n−1/3z

) ∑
j∈Jn,t

Nj

n

}
(5.4)

≥ n1/3
(�x0J �

J
− x0

)}
.

Therefore, �(n1/3(f ∗(x0) − f0(x0)) ≤ z|Dn) is equal to

�

(
arg min

t∈R

{
n2/3

g(x0)

∑
j∈Jn,t

Nj

n

(
θj − f0(x0)

)
(5.5)

− n1/3z

g(x0)

∑
j∈Jn,t

Nj

n

}
≥ n1/3

(�x0J �
J

− x0

)
|Dn

)
.

Because Nj ∼ Bin(n;G(Ij )), and G has bounded and positive density, the expectation of
(n1/3z/g(x0))

∑
j∈Jn,t

Nj/n is given by

n1/3z

g(x0)

(
G

(�(x0 + n−1/3t)J �
J

)
− G

(�x0J �
J

))
= z

(
1 + o(1)

)(
t + O

(
n1/3J−1))

,

which converges to zt uniformly in t ∈ [−K,K] as n1/3 � J � n2/3. By a similar calcula-
tion, its variance is of the order n−1/3z2 → 0. Therefore, (n1/3z/g(x0))

∑
j∈Jn,t

Nj/n →P0

zt. Also |�x0J �/J − x0| = O(J−1) and J � n1/3, so n1/3|�x0J �/J − x0| → 0. Hence by
Lemmas 5.1 and 5.2 below, the Argmax theorem applied conditionally on the data, and part
(a) of Lemma A.3, we rewrite (5.5) as

�
(
n1/3(

f ∗(x0) − f0(x0)
) ≤ z|Dn

)
� P

(
arg min

{
aW1(t) + aW2(t) + bt2 − zt : t ∈ R

} ≥ 0|W1
)
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d= P
(
(a/b)2/3 arg min

{
W1(t) + W2(t) + t2 : t ∈ R

} + z/(2b) ≥ 0|W1
)

d= P
(
2b(a/b)2/3 arg min

{
W1(t) + W2(t) + t2 : t ∈ R

} ≤ z|W1
)
.

The last step follows by using the transformation t �→ −t and the fact that arg min{W1(t) +
W2(t) + t2 : t ∈ R} is symmetric about zero. �

LEMMA 5.1. Let a =
√

σ 2
0 /g(x0), b = f ′

0(x0)/2, and W1,W2 be independent two-sided

Brownian motions on R starting at zero and n1/3 � J � n2/3. Then L((n2/3/g(x0)) ×∑
j∈Jn,t

Nj (θj − f0(x0))/n : t ∈ [−K,K]|Dn) converges weakly to L(aW1(t) + aW2(t) +
bt2 : t ∈ [−K,K]|W1) as random probability measures on the space L∞([−K,K]), for any
K > 0.

PROOF. We consider a sequence σn ∈ Un, where Un is a shrinking neighborhood of σ0
with �(σ ∈ Un|Dn) → 1. The existence of such a sequence is guaranteed by Lemma A.1.
We can condition on σ = σn. Write D̃n = {Dn,σn} and

n2/3

g(x0)

∑
j∈Jn,t

Nj

n

(
θj − f0(x0)

) = An(t; θ, D̃n) + A′
n(t; D̃n) + Bn(t; D̃n),

where the processes An, A′
n and Bn are defined by

An(t; θ, D̃n) = (
n2/3/g(x0)

) ∑
j∈Jn,t

(Nj/n)
(
θj − E(θj |D̃n)

)
,

A′
n(t; D̃n) = (

n2/3/g(x0)
) ∑
j∈Jn,t

(Nj/n)
(
E(θj |D̃n) − Ȳj

)
,

Bn(t; D̃n) = (
n2/3/g(x0)

) ∑
j∈Jn,t

(Nj/n)
(
Ȳj − f0(x0)

)
.

We claim that L(An(t; θ, D̃n) : t ∈ [−K,K]|D̃n)� (aW2(t) : t ∈ [−K,K]) in P0-probability
in L∞([−K,K]) for all K > 0. As ((θj − E(θj |D̃n))|D̃n) ∼ N(0, σ 2

n /(Nj + λ−2
j )) and

sup{|λj | : 1 ≤ j ≤ J } is bounded by the assumptions on the prior, for any t ∈ [−K,K], we
have that Var[An(t; θ, D̃n)|D̃n] is equal to

n4/3

g2(x0)

∑
j∈Jn,t

(
Nj

n

)2 σ 2
n

Nj + λ−2
j

= n−2/3σ 2
n

g2(x0)

∑
j∈Jn,t

Nj + O

(
J

n

)
.

As Nj ∼ Bin(n;G(Ij )), the expectation of the first term is

n1/3σ 2
0

g2(x0)

∫ �(x0+n−1/3t)J �/J
�x0J �/J

g(u)du = n1/3σ 2
0

g2(x0)

(
g(x0) + o(1)

)
n−1/3t → σ 2

0 t

g(x0)
,

uniformly in t ∈ [−K,K], and its variance

n−4/3σ 4
n

g4(x0)
Var

( ∑
j∈Jn,t

Nj

)
� n−1/3(

g(x0) + o(1)
)
n−1/3t → 0,

leading to Var[An(t; θ, D̃n)|D̃n] →P0 σ 2
0 t/g(x0) uniformly in t ∈ [−K,K].

Similarly, Cov(An(t; θ, D̃n),An(s; θ, D̃n)|D̃n) →P0 σ 2
0 min(s, t)/g(x0)1{ts > 0} uni-

formly in t, s ∈ [−K,K]. Thus the finite-dimensional distributions of L(An(·; θ, D̃n)|D̃n)

converge to those of aW1 in probability.
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We now show that L(An(·; θ, D̃n) : t ∈ [0,K]|D̃n) is tight on L∞[0,K] in probability.
The calculations are similar for [−K,0]. We shall use the characterization of tightness given
by Theorem 18.14 of van der Vaart [55]: for every ε > 0 and η > 0, there exists a partition
{T1, . . . , Tk} of [0,K] with k depending only on ε and η such that

P
(
sup

{∣∣An(s, θ, D̃n) − An(t, θ, D̃n)
∣∣ : s, t ∈ Tl, 1 ≤ l ≤ k

}
> ε|D̃n

)
< η

with P0-probability tending to 1, as n → ∞. To verify this, let δ > 0, to be chosen later
depending only on ε and η, and consider a partition of [0,K] into Tl = (sl−1, sl] with
equal lengths at most δ, and k ≤ 2/δ. Then it suffices to verify that P(sup{|An(s, θ, D̃n) −
An(t, θ, D̃n)| : s, t ∈ Tl} > ε|D̃n) < ηδ/2 for all l. Let sl−1 ≤ t ≤ s ≤ sl . Then An(s, θ, D̃n)−
An(t, θ, D̃n) = Sms − Smt , where ms = �(x0 + n−1/3s)J �, mt = �(x0 + n−1/3t)J �, and
Sm = (n2/3/g(x0))

∑
j≤m(Nj/n)(θj − E(θj |D̃n)), m = 1,2, . . . , J , are partial sums of in-

dependent centered normal variables. To verify the criterion for tightness, it then suffices to
verify that

P

(
max

msl−1<m≤msl

{
n2/3

g(x0))

∣∣∣∣∣
m∑

j=msl−1+1

Nj

n

(
θj − E(θj |D̃n)

)∣∣∣∣∣
}

> ε

∣∣∣∣D̃n

)
<

ηδ

4

for all l. By Doob’s maximal inequality applied to the submartingale given by the fourth
power of the partial sums, the left hand side is bounded by a constant multiple of
ε−4n8/3 ∑msl

j=msl−1+1 E(|(Nj/n)(θj − E(θj |D̃n))|4|D̃n). The terms inside the sum are in-

dependent centered normal with variance of the order (Nj/n)2(1/Nj ) = Nj/n2 � 1/(Jn)

uniformly with P0-probability tending to 1, and there are at most (δn−1/3J + 1) terms. From
this and the fact that the fourth central moment of a normal variable is 3 times the square of
its variance, it easily follows that the expression in the last display is bounded by a constant
multiple of n8/3(Jn)−2(δn−1/3J )2 = δ2. Thus, choosing δ a sufficiently small multiple of
ηε4, the tightness criterion is verified.

We now show that A′
n(·; D̃n) →P0 0 uniformly in L∞([−K,K]). We write Ȳj as

N−1
j

∑
i:Xi∈Ij

f0(Xi) + N−1
j

∑
i:Xi∈Ij

εi . Let Mn = {min(N1, . . . ,NJ ) ≥ a1n/(2J )}. From
Lemma A.2, P0(Mn) → 1. If ξ1, . . . , ξN are i.i.d. centered sub-Gaussian variables, then
P(|N−1 ∑N

i=1 ξi | > T ) ≤ 2 exp(−C′NT 2) for some constant C′ > 0. Choosing N = Nj ,
ξ1, . . . , ξN to be (εi : Xi ∈ Ij ) and using the fact that X1, . . . ,Xn are independent of
ε1, . . . , εn, we obtain

P0

(
max

1≤j≤J

∣∣∣∣N−1
j

∑
i:Xi∈Ij

εi

∣∣∣∣ > T

)
≤

J∑
j=1

P0

(∣∣∣∣N−1
j

∑
i:Xi∈Ij

εi

∣∣∣∣ > T |Mn

)
+ P0

(
Mc

n

)
,

which is bounded by 2Je−na1C
′T 2/(2J ) +o(1) → 0, because n/J � J 1/3 � logJ as J → ∞.

Hence using the monotonicity of f0, we have

max
1≤j≤J

|Ȳj | ≤ max
1≤j≤J

∣∣∣∣N−1
j

∑
i:Xi∈Ij

f0(Xi)

∣∣∣∣ + max
1≤j≤J

∣∣∣∣N−1
j

∑
i:Xi∈Ij

εi

∣∣∣∣ = OP0(1),

because the first term is bounded by max(|f0(0)|, |f0(1)|). Then, as the prior means of
θ1, . . . , θJ are bounded and prior variances lie in a compact subinterval of (0,∞),

∣∣A′
n(t; D̃n)

∣∣ =
∣∣∣∣ n2/3

g(x0)

∑
j∈Jn,t

Nj

n

((ζj − Ȳj )/λ
2
j

Nj + 1/λ2
j

)∣∣∣∣
(5.6)

�
∣∣∣∣ n2/3

g(x0)
max

1≤j≤J

∣∣∣∣ζj − Ȳj

∣∣∣∣ ∑
j∈Jn,t

Nj

n
O

(
N−1

j

)∣∣∣∣,
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which is n−2/3tJOP0(1). As J � n2/3, we obtain sup{A′
n(t; D̃n) : t ∈ [−K,K]} →P0 0.

Finally, Lemma S.1 of the Supplementary Material [21] establishes that (Bn(t; D̃n) : t ∈
[−K,K])� (aW1(t) + bt2 : t ∈ [−K,K]) in L∞([−K,K]), for all K > 0. �

LEMMA 5.2. Let n1/3 � J � n2/3. Then �(g∗
n /∈ [−K,K]|Dn) →P0 0 for some K > 0,

where g∗
n = arg min{∑j∈Jn,t

Nj

n
(θj − f0(x0)) − z

n1/3

∑
j∈Jn,t

Nj

n
: t ∈ R}.

PROOF. We use the change of variable r = n−1/3t , and define

h∗
n = arg min

r∈R

{ �(x0+r)J �∑
j=�x0J �+1

Nj

n

(
θj − f0(x0)

) − n−1/3z

�(x0+r)J �∑
j=�x0J �+1

Nj

n

}
.

Therefore, g∗
n = n1/3h∗

n. We only prove the tightness of the argmin for r restricted to [0,∞);
the proof for the case r < 0 follows similarly, and the intended result by combining. As in
the proof of Lemma 5.1, we can condition σ = σn, where σn → σ0. For r ≥ 0, let Mn(r) and
M(r) be defined as

Mn(r) = ∑
j∈Jr

Nj

n

(
θj − f0(x0)

)

+ zn−1/3
Pn

[
1
{
X ≤ ⌈

(x0 + r)J
⌉
/J

} − 1
{
X ≤ �x0J �/J }]

,

M(r) = E0
[(

Y − f0(x0)
)(

1{X ≤ x0 + r} − 1{X ≤ x0})],
where Jr = {�x0J �+ 1, . . . , �(x0 + r)J �}, and we have suppressed the dependence of Mn(r)

on θ1, . . . , θJ . We apply Theorem 3.2.5 of van der Vaart and Wellner [56], conditionally on
D̃n = {Dn,σn}, to the process r �→ −Mn(r) and the deterministic function r �→ −M(r) on
the domain [0,∞), to establish the tightness of the conditional distribution of g∗

n given D̃n.
Note that −Mn(0) = −M(0) = 0 and the condition −M(r) + M(0) �−r2 is verified within
the proof of Theorem S.2 of the Supplementary Material [21]. We need to construct functions
φn such that

E0
√

n
[
E∗ sup

|r|<δ

∣∣Mn(r) − M(r)
∣∣∣∣D̃n

]
� φn(δ),(5.7)

for all sufficiently small δ, where φn(δ)/δ
α is decreasing in δ for some α ∈ (0,2). We can

write
√

n(Mn(r) − M(r)) as
∑3

l=1 Hln(r), where

(5.8)

H1n(r) = √
n

∑
j∈Jr

(Nj/n)
(
θj − E(θj |D̃n)

)
,

H2n(r) = √
n

∑
j∈Jr

(Nj/n)
(
E(θj |D̃n) − Ȳj

)
,

H3n(r) = √
n

∑
j∈Jr

(Nj/n)
(
Ȳj − f0(x0)

) − n1/6z
∑

j∈J (Nj/n)

−√
nE0

[(
Y − f0(x0)

)(
1
{
X ∈ (x0, x0 + r]})].

To bound the variation of H1n, we proceed as in the proof of Lemma 5.1. We view the
maximum of the piecewise constant process r �→ H1n(r) as the maximum of a partial-sum
sequence of centered Gaussian random variables, and apply Doob’s submartingale maximal
inequality on the square of the partial sum sequence. Thus it suffices to bound the variance
of H1n(δ) and then extract its square root. As the number of terms is of the order δJ and the
variance of each summand in H1n(δ) is bounded by a multiple of n(Nj/n)2(1/Nj ) � 1/J

in P0-probability simultaneously for all j , by it follows that E[|H1n(δ)|2|D̃n] ≤ δ, and hence
E∗[sup{|H1n(r)| : |r| < δ}|D̃n]� δ1/2, in P0-probability.

For H2n, using arguments similar to (5.6) with multiplication by n1/2 instead of n2/3

and n−1/3t replaced by r and K by δ, we obtain the estimate
√

nE0 sup|r|<δ

∑
j∈Jr

Nj

n
×
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| (ζj−Ȳj )/λ2
j

Nj+1/λ2
j

|� n−1/2Jδ, for sufficiently small δ. As J � n2/3, we have n−1/2Jδ � n1/6δ, giv-

ing the estimate E∗
0[sup{|H2n(r)| : |r| < δ] � n1/6δ. From (S4), we have that E0[sup{|H3n(r)| :

|r| < δ] � δ1/2 + n1/6δ + n−1/6. Combining these estimates, for sufficiently small δ, (5.7)
holds for φn(δ) = C[δ1/2 +n1/6δ+n−1/6] for some C > 0. The condition r2

nφn(r
−1
n ) ≤ √

n is
satisfied for rn = n1/3. The condition that the (conditional) distribution of the arg minMn(r)

concentrates at the arg minM(r) = 0 (in P0-probability) holds by Lemma S.3. Hence by
Theorem 3.2.5 of van der Vaart and Wellner [56] applied conditionally on the data Dn, the
posterior distribution of n1/3h∗

n is tight in P0-probability. �

PROOF OF LEMMA 3.5. Let W ′
1(t) = W1(−t) and W ′

2(t) = W2(−t). Using the transfor-

mation t �→ −t and the fact that W1
d= W ′

1 and W ′
2

d= W2, we have

P
(
arg min

{
W1(t) + W2(t) + t2 : t ∈ R

} ≥ 0|W1
)

= P
(
arg min

{
W1(−t) + W2(−t) + (−t)2 : t ∈R

} ≤ 0|W1
)

d= P
(
arg min

{
W ′

1(t) + W2(t) + t2 : t ∈ R
} ≤ 0|W ′

1
)
.

Therefore, P(
∗
W1,W2

≥ 0|W1)
d= P(
∗

W1,W2
≤ 0|W1), where 
∗

W1,W2
= arg min{W1(t) +

W2(t) + t2 : t ∈ R}, and P(
∗
W1,W2

≥ 0|W1) is symmetric about 1/2. �

APPENDIX

To establish the asymptotic coverage of pointwise credible intervals, we have used the re-
sult that the maximum marginal likelihood estimator for σ 2 in the plug-in Bayes approach or
the marginal posterior distribution of σ 2 in the fully Bayes approach, are consistent uniformly
for f0 ∈ F(K). The following lemma states this result.

LEMMA A.1. Let f0 ∈ F(K) for some K > 0. If 1 � J � n and Assumption D holds,
then:

(a) the maximum marginal likelihood estimator σ̂ 2
n converges in probability to σ 2

0 at the
rate max{n−1/2, n−1J,J−1}.

(b) If σ 2 ∼ IG(β1, β2) with β1 > 2, β2 > 0, then the marginal posterior distribution of σ 2

contracts at σ 2
0 at the rate max{n−1/2, n−1J,J−1}.

The proof follows from similar (actually simpler, because of the univariate setting) cal-
culations using posterior conjugacy as in the proof of Proposition 4.1 of Yoo and Ghosal
[57].

LEMMA A.2. Under Assumption D, P0(An) → 1, where

An = {
a1n/(2J ) ≤ min(N1, . . . ,NJ ) ≤ max(N1, . . . ,NJ ) ≤ 2a2n/J

}
.

In particular, N1, . . . ,NJ are simultaneously of the order n/J in probability.

PROOF. Recall that Nj ∼ Bin(n;G(Ij )) and a1/J ≤ G(Ij ) ≤ a2/J for every 1 ≤ j ≤
J . The large deviation probability P(Nj ≥ 2a2n/J ) is bounded by e−2a2nt/J E(etNj ), which
optimized over t > 0 leads to the bound

exp
[
−n

(
2a2

2J
log

(
2a2

JG(Ij )

)
+

(
1 − 2a2

J

)
log

(
1 − 2a2/J

1 − G(Ij )

))]
≤ 2e−Cn/J
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for some constant C > 0. Similarly, P(Nj ≤ a1n/(2J )) is also bounded by 2e−Cn/J for some
C > 0. Combining, and because n/J � J 1/3 � logJ , we get the desired result.

Alternatively, we can apply Bennet’s inequality (cf. Proposition A.6.2 of van der Vaart and
Wellner [56]) with λ = c

√
n/J for some c > 0. �

LEMMA A.3. Let W1,W2 be independent two-sided standard Brownian motions starting
at zero. Then for a, b > 0 and c ∈ R:

(a) L(arg min{aW1(t) + aW2(t) + bt2 + ct : t ∈ R}|W1)
d= L((a/b)2/3 arg min{W1(t) + W2(t) + t2 : t ∈R} − c/(2b)|W1);
(b) For c1, c2 ∈ R,(

arg min
{
aW1(t1) + bt2

1 + c1t1 : t1 ∈ R
}
,

arg min
{
aW1(t2) + aW2(t2) + bt2

2 + c2t2 : t2 ∈ R
})

d= (
(a/b)2/3 arg min

{
W1(t1) + t2

1 : t1 ∈ R
} − c1/(2b),

(a/b)2/3 arg min
{
W1(t2) + W2(t2) + t2

2 : t2 ∈R
} − c2/(2b)

)
.

Lemma A.3 follows from Problem 5 of Chapter 3.2 of van der Vaart and Wellner [56],
using the transformation t �→ ψ(t) = (a/b)2/3t − c/(2b).

Acknowledgments. The second author’s research is partially supported by NSF Grant
DMS-1916419.

SUPPLEMENTARY MATERIAL

Supplement to “Coverage of credible intervals in nonparametric monotone regres-
sion” (DOI: 10.1214/20-AOS1989SUPP; .pdf). The proofs of Theorem 3.1 and Proposi-
tion 3.2 are provided in supplementary material [21].
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