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We open a new perspective on the sup-norm problem and propose a version for
non-spherical Maafl forms when the maximal compact K is non-abelian and the
dimension of the K-type gets large. We solve this problem for an arithmetic quotient
of G = SLy(C) with K = SU,(C). Our results cover the case of vector-valued
Maafl forms as well as all the individual scalar-valued Maaf3 forms of the Wigner
basis, reaching sub-Weyl exponents in some cases. On the way, we develop analytic
theory of independent interest, including uniform strong localization estimates for
generalized spherical functions of high K-type and a Paley—Wiener theorem for
the corresponding spherical transform acting on the space of rapidly decreasing
functions. The new analytic properties of the generalized spherical functions lead
to novel counting problems of matrices close to various manifolds that we solve
optimally.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RESUME

Nous ouvrons une nouvelle voie dans le probleme de la norme sup et proposons
un traitement de ce probléme dans le cadre des formes de Maafl non sphériques
lorsque le groupe compact maximal K n’est pas abélien et que la dimension
des K-types croit. Nous resolvons ce probléme pour un quotient arithmétique de
G = SL2(C) avec K = SU2(C). Nos résultats contiennent le cas des formes de
Maafl & valeurs vectorielles ainsi que des formes de Maafl & valeurs scalaires de
la base de Wigner, obtenant des exposants allant au-dela de la borne de Weyl
dans certains cas. Nous obtenons ce faisant des résultats analytiques ayant leur
intérét propre, incluant de puissantes estimations de localisation uniforme pour
des fonctions sphériques généralisées de grands K-types, ainsi qu’un théoréme de
Paley—Wiener pour la transformation sphérique associée sur ’espace des fonctions
rapidement décroissantes. Ces propriétés analytiques nouvelles des fonctions
sphériques généralisées meénent & de nouveaux problemes de comptage de matrices
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proches de certaines variétés, que nous sommes en mesure de résoudre de maniére

optimale.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction
1.1. The spherical sup-norm problem

The sup-norm problem on arithmetic Riemannian manifolds is a question at the interface of harmonic
analysis and number theory that intrinsically combines techniques from both areas. Let X = T'\G/K be a
locally symmetric space of finite volume, where I" is an arithmetic subgroup. Arithmetically and analytically,
the most interesting functions in L?(X) are joint eigenfunctions ¢ of all invariant differential operators and
the Hecke operators: these are precisely the functions that arise from (spherical) automorphic forms. The
sup-norm problem asks for a quantitative comparison of the L?-norm ||¢||, and the sup-norm ||¢||__, most
classically in terms of the Laplace eigenvalue A4, but depending on the application also in terms of the volume
of X or other relevant quantities. Upper bounds for the sup-norm in terms of the Laplace eigenvalue are a
measure for the equidistribution of the mass of high energy eigenfunctions which sheds light on the question
to what extent these eigenstates can localize (“scarring”). Besides the quantum mechanical interpretation,
the sup-norm problem in its various incarnations has connections to the multiplicity problem, zero sets
and nodal lines of automorphic functions, and bounds for Faltings’ delta function, to name just a few. See
[42,39,23,29].

If X is compact, the most general upper bound is due to Sarnak [42]:

dim X —rk X)/4
6]l <x Al 74 8l,, (1.1)

a bound which does not use the Hecke property and is in fact sharp (for general X) under these weaker
assumptions. Sarnak derives this bound from asymptotics of spherical functions. A slightly different but
ultimately related argument proceeds via a pre-trace inequality that bounds ||(;5||iO by a sum of an auto-
morphic kernel over v € T'. If the test function is an appropriate Paley—Wiener function, only the identity
contributes to this sum, and one obtains as a (“trivial”) upper bound for ||¢|_ the square-root of the
spectral density as given in terms of the Harish-Chandra c-function. If the Langlands parameters of ¢ are
in generic position, this coincides with (1.1).

To go beyond (1.1), one uses a test function that localizes not only the archimedean Langlands parameters,
but in addition the parameters at a large number of finite places (where “large” means a function tending
to infinity as a small and carefully chosen power of A,). This is called the amplification technique and leads,
after estimating the automorphic kernel, to a problem in the geometry of numbers: count the elements of
G which appear in Hecke correspondences and lie in regions of G according to the size of the kernel (such
as counting rescaled integer matrices lying close to K). It has been implemented successfully in a variety of
cases, see e.g. [27,26,7,5,35,48,41,3] and the references therein.

1.2. Automorphic forms with K -types

In this paper we open a new perspective on the sup-norm problem and propose a version of higher
complexity. The sup-norm problem makes perfect sense not only on the level of symmetric spaces, but also
on the level of groups, and a priori there is no reason why one should restrict to spherical, i.e. right K-
invariant automorphic forms. Let 7 be an irreducible unitary representation of K on some finite-dimensional
complex vector space V7, and consider the homogeneous vector bundle over G/K defined by 7. A cross-
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section may then be identified with a vector-valued function f : G — V7 which transforms on the right by
K with respect to 7:

flgk) =7(k"Yf(9), geG, kekK.

It is now an interesting question to bound the sup-norm of f or, more delicately, its components as the
dimension of V7 gets large. Such a situation cannot be realized in the classical case G = SLy(R), since
K = SO3(R) is abelian, hence each V7 is one-dimensional. In this paper, we offer a detailed investigation
of the first nontrivial case G = SL2(C). For concreteness, we choose the congruence lattice I' = SLo(Z[i]),
although our results extend to more general arithmetic quotients of G using the techniques in [3].

Nontrivial irreducible unitary representations of G are principal series representations parametrized by
certain pairs (v,p) € ag x %Z, where as usual a is the Lie algebra of the subgroup of positive diagonal
matrices; see §2.2. (By a small abuse of notation we will later interpret v simply as a complex number.)
Each representation space V' of G decomposes as a Hilbert space direct sum

v= P Vv'= &P b v (1.2)

£2|p| £2[pl la|<e
{=p (mod 1) {=p (mod 1) ¢g=¢ (mod 1)

where V%4 is one-dimensional. Here and later, £ € %Z>0 parametrizes the K-type, i.e. the (2¢ + 1)-
dimensional representation 7, of K, and the diagonal matrix diag(e’?,e~%¢) € K acts on V%9 by 2%,
(The upper index £ in V* should not be mistaken for an /-th power.)

Representations occurring in L?(I'\G) consist of even functions on G' and have p € Z. A representation
contains a spherical vector if and only if p = 0. In particular, the forms with p # 0 are untouched by any of
the spherical sup-norm literature. For p # 0, no complementary series exists, so v € ia*.

1.8. Main results I: vector-valued forms

As explained above, we are interested in “big” K-types which occur for all representation parameters
|p| < £, but arguably the most interesting case is when the K-type is “new” and no lower K-types appear in
the same automorphic representation space. Hence from now on we restrict to p = £. The sup-norm problem
for large v was studied in detail in [3], so here we keep v in a fixed compact subset I C iR and let ¢ vary.
The spectral density is a constant multiple of p? — 2. In particular, for a given K-type 7¢, there are O;(£?)
cuspidal automorphic representations V' C L?(I'\G) with spectral parameter v € I and p = ¢ (see [13]),
and in the light of the trace formula this bound is expected to be sharp. In each of these we consider the
(20 + 1)-dimensional subspace V*. Let us choose an orthonormal basis {¢, : |g| < £} of V¥, with ¢, € V44
as in (1.2). The function G — C2*! given by

g (D—e(9), ... 0e(9)" (1.3)

is a vector-valued automorphic form for the group I' with spectral parameter v and K-type 7. The Hermitian
norm of this function,

o) = (X lo0f) . gea

lq|<e

is independent of the choice of the orthonormal basis, and it satisfies || ®||, = (2¢+1)/2. Let us fix a compact
subset 2 C G. Our remarks on spectral density and dimension suggest that
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1/2
[@lall = | 3 1oalal?]|  <ro 2 (1.4

lg|<e

should be regarded as the “trivial” bound; this is made precise in Remark 2 below. Our first result is a
power-saving improvement.

Theorem 1. Let £ > 1 be an integer, I C iR and Q C G be compact sets. Let V. C L*(T\G) be a cuspidal
automorphic representation with minimal K-type 7o and spectral parameter vy € I. Then for any € > 0 we
have

I1Plall <er0 7.

We will explain some ideas of the proof in a moment, but we remark already at this point that the
exponent is the best possible, given that we sacrifice cancellation of the terms on the geometric side of
the pre-trace formula and given our current knowledge on the construction of the most efficient amplifier.
In other words, under these conditions we solve the arising matrix counting problem optimally. Since we
trivially have ||®||_ > ¢!/2, the above bound is one-sixth of the way from the trivial down to the best possible
exponent (absent the possibility of some escape of mass into a cusp). This matches (after a renormalization)
the original and still the best available subconvexity exponent 5/24 of Iwaniec—Sarnak [27] for the sup-norms
of spherical Maafl forms of large Laplace eigenvalue on arithmetic hyperbolic surfaces.

1.4. Main results II: individual vectors

It is a much more subtle endeavor to investigate the sup-norm of the individual basis elements ¢,. Here one
must contend with the inherent high multiplicity, a known serious barrier in the sup-norm problem. Indeed,
a straightforward construction [42] shows that some scalar-valued L?-normalized form ¢ € V* (essentially
the projection of the vector-valued form (1.3) in the modulus-maximizing direction) has sup-norm on  as
large as || ®|q||, in Theorem 1. However, our natural basis {¢, : |q| < £} of V* is distinguished by consisting
of eigenfunctions under the action of the group {diag(e??,e=") : § € R} of diagonal matrices in K. This
is the classical basis with respect to which the representation 7, is given by the Wigner D-matrix. By a
similar heuristic reasoning as for (1.4), one might expect that the baseline bound should be ||¢4|al|, <710 ¢
Indeed, we prove this bound in considerable generality up to a factor of ¢¢ (cf. Remark 2 below), noting that
it is not “trivial” in any sense other than that it does not require arithmeticity. Moreover, in the situation
of Theorem 1, we are in fact able to break this barrier uniformly for all ¢, as shown by the next theorem.

Theorem 2. Under the assumptions of Theorem 1, we have

max || dglall . <er0 %27
lgl<e

For special values of ¢ we can improve on the exponent considerably. The central vector ¢ is distinguished
as the “archimedean newvector” [37] in the sense that its Whittaker function determines the archimedean
L-factor of the underlying representation. Another interesting situation is the extreme case of the vector

D+¢.

Theorem 3. Keep the assumptions of Theorem 1.
(a) For ¢ =0 we have

I dolall,, ez €7/
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(b) Suppose that V lifts to an automorphic representation for PGLa(Z[i])\PGLy(C). For ¢ = £¢ we have
seloll, <o 7%

The strong numerical saving in the case ¢ = £/, going far beyond the Weyl exponent, is quite remarkable,
in particular in view of the seemingly weaker saving in Theorem 1 which might be regarded as an easier
case. We will discuss this in §1.7. The assumption that V is associated to a representation of PGLy rather
than SLs is only for technical simplicity and not essential to the method, cf. §2.7. This assumption holds if
and only if the elements of V are fixed by the Hecke operator T; (which is an involution on L?(T\G)).

Remark 1. In the case of the spherical sup-norm problem, Sarnak [42] put forward the purity conjecture
that the accumulation points of the set

{logllwllw

: 9 is a joint eigenfunction
log )‘d)

lie in iZ. It would be very interesting to see if an analogous conjecture may be expected in the K-aspect,
and even if there may be examples exhibiting different layers of power growth as in [36,4,6]. In particular,
the savings in Theorem 3 produce already a considerable “exponent gap”.

Remark 2. We record that our essentially best possible estimates on the spherical trace function in §1.5,
which are of purely analytic nature, coupled with the formalism of the pre-trace inequality, yield what
might be considered “trivial” geometric estimates: for any co-finite Kleinian subgroup I' < G, without any
arithmeticity assumption, we have

I®loll, <rar*?  and max [[9glollo <er0r e
al<
for any L?-normalized vector-valued Maa8 eigenform (¢_g,...,¢¢) " with spectral parameter v € I and

K-type 7 (with ¢, € V%9 as before).

Our Theorems 1-3 above, and the non-spherical sup-norm problem in general, come with several nov-
elties of representation theoretic, analytic and arithmetic nature that we discuss briefly in the following
subsections.

1.5. Generalized spherical functions

The classical pre-trace formula features on the geometric side the Harish-Chandra transform R of the
test function h on the spectral side. This transform is a bi-K-invariant function obtained by integrating h
against the elementary spherical functions (which themselves are bi-K-invariant, and hence in the case of
G = SLy(C) simply a function of one real variable). In typical applications there is no cancellation in this
integral, so an asymptotic analysis of spherical functions is the first key step (see [7] for a general result in
this direction). Our set-up requires a generalized version for homogeneous vector bundles over G/K. For
G = SLy(C), the corresponding spherical trace function equals (see §2.4 for details)

ol olg) = (20+ 1) / ek gk)) e DPHR) g, (1.5)
K

where dk is the probability Haar measure on K, p is the unique positive root, x (resp. H) is the KAN
Iwasawa projection onto K (resp. a), and
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W((_aﬂ g)) =a*, <_aﬁ g) € K. (1.6)

The trivial bound is |<pf27£(g)| < 20+ 1, which is sharp for ¢ = +id, and the key question is how quickly
gpf,e(g) decays, uniformly in ¢, as ¢ € G moves away from +id. We observe that gaf}e(g) is invariant under
conjugation by K, hence it suffices to investigate it for upper triangular matrices g € GG. We shall use the
Frobenius norm ||g|| := +/tr(gg*), and we note that for g € G this is always at least /2. The following
bound is new and most likely sharp for fixed v € iR (up to factors ¢¢ and powers of ||g||, which we did not
try to optimize).

zZ u
Z_l

Theorem 4. Let £ > 1 be an integer, and let g = (
ke K,e>0, we have

) € G be upper triangular. Then for any v € iR,

£l elmfngn?’)

V4 —1 :

The proof shows that the factors ¢ can be replaced with a suitable power of log2¢. The same remark
applies to Theorems 5 and 6 below.

The spherical trace function 905,@ can be used to analyze the vector-valued function (1.3). It is, unfortu-
nately, unable to identify the individual components ¢,, and there does not seem to exist a general theory of
spherical functions covering such cases. As the components are eigenfunctions of the action of the diagonal
elements, we can single out ¢, by considering

27

1 : io _—i —2qi
e(g) = %/%{,e (g diag(e’®, ")) e~?4¢ dg. (1.7)
0

The function 4,0% is an interesting object that does not seem to have been considered before. It is not
conjugation invariant anymore, so it needs to be analyzed on the entire 6-dimensional group G = SLy(C),
and little preliminary reduction is possible. When restricted to K, it is not hard to see that gpfi’)%(k), for
k = k[u,v,w] € K written in terms of Euler angles (cf. (2.1)), is essentially a Jacobi polynomial in cos 2v.
We refer to §5.4 for a more detailed discussion. In particular, gpi’j(:ﬁ:id) = 1. Therefore, at least heuristically,
a safe baseline bound should be

eh(g) <o 5. (1.8)

Unlike in the bi-K-invariant case, where the trivial bound is just an application of the triangle inequality
and hence is indeed trivial, the expected baseline bound (1.8) turns out to be hard to prove. It requires
very strong cancellation in the p-integral, along with the decay properties of @f’ - Taking (1.8) for granted,
we wish to investigate in what directions and with what speed we can identify decay as we move away from
+id € G. Interestingly, this is extremely sensitive to the value of q.

Let D C G be the set of diagonal matrices, S the normalizer of A in K (which consists of the diagonal
and the skew-diagonal matrices lying in K'), and

N = {(‘C’ Z) €G:lal=|d|, b = c|}. (1.9)

It is clear that S C K C N C G. For g € G and non-empty H C G, we shall write dist(g,H) for their
distance infjcq ||g — k. For later reference, we note that ||g — k|| = ||g~! — h™1||, hence also

dist(g, H) = dist(¢~*, H™1). (1.10)
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As an alternative to dist(g, N'), we shall also use
D(g) == [lal* = |d*| + [[b]* — |e]*] - (1.11)
For orientation, we remark the elementary inequality
dist(g,N)* < D(g) < 2l|g]| dist(g, N).

In the following theorem, we show that @f’%(g) decays away from K and D in generic ranges, for all
|g] < ¢, and with considerable uniformity.

Theorem 5. Let ¢, q € Z be such that £ > max(1,|q|). Let v € iR and g € G. Then for anye >0 and A > 0,
we have

L,q e llgll ) —A
LA Fmin (1, + 074, 1.12
Prelg) e ( VIdist(g, K)2? dist(g, D) (1.12)

The proof of Theorem 5 uses a soft argument that provides some decay for all |¢| < ¢, despite the
substantial dependence of gp% on this parameter. In the special case ¢ € {—¢,0, ¢}, we use more elaborate
arguments for stronger bounds.

Theorem 6. Let £ > 1 be an integer, v € iR and g € G. Let ¢ > 0 and A > 0 be two parameters.

(a) We have
©9(g) <. €€ min (1 ;> + 070 (1.13)
pes e " Vedist(g, S)
Moreover, gof’y%(g) < L7 holds unless D(g) < ||lg||>(log £)/V/?.
(b) We have
poe () < llglree. (1.14)

Moreover, goﬁ’jz(g) < L7 holds unless dist(g, D) <4 ||g|lv/Tog€/ VY.

We expect that the bounds in Theorem 6 are essentially best possible, possibly up to powers of £¢ and
llgll. The proof requires detailed analysis that could in principle be applied to all values of ¢ and would
detect, for instance, further Airy-type bumps in certain regions and for certain choices of parameters.

Remark 3. Less precise results but in a more general setting were obtained by Ramacher [38] using operator
theoretical methods. Combined with an argument of Marshall [35], these were applied by Ramacher—
Wakatsuki [40] to the sup-norm problem with K-types. For compact arithmetic quotients of SLa(C), and
for ¢ € V* as before, [40, Th. 7.12] yields || ¢||,, < ¢°/2~% with an unspecified constant § > 0; this does not
even recover the baseline bound.

1.6. Paley—Wiener theory
For a reductive Lie group G, Paley~Wiener theory characterizes the image of C3°(G) under the Harish-

Chandra transform. For bi-K-invariant functions, this is a famous result of Gangolli [16]: the image consists
of entire, Weyl group invariant functions satisfying certain growth conditions. For general K-finite functions,
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the picture is much more complicated: any linear relation that holds for the matrix coefficients of generalized
principal series also needs to hold for the matrix coefficients of the operator-valued Fourier transform (and
hence for the T-spherical transforms for 7 € K ). A complete list of these “Arthur—-Campoli relations” requires
a full knowledge of all the irreducible subquotients of the non-unitary principal series, which in general is not
available. Arthur [1] describes them as a sequence of successive residues of certain meromorphic functions;
see also [10]. Needless to say, a good knowledge of available functions on the spectral side is crucial for the
quantitative analysis of the pre-trace formula in the sup-norm problem.

For the case of G = SLy(C), in a somewhat neglected paper, Wang [50] devised an elegant argument to
establish a completely explicit Paley—Wiener theorem for the 7y-spherical transform acting on C°(G): in
addition to the Weyl group symmetry, we have the additional symmetry (v,p) <> (p,v) whenever v = p
(mod 1) and |v|, |p| < ¢; see Theorem 11 in §2.4. The additional symmetry is counter-intuitive at first (the
pairs (v,p) # (0,0) satisfying ¥ = p (mod 1) correspond to a discrete set of non-unitary representations),
but it enters the picture as it fixes the eigenvalues v? + p? and vp of two generators of Z(U(g)), and
hence the infinitesimal character. See [50, Cor. 2] and its proof. A more conceptual explanation, along the
lines of irreducible subquotients, can be found after (2.7). Wang’s remarkable result is that these are all
relations.

The extra symmetry makes the application of the pre-trace formula more delicate. For instance, it appears
impossible to single out an individual value of p by a manageable test function on the spectral side. We
circumvent this problem by employing a carefully chosen Gaussian (3.14) that at least asymptotically singles
out our preferred value p = £. The price to pay for this maneuver is that we lose compact support. As a
result of independent interest, we prove a new Paley—Wiener theorem for K-finite Schwartz class functions
on G = SLy(C). For the notation, see §2.4.

Theorem 7. For f € H(r), the following two conditions are equivalent (with implied constants depending

on f).
(a) The function f(g) is smooth, and for any m € Zx¢ and A > 0 we have

am
—f(klath) <<m,A eiA‘hla

ohm heR, ki,k eK. (115)

(b) The function f(u, p) extends holomorphically to C x 17 such that

~ ~

fv,p) = f(p,v), v=p (mod 1), [v||p| <Y, (1.16)

and for any B,C > 0 we have
fp) <o (L+W)7% W< B, peiZ. (1.17)

The Schwartz space offers a lot more flexibility in applications. A less precise result for more general
groups is given in [11, Th. 3], and we refer the reader to the introduction of that paper for additional
discussion and motivation of Paley—Wiener type theorems for rapidly decaying functions.

1.7. Beyond the pre-trace formula: a fourth moment

We still owe an explanation for the sub-Weyl exponent in Theorem 3(b), where ¢ = +£. The proof of this
bound is different from the other results: it is inspired by a brilliant recent idea of Steiner and Khayutin—
Steiner [45,32] in the weight aspect for the groups SO3(R) and SLo(R). The starting point is the desire
to choose the amplifier so long that it works as self-amplification. In this way, the amplifier can be made
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independent of the well-known but inefficient trick of using the Hecke relation )\12, —Ap2 = 1. A self-amplified
second moment is in effect a fourth moment, and the key observation is that it can be realized as the diagonal
term in a double pre-trace formula. This only has a chance to work if the corresponding geometric side can
be analyzed sufficiently accurately, and to this end, two extra features are necessary: a special behavior of
spherical functions with rapid decay conditions (such as, for instance, the Bergman kernel for SLy(R)) and
the possibility for a second moment count on the geometric side, i.e. pairs of matrices, in a best possible
way.

For the proof of Theorem 3(b), we implement this idea for the first time in the context of principal series
representations. Our proof proceeds differently than both of [45] and [32]. We avoid the theta correspondence
and instead detect the diagonal term in the double pre-trace formula by an argument that is reminiscent
of the Voronoi formula for Rankin—Selberg L-functions over Q[i], cf. §2.8. As we lose positivity, we have to
use the full power of the pre-trace formula, unlike our other results where the softer pre-trace inequality
suffices. The argument is analytically subtle, since we also lose the possibility to choose the test function in
the pre-trace formula freely: part of it is now given to us by the gamma kernel in the Voronoi summation
formula (one of several new features compared to [45] and [32]). At this point we need a very precise
understanding of the Harish-Chandra transform in Theorem 7 with complete uniformity in the auxiliary
complex parameters, and the reader may observe that in the end only the strong g-dependence in (1.14)
saves the final bound.

1.8. Matriz counting

Having discussed some of the analytic and representation theoretic novelties, we finally comment briefly
on the arithmetic part. In all previous instances of the sup-norm problem, the analysis of the geometric
side of the pre-trace formula amounts to counting matrices close to K, because the elementary spherical
function is bi-K-invariant and decays away from K. Given the results on spherical trace functions in §1.5,
it is clear that from an arithmetic point of view the sup-norm problem with big K-types is conceptually
very different from the spherical sup-norm problem.

The localization behavior of generalized spherical functions has distinct features as reflected by The-
orems 4 and 6. The spherical trace function gpfl concentrates close to the identity. The functions gofi:#
localize sharply around diagonal matrices (but not necessarily within K). For @fﬁ, there is localization
on diagonal and skew-diagonal matrices within K, then there is a gradual transition to a second layer in
a neighborhood of the 4-dimensional manifold N defined by (1.9), and outside this neighborhood we see
sharp decay. Theorem 5 is in some sense a combination of these two extreme cases. Correspondingly, the
counting techniques in §§6-8 are still based on the geometry of numbers, but they differ conceptually
and technically from the earlier treatment of the spherical sup-norm problem. In particular, as men-
tioned in §1.7, for the proof of Theorem 3(b) we have to achieve a best possible double matrix count,
cf. Lemma 11.

1.9. Notation

The group G = SLy(C) and its arithmetic subgroup I' = SLy(Z[i]) are fixed throughout the paper. We
use the e-convention in that € > 0 denotes a number that may be different from line to line but may in each
instance be taken to be as small as desired. As usual, we write f < g or f = O(g) to denote that |f| < Cy,
where the implied constant C' > 0 may be different from line to line; it is absolute unless otherwise indicated
by a subscript, except that we occasionally allow it to depend on the (fixed) quantities I and 2 as well as
on . We also write f < g for f < g < f, and, when used as an asymptotic notation, f ~ g for lim f/g = 1,
where the direction of the limit is clear from the context.



10 V. Blomer et al. / J. Math. Pures Appl. 168 (2022) 1-64

2. Preliminaries
2.1. Representations of SU(C)

In this subsection, we review the representation theory of the maximal compact subgroup

K =502(0) = {#lapl o= (% 2 slal+157 =1}

of G = SLy(C). We use [33, §2.1.1 & §2.2] as a convenient reference.
For u,v,w € R, we parametrize K using essentially Euler angles (2u, 2v,2w) as follows:

et cosv isinv etw
k[u,v,w] O ( eiu) (iSiIl”U COSU> ( 6iw> . (21)

Generating an equivalence relation ~ on R? by
(u,v,w) ~ (u+2mv,w), (u,v,w+2m), (u+m,v+mw), (ut+7/2,—v,w—7/2) (2.2)

we may parametrize SUz(C) by R3/~, or by a specific fundamental domain such as [0, 7) x [0, 7/2] X [-, 7),
in which each point in SU3(C) has exactly one pre-image other than those with v € ZZ. The probability
Haar measure on SUy(C) is given by

dk = (2r%) ! sin 2v du dv dw. (2.3)

The irreducible representations of K = SUs(C) are classified as (2¢ + 1)-dimensional representations o,
for £ € %Z>o, described explicitly as the space Vay of polynomials of degree at most 2¢, with a basis given
by {z¢7%:|q| < /¢, ¢=¢ (mod 1)} and SU,(C) action given by

mo(kla, B)) 279 = (az — B) 9Bz + @)1 = Z @ﬁyq(k[a, Bl)2P. (2.4)
[pI<e
p={ (mod 1)
A K-invariant scalar product on Vag is given by (279, 277) = (€ — q)!/(€ 4 q)!6,—p, so that ®f  are (unnor-
malized) matrix coefficients of 7,. Moreover,

{(I)i,q i p,q, L e %Z and |p|, |g| < £ and p,q = ¢ (mod 1)}

is an orthogonal basis of L?(K). In harmony with [51, §4.4.2], we denote by & the character of 1, by
d¢ = 2¢ + 1 the dimension of 74, and by x; = d¢&¢ the normalized character of 7,. Finally, we denote by
K ={r: 0 € }Z>0} the unitary dual of K.

2.2. Representations of SLa(C)
For compatibility with the existing literature, we shall use the Iwasawa decomposition of G = SLy(C)
in two forms, G = NAK and G = KAN, where N (resp. A) is the subgroup of unipotent upper-triangular

(resp. positive diagonal) matrices, and K = SU3(C) is the standard maximal compact subgroup.
We fix a Haar measure on G by setting

d
dg = |dz|—§dk for g = (1 i) <r 1)]67 zeC,r>0, ke K,
r r
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where |dz| = dzdy for z = x + iy, z,y € R, and dk is as in (2.3).

We write a ~ R for the Lie algebra of A, p for the root on a mapping (lc 795) to 2z, exp : a — A
for the exponential map, and x : G — K and H : G — a for the projection and height maps defined by
g € k(g)exp(H(g))N for every g € G. Thus explicitly, for g = (‘; Z) € G we have

(2.5)

l9) = (a/ ol el ) exp(i(g)) = (VI ).
laf? + [c]2 ’ lal® + [cf?
Finally, let M ~ S' be the centralizer of A in K, which consists of diagonal matrices in K.
Following [17, Ch. III], we introduce for every pair (v,p) € C x %Z the (generalized) principal series
representation m, ,. Let us denote by C°°(C) the set of functions C — C that are smooth when regarded
as functions R? — C. The representation space V,,,, consists of those functions v € C°°(C) for which the
transformed functions

b v _ az +c b
7T1/,p (<z d)> U(Z) = |bZ —+ d|2p+2 2(bZ + d) 21),0 (bz + d) 5 (CCL d) S G, (26)

extend to elements of C°°(C). The above display then actually defines the representation m,, : G —

GL(V,,p). The space V,, , is complete with respect to the countable family of seminorms
sup{|v\*?) (z + yi)| + [0\ (z + yi)| : 2% + y* < e}, (a,b,c) € N3,

where we abbreviate v := 7, ,, (( -1 )) v for v € V,, ,. The action of G is continuous in the topology induced

1
by these seminorms; thus, 7, , is a Fréchet space representation.

Using the action of K = SU,(C) and its diagonal subgroup {diag(eig, e :p¢€ R}, we can decompose
the K-finite part of V,,, into an algebraic direct sum of finite-dimensional subspaces and further into one-

dimensional subspaces:

visiie— @ vi,= P P v (2.7)

2|l £2|pl lgl<e
{=p (mod 1) {=p (mod 1) ¢g=¢ (mod 1)

Precisely, V! is a (20 4 1)-dimensional subspace on which 7, ,|x acts by 7 € K.

If v # p (mod 1) or |v| < |p|, then m, , ~ 7_, _, is irreducible, and these are all the equivalences among
the representations m, . If v = p (mod 1) and |v| > |p|, then 7, ), and 7_, _, are reducible. Assume v > 0,
say. Then the sum of Vlfp with |p| < £ < v is a closed invariant subspace of V,,,,, and the representation
induced on the quotient is irreducible. The closure of the sum of V* v,—p With £ > v is an invariant subspace of
V_.,—p, and the representation induced on it is irreducible. Both of these representations of G are isomorphic
to mp,, =~ m_p, _,. This observation will become relevant in (2.21) below.

The space V,,, has a G-invariant Hermitian inner product if and only if v € iR, or p = 0 and v €
(—=1,0) U (0,1). In the first case, we say that 7, , belongs to the (tempered) unitary principal series. In
the second case, we say that m,, belongs to the (non-tempered) complementary series. In either case,
the Fréchet space representation m,, induces an irreducible unitary representation on the Hilbert space
completion ‘71-,;, that we shall still denote by 7, ;,. The only equivalences among these unitary representations
are T, , ™~ m_, _,. The equivalence classes, along with the trivial representation, form the unitary dual G
of G.

Form~m,, € G we write

)

Vei=Vip,  VE=V!

™ v,p?

g . y/taq
Vol =V,

v,p?
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and then (2.7) is equivalent to the orthogonal Hilbert space decomposition (cf. (1.2)):

- @ V- @ @ v

|p 22|p| lgl<?
{=p (mod 1) {=p (mod 1) ¢=¢ (mod 1)

The projection V, — V7 is realized by the operator
w(Xe) == /W(k)w(k) dk € End(V;), (2.8)
K

where End (V) denotes the Hilbert space of Hilbert—Schmidt operators on V, endowed with the Hilbert—
Schmidt norm. This leads to the “block matrix decomposition”

End(V,) = B  Hom(V",vh, (2.9)

m,n|p|
m,n=p (mod 1)

where the direct sum is meant in the Hilbert space sense. Hence, for f € C.(G), the (m,n)-component of
the Hilbert—Schmidt operator (cf. [19, Th. 2])

w(f) = / f(g)m(g) dg € End(Vy) (2.10)
G

equals
T(Xn)T(f)T(Xom) = 7(Xn * [ * Xm) € Hom(V;", V"), (2.11)
where the convolutions are meant over K.

2.8. Plancherel theorem

In this subsection, we review the Plancherel theorem for G = SLy(C) pioneered by Gelfand and Naimark,
following the original sources [19,20] and their translations [22,21]. We note that the list of unitary repre-
sentations given in [20] is incomplete for higher rank groups (cf. [44,49,46]), but this does not affect the
results we are quoting. In addition, we warn the reader that the translations contain some misprints not
present in the originals, e.g. in the crucial formulae [22, (137)—(138)].

We identify once and for all (non-canonically) the tempered unitary dual émmp with the set

{ﬂ-it,p : (t,p) (S (R>0 X %Z) U ({0} X %ZQO)},

with topology inherited from the standard topology on R2. The Plancherel measure on G is supported on
Gtemp, and it is given explicitly as

1
dppi(Ti,p) == p(tQ +p?)dtdp, (2.12)

with dt the Lebesgue measure on R>( and dp the counting measure on %Z. For 7 ), € étemp, the underlying
Hilbert space ‘Z;p is independent of the parameters: it equals V := L?(C). On this common representation
space, (2.6) defines the unitary action m; , : G — U(V) that agrees with [19, (65)] for (n, p) = (2p, 2t). The
operator-valued spherical transform of f € C.(G) is the map @temp — End(V) given by 7 — 7(f) as in
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(2.10). The Plancherel theorem for G' concerns the extension of this transform to L?(G), and characterizes

its image.
Theorem 8 (Gelfand—Naimark). The map given by (2.10) extends (uniquely) to an L*-isometry
LA(G) — L*(Gemp — End(V)),

where the operator-valued L?-space on the right-hand side is meant with respect to the Hilbert-Schmidt
norm || - ||zs on End(V) and the Plancherel measure pp1 on Giemp- In particular, for every f € L*(G), the
following Plancherel formula holds:

/ Flg)Pdg = / ()11 dppr (). (2.13)
G

Gemp

Proof. The theorem follows from [19, Th. 5]; we only need to check that our Plancherel measure corresponds
to the one in [19, (137)]. We do this in four steps.

Step 1. We observe that the constant (87%)~1 in [19, (137)] should be (167%)~! due to a small oversight in
the derivation of [19, (130)] from [19, (129)]. The oversight is that the change of variables

(w1, w2, ) = (C1,¢2,(3) = (w2, w1 A + wa /A, w1)

coming from [19, (123)] is not 1-to-1 but 2-to-1.

Step 2. We rewrite the corrected right-hand side of [19, (137)] as a sum over p € $Z and an integral over
t > 0, keeping in mind that (n, p) in [19] is (2p, 2t) in our notation.

Step 3. We observe that the Haar measure dju(g) used by Gelfand—Naimark is 272dg. Indeed, applying [19,
(40)] to a right K-invariant test function f € C.(G), we obtain by several changes of variables that

G/ soat - [ (" 1) (3 1)) weliaula:

CxCxxC

_ / f(<w1 z) (1/\/1+|v|2 U/\/1+|v|2>)|dv|dw||dz|

CxC*xxC “ 1+|U|2

(G

CxCxxC “ (1+|U|2)2

_ 12 (w dw] |dz| _

= [ (0D ) S e o
CxxC G

Step 4. Putting everything together, the corrected version of [19, (137)] yields

1 T 2
[15@P 279 = 1 3 [ l2nmalDlihs (48 + 49 20t
G P oo

This formula is equivalent to (2.13), hence we are done. O

Remark 4. In the proof above, we claimed that the Plancherel measure in [19, Th. 5] is off by a factor
of 2. For double checking this claim, we looked at [31, Th. 11.2], and we found (to our dismay) that the
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Plancherel measure there is off by a factor of w. For example, for the test function f(g) := 1/tr(gg*)?, the
Fourier transform given by [31, (11.14)] equals Ff(t) = 7/ tr(tt*), hence in [31, (11.17)] the left-hand side
is 72, while the right-hand side is 7. For triple checking our claim, we verified that our Plancherel measure
yields the correct inversion formula for the classical spherical transform (for bi-K-invariant functions), as
in [15, §3.3].

Theorem 9 (Gelfand—Naimark). Let f € C°(G). For every m € @temp, the operator w(f) € End(V) is of
trace class, and the following inversion formula holds:
fo)= [ ulrlf)n(e™) dum(r). (214)
CA:t:emp

Proof. The theorem follows from [20, Th. 19] applied to n = 2 and = R(g)f, or from [31, Th. 11.2], with
appropriate correction of the Plancherel measure (cf. Remark 4). O

Remark 5. By a celebrated result of Dixmier-Malliavin [12], every f € C2°(G) can be written as a linear

combination of convolutions ww*, where w € C°(G) and w*(g) := w(g~!). Hence Theorem 9 also follows
from Theorem 8 and [19, Th. 2]. In fact for this implication we only need that w € C.(G), which is easier
to achieve.

2.4. The 1¢-spherical transform

For a given / € %220, it is interesting to see what Theorems 8 and 9 yield for test functions f € L?(G)
with the following property: for almost every = € @temp, the operator 7(f) acts by a scalar on V! and
by zero on its orthocomplement V. In the light of (2.9), (2.11), (2.13), and Schur’s lemma, these test
functions form the Hilbert subspace H(7¢) C L?(G) defined by the conditions

e f(g) = f(kgk™1) for almost every g € G and k € K;
o f=Xex[*Xe

Let @temp(n) be the set of © € @temp whose restriction to K contains 4. For f € H(7;), the operator-
valued function 7 +— 7(f) is supported on Giemp(7¢), and there it is simply determined by the scalar-valued
function 7 — tr(w(f)) via

ﬂ-(f)|V7f = % . idV# and ﬂ'(f)|V:,L = O (215)

In particular, for 7 € @temp(n) and f € H(),

2 o _ (@)
7 (f)lls = tr(m(f)m(f)*) = i1 (2.16)
For (v,p) € iR x 1Z, the condition 7, , € @temp(n) is equivalent to |p| < £ and p = ¢ (mod 1). Moreover,
for f € L'(G) NH(m), the trace of 7, ,(f) can be expressed in terms of the 7y-spherical trace function

@ﬁ,p (g) = tr(ﬂu,p (XZ)Wu,p (g)wu,p (W))

(2.17)
= tr(”l/,p(X@)ﬂ-V,p(g)) = tr(ﬂ'u,p (g)ﬂ—l/,ﬁ (ﬁ))

as (cf. (2.10) and (2.11))
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Flw,p) = tr(m () = / £(9) ¢, (9) dg. (2.18)

G

The function (pfvp : G — C vanishes unless |p| < ¢ and p = ¢ (mod 1), for else 7 does not appear in 7, ,
and @ﬁ,p(id) = 2¢ 41 in this latter case. Moreover, we have the integral representation of Harish-Chandra
[52, Cor. 6.2.2.3]:

opl9) = / (xe > mp) (K(k~Lgk)) e DrUHR) G,
K

Here, np : M ~ 51 — C* is the unitary character Np(z) = 2727 the convolution is over M, and &, p, and
H are as in §2.2. For computational purposes, we spell out the x¢ * 1, term explicitly, cf. (2.4), [50, (10) &
Lemma 3.2, [25, Th. 29.18]:

(xe *1p) (Kla, B]) = (20 + 1)@, , (kla, B])

=(2041) ei)(_l)r (5 +p) (E - P) al=Prglter| 2T,

e r r
We collect further useful properties of gaf,p : G — C in the next lemma, where we write
ap, := diag(e/?, e ?), h e R.

Lemma 1. The 74-spherical trace function cpﬁvp(g) extends holomorphically to v € C, and it satisfies the
bound

sinh(oh)

‘. <20+ 1) 22
‘<p0'+lt,p(k1ahk2)| ( ¢+ )USiI’lh(h)’

o, t,heR, ki, ks € K. (219)
(For o =0 or h = 0, the fraction on the right-hand side is understood as 1.) The extended function has the
symmetries

ohn(9) =0 5, (9) = vl (g7, (2.20)

e (9)=¢b,(9), v=p(modl), |v||p|<L. (2.21)

Proof. The holomorphic extension of gpip(g) and the bound (2.19) are a straightforward generalization of
[50, Prop. 3.4] and its proof. The identity ¢’ () = ¢, ,(g7") follows from (2.17) and m(g)* = m(g~") for
v € iR, and then also for v € C by the uniqueness of analytic continuation. The identity gpf’p(g) = tpf,p@_l)
is [50, Lemma 3.2|, keeping in mind that 7, , >~ 7_, _, for v € iR and again invoking analytic continuation.
Finally, the remarkable symmetry (2.21) follows from [50, Cor. 2], or more conceptually from the discussion
below (2.7). O

As we shall see in Theorem 10 below, the 7y-spherical transform defined by (2.18) is inverted by the
following inverse ¢-spherical transform. For h € L'(Gtemp(7¢)) N L?(Gtemp(7¢)) and g € G, we define

o) = e > [ bt ol la) (¢ 4 ) (222)
pI< 0

p={ (mod 1)
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Theorem 10. The transforms defined by (2.18) and (2.22) extend (uniquely) to a pair of Hilbert space isome-
tries inverse to each other:

H(7e) — L (Gromp(T2)).

In particular, for f € H(re), the following Plancherel formula holds:

/|f ﬁ > /l (it,p)|? ( + p?) dt. (2.23)

Ipl<e
p={ (mod 1)

Proof. The fact that ~ extends to a Hilbert space isomorphism H(7p) — L2(@temp(n)) follows from Theo-
rem 8 and our discussion above. In particular, (2.23) is a special case of (2.13) in the light of (2.12), (2.16),
(2.18). We are left with proving that ~is the inverse of 7, and for this it suffices to verify that ~applied after
~is the identity on the dense subset C°(G) N H(7y) of the Hilbert space H(r). For f € C(G) N H(7e),
(2.8), (2.10), (2.12), (2.14), (2.15), (2.17), (2.18) yield

fo)= [ ulr(imlg D dum = 5oy [ e een(o ) due

Gemp Gemp

1 o0
(it,p) i p(97") (¢ + p°) dt.
20+1 / E p
( + D |P|<f 0

p=¢ (mod 1)

The proof is complete. O

Wang [50] proved an analogue of the Paley~Wiener theorem for the 74-spherical transform, and in par-
ticular characterized the image of H(7,) N C2°(G) under the transform. The following is [50, Prop. 4.5] and
should be compared to Theorem 7 in the introduction.

Theorem 11 (Wang). Let [ € H(7y) be a test function, and let R > 0. Then the following two conditions
are equivalent.

(a) The function f(g) is smooth, and
f(k?lahk‘g) =0, |h| > R, kl,kjg c K.

(b) The function f(l/, p) has a holomorphic extension to C x 37 such that

~ ~

fw.p)=flp,v), v=p(modl), [v]Ip|<¢,
and for any C > 0 we have

Fn,p) <o (L4 ) Cef™ . yec, pelz.

We now prove a Schwartz class version of this result as stated in Theorem 7.
Proof of Theorem 7. For harmony of notation with [50], in this proof we use D} (k) to denote the matrix

coefficients of 7, relative to the basis obtained by normalizing the orthogonal basis {279 : |¢| < {,q = ¢
(mod 1)} in the space Vo, of §2.1. Thus we explicitly have the renormalization
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. 1/2

p,q p,q

Assume condition (a). The holomorphic extension of f(v,p) follows from (2.19) coupled with (1.15) for
m = 0, and then (1.16) is immediate from (2.21). In order to derive (1.17), we use an alternate representation
of f(y, p). We shall assume that |p| < £ and p = £ (mod 1), for else f(l/, p) = 0. By the third line of the
second display on [50, p. 621] and [50, Lemma 3.2], we see that the (unique) holomorphic extension is also
provided by

flv,p) = %H / F(h,p)e’™ dhn, (2.24)

where

F(h,p):=e" f(kapn) D: (k) dk dn. (2.25)
[

We claim that, for any m € Z>¢ and A > 0, we have

™m

ahmf(h p) Kmae MM heR, |p|<¢ p=¢(modl). (2.26)

For |h| > 1 this follows by writing apn = kjap ke in (2.25), and then combining (1.15) with some calculus
to keep track of the dependence of ' € R and ki,ks € K on h € R. For |h| < 1 we proceed similarly

for the part of the integral in (2.25) that corresponds to n = (' ¥) with |z[ > 1, while we estimate the

(h-derivatives of the) remaining integral directly by the smoothness of f(g). With (2.26) at hand, (1.17)
follows from (2.24) via integration by parts. We proved that (a) implies (b).
Assume condition (b). By Theorem 10,

flg) = ;ﬂg > /A(it,p) Piplg™h) (% +p7) dt.
0

p={ (mod 1)

Let us restrict, without loss of generality, to g = kjapks with h > 0. Using the display below [50, (29)]," we
infer

1
flg) = m Z /f s,p) D —p] Ua )Df,j(kzkl)Df,—p(Uel)dS,

p,I= é (mod 1)

where Dfp’j (v, ') and Df’ip(’l)gl) can be explicated using [50, (5) & (28)], and

f(s,p) =

~

(it, p) e~ (12 + p?) dt, seR. (2.27)

é\g

1 We note that in [50, (29)] the product k2k; should be conjugated as u;llkzklu%, and the integral over 0 < ;1 < 27 with
normalization factor 1/(27) is missing. After this correction, the crucial next display follows as stated, by expanding the matrix
coefficient Dfp)ip (in our notation) via the entry-by-entry product of three matrices and executing the ¢1-integral.
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By (1.17) and Cauchy’s theorem, it follows for any n € Z>q and D > 0 that

n

py F(s,p) <n.p e Pl s € R. (2.28)

The smoothness of f(g) is now straightforward, and this automatically verifies (1.15) for |h| < 1. From now
on we can assume, without loss of generality, that h > 1. From (1.16), (2.28), and the calculation around
[50, (38)—(41)], we see that

3 /fsp DY, (05 )DY s (kaka) DY, (vpr) ds = 0.

Ipllilse o

p,j=¢ (mod 1)
hence in fact
—h oo
flg) = ﬁjh(h) | le:Q /+/ fls.p) DL, (05 1) D5 (kak1) D5, (vr) ds.
plsl71< “00

p,j=¢ (mod 1)

From here it is straightforward to deduce (1.15) for h > 1, using (2.28) and the remarks above it. We proved
that (b) implies (a). O

We shall denote by H(7/)e the set of functions satisfying the equivalent conditions (a) and (b) of
Theorem 7. It is clear that H (7)o is a convolution subalgebra of L!(G) N L?(G).

Remark 6. In the previous display, we may estimate the product of the three matrix coefficients (recalling
that each matrix (DY ,(k))p,q is orthogonal) using the trivial bound |D§)j| < 1 and the Cauchy-Schwarz

inequality for the remaining two factors. Combining this with the observation f(s, p) = ]‘7(—37 —p) yields
the following refinement of (1.15) when m = 0:

| f(kranks)| < /|f s,p)|ds, h>1, ki ks €K. (2.29)

\p\<€
p=¢ (mod 1)

We end this subsection by stating a two-variable version of some of the previous definitions and results.
Taking (topological) tensor products of Hilbert spaces, we can identify H(7,)&H(7,) with the space of
functions f € L?(G x G) satisfying

o flg1,92) = f(klglkfl, kgggkgl) for almost every g1, ge € G and k1, ke € K;
o f=0u,Xe)* f*(Xe,xe) almost everywhere.

This can be seen by projecting the isomorphism between L?(G)®L?*(G) and L*(G x G) (see e.g. [43,
Cor. 4.11.9]) to H(m)®H () and the (closed) subspace of functions in question. By Theorem 10, this
space is isometrically isomorphic to L?(Giemp(7¢)?) via the obvious extension of the map (2.18):

f(Vhpl; V2ap2 / f 91792> 901/1 ,P1 (gl)(pllz P2 (92> dgl dg? (230)
G1xXGy

For h € Ll(@temp(n)z) N LQ(CA?temp(Tg)Q), the inverse transform is given as in (2.22):
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¥ 1
h = (it it
(91,92) (20 + 1)274 Z // it1,p1,ita, p2)
[p1l:[p2| <t (2.31)

p1=p2={ (mod 1)
(9T )b o (g3 (82 + p2)(t2 + p2) diy dt
‘Pztl,pl 91 ‘Pztz,pg 92 1 T P1){ly T P3) Aty dia.

It is straightforward to adapt the above presented proof of Theorem 7 to obtain the following variant for
H(re)@H(7e):

Theorem 12. For f € H(r)®QH(m), the following two conditions are equivalent (with implied constants
depending on f).
(a) The function f(gi1,g2) is smooth, and for any my,mg € Z>o and A > 0 we have

omt +ma

Wf(klahlk%k'sahgkél) Koy mg,a ¢ AR py Ry € R, Ky ko, ks, ka € K.
1 Ohy

(b) The function f(u1,p1,1/2,p2) has a holomorphic extension to C x %Z x C x %Z such that

J(vi,p1,v2,p2) = f(p1,v1,v2,p2), vi=p1 (mod1l), | |pi] <Y,
.]/C\(V1>p171/27p2): A(V17p17p27V2)7 Vo = P2 (mOd 1)7 ‘V2|7‘p2| <€7
and for any B,C > 0 we have
Fwr,p1,ve,p2) <po (1+ ] + |v2]) =€, |Rur |, [Rvo| < B, p1,p2 € 2.

We shall denote by H(7¢,7¢)oo the set of functions satisfying the equivalent conditions (a) and (b) of
Theorem 12; this is clearly a convolution subalgebra of L'(G x G) N L*(G x G).

2.5. Hecke operators

The arithmetic quotient I'\G comes equipped with a rich family of Hecke correspondences, which we now
describe, referring to [2] for further details and references. For every n € Z[i] \ {0}, consider the set

T, = {(‘; 3) € My(Z[{]) : ad — be — n}

In particular, I'y = T". Then we may define the Hecke operator T}, acting on functions ¢ : I'\G — C by

noweh = oG- mE S (G ) o

'yeF\F ad=n b mod d

where the result is independent of the choice of the square-root since +id € I'. In particular, since I'_; =
r- (_1 1) and %(_1 1) = (Z ﬂ.) € I', we have T_; = T1 = id. We also observe that, as v ranges through a

set of representatives of I'\I',,, ny~!

ranges through a set of representatives of I',, /T
These Hecke operators are self-adjoint on L?(I'\G), commute with each other and the Laplace operator;
thus they act by constants A,,(V) on each irreducible component V' C L?(T'\G), with non-zero vectors in

each V being joint Hecke—-Maaf} eigenfunctions. They also satisfy the multiplicativity relation

T, T, = Z T a2 m,n € Z[i] \ {0}, (2.33)
(@)](m.n)



20 V. Blomer et al. / J. Math. Pures Appl. 168 (2022) 1-64

where it is clear that the right-hand side does not depend on the choice of the generator d. Finally we have
the Rankin—Selberg bound

S ()P <y a (2.34)

In|2<z
2.6. Eisenstein series and spectral decomposition

In this subsection, we review the construction and properties of the (not necessarily spherical) Eisenstein
series on I'\G. The quotient I'\G has a unique cusp at co. For ¢ € Z>, p,q € Z with 2 | p and |p|, |¢| < ¢,
and v € C with Rv > 1, we define the Eisenstein series of type (¢,¢) at oo as in [33, Def. 3.3.1] by the
absolutely and locally uniformly convergent series

Brgw,p)(9) == Y ¢uq(v,0)(79), (2.35)

YEL o\

where ', is the subgroup of upper-triangular matrices in I' (the stabilizer of oo in I'), and

Ge,q(v;p) ((r T*1> k) =2 0oL (k),  r>0, keK. (2.36)

These FEisenstein series possess a meromorphic continuation to v € C, which is holomorphic along R
[33, §5.1]. An easy calculation with (2.32) and (2.4) shows that they are also eigenfunctions of the Hecke
operators T;, with

TnErq(v,p) = M(EW,p))Eeq(v,p),  An(E(v,p)) = i > Xow(@)X—v—p(d), (2.37)
n=ad
where x, ,(2) = |2"(2/|2])7?. In particular,
Ain(B(v,p)) = (=122 (B (v, p)). (2:38)

While Ey (v, p) for individual v € iR (barely) fail to lie in L?(I'\G), their averages against C..(iR) weights
f(v) comfortably do, and upon taking the Hilbert space closure of their span and orthocomplements one
obtains the familiar orthogonal decomposition

L*(T\G) = C - 1® L*(T\G)cusp © L*(T\G)gis- (2.39)

Let H(v,p) be the linear span of all ¢y 4(v, p) with |p|, |¢| < £. By (2.36), the functions f € H (v, p) satisfy

F((720)0) = Puatiren ecr gea

and they are determined by their restriction to K. In fact H(v,p) as a (g, K)-module is isomorphic to the
K-finite part of V, ,, featured in (2.7). That is, the appropriate completion of H(v,p) serves as a model
of the Fréchet/Hilbert space representation m, ,, and we shall denote by H*(v,p) the dense subspace of
smooth vectors in this completion.

Denoting by C¥(I'\G) the space of K-finite smooth functions on I'\G, an automorphic representation
of type (v, p) for T'\G may be realized as a unitary (g, K)-module homomorphism 7 : H(v,p) — CX(T\G),
with the corresponding 7, , an irreducible unitary representation on the Hilbert space V,,,, cf. [33, §3.4 &
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8]. Such a T may arise as Ty for a cuspidal constituent V ~ V,,,, occurring discretely in L?(I'\G)cusp, OT
D P
from the Eisenstein series via

TE(V,p)¢€,q(Vap) = E@,q(yap)v |p|7 |q| < l

Indeed, by (2.35), the last display defines a (g, K)-module homomorphism for v > 1, hence by analytic
continuation for all ¥ € C where the relevant Eisenstein series have no pole. Following custom, we lighten
the notation by denoting a generic automorphic representation of type (v, p), whether of type Ty or Tx(,,p),
as V, and its associated Hecke eigenvalues as A, (V). Finally, we shall use that the above (g, K)-module
homomorphism extends uniquely to a G-module homomorphism H*(v,p) — C°°(T'\G), and its image
consists of functions of moderate growth.

Now (2.39) is explicated by the following two spectral identities. For f in the space C§°(I'\G) of smooth
complex-valued functions on I'\G with all rapidly decaying derivatives, we have

Ty ¢e,q(vv,pv)

(A (fs Tvdeq(vv,pv))
f=eme T 2 2 o

V cuspidal q,l€Z PvﬁqHK

lpv|ilal<e

v [y LBl g ),

L H
pE2Z qleZ ”
© Iphlal<

(2.40)

with the obvious interpretation of (f, E¢ 4(v,p)). For f1, fo € C3°(I'\G), we have with the same interpretation

_ <f a1><1’f> <f 7T (bl,q(y , D )><T (b&q(y , D )’f>
<f17f2> _ JOI(F\G)Q + Z Z 1,4V \4 ||;Z 14 VPV 2

V cuspidal gq,(€Z pv,q ||K
lpv.lql<e

(2.41)

S % (f1, Eoq(v P)><E€,q(V P)s f2>

125

(0) pE2Z qleZ q||

Ipl:lql<e

Compare with [14, Ch. 6, Th. 3.4] and [33, Th. 8.1].
We shorten the notation in two ways. First, for an automorphic representation V' (cuspidal or Eisenstein)
of type (v, p) occurring in L?(I'\G), we write

TV¢€,q<V p)

195,41l

(béq ) |p|7|Q| <£

In particular, when at least one of two such V and V' is cuspidal, (qﬁZq,QSZ:q,) equals d(g,q,v)=(¢/,q',V")-
Second, while the decompositions in (2.40) and (2.41) are over all automorphic representations V' (cuspidal
or Eisenstein) occurring in L?(I'\G), keeping in mind the 7y-spherical transform of §2.4, it will be useful
to introduce the shorthand notation f 1 dV for the sum-integral over those V' of type (v,p) such that
Tup € G() (that is, with |p| < £ as well as p € 2Z for V Eisenstein). Thus, for example, (2.40) may be
rewritten in the more compact form

f= i + 3 [ okl (242

£>0 <
[ lq|<e
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2.7. Rankin—Selberg convolutions

In this subsection, we review briefly the properties of Rankin—Selberg L-functions. We shall restrict to
automorphic representations for T'\G on which the Hecke operator T; acts trivially, so that they lift to
automorphic representations for PGL2(Z[i])\PGL2(C). This allows us to refer to the theory of GLs.

The Rankin-Selberg L-function of two automorphic representations V; of type (v, p;) € iR x Z for I'\G
is defined by the absolutely convergent series (cf. (2.34))

An (Vi) An (V2)

T Rs > 1. (2.43)

1
L(s,Vi x V) = ZC@(z‘)@s) Z
neZ[i\{0}

This can be verified by matching the Euler factors on the two sides, using [28, Th. 15.1], [30, Prop. 3.5],
[47, (3.1.3)], and [9, Lemma 1.6.1]. In particular,

L(s,V x E(v,p)) = L(s — 3,V @ xp) L(s + 50,V © x—p)
for V cuspidal and (v, p) € iR x 4Z according to (2.38), as well as

L(S,E(Vl,Pl) X E(V27p2)) = H L(S + %(611/1 + 52V2)7X—e1p1—62p2)a
61,626{i1}

with (v;,p;) € iR x 4Z and x,(z) := (2/|2|)"P. All L-functions are meant over Q(i).

The Rankin—Selberg L-function L(s, V; x V) possesses a meromorphic continuation to the entire complex
plane with the exception of finitely many possible poles along the line s = 1. It is in fact entire except as
follows (cf. [18, Th. 2.2]):

o If V; = V5 (= V) is cuspidal of type (v,p) (that is, (v1,p1) = £(v2,p2)), there is a simple pole at s = 1
with (strictly) positive residue

res L(s,VxV)= % “L(1,ad® V) >, (1+p))(1+ \1/|))_E7 (2.44)
s=
where the lower bound follows from [34, Prop. 3.2].
o If V4 and V5, are both Eisenstein series with p; = eps for some € € {£1}, there are simple poles at
s=14n(v —evq)/2 for n € {£1} with residue

iy
Ly(V1,Va) = 1 Coey (1 +n(v1 — ev2)) L(1 + 1, X —25p, ) L(1 — neva, Xapep, ) (2.45)

unless v1 = w5 or v = 0 or v, = 0, in which case, however, the definition still makes sense as a
meromorphic function of vy and vs.

Finally, the associated completed L-function satisfies the familiar functional equation
A(s, Vi x Vo) :=16°L(s, V1 X Va)Loo(s, V1 X Vo) = A(1 — s, V1 x V3), (2.46)

where the exponential factor 16° coming from the discriminant of Q(%) is included for convenience, and the
factor at infinity is given by

LOO(Sa Vi x ‘/2) = F(Sa ﬁaﬁ) L= H LOO(S?X€1V1,€IP1 'X€2V2,€2P2)
61,626{:|:1}
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= H I'c (s + %(611/1 + eavn) + %|elp1 + 62p2|) . (2.47)
El,ege{ﬂ:l}

Here we used the abbreviations

Lc(s) :==2(2m)°I'(s), V= (v1,12), P = (p1,p2)-

Indeed, (2.46)—(2.47) follow from [28, Prop. 18.2], [47, §3], [53, Prop. 6 in §VII-2] and its proof, upon
noting that V; is isomorphic to the principal series representation induced from the pair of characters

(X_ij_Pj’XVjJ’j)'
Lemma 2. Let f : iR — C be a function decaying as f(v) < (1 + |v|)7=3, and let p € Z. Then

S F0n)F0R) La((1,0), (v2r0) T2 L2 5 0,

> () nefx1} T T

Proof. First we note that the n-sum cancels the individual poles of £, ((v1,p), (v2,p)) at 11 = va. For e > 0
and V; = (v;,p) with j € {1,2} define

v
L,(Vi,Va,e) = 7 Sem L+ etnlvn —va))L(L +nry, X—2gp) L(L =12, X2np)

and

dl/1 dl/2

I // Z f Vl (V17‘/2a )
(0) (0) Me{E1}

T T

This function is continuous at € = 0, so it suffices to show Z(g) > 0 for £ > 0. Inserting the definition and
opening the Dedekind zeta function, we see that

1
Z Z n|2+2e
(0)

1 dv|?
|n|2ny L(]- + v, X*277p)f(y)_- =0
nE{il}nEZ i)\{0}

™

as desired. O
2.8. Diagonal detection of Voronoi type

In this subsection, we prove a Voronoi-type formula that allows us to detect equality of two automorphic
representations occurring in L?(I'\G) in terms of a certain weighted orthogonality relation between their
Hecke eigenvalues. We shall use that only tempered representations occur in L?(I'\G), e.g. by [14, Ch. 7,
Prop. 6.2].
Lemma 3. Let P > 1 be a parameter. There exists a function

Wp:Rso x C?2 xZ% = C,

given explicitly by (2.50), with the following properties.

(a) Wp(x,7,p) is an entire function of 7 = (v1,v9) € C2, and it is invariant under

(vj,pj) = (—v;, —pj) as well as (vj,pj) — (pj,vj) (vj € Z).
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(b) Let us abbreviate P := (1+ |p1 + pa|) (1 + [p1 — p2|). Then for every A > |Ruv1|+ [Rvo| we have

. ~ _ A _
We(z, 7, 7) <ason s (14 (P/P)*A72) (14 |vg| + [va]) a2, (2.48)

(¢) For every two automorphic representations V; of type (vj,p;) € iR x Z for T\G we have

R CCNR PRUATW(S

n€Z[i]\{0}

T L(1,ad® V;) P?, Vi = Va cuspidal; (2.49)
= Zne{il} L,(Vi, Vo) P2Hni=ev2) - V4V, Bisenstein, py = epa, € € {£1};

0, otherwise,

where L(1,ad*Vy) and L,(V1,V2) are as in (2.44) and (2.45).

Proof. Let w : Ry — C be a smooth function supported inside [1,2], and normalized so that its Mellin
transform @(s) = [~ w(x)z® da/x satisfies W(1) = 1. We define
162~ 1T (s, 7, )
4% : (2s) _pran TG 2 D) g 24 2.50
b = g [ a2 (00 oG- Ja s, (250
2
where T'(s, 7, p) is as in (2.47).

Shifting the contour to the far right, we see that Wp(x, 77, p) is entire in #. The symmetry with respect
to (vj,p;j) — (—vj, —p;) is obvious from (2.47). For r € %Z we have the equality

(z+7)  T(z—r) sin(m(z —r)) (1) I'(z—r)
Fl—z+7r) T(1-z-7r) sin(r(z+7r)) Nl—z-r)
of meromorphic functions in z € C. This shows that (cf. (2.47))
(s, 7,p) H Tc (s + 5(e1v1 + ean) + 3lerpr + eaps)
I(1—s,0,p)

1 1
L ere (1) Ic (1—s— 3(e1v1 + eav2) + 3lepr + e2pa|)

B Ic (s+ 2(ervn + eav2) + L(eapr + €2p2))

= i i
el,egﬂ} Ic (1 —s— 3(e1vy + eav2) + 3(€1p1 + €2p2))

is symmetric with respect to (v, p;) — (pj,v;), completing the proof of (a).
Combining the first line of the previous display with [24, Lemma 3.2], we infer for R(s) > §|Ruv1|+ §|Rvs|
that

T (s+ 2(ewvn + eav2) + Lewpr + e2po)
Ic (1 -5 (a1 + e213) + $|epr + eapal)

L(s,7,p) |
‘I‘(l—s,ﬁﬁ) - H

61,€2€{i1}

R(2s+e1vi+ -1
K Rs,Rvr,Reo H ‘S + %(611/1 + ear) + %\61]71 + €2P2H (2servateava)

61,626{:‘:1}

Cmsgan  [] (U lepn +epa) ORI (5] | [y T )

61,626{:‘:1}

= (1+ [p1 +p2)) 72 (

1+ |p1 — po)) ™72 (8] + 1] + 1))
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Turning back to (2.50), the singularity of the integrand at s = 1/2 is removable, so we can shift the contour
to s = A/2. The bound (2.48) follows upon noting that

o W(s) <cms (14 ]s])7¢ for all C >0 and s € C;
o (Q(i)(2s) < (1+s|)? for Rs > 0 and [2s — 1| > 1.

Finally, to show (c), we start from the following identity, a consequence of (2.43):

1 [m|*|n|> 1 o\ p2s
o ooow (T A (VDA (V) = %/L(s,Vl x Vo)@(s) P ds.

6 ;
m,n€Z[i]\{0} )

We shift the contour to fts = —1; the contribution of the possible poles (on the line Rs = 1) is recorded on
the right-hand side of (2.49). In the remaining integral we apply the functional equation (2.46) and change
variables s — 1 — s getting

1 e 165T(s, 7, )

— [ L(s, Vi x Vo) P*~* —

omi ) L& VixT2) 161=°0(1 — s, 7, p)
@)

w(1 — s)P* ds.

Moving this term to the other side, we obtain the desired formula (2.49), first for (v1,p1) # £(v2,p2), but
then by analytic continuation everywhere. This completes the proof of (¢). O

3. Pre-trace formula and amplification

In this section, we first implement a pre-trace setup, using integral kernels that are (by necessity) not
bi- K-invariant, first in §3.1 as the full pre-trace formula based on the theory of Eisenstein series and then as a
streamlined pre-trace inequality in §3.2. In §§3.3-3.5, we couple the pre-trace setup with either amplification
by Hecke operators or self-amplification via diagonal detection of Voronoi type in §2.8 to derive estimates
on pointwise values of automorphic forms in terms of estimates on generalized spherical trace functions and
Diophantine counts.

8.1. Amplified pre-trace formula

In this subsection, we prove an amplified pre-trace formula based on the theory of Eisenstein series and
the spectral decomposition of L?(I'\G) (see §2.6). This is a familiar identity between spectral and geometric
data, and its full force will be needed in the proof of Theorem 3(b); in fact, as an even more general version,
we shall use a double pre-trace formula (see §3.4) in two variables.

Let A be a bounded operator on L?(T'\G) preserving the subspace C§°(T'\G) of smooth functions with all
rapidly decreasing derivatives. Assume that for the basis forms (Z)Xq, indexed as in (2.42) by V occurring in
L?(I'\G) (cuspidal or Eisenstein) and ¢, ¢ € Z satisfying ¢ > max(|py|,|q|), there are constants ch(A) eC
such that

(A, o) = e (A, 81,), ¥ € C(D\G). (3.1)

Then (2.41) yields, for every ¢ € C5°(T'\G),

(w0 = Lo / 3 Al dE P av (3.2
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For f € Cy(G) a rapidly decaying continuous function on G, and ¢ € L?(I'\G), we may consider the
function R(f)y € L?(T'\G) defined by

(R(S)¥)(g) = /f(hw(gh) dh = /f(g_lh)¢(h) dh
G G

— [ klomuman, ki) = 3 rlgm)

G yel

Thus R(f) is a bounded integral operator on L?*(I'\G) with kernel k;. It is clear that R(f) preserves
C3(T\G), and its adjoint equals R(f)* = R(f*) with

(g™h, ged.

~

f(g) ==

Further, for a finitely supported sequence of complex coefficients © = (2n)nez(i\ {0}, let Ren(w) be the
operator on L?(I'\G) given by

Rén(z) := Z X Th. (3.3)
neZ[i\{0}

The adjoint of this operator equals Ran(z)* = Rgn(T).

Let us now fix an integer ¢ > 1. Let f € H(74)s be such that f = f* and let x = (x,) be as above
such that x = T, the self-adjointness conditions serving only to lighten the notation below. Further, let V'
be a non-identity (cuspidal or Eisenstein) automorphic representation of arbitrary type (vy, py) occurring
in L2(T'\G), and let ¢',q € Z be such that ¢ > max(|py|,|q|). For V cuspidal, (2.15) and (2.18) show that

RO, =00t l FOV) = Flov )
(3.4)
Rﬁn(‘x)(b}/’,q = /x\(v)¢€’,q’ £(V> = Z xn/\n(v>
neZi]\{0}

For V Eisenstein, these equations are still valid with the obvious extension of R(f) and Rgy,(x) to functions
in C*°(T'\G) of moderate growth, as follows from (2.37) and the discussion between (2.39) and (2.40). There-
fore, following the usual argument that R(f) and Rgy(z) are self-adjoint, we obtain that A := R(f)Ran(z)
satisfies (3.1) with

pr,q(A) = b=

Hence (3.2) holds with these coefficients and ¢-summation replaced by ¢-summation. We note that the
coefficients decay rapidly in v by Theorem 7. Moreover, A(1) = R(f)(1) vanishes by f = f %Xz and the
orthogonality of characters (recalling that ¢ > 1).

Applying (3.2) and recalling our observation below (2.32) about ny
¥ € C§°(T\G) that

~las~y e '\ T, we obtain for every

[ S diiwalrar = [[en ¥ atumi@

14 lq|<e (T\G)? n€Z[i]\{0}

-] X B Y e agan,

T\G)? nEZ[i]\{O} 'yGF
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where 4 abbreviates /y/det+y. Letting 1 range through smooth, nonnegative, L!'-normalized functions
supported in increasingly small open neighborhoods of a fixed point I'g € T'\G, and taking limits using the
rapid decay of ch(A), we obtain the desired amplified pre-trace formula

/f23+1 PRAOLCIE DS ng 79)- (3.5)

lal<e nez| z]\{o} wer

The pre-trace formula (3.5) isolates forms ¢Xq with a specific value of ¢ (thus, forms in the chosen
constituent V* in the decomposition (1.2) for various V’s), a starting point for a proof of Theorem 1. To
further isolate eigenforms in the specific constituent V%9 (for a fixed |q| < /), starting from our earlier
[ € H(m)oo satistying f = f*, we define a smooth function f, € Co(G) by

21 2
1 : io —i i 1 . io  —i i
fq(g) = Py /f(gdlag(e %e 9)) e dp = %/f(dlag(e %e 9)9) e27i dp. (3.6)
0 0

We note that f, = f, but f; need not lie in H(7¢)oo- By the orthogonality of characters on R/Z, we have

R(fy) = R(f)lly = 4 R(f), (3.7)

where I1, is the projection onto the closed subspace consisting of 1) € L?(T'\G) such that (g diag(e®®, e~%)) =
e2412y)(g). In particular, R(f,) is a bounded, self-adjoint operator, which preserves C§°(I'\G). Moreover, by
(3.4) and the surrounding discussion,

fV) v

R(fq)¢}/;’q, = 6“’:‘1’) »q) 28 + 1

¢€’ ,q’

holds for V' cuspidal, and also for V' Eisenstein with the obvious extension of R(f,) to functions in C*°(I'\G)
of moderate growth. Thus, applying as above (3.2) with A = R(f;)Rgn(z), we obtain the following amplified
pre-trace formula for individual forms:

/f2£+1 LAOICIEDS qug 79)- (3.8)

nez| z]\{O} "/eF

We proved (3.5) and (3.8) for every f € H(7¢)oo and finitely supported = = (x,,) under the assumption
that f = f* and z = Z. In fact (3.5) and (3.8) hold without this assumption, because both sides are C-linear
in f and z. Alternatively, one can modify the above proof to work without the self-adjointness assumption,
starting with the analogue of (3.4) for R(f*)@/,',q and Ry (f)qﬁxq

3.2. Positivity and amplified pre-trace inequality

In many situations, the coefficients on the left-hand (spectral) side of (3.5) and (3.8) are nonnegative,
and the pre-trace formula is simply used as an inequality, by dropping all but the terms of interest. This
is the case for the proofs of Theorems 1, 2 and 3(a). In this subsection, we derive such amplified pre-trace
inequalities in a streamlined way with substantially less heavy machinery, drawing inspiration from [3, §3].
For example, here we do not even need to mention Eisenstein series.

Let A be a positive operator on L?(I'\G), and let B be a finite orthonormal system of eigenfunctions
¢ of A with (not necessarily distinct) eigenvalues (cy(A))pen. Then, A preserves the orthodecomposition
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L?(I\G) = Span(B) @ Span(B)*, and for any ¢ € L?(I'\G) the corresponding decomposition ¥ = 1y + 19
with

Y=Y (,6)¢  and =9 -y

peB

gives

(A, 1) = (A, 1) + (Ao, o) = (A1, 1) = Y cs(A)|(, 8)I. (3.9)

PeDB

We will apply this positivity argument to the operators A = R(f)Rgn () and A = R(f,)Ren (), where
f € H(T¢)oo and x = (z,,) are as in the previous subsection. Positivity is achieved by making the operators
R(f) and Rgn(x) individually positive, because Hecke operators commute with integral operators, and II,
in (3.7) is a positive operator commuting with R(f). For the positivity of R(f), it suffices that

f=u*u for some u € H (7)o satistfying u = u”*. (3.10)

For the positivity of Rg,(x), it suffices that

Ran(@) = (3 wlh) « (30 wnn) + (32T )+ (3 ZTone),

lepP meP lepP meP
S o+ S aE (3:11)
l,mcP l,mcP
()[(l,m) (D)](1*,m?)
Im/d*=n 1?2m?/d%=n

where (y;)icp and (z;)icp are arbitrary complex coefficients supported on a finite set P C Z[i] \ {0}. Here
we used that each Hecke operator T;, is self-adjoint.

Now, let V be a cuspidal automorphic representation that occurs in L?(I'\G) and contains 7-type vectors.
Let B = {¢, : |¢| < ¢} be an orthonormal basis of V¢, with ¢, € V%%. As in the previous subsection, we
evaluate the left-hand side of (3.9) geometrically, and then apply a limit in 1 to both sides. This way we
obtain the following amplified pre-trace inequalities in place of (3.5) and (3.8):

/\

2€+1 Zlqb <> x"ng 79), (3.12)

n€eZli] \{0} ’YEF

FVEW) | P < oY e ) (3.13)

26+1 n€eZ[i)\{0} " YET,

3.8. Test functions and amplifier

The main idea of the amplified pre-trace inequality (3.12) is that it can provide a good upper bound for
D bem |#(g)|? as long as the test function f € H(7;)s and the amplifier z = (z,,) in §3.2 are chosen so that
f(V) and Z(V) are sizeable while the right-hand side is not too large. In this subsection, we make these
choices.

As in Theorems 1, 2 and 3, let £ > 1 be an integer, I C iR and Q C G be compact sets. Let V C L*(T'\G)
be a cuspidal automorphic representation with minimal K-type 7, and spectral parameter vy € I. Let us
introduce the spectral weights
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(p2—02+0v%)/2 cC c 17 </
h(u,p)'{e ’ veC, pegZ, bl<t (3.14)

0, veC, peiZ, |p| >t

According to Theorems 10 and 7, the inverse 7y-spherical transform f := h given by (2.22) belongs to
H(7¢)oo, and it satisfies f = h. Moreover, if we set u := ¥ with

(v.p) Z, |p| <4,
v(v,p) ==
Z,

Ip| > ¢,

(20 + 1)1/2e@* = C+v*)/4, veC, pe
0, vreC, pe

1
2
1
2

then v € H(7¢)oo, u = u* by (2.20) and (2.22), and f= u?/(2¢ + 1) = u*u. This shows that (3.10) is
satisfied. Hence R(f) is the kind of positive operator considered in §3.2, and by (3.4) we have

FOV) = h(uy, 0) > 1. (3.15)
With the notation (2.27), we have
Fs,p) = V2r(p? +1 - 52)6(”2—@2—52)/27

whence by (2.29), (2.22), and the trivial bound |g0f;,p(g*1)| < 20+ 1, we have

flg) < e lal, (3.16)

We shall also use the following supplement, a consequence of (2.20) and (2.22):

flg) <t su% ’go,ﬁﬂg)} + 759, (3.17)
ver

We now choose our amplifier, which we do as in [2, §5]. Let L > 7 be a parameter, to be chosen at the
very end of the proof of Theorems 1, 2 and 3, and set

P(L) = {l € Z[i] prime : 0 < arg(l) < T and L < |I|* <2L};
yr = sgn(N(V)), z; :=sgn(Az(V)), le P(L).

It follows from the result of Breusch [8, Teil IT] (or from the prime number theorem for arithmetic progres-
sions, for sufficiently large L) that P(L) # 0, while in (3.3) and (3.11) we have

2iepr) (v} + 2% < L/logL, n=1;

T, = (14 01y 1) Y1, Y1, + 1y =1,21, 21, K 1, 1 = Uyl for some 1,1y € P(L); (318)
(4 01z )20, 21, < 1, n = 1212 for some I1,ly € P(L);
0, otherwise.

This formula is the analogue of [3, (9.16)], except that we forgot to insert the factors 1 4 0;,;, there. In
particular, by the inequality |A; (V)| + |A2(V)| > 1/2 that follows from (2.33), we have

)= (X W)+ (2 meml) s 3.19)

2
1€P(L) 1eP(L) log™ L

Let B be an orthonormal basis of V*. Entering the lower bounds (3.15) and (3.19) into the amplified
pre-trace inequality (3.12), we obtain
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2—¢
I S = D Tl (3.20)

bEB neZ[i\{0} ~€T,

Let us assume that g € Q. A straightforward counting combined with the divisor bound shows that

#{veln:llg"9gl < R} <o R*™=[n|**s, (3.21)

so that, splitting into dyadic ranges for ||g~'7g|| and using (3.16), we obtain

S g )] <eq P2
YEl
log |lg™'4gl|>8+/Tog ¥

Thus from (3.17) and (3.20) we conclude that

_ T B
> 19 <era L7450 > [za] sup |f, (g7 7g)| + L¥T0 8,

$eB neZ[\{0} 7l e (3.22)
yel'y,
log |lg™ " 49| <8+/Tog €

The bound (3.22) explicitly reduces the non-spherical sup-norm problem of estimating »_, o |6(g)]? via
the amplification method to two ingredients:

¢ estimates on gofl(g’l’yg) for g='4g € G of moderate size;
« counting y € T, according to the size of ¢!, ,(977g).

We now also derive a version of (3.22) adapted to estimating a single form |¢,(g)|? for some |g| < £. With
the specific f € H(7¢)oo provided by (2.22) and (3.14), we obtain by averaging as in (3.6) the test function

. (P2 —02—12)/2  _L,q [, —1Y (42 2
)= e Wgz/ef’ 2l (2 + )

lpI<ey

where

2m
1 o ig i —2qi
clal0) = 5 [ el (gding(e’n, ) e g
0
In particular, this definition generalizes (1.7), and by (2.20) we have the symmetry

Pupl(9) = 02 L(9) = ¥ld(gh). (3.23)

The analogues of (3.16)—(3.17) clearly hold for the R/Z-average f,, hence by (3.13) the following analogue
of (3.22) holds as well:

— T L B
0q(9)|* <ero L2750 N % sup |0, 4(g™ Ag)| + L¥T07,
neZlMo} veilk (3.24)
€

log ||g_1‘vg|\<8x/10gf
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3.4. A double pre-trace formula and a fourth moment

In this subsection, we use a different argument, outlined in §1.7, to estimate values |¢4(g)| in terms of
Diophantine counts of pairs of Hecke correspondences and estimates on generalized spherical functions; see
(3.29) and (3.30) below. The argument, reminiscent of self-amplification, relies on using diagonal detection
of Voronoi type of §2.8 in a double pre-trace formula (see (3.25) below) to get a handle on the fourth spectral

moment of |¢4(g)].
Let us fix two integers ¢,q € Z with ¢ > max(1,|q|). Let n € Z[i] \ {0} and g € G. By (3.8) and the
remarks below it, for any f € (7)o we have

/f )¢/ ,(g)P dV = %Jrlqug 3g).

RIS

It is straightforward to adapt, first the two-variable versions of (2.15), (2.18), and (2.41), and then the
proof of the above pre-trace formula to yield the following two-variable version. Let nq,n2 € Z[i] \ {0} and
g1,92 € G. Then for any f € H(7p,7¢)oo (recalling the notation introduced after Theorem 12) we have

/ / FVi, Vo) s (Vi) (Va) 681 (91) P61 (92) 2 Vi Vs

el
(20 +1)? o L (3.25)
=T Z Z fa(91 7191592 Y292),

nin2
| | Y1E€n; ¥2€MN,

where f(Vl, V5) is given by (2.30) when Vj is of type (v;,p;) € iR x Z, and

21 27

1 . i —i . i i i
fulano) = g [ [ £l dingleior 72, g ding(e', o)) 2102 gy g
0 0

In (3.25), we can restrict to pairs (Vi, Va) satisfying A;(V}) = 1 by introducing an averaging over {ni,in;} x

{TLQ,iﬂQ}S

/f(V17V2)>\n1(V1) na (Va)l oy (91) P17 (92)* AV dVa

ook (3.26)

20 +1)2 o L
- ( ) Z Z fq(g1 1’7191792 17292)'

4|n1 Tl2|
V1€ Ul 72€ 0y Uling,

The prime symbol in [¢]’ indicates that we sum-integrate over automorphic representations with a lift to
PGL2(Z[i])\PGL2(C), so that the results of §2.7 and §2.8 are applicable.
Now we consider, for any n € Z[i] \ {0}, the spectral weights

n . .
H(Vvly‘/v?an) = h(V17p1)h(V27p2)WZ <7|ay7p> )

where h is as in (3.14) and Wy is as in Lemma 3. Combining the Hilbert space isomorphism

H(TZ)®H(TZ) A LZ(étemp(Té) X étemp(ﬁ))
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induced by Theorem 10 with Theorem 12 and parts (a)—(b) of Lemma 3, we see that the function (g1, g2) —
H(g1,g92;n) given by (2.31) belongs to H (7, 7¢) o, and its double 7g-spherical transform equals H(Vy, Va;n).
Therefore, applying (3.26) with f = H(-,-;n), n1 = ny = n, and g1 = g2 = ¢, and then summing up over n,

we arrive at

S [ [ HO VAN 02168 (0) Pl 0) Vi v
neZNOY ) 7/

- (3.27)
20+1 ~ 1. 1~
= > @y PIRE > Hylg ' 919,.97 Fg;m).
n€Z[i]\{0} 71,72€0UlNin
By Lemma 3(c), the left-hand side of (3.27) equals
T .
7 > h(vy,pv)? L(1,ad* V) [¢),(9)|* + Eis, (3.28)

V' cuspidal
Ti(V)=1, |pv|<t

where the term Eis is the contribution of Eisenstein representations:

Bs=2 Y Y / /Wl—e"ﬂh(ul,emh(uz,p)£7,<(u1,ep>,<u2,p>>
onetEPelf0) )

E(vi,e E(v2, dVl dl/2
x|y P (g)Plop ) (g) 2 L =2

moom
We make a change of variable (v, v2,p) — (01, neve, nep). By invariance, we can replace the resulting pairs
(nv1,mp) and (nevq, nep) by (v1,p) and (v2, p), respectively. In this way we see that

Bis = 402 3 //evl—vz B(w1, p)h(va, D) Lo((v1,9), (v2,p)

’l’pﬁg(m (0)

E(v1,p) 21 E(va,p) 2 dVl dV2
X by DI |Prg T (9)] = i
By Lemma 2, we conclude that Eis > 0. In particular, the right-hand side of (3.27) is real, and it provides
an upper bound for the contribution of each cuspidal V in (3.28):

1 L
h(vy,pv)? L(1,ad® V) [o/,(9)* < > M > Hyg7'99,9 Fagin).
n€Z[i]\{0} Y1, 72 €Ul in

Here we can restrict the n-sum to |n| < £'7° at the cost of an error of O.(¢75Y). Indeed, the contributions
of |n| > ¢1*¢ on the two sides of (3.27) are equal, and this contribution is O.(¢=°°) thanks to the bound
H(Vi,Va;n) <a (|n|/€)~# for any A > 0 that follows from Lemma 3(b) and the exponential decay in (3.14).

We now further explicate this bound within the context of Theorems 1-3 (in particular, in preparation
for use in Theorem 3(b)). Let I C ‘R and @ C G be compact subsets. We fix a cuspidal automorphic
representation V' C L*(T\G) with vy € I, py = £, \;(V) = 1, and we pick a cusp form ¢, € V59 with
|#qll, = 1. We shall also assume that g € Q. By (2.44) and our findings above,

1 o B

bg(9)* <cr & D e > Hy(g '919,9 Hagin) + 7%, (3.29)
neZli\{0} Y1,72€0UTin
Il <1+
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We will analyze the right-hand side of (3.29) to localize 71, 72 which contribute non-negligibly, and to bound
these contributions in terms of generalized spherical functions gpi”%.

We estimate H (hence also ﬁq) in terms of Cartan coordinates using the two-dimensional analogue of

(2.29):
}I?I(k1ah1/€27k3ah2k4;n)| < Z // // W, <%» (it1,it2), (Phpz))

[P1lslp2|<l 5 Shy t1€R
sa>ha  to€R

x e~ CHPIHPE)/2 o= (1 +13)/2 g—itisi —itas (2 + p?)(t2 + p2) dt; dito | dsy ds,.

This estimate holds for k; € K and h; > 1. Assuming without loss of generality that s; > s > 0 and
shifting the ¢;-contour, we conclude from Lemma 3(b) that for any e, B > 0 the inner double integral is

2B—242¢ _B_e
<o (1 n 1+ |p1 +p2|)€(1 + [p1 —p2|)> o3 +03)/2 g4 ,~ Bsy <%>
pite—B max(s1,S2) "I’L| —B
o ()
(L+e—[pal) (1 +E—Ip2l)” \ ¢

It follows that
I\T/[(k‘lahlkg, kgah2 k4; n) <<€,B £4+€e—Bmax(h1,h2) (€/|n|)B

for any €, B > 0 and hy, ho > 1. This estimate remains true for general hq, ho > 0, as can be seen by using
(2.22) and the trivial bound [¢f, )| < 20+ 1 instead of (2.29) for the respective variable if one or both of
h1, ho are at most 1. The same bound applies for ﬁq, that is,

- /|n| b
H,(91,92;n) <e,B £4+5<7
a : g1 ]1% + [lg2l?

for any €, B > 0 and g1, 92 € G. So we can refine (3.29) to

1 L .
6g(@)* <cro 5 > e > Hy(g 419, 9 Fagin) + €.
neZ[\{0} 7172ET Ui
nl<ee g™ 5 gll<es e/l

In the last sum, we estimate the terms more directly by (2.31), (3.23), and Lemma 3(b):
Hy(g™" 9,9 Aag;n) <ec Y F (1) F(r2) + €7,

where we temporarily abbreviate (suppressing g and ¢ from the notation)

F(3) = sup 105497 Fg)l, v € GLa(C).
Ve

Recalling also (3.21), we obtain an inequality of bilinear type:
1
4 2+ —50
[6a(9)]* <era 15 e > F(y1)F(y2) + 77

TLEZ[Z]\{O} Y1,72€0UlNin
In|<ette llg™" ;911 <€ /€/In]
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With the shorthand notation

S(n) = > F(v),
vl

g~ Agll<es\/2/In]

we observe that the innermost sum in the previous display equals (S(n) + S(in))?, hence it does not exceed
2(S(n)? + S(in)?). In the end, we conclude

2
1 0 1~ _
|6g(9)|* <cro T Y e > I sup 4o As9) + €2, (3.30)
neZli\{0} Yiy2€l,  j=1VER
In|<ei+e g™ 55 9ll<=\/E/Tn]

which serves as an analogue of (3.24).
3.5. Reduction to Diophantine counting

In this subsection, we input into the preliminary estimates (3.22), (3.24) and (3.30) the results of Theo-
rems 4, 5 and 6, which provide the desired estimates on spherical trace functions. We shall assume (as we
can) that ¢ is sufficiently large in terms of €.

We begin by explicating the estimate (3.22) using (3.18) and Theorem 4. For £ > 1and § = (01, 82) € R%,,
let

= = 7272
D(L, L) = {nEZ[i]:£<|n|2<16£7 n=1orn=ll orn_zle}’

for some 1,13 € P(L)

S T z U _, for some k € K, |z| > 1,
Mg L) = D, #{VEF’“Q w_k( Zl)k min |z £ 1] < &p, [ul <6
n€D(L,L)

Note that every element of G is of the form k(* 1 )k~! for some k € K, |z| > 1, and u € C. Indeed, such
a decomposition is immediate with k € G, z € C*, and u = 0 unless z = %1, after which the claim follows
by replacing k by k( 1 71) if needed and using the Iwasawa decomposition of k.

Thus to each v occurring in (3.22) we may associate a dyadic vector & = (d1,d2) (that is, log, d; € Z)
such that 1/ < 0; < £° and §; are minimal such that v is counted in the corresponding M(g,L,L,g).
Therefore, applying (3.18) and the estimates of Theorem 4 in (3.22) leads to the following result.

Lemma 4. Let £ > 1 be an integer, I C iR and Q C G be compact sets. Let V C L*(I'\G) be a cuspidal
automorphic representation with minimal K-type 7o and spectral parameter vy € I. Let B be an orthonormal
basis of V¥, and let g € Q. Then for any L > 7 and € > 0 we have

11
2 3+ere 1
<10 PTEL min | —, —=—
> 16(0) <0 > (&5% m)

PEDB 5 dyadic
1/VI<6,;<t°
x M(gaLala(S) + M(g7LvL276) M(g?L7L456> +L2+E€_4S.
L L3 L4

Lemma 4 is free of any choices of the test function, amplifier, and spherical trace function. It reduces the

estimation of o |¢(¢)|? to the Diophantine counting problem of estimating M (g, L, £, ) uniformly in
L, L, and 4.
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Now, we similarly explicate the estimate (3.24) using (3.18) and Theorems 5-6(a). Recall the sets D C G
and S C K C N C G introduced before Theorem 6. With D(L, L) as above, we define for |q| < ¢, £ > 1,
§ >0, and 0 = (01, 02) € R2 ), the matrix counts

D(g~'5 log ¢
Mi(g,L.L6):= Y #{yern:dist(g—wg,S)ga 9~ 59)  log }

neDL) " g~ Agl12 Ve
M*(g,L,L,5) = Z #{y ey :dist (9779, K) < &1, dist(g'5g,D) < 62},
neD(L,L)

with a sufficiently large implied constant in the definition of M{ (g, L, L, 0).
For ¢ = 0, we estimate the size of gpi’j(gil’yg) in (3.24) using Theorem 6(a). Since there are at most
Oc.q(¢¢|n|?>¢) elements v € T, contributing to the right-hand side of (3.24), the total contribution of those
elements which fail to satisfy D(g~'7g) < |lg~'7g|>(log ¢)/v/¢ with a sufficiently large implied constant
may be absorbed into the existing O, ; o(L?>T5¢748) error term. We may thus restrict to v € I, satisfying
these conditions. We associate to each remaining  in (3.24) the smallest dyadic 1/v/¢ < § < £¢ such that
~ is counted in the corresponding Mg (g, L, L, §). For a general |q| < ¢, we associate to each v in (3.24) the
lexicographically smallest dyadic vector § = (81, 02) such that §; < €5 and 6265 > 1/v/Z and v is counted in
the corresponding M, (g, L, £,6). Applying (3.18) and the estimates of Theorems 5-6(a) in (3.24) leads to
the following result.

Lemma 5. Let £ > 1 be an integer, I C iR and Q C G be compact sets. Let V. C L*(T\G) be a cuspidal
automorphic representation with minimal K-type 7o and spectral parameter vy € I. Let ¢4 € V4 such that
l6qll, =1 and let g € Q. Then for any L > 7 and € > 0 we have

1
60(9)]* <er0 2T°L° Z —
§ dyadic \/Z(S

1/VE<6<E
Mg (g,L,1,0) = Mg(g, L, L*8) = Mg(g, L, L*,9) 24—
sy by Pt} ’ ) ) L +e 48.
X ( i + e + i + 14
Moreover, for |q| < £ we have
1
|6q(9)] <c10 £7F°L° Z N
§ dyadic, 6,;<(° 192
826,>1/V1
M*(gaLvlvg) M*(97L7L2vg) M*(97L7L47g) 2+4e p—48
X ( 17 + s + 7 + L“TE0 e,

Similarly, we explicate (3.30) using Theorem 6(b). Here we introduce the double matrix count

Q(ng,HlaHQ) =
1 H; 1 H,log/t
> #{(71,72)61“31 lg™ 3591l < /7 dist(g™ 9,9, D) < || =7 }
L<|nl<2L

with a sufficiently large implied constant in the distance condition.

Lemma 6. Let £ > 1 be an integer, I C iR and Q C G be compact sets. Let V. C L*(T\G) be a cuspidal
automorphic representation with minimal K-type 1, and spectral parameter vy € I. Suppose that V lifts to
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an automorphic representation for PGLa(Z[i])\PGL2(C). Let ¢1¢ € VEEL such that ||¢+el, = 1 and let
g € Q. Then for any € > 0 we have

4 2+¢ Q(g, L, Hy, Hy) —50
l e
[9£(9)]" err0 V<L Hh <1+ HyH; M

4. Proof of Theorem 4

In this section, we prove Theorem 4. It is clear from the definition (2.17) that we can restrict to k = 1
without loss of generality, and the first bound holds in the stronger form |Lp£7e(g)\ < 2¢ + 1. In particular,
Theorem 4 is trivial for £ = 1, hence we shall assume (for notational simplicity) that ¢ > 2. In addition, the
exponential factor in (1.5) has absolute value less than ||g||? thanks to (2.5) and the identity

|ad — bel? + |ab + cd|? = (laf® + |c[*)([b]* + |d]*),

hence it suffices to prove that

1 e lgl* — llgl
/|’(/)g(li(k gk))|dk <. ¢ min (|z2——12€7 |u|\/z> . (4.1)
K

Finally, we shall use the obvious fact that
Jul, 21, 1271 < lgll- (4.2)
Writing k = k[¢, 0,] in Euler angles as in (2.1), and setting
x:= (2% — 1) cos 0 + ie ?*Puzsin 6,

one computes

1 s 6
K[6.0, 0] gk[6.0,4] = ( S A I) ~

Our goal is to estimate then

T /2 7
[ Tl 2)

We introduce the notation A := y/log /.

sin 26 dvy d6 d¢. (4.3)

4.1. Small values of the integrand

First we identify a region where |¢,| in the integral (4.3) is small. Assume that

min (tan 6, [z|sin §) > ﬁ (4.4)

Ve
Then in

1+x cosf
(Vs ) - (T ) ek
—ie*"¥xsinf/z  * * *
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the upper left entry has absolute square less than 1 — A\? /¢, hence

(el D))< (-5 <3

In view of (4.2), this is admissible for (4.1). In the next subsection, we consider the case when (4.4) fails.

4.2. Large values of the integrand

Assume first that tan@ < 4\/v/. Then 0 < 4\/V//, hence the corresponding contribution to (4.3) is
< A?/(. This is admissible for (4.1) in the light of (4.2).
Now assume that |z|sin 6 < 4\/v/¢, and decompose the relevant integration domain for € as follows. For
any m,n € Zxo and ¢ € [0, 7], let
a1 1
I(m,n,¢) = {9 € (O,g) :Jz]sinf < 77 3 <2™sinf < 1, 3 < 2" cosf < 1}.

If 6 ¢ I(m,n,®) holds for every 0 < m,n < 2log/, then sin 20 = 2sin 6 cos € < 1/¢, which is admissible for
(4.1). Therefore, by (4.2) and (4.3), it suffices to prove the bound

. , A2 A
sin 20 df d¢ < min <Z|z2 i 61/2|uz) (4.5)
0 I(m,n,¢)

for every 0 < m,n < 2logf. We shall assume that min(m,n) = 0, for otherwise I(m,n, ) = 0. We record
also that the Lebesgue measure of I(m,n, ¢) is O(27™~ ™), because if n = 0, then sin § < 6, while if m = 0,
then cosf = 7/2 — 6. Hence, for any ¢ € [0, 7|, we have

sin 20 d0 = / 2sinf cosfdh < 272m 2,

I(m,n,) I(m,n,¢)

First consider the case when in 2 = (22 — 1) cos @ + ie~2*®uz sin 6, whose absolute value does not exceed
243\ /v/€, neither of the two summands is large:

A A
2 —n m—+6 —m m+6
22127 g oMo 2 uz|2™m < 2mt6 2
Recalling min(m, n) = 0, the previous two displays imply for any ¢ € [0, 7] that

sin 20 df < min A A
022 =112 012 uz| ) -
I(m,n,¢)

So in this case (4.5) is clear.
Now consider the case when in x = (22 — 1) cos § + ie~2*®uz sin §, whose absolute value does not exceed
2m+3)/ V¢, the two summands are individually large:

A A
|22 —1)27" > 2’”*4%, luz|2™™ > 2mtt |22 — 127" < |uz[2™™. (4.6)

\/Z’

We claim that this localizes ¢. Indeed, setting
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200 = arg(iuz) — arg(z? — 1),
we see that

, A
|22 — 1] cos 0 + €2 (%0~ |yz| sin ) < 2™

\/Z )
and comparing the imaginary parts, we have that

2m

Juz| V€

22m

sin(2¢ — 2¢p) < and so ¢ =¢g+ O ( A > (mod 7/2).

uz|Ve

Also, 0 is localized, since

2 : m A
|z — 1] cos @ — |uz|sinf <« 2 77
and the first term here is monotone decreasing, the second one is monotone increasing in . We see that 6 is
localized to an interval of length O(2™\/|uz|v/¥) for sin @ < cos@ (in which case n = 0), and to an interval
of length O(\/|2% — 1|v/¥) for cos# < sin @ (in which case m = 0).
We estimate the left-hand side of (4.5) by exploiting the above localizations and all three parts of (4.6).
If sin@ < cos @, then n = 0 and sin 20 < 2'~™, so altogether we obtain a contribution to (4.5) of size

wgm. 2TA 2 <<min< A2 A )
el VT uz|vE 22— 1P JuzlvE)

Similarly, if cos@ < sin @, then m = 0 and sin 20 < 2!7", so altogether we obtain a contribution to (4.5) of
size

<2 ™" A A <<min( ’ A )
22 =1V |uz|VE |22 = 11207 Juz|VeE )

The proof of Theorem 4 is complete.
5. Proof of Theorems 5 and 6

In this section, we prove Theorems 5 and 6. We recall that the key player is the function

27
1 —2qi
o) i= o= [ elgblo.0.) e do, (1)
0

where

ohalg) = (20 +1) [ Gl gh)) e Do)

The function v, : K — C was defined in (1.6), but for calculational purposes we extend it now to GLy(C):

W((f; ?))::a%, (fj §>6GLQ((C). (5.2)
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5.1. Preliminary computations

We write g in Cartan form

g = kluy,vi,wi] (r 7'_1> kluz, v2, wa], (5.3)

where r > 1, and we allow u;,v;,w; € R to be arbitrary for convenience. Spelling out the definitions, and
using that the height in the Iwasawa decomposition is left K-invariant, we see that cpf’%(g) equals

4% / wg(k[—w,—v,—u]k[ul,vl,wl]m((r T_1>k[uz,vz,wa]k[O,O,g%[muw]))

ougT
ov<n/2
o<wL 27
02

. e~ 2iae e(y_l)p(H(( rt )k[“z’”2’w2]k[0’0’g]k[u’v’w})) sin 2v du dv dw dp.

With a change of variables k[ua,va, w2]k[0,0, plk[u, v, w] — k[u,v,w] and dropping the normalized w-
integration (which is legitimate since the conjugation by k[0,0,w] does not alter the p-value, and the
height in the Iwasawa decomposition is also unaffected by right-multiplication by k[0, 0, w]), we arrive at

% / W(k[o,v,u]k[@,vz,wg]k[o,o,g}k[ul,m,wﬂn((T r_l)k[u,v,o]))

ougT
ovn/2
02

e~ 2iae e(uil)p(H((r ot )k[u,v,O])) sin 2v du dv dp.
The sum of absolute squares in the first column of diag(r, 7 ~1)k[u, v, 0] equals
h(r,v) :=r?cos® v+ %sin? v,
hence recalling the definitions (2.5) and (5.2), we can rewrite the integral as

dy
272

/ Yy (k[O, —v, —ulk[ug, va, w2]k[0,0, ol k[u1, v1, w] <T r‘l) k;[u,v,O])
ougT
0<v<n/2
0< o2

e 292 b p)Y 1 sin 20 du dv do.

Replacing ¢ by ¢ — u1 — ws, the integral further simplifies to

dpe?ia(utws) —ig io )
ET / b (€ I:e 7 I e~21e p(r, v)* =1 sin 20 du dv do,
™
ougT
ov<n/2
02T

where

I:= (r_le_2w_w’1 sin v cos vy + re*™! cosvsin vl) (62“‘_’“2 sin v cos vy — "2 cos v sin vg) ,

r 2=tz gin p sin ve 4 €2 cos v cos ’U2) .

J = (—r_le_z"“_“”l sinvsin vy + re*™* cos v cos vl) (e
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Evaluating the g-integral, we obtain

dge?ialvitwz) 7 9 sin 2v -
Lagy— 2 7 2 e gta o do. 5.4
©,0(9) - (ﬁ—&-q) / h(r, v) 1 udv (5.4)
ougT
ov/2

Taking the complex conjugate of the right-hand side, and introducing the new variables ¢ := r~! tan v and
¢ = 2u, we get

K

oo 2
lod(g)] = de / !
wt £+q (1+ (t/r)2)eH1Hv (1 + (tr)2)tt1-v
0 0

o ' o ¢
(e7*72"1(t/r) cos vy + sinvy) o (722 (tr) cos vy — sinvy) +q

o b—a ) o -
(e7*72"1(t/r)sinvy — cosvy) ! (€712 (tr) sin vy + cos vy) " dgdt|.

Now comes the last key step: in the inner ¢-integral, we can remove the r’s. This is so because e~*® must
be chosen equally many times as e¢'®, and the r’s will cancel out in all terms surviving the integration.
Another way to see the same thing is to shift the contour as in ¢ — ¢ + ilogr where the boundary terms
cancel out by 2m-periodicity. Either way, using also the opportunity to replace ¢ — ¢+ us —wy, and writing
A := ug 4+ wy, we finally obtain

t,q dg 20 t
il <2(%,) / O+ G+ @)

27
it ) i YA
X /|e“¢’“At cos vy + sin v1| K |e“¢s At cos vy — sin v2| a

0
bl —q| id—in, . -
|e“¢’+mt sinwv; — cos v | q|e“¢’ Bt sinvg + cos vg{ K dedt.
We estimate the inner integrand using the following lemma, which is purely about inequalities. We state
it formally so as to clearly separate issues. (In the case ¢ = £/, all expressions raised to exponent 0 should
simply be omitted.) As in the previous section, we introduce the notation A := /log /.

Lemma 7. Let £,q € Z be such that £ > max(1,]|q|). Let X >0 and A > 0.

(a) If A, B > 0 satisfy A% + B? = X2, then

(t+a)/2 (t=q)/2
2_€ ! 2_€ ! Altapt-a ¢ x2¢, (5.5)
l+q l—q

Moreover, the left-hand side is O (X24~) unless

( A2 A= 0 A2 AT
A=y o) <X2%|Q|>, B2="4x2 0, (XZ%V"). (5.6)

20 20
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(b) If A, B,C,D >0 satisfy A + B?> = C? + D? = X2, then
X4€
14+ —1q]

Moreover, the left-hand side is Op(X*¢™) unless (5.6) and the analogous estimates for C, D are
satisfied.

( 2L >A€+q34q02+qD54 <
l+q

Proof. Let us first assume |g| < £. We use Young’s inequality

z° yb 1
Ty < — + 5, -+
a b a

to conclude with

that

~
+

ttq t—q
20 A\ 2% B\ _A4B
(4+qX (—qX SoXx2

This is equivalent to (5.5). We also conclude (still using the notation (5.7)) that the left-hand side of (5.5)
is O (X200=2) unless

zy > 1/2, zy =1+ 0,(9), 5= N\2/L. (5.8)
Let us explore the consequences of (5.8). First, by 2/a + y°/b = 1 we have
1/3 < z,y <3/2.
Without loss of generality, ¢ > 0 (i.e. a < b), and then z* < a < 2. Moreover,
blogz < (b/a)loga < (b/a)(a—1) =1,
hence also —blogy < 1+ 04 (bd). In particular, y® >, 1 whenever b§ < 1. Now let us consider the function

e th
Ft) = — +— —at.
(t)=—+ -2
Note that F(y) = 1 — xy, and F(yo) = F'(yo) = 0 for yo := 2%~ 1. Hence, using Lagrange’s form for the
remainder term in Taylor’s theorem, we see that

(b-1)
2

b—2

§>p Fly) > min(yg 2, 5°7?) (y — yo)*.

2 = 227 > 1. Now let us assume that y® > 1 or b§ < 1. Then 3* >, 1, whence y — yo <A \/0/b

by the previous display. From here and (5.8) we get the following two approximations for bxy:

Here yg_
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bry = bryo + Oa(VB) = bz + Ox (VS),
by = b+ Ox(b8) = (b—1)z® + y° + 04 (D9).

Comparing the right-hand sides, we conclude that
z® — y® < b6+ Vbo. (5.9)

In the remaining case when 3* < 1 and b6 > 1, the inequality (5.9) holds automatically in the stronger form
|z — | < 2 < 204.

We proved that (5.8) implies (5.9) in all ranges. For our specific set-up (5.7), the inequality (5.9) says
that

aA? —bB% < X2(b6 + Vo),

and this is equivalent to (5.6) in the light of A% + B2 = X2, This shows (a) under the assumption 0 < g < ¢,
but it is easily seen to continue to hold also for ¢ = £ in which case (5.8) simply reads A% = X2 + 0, (X?9).
The argument for —¢ < ¢ < 0 is identical.

Turning to (b), we conclude from (a) that

l+q l—q
( 20 ) ( 20 ) A£+qB£7qC«Z+qD£7q < X4£.
{+q {—q

On the other hand, using Stirling’s formula n! ~ (n/e)™v/2mwn, we have for |g| < ¢ that

( 20 > _ (20)% 20

(+q)  ((+qe(l—qt=a\ ((+q)(l—q)

and so combining the two most recent displays we have the announced bound

44
Tl

We added artificially the 14 term in the denominator, so that the inequality also holds for the previously
excluded case |g| = ¢ in view of AC, BD < X? (which follows directly from A% + C? = B% + D? = X?).
The claim that the left-hand side is negligible unless (5.6) holds for (A, B) and (C, D) is immediate from
(a). O

< 2¢ )AZJrqBZquJrqDZ‘I <
{+q

We now return to the double integral in the upper bound for wf’)‘é(g). We estimate the inner integral by
writing the integrand as A*t9B~9C**9 D9 in the obvious way and applying Lemma 7, where

A2+ B2 =C%?+D?=X2=1+12
and

1+t ?*—-1
= +
2

A2

cos 2v1 + tsin 2v7 cos(¢ + A),

with analogous expressions for B2, C?, and D?. Since

1+ (t/r)) (1 + (tr)?) r—r1\?
(1+1¢2)2 _1+<t+t—1> ’
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we conclude that the contribution of the inner integral is O (¢~*) unless

min(t, 1) <, (5.10)

_r
(r—l)\/z.

For r = 1 we treat the right-hand side as infinity. We may then summarize our findings as follows.

Lemma 8. Let A € N. Let £,q € Z be such that £ > max(1,|q|), and let v € iR. Assume that g € SLy(C)
is given by (5.3). Let us abbreviate A := uy + w1 and X := \/log¥. Let M = M(v1,vq, A, 7, A) be the set of
(¢,t) € [0,27] x [0,00) satisfying (5.10) as well as

A2+ /0 —
2t sin 2v1 cos(¢ + A) 2(1—t2)0052v1+%(1+t2)+OA ((1+t2) + Y |Q|>7

(5.11)
A2+ A/l —
2t sin 2uy cos(¢p — A) = (2 — 1) cos 20y — %(1 £ %)+ O ((1 +12) + : |q|> 7
with a sufficiently large (but fixed) implied constant depending on A. Then
e, 3(9) <a - / ! dedt + =4 (5.12)
AOSNa TE e

5.2. Simplifying assumptions

For the proof of Theorems 5 and 6, we can and we shall assume that |A| < /4. Indeed, using the
last relation in (2.2) multiple times, we can choose the coordinates in (5.3) so that this bound is satisfied.
Moreover, we can replace g by

_ 7r T w1 [ T Tm
g 1:k|:§_w23/02_§;u2+§:|( T1>k‘{w1—§,v1—§,§—u1}

. i . ‘, lq —
if needed, because the quantities A, ||g||, D(g) do not change under this replacement, |gouj,(g)} = |90u,(112 (g 1)|
holds by (3.23), and

dist(g,H) = dist(g~*, H), H e {K,D,S}

holds by (1.10).
We shall derive (most of) the bounds in Theorems 5 and 6 from (5.12). In Lemma 8, the pair (A, r) does
not change under the above discussed replacement g + ¢!

M are related by

, while the corresponding integration domains

(¢, t) e M (Ug _T v — g,A,r,A> =  (¢,t7h) € M(vy,v2, A1, A).

2 )

Moreover, the integrand in (5.12) is invariant under ¢ — ¢~!, hence we can assume that the contribution
of t < 1 is not smaller than the contribution of ¢ > 1. So from now on we restrict M in (5.12) to the
corresponding subset of [0, 27] x [0,1]. On this subset we have, by (5.10),

tef0,1] and t<n (5.13)

A
(r—1)VE
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5.8. Proof of Theorem 5

The bound (1.12) is trivial for £ < 1, hence we shall assume that ¢ is sufficiently large in terms of A.
With the notation

a:=dist(g, K) <xr—1 and B = dist(g, D),

it follows from (5.12) and the previous subsection that it suffices to show

¢ / . llgll )
— [ td¢dt <. A £ min (1, , (5.14)
1Jm/£—|q|M A Via?p

where M is now restricted by (5.13). In fact our arguments below will show that ¢¢ can be replaced by
(log £)3.
We start with the first bound of (5.14). With the notation

o =X+ M/l —ql, u:z%—cos%h p = sin 2vy,

the first equation in (5.11) becomes

ut? — 2tpcos(p + A) + % —p+0n (%) =0. (5.15)

Without loss of generality, u # 0, and then we can view (5.15) as a quadratic equation for ¢. Multiplying
by p and completing the square, we obtain the alternative form

2
(ut — peos(¢ + A))2 + (psin(¢ + A))2 =1- 3—2 + Ox <#> . (5.16)
In particular, the discriminant of (5.15) equals 4D(¢) + Ox(|p|o/¢), where
'S . 2
D(¢):=1-— 2 (psin(¢ + A)) (5.17)

We assume first that |g|/¢ < 5/6, and decompose M into two parts M* according as |psin(¢ 4 A)| exceeds
1/2 or not. On M™, the equation (5.15) localizes ¢ within <5 o/(¢t) for each given t € [0,1]. On M~
we have D(¢) > 1/18, hence the equation (5.16) localizes t within <, o /¢ for each given ¢ € [0, 27]. This
shows that

1 27

o o o
/td¢dt<<A/tEdt+/zd¢<<Z’
0

M 0

hence the first bound of (5.14) follows in stronger form. From now on we assume that |¢|/¢ > 5/6. We
decompose M into two parts MT according as D(¢) is positive or not, and we make two initial observations.
First, M™ is clearly empty when |¢| = ¢. Second, |u| > 1/6 holds for large ¢, because (5.15) coupled with
t € [0,1] yields

2l

i o0u(§) <o <ayfi- ()"

In order to estimate the contribution of M™ in (5.14), we decompose M into pieces
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MT(D, ) = {(qb,t) € M : D(¢) <D and |cos(¢ + A)| < n}.

If n < £719) we can estimate trivially, so there are only O(log ¢) relevant values for 7. If p > £719 then by the
same argument there are only O(log ¢) relevant values for D. If p < £719 then D > ¢~ by |¢| < ¢, hence again
there are only O(log ¢) relevant values for D. So in all cases it suffices to restrict to O((log £)?) pairs (D, n). Our
current assumptions localize sin(¢ + A) within < v/D/|p|, and hence ¢ within < min(1,+/D/|pn|), indepen-
dently of t. On the other hand, given ¢, the equation (5.16) localizes ¢t within <, min((c/£)D~/2,\/a/¥).
Such t are of size < |pn| + VD + /7 /¢, so that

tdedt <a (Ipn|+\/_+\/7)mm(gf \/F>min< |¢776|><<

M+ (D,m)

This contribution is admissible for the first bound of (5.14). It remains to estimate the contribution of M~
n (5.14). On this set we have

0< —D(¢) <a %
by (5.16). The argument is similar as for M ™, in fact simpler as we only need O(log ¢) pieces M~ (n) defined
by | cos(¢+ A)| = n. Initially we localize ¢ within < min(1,|pn|~*y/c/¢), independently of t. The equation
(5.16) localizes t within <5 /o /¢, and such t are of size < |pn| + /o /¢. We obtain altogether

o o . 1 o o
[ avar e (i +y[) o (1 ppyf7) <

M= (n)

which is again admissible for the first bound of (5.14).
We now turn to the second bound of (5.14). We shall assume (as we can) that M #  and Va8 > ||g]|.
We pick an arbitrary point (¢,t) € M. Combining (5.11) and (5.13), we get

A2+l —
cos 2v; = —sgn(q) + O(t) sin 2v; + Oy <t2 + %M) 7

where for ¢ = 0 we can replace sgn(g) by 1. After squaring and solving for sin2v,, then feeding back the
result into the previous display, we get

A+ A/l — A2
sin 2v; = O <t+ +TM|> , cos2v; = —sgn(q) + Oy (t2 pAaremld |q> :

1

Recalling also (5.3), and using (5.13) again, we infer that

A A+ /L —|q|
B <a gl <a\/Z+ /i )

Hence we always have

lgllA 1+ /¢ —q|
1 <y ||lgl|A\————.
aﬂ\[ allgl ﬂ\/z

In either case, for any ¢ > 0, the previous display combined with (5.13) yields that

1<)
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0 A2 ||g|>\>c 1+t —|q|
_ dod c A——
N A{ N e <<am 57

gl gl
ehe bf .
<Le A, <€c/2a2+c/35 + \/Zazﬁ

Choosing ¢ = 2, and recalling our initial assumption v/a?3 > ||g||, we obtain the second bound of (5.14)
in stronger form.
The proof of Theorem 5 is complete.

5.4. Proof of Theorem 6(a)

The averaged spherical trace function cpf’fé(g) exhibits starkly different behavior depending on the value
of —¢ < ¢ < L. Some of these features are already visible along K = SU3(C). From (5.1) and (5.4) we can
see that, in the notation of (2.1) and (2.4),

@f’fé(k[u,v,w]) = q>§7q(k[u, v, w]) = e2riatutw) (cosv)Qqu(Efq)(cos 20).

The absolute value of the right-hand side exhibits a primary peak at v € wZ of size 1. For ¢ = £/, this is
followed by a sharp drop to On (¢~N) after a range of length about £~/2. For a generic ¢, the drop becomes
soft through a highly oscillatory range of magnitude ¢~1/2 (faster and more oscillatory for smaller ¢) and a
secondary, Airy-type peak of size about £~1/3 before the delayed sharp drop. For ¢ = 0, the secondary peak
grows to a full peak of size 1 at v € %ﬂ' + 7Z (corresponding to skew-diagonal matrices in K') and the sharp
drop disappears. These varying features, which are illustrated in Fig. 1, become vastly more complicated
off K, where the hard work in Theorems 5 and 6 lies. Nevertheless, their traces are visible in the hard
localization to D (but none to K!) for ¢ = +£ and the hard localization to N with soft localization to
SCKCWN forg=0.

Fig. 1. Plots of (cos u)qué(g’qzw(cos 2v) for 0 < v < 7, £ =120, ¢ = 120, ¢ = 100, ¢ = 20, and ¢ = 0.

In this subsection, we consider in more detail the case ¢ = 0. Then (5.12) simplifies to

099 <<A\f/ d</>dt+€‘ (5.18)

where by (5.11) and the last paragraph of §5.1, the set M can be described by the constraints given in
(5.13) and

2t sin 201 cos(¢p + A) = (1 — t2) cos 201 + Ox (A/VY),

5.19
2t sin 20 cos(¢p — A) = (12 — 1) cos 203 + Ox (A/ V). (5.19)

We shall use the notations
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P(¢) := max(|sin 2v; cos(¢ + A)], | sin 2vq cos(¢p — A)|),
R := max(] cos 2v1 |, | cos 2v3]),

N := max(| sin(2v; + 2v3) cos A[, | sin(2v; — 2v9) sin A|).

Recall also the earlier notations (1.9) and (1.11). As

2 o _ TP 2 o _ TPt
lal* —|d|* = T(COS 201 + cos 2vs), |b]* —|c)* = 5 (cos 2v1 — cos 2v3),
we can identify N as the set of matrices with 7 = 1 or cos2v; = cos 2vs = 0. More precisely, by (5.19) and

(5.13) we have

A 72\

D(g)<r(r—1)R<ar(r—1) (t + ﬁ) <A N

so that unless D(g) <a |lg||PA0~1/2, we have M = 0, yielding @f”%(g) < 72, Hence we are left with
proving (1.13).

In (5.18), the contribution of the t-integral over the interval [0, ¢~"/271/4] is negligible, and we split the
rest of M in dyadic ranges M(J) according to £~/271/4 < ¢ =< § < 1. The number of such ranges is O (log ¢).
Assume (¢,t) € M(J). The discriminants of the two quadratic equations (5.19) are 4D;(¢) + Or(N\/V),
where

Dy(¢) := 1 —sin®(2v1) sin®(¢ + A), Dsy(¢) := 1 — sin®(2vy) sin?(¢p — A).
A simple calculation gives that
Di(¢) + D2(¢) = P(6)* + R*. (5.20)

If | sin 2v; sin(¢+A)| > 1/2, then for any fixed ¢, (5.19) localizes ¢ to a set of measure O (A\/v/€). Otherwise,
for any fixed ¢, (5.19) localizes t to a set of measure O, (A/v/¢). We conclude that

meas(M (8)) <a A/VY. (5.21)
Now we prove the alternative bound
/\4
meas(M(J)) <a N7 (5.22)

We shall assume that N¢ > 1, for otherwise (5.22) follows from (5.21). Under this assumption, we have
max(|sin 2v1 |, | sin 2vg|) > £~1, which implies that

meas({(¢,t) € M(0) : P(¢) < £73}) < 71,

Indeed, if ¢ changes by at least /=1 and at most /4, then cos(¢ + A) both change by Q(¢~2), hence P(¢)
changes by Q(¢~2). This implies that P(¢) < £73 localizes ¢ to a set of measure O(¢~!). Therefore, the
contribution of {(¢,t) € M(8) : P(¢) < £73} to the left-hand side of (5.22) is O (d/v/¥), which is admissible
by N < 1. We decompose the rest of M(§) into dyadic ranges M (8, P) according to £~2 < P(¢) < P < 1.
The number of such ranges is O(log ¢), hence in order to verify (5.22), it suffices to prove

2

meas(M(4,P)) < ])\\f_e
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The proof of this estimate immediately reduces to the following two localizations:

P+ R)A

meas({¢ € [0,27] : (¢,t) € M(0,P) for some t < 0}) < T

(5.23)
and for any ¢ € [0, 2],

meas({t € [0,1] : (¢,t) € M(5,P)}) < (5.24)

A

(P+ RWI
Now we prove these localizations.

Starting out from (5.19), we execute two eliminations: one to eliminate the main terms of the right-hand
sides, and the other one to eliminate the left-hand sides. Introducing

F(¢) := cos ¢ cos Asin(2v; + 2v9) — sin ¢ sin A sin(2v; — 2vs),
these give
tF(¢) <a RA/VE  and (1 —12)F(¢) <a PA/VY.

In particular, we obtain both for ¢ > 1/2 and ¢ < 1/2 that

F(¢) <n (P4 R)A/VL. (5.25)

Letting

N’ := \/sin2(2111 + 2vg) cos?(A) + sin?(2v; — 2vg) sin?(A) < N,
and choosing v € [0, 27) such that

sin(2v; + 2vg) cos A
N’ ’

sin(2v1 — 2vg) sin A
N’ ’

cosy = siny = —

(5.25) gives rise to

(P+ R)A
NVE

This localizes ¢ to a set of measure O ((P+ R)A\/N+/Z). Indeed, if the right-hand side is very small in terms
of the implied constant, then ¢ — 1 is bounded away from 7Z, hence the derivative cos’(¢ — ) is bounded

cos(¢ — ) <a

away from zero, while otherwise the claimed localization is trivial. This gives (5.23). Fixing ¢ € [0, 27], and
solving under (5.19) the quadratic equation in ¢ of the larger discriminant, we see by (5.20) that ¢ is localized
to a set of measure Ox(\/(P + R)VY). This gives (5.24). Altogether, the proof of (5.22) is complete.
Combining (5.21) and (5.22), we obtain
meas(M(0)) <ea £, = min(v¢, N71).
We claim that

dist(g,S) <a A0 ut, if M(3) # 0. (5.26)
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This implies the inequality

€
e—1/2
\/Z / tdqf)dt <<5,A l / 5# <<5,A \/sz(g’S),
M(9)
which, summed over the O(log?) dyadic ranges for 0, suffices for the proof of (1.13). Note that the bound
90% (9) <. ¢¢ is already covered by Theorem 5.

To complete the proof of Theorem 6(a), it remains to show (5.26). For this final argument, we can and
we shall assume that —7/8 < v1,v9 < 37/8, because replacing (u1,v1) by (—uy,v1 + 7/2), or (ve,ws) by
(va+7/2, —ws), has the effect of multiplying g by (l i) from either side without altering A or the statement
(5.26). We fix a pair (¢,t) € M(9).

Now, N < p~! implies that

T 1 T 1
Z7 l — —7Z — . 2
Vit € 5 +O<u) and v —v €3 +O(#|A> (5.27)

Let us introduce the short-hand notation

m[v] — (COS’U ZSIH’U) , veER.

tsinv  coswv
Keeping (2.1) and (5.3) in mind, we observe initially that
mlvq] diag (rem, r_le_m) mvg] = mvy 4+ vo] + O(r — 14 |A]). (5.28)
On the right-hand side, we have dist(m[v; + v2],S) < p~! by (5.27), and also

A A
rol<a < p (5.29)
by (5.13) and p < V2. Hence (5.26) follows from (5.28) as long as A < A6~ ' ~'. In other words, we can
and we shall assume that |A] >x Ad~!u~! holds with a sufficiently large implied constant depending on A.
In particular, we shall assume that the error terms in (5.27), and similar error terms for angles in the rest
of this subsection, are less than 7/8 in size. Under this assumption, (5.27) breaks into two cases.
Case 1: v1,v9 < p 1 A|7! and v1 + vy < p~ L. In this case, we refine (5.28) to

m[v1] diag (TeiA, rte™ ) mlvg]

= mfv1 + v2] + m[vq] diag (7‘eiA —1,rteA 1) m[vs]
=mlvy + vo] + diag (re’® — L,r e ™ — 1) +O(r — 1+ p ")
= diag (em, e_m) + O(r -1+ /fl).
The main term diag (¢’2,e~*2) lies in S, hence (5.26) follows by (5.29).
Case 2: v1,vg = 7/4+O0(u | A|7!) and vy +vy = 7/24+O(u~1). As we shall see, this case does not occur.
The assumptions imply that sin 2v; and sin 2vy exceed 1/2. We multiply the second equation in (5.19) by

sin 2v1, and the first equation in (5.19) by sin 2v9. Adding and subtracting the resulting two equations, we
obtain

At sin 201 sin 205 cos ¢ cos A = (2 — 1) sin(2v; — 2v5) 4+ O (A/VY),
4t sin 201 sin 2vy sin psin A = (#2 — 1) sin(2v; + 2v9) + OA(/\/\/Z).
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We infer that

) ) | sin(2vq + 2vy)| A A
d < |tcosd| + |tsin | <y |sin(2v1 — 2v9)| + + <A .
1A VAl T plA

This contradicts our earlier assumption that A >, Ad~!'x~! holds with a sufficiently large implied constant
depending on A.
The proof of Theorem 6(a) is complete.

5.5. Proof of Theorem 6(b)

We finally consider the case ¢ = +¢. By the symmetries (1.10) and (3.23), we can restrict to ¢ = £.
We have already shown the bound gofi’é(g) < f¢ in greater generality in Theorem 5. As a first step, we
complement this with a stronger bound for r > 2. To this end, we return to (5.4). As ¢ = ¢, the binomial
coefficient and the J-factor disappear. When YM is expanded, we see a Laurent polynomial of e?*. When
we integrate in u from 0 to m, all the terms but the constant one vanish. We calculate the constant term
using the binomial theorem and the original product definition of I. This way we see that

2/
) o 20 _ ) )
(Pﬂl;(g) _ dee2z€(u1 Uo w1+w2)r2€ § : < (T‘ 262zu2+21w1 COS V] COS Ug)m
’ m

m=0
w/2
; : 20—m .2 20—m SN2V
—sin vy sinv sin? v)™(cos? v ——— dv.
( 1 2) /( )™ ( ) h(r, 0) 1=
0

2

Using the variable z := sin® v, we rewrite this as

20 o o )
(pye(g) dee 2il(uy —uz—w1+wz) 2u 2 § : ( ’I“ 2e2w2+2zw1 oS V1 COSUQ)m
m=0

1
% 2( m
. . m
(—sin vy sinws) /1—56—!—7“—435)“1 —dux.
0

With the short-hand notation

U :=r~tef2tiv /o5 v; cos vg and V= z\/(l — z) sin vy sin v,

we obtain finally

1
| Zj( )’ < 20+ 1 / 2t 20\ 2 [2my/46—2m .
QOV,E 9)| S / (1 —x—i—r*‘{r)”lﬂ’ i

(5.30)

dodz

1 . .
C2+1 / 1 / (Ue'® + V)24(Ue™® + V)2
o (1 —x +r—dx)tti-v
0 0

Using that (Ue'® +V)(Ue ™+ V) = U2+ V2 +2UV cos ¢ is on the line segment connecting (U + V)? and
(U — V)2, we observe that
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|(Ue' +V)(Ue ™ + V)| < max U+ V|*
1—z+rix SR 14’

which by the Cauchy—Schwarz inequality can be further upper bounded by

(1 -2+ r2z)? T

_ —4 - 2 1 :
l—z+r~ It =253 + oo

Hence the contribution to the rightmost expression in (5.30) of x € [0, 1] satisfying

2 1 log ¢
>6(1+ + , §i= ——,
' ( 71 <r2—1>2<1—x>> {

is admissible for (1.14). By r > 2, the remaining values x € [0, 1] satisfy

30

1— _ ¢
x<3) or z(l-z)< o1

hence also x < 3§ or 1 — < 85/r*. So the remaining contribution is
< 20+1 dx log ¢

g2 1—ax+riz r2’
[0,36)U(1—85/r4,1]

which is again admissible for (1.14).
By (5.12), it remains to show that

dist(g, D) <a ||gllA/VE,  if M #0. (5.31)
In the present case ¢ = ¢, the condition (5.11) simplifies to

2t sin 2v; cos(¢ 4+ A) = (1 — %) cos 201 + (1 + %) + 04 (N\?/0),

(5.32)
2t sin 205 cos(p — A) = (2 — 1) cos 2vg — (1 +1%) + Ox(A?/0),

hence for the proof of (5.31) we can and we shall assume that |v; + vg| < 7/2. Indeed, replacing vy by v +7
has the effect of replacing g by —g without altering A or the statement (5.31). We fix a pair (¢,t) € M.
The two equations in (5.32) yield readily that

sin 20;)2 < 2 + 2cos 2v; < 2 + t]sin 20, | + A2 /L.
j j j

Hence sin 2v; < t + A/V/?, that is,

s A
—7 — . .
V1,V9 € 5 + Op (t—l— \/Z) (5.33)

Combining (5.32) with the Cauchy—Schwarz inequality, we also get
(14+132 4+ 04(N/0) < (1 —1%)® +4t*cos?*(p £ A).

Equivalently,

sin(¢ £ A) < %
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Using also our initial assumption |A| < 7/4, we conclude that
Ak A and penZ+0 <>\> (5.34)
— T — . .
AT A7

In particular, cos(¢ & A) = € + Op (A2 /t20) for some € € {+1}. Plugging this back to (5.32), and using also

(5.33) along with
e D) min (L2 <X
N/ 24 0’

2tesin2v; = (1 — %) cos 201 + (1 +t2) + Ox (N2 /4),
2tesin2uy = (1% — 1) cos 2vy — (1 + %) + O (N2/0).

we obtain
(5.35)

Now consider the following three unit vectors in R?:

2 —1 2te >

= (cos 2v1, sin 2vy ), := (cos 2vq, — sin 2v5), t= 5, ———
Vi (cos 2v1, sin 2vy) Vo (cos 2vs, — sin 209) <t2—|—1 I

By (5.35), the scalar products v;t are 1 + Ox(A?/¢), hence the directed angles arg(v;) — arg(t) lie in
217 4 Op(N/V2). Tt follows that

arg(vy) — arg(ve) € 277 + Op(M/VY),

and then the assumption |v1 4+ vo| < 7/2 forces that

v1 + v KA /\/\/Z (5.36)

We are now ready to complete the proof of Theorem 6(b). By (5.33) and (5.36), there exists a multiple
v of /2 such that

mlv1] = m[v] + Ox (¢ + )\/\/Z),
mlva] = m[—v] + Oa (t + A/VY),
mlvy + vg] = id + OA()\/\/Z).

Therefore, using also (5.13) and (5.34), we conclude that

mlv1] diag (rem, r_le_A) m[vs]

= m[vy + v2] + mvy] diag (re’® — 1,7 Le™™® — 1) m[vg]
= m[v1 + v2] + m[v] diag (re’® — 1,77 'e™"* — 1) m[—v] + On (r)\/\/Z)
= m[v] diag (rem7 T_le_m) m[—v] + Op (r)\/\/Z)

The main term m[v] diag (re’®,r~'e~"*) m[—v] lies in D, hence (5.31) follows.
The proof of Theorem 6(b) is complete.
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6. Proof of Theorem 1

In this section, we prove Theorem 1. Lemma 4, which results from the amplified pre-trace inequality
and estimates on the spherical trace function, proves an estimate on |®(g)|> for g € Q in terms of the
Diophantine counts M(g, L, L, S') We begin with the key remaining step of estimating these counts.

We allow all implied constants within this section to depend on €2, and we drop the subscript from
notation. Moreover, we adopt the notation A < B to mean that |A| <. ((L)°B, where € > 0 is fixed but
may be taken as small as desired at each step, and the implied constant is allowed to depend on €.

For each £ € {1, L%, L*} and § = (61, 6,) with 0 < 01,8, < £¢, we will estimate the count M(g, L, £, 8) of

matrices

y=(¢ b € My (Z[d]), dety =n € D(L, L), n| = LY?,
c d
(6.1)
a7t for some k£ € K such that
g 9= z 2| > 1, min |2 + 1| < &1, |u| < o,

where as before ¥ = v/4/n. By the symmetry v <+ —y, we can and we shall assume that |z — 1] < |z + 1].
Then the conditions imply that both |z — 1| and |z~ — 1] are at most §1, hence

a+d
vn

On the other hand, since ||g|| xq 1, we also have that

. z—1 U 1 _
||vld||Hgk( Zl_l)k g

Summarizing, we need to estimate the number of matrices v as in (6.1) such that

ja+d—2vn| <8Il la—dl, bl el < (51 + 62)/Inl- (6.2)

In particular, we have |a + d| < y/|n| and

—2‘:tr&—2|:|z+z_1—2:|z—1||z_1—1|<62

< 01 + 02.

a—d)?+ 4bc = (a + d)? — 4n < 62|n. 6.3
1

As is often the case, parabolic matrices 7 (those with trace +21/n) play a distinctive role in this counting
problem, and we split the count accordingly into the parabolic and non-parabolic subcounts as

M(g, L. L,6) = MP(g,L, £,8) + M™ (g, L, L, 5).
We shall prove the following result using (6.1), (6.2), and (6.3).

Lemma 9. Let Q C G be a compact subset, L > 1, and £ € {1,L% L*}. For g € Q and & = (61,85) with
0 < 01,02 < 1, we have the following bounds:

M(g,L,1,9) < (
Mp<g,L L£,5) < 51/2 + L2, (
an(ng»Lz ) <o L46[11(6% +5%)7 ( .
M*™P(g, L, L*,5) < LO61(67 + 62). (

<al
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Moreover,

M™(g,L,£,8) =0 unless 61 = LTVA (6.8)

Proof. The bound (6.4) is immediate from (6.2). We turn to the bound (6.5), which counts parabolic
matrices . In this case, we have (a —d)?+4bc = 0 and z = 1, hence in particular (6.2) holds with 0 in place
of 6. If be # 0, then there are < £/? choices for a + d = 2y/n, and < L£/253 choices for a — d # 0. The
difference a — d determines the product bc uniquely, hence by the divisor bound, there are < 1 choices for
(b, c). This is admissible for (6.5). If bc = 0, then there are < £1/2 choices for a = d = \/n, and < 1+ L£/253
choices for (b, c). This is again admissible for (6.5).

From now on we count non-parabolic matrices 7, in which case (a — d)? + 4bc # 0. The statement (6.8)
is immediate from (6.3), so we are left with proving (6.6) and (6.7), where we may assume &, = £~ /%, If
be # 0, then there are < £'/2(6? 4 62) choices for a — d, and, for given a — d, there are < L7 choices for
(b,c) by (6.3) and the divisor bound. If bc = 0, then there are < £/26% choices for a — d by (6.3), and

< L1/2(5% 4 62) choices for (b, ¢). Altogether, there are < £3/2(54(52 +02) choices for the triple (a —d, b, c). In
the middle range £ = L?, we additionally use that there are < £/2 choices for a + d, whence (6.6) follows.
In the high range £ = L* n = 1312 is a square, and (a — d)? + 4bc # 0 factors as (a +d+2l115)(a+d —2l113).
Hence the triple (a — d, b, ¢) in fact determines a + d up to < 1 possibilities by the divisor bound, and (6.7)
follows. O

Combining Lemmata 4 and 9, we obtain that

1
> o)) <r0 £ (Z +SP(L) + S™P(L, L?) + S™(L, L4)) + L2,
PeB

where

1 (L+L3%3 L*+L1%3 1
P(L) := 4
e ¥ g (St <y
5dyadlc
1/Vl<5;51
1 L3167 +63) L
np (1, L2 — i 1\"1 2 < —
S ( ’ ) ‘)Z 66% L3 K?
§ dyadic
1/VI<5;51
1 LS5%(52 + 62) L?
WP (L [A) = — L2 < =
S™(L, L) ﬁz 052 L 0
4 dyadic
1/VE<68;51

Putting everything together, we conclude that

2
> 169 <ra € G \1[ L )+L2€‘48 < 3,
ISPy

by making the essentially optimal choice L := 7¢1/3 (which satisfies our earlier condition L > 7).
The proof of Theorem 1 is complete.
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7. Proof of Theorem 3

In this section, we prove Theorem 3. For ¢ = 0, Lemma 5 provides an estimate on |¢,(g)|? for g € Q
in terms of the Diophantine count Mg (g, L, L, ), while for ¢ = +£ we need to analyze Q(g, L, Hy, Hs) as
follows from Lemma 6. We begin by estimating these counts. We keep the notational conventions from §6.

7.1. A comparison lemma

The Diophantine counts in Lemmata 5 and 6 involve the positioning relative to certain special sets of
the matrix ¢g~1'4¢, which we now explicate in preparation for a counting argument. Using g € (2, we may
write explicitly

g1 g2
= <1
g <93 g4> ’ 9i <<

An explicit calculation shows that

—1 a b o %d—FLl LQ
g <C d)g( L3 (J,Ter_Ll 9

where

Ly = (a—d)(3+9293) + bgsgs — cg192,

Ly = (a—d)gaga +bgi g3, (7.1)
Ly = —(a—d)gi93 —bgy  +cqi.
We record the following simple but effective result, which will be used in both parts of Theorem 3.

Lemma 10. Let Q2 C G be a compact subset, and g € Q. Let a,b,c,d € C and A > 0 be such that Lo, L3 < A.
(a) For at least one s € {a — d,b,c}, we have
[a—d b ¢]"=[A\ A2 As]  s+0(A)

with A1, A2, A3 < 1 depending only on g.
(b) For the same choice of s € {a —d,b, c}, we have

(a— d)? + 4bc = ps* + O(Als| + A?),
with = A} + 4\ A3 > 1. If additionally (a — d)? + 4bc = 0, then a — d,b,c < A.

Proof. We may write the defining equations for Ly and Lg as [L2 L3]T =Mla—d b c]T fora2x3
matrix M whose 2 X 2 minors we compute to be

2 2 2 2
g -9 9294  —G 9294 g
‘ 42 22 = g194 + 9293, ‘ 22 = 0192, ’ 42 = g394.
—93 91 —9193 91 —g193 —g3

At least one of these minors exceeds 1/3 in absolute value, since

(9194 + 9293)° — 491929394 = 1.
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Consider the case when |g1g4 + g293| > 1/3. Then we may solve the latter two equations in (7.1) for b, ¢,
which yields

H = [9192} —e=? o).
¢ 9394 | 9194 + 9293

This settles the first claim in the lemma with s = a — d. The second claim follows from

(a—d)

a—d)?+4bc= ——" 7
( ) (9194 + g293)?

+O(Ala — d| + A?).

The other cases (of which it suffices to consider one) are similar. For example, under |g1g2| > 1/3 we have
2

{a—d] — [—9194 —9293} b +0(A), (a —d)* 4 dbc = ——

+ O(Ap| + A?),
¢ —9394 9192 (9192)? (Al )

from which the lemma follows. 0O
7.2. Second moment count for g = 4

We will now establish an upper bound for the quantity Q(g, L, Hy, H3) counting pairs of matrices (7y1,72)
such that

by
v = (ij di) € My(Z[7)), dety; = detyp = n, L < |n| <2L,

~1 Hj L ix H;log/
g 1’ngH < Tj, dist(g lfng,D) < \/%

We denote the quantities in (7.1) corresponding to 7; as L1, Laj, L3;. From (7.1) and (7.2) we deduce that

(7.2)

vl </ Hj,  Laj, Lsj </ Hj/L, (7.3)
and
(a1 + d1)2 — (ag + d2)2 = (a1 — d1)2 +4bjc; — (ag — d2)2 — 4bycs. (74)

We shall prove the following result using (7.2), (7.3), and (7.4).
Lemma 11. Let Q C G be a compact subset and L > 1. For g € Q and 1 < Hy, Hy < ¢, we have
Q(Q,L,H17H2) <0 HIHZ- (75)

Proof. We shall use that the entries aj, b;,c;,d; € Z[i] of each participating v; satisfy the conditions of
Lemma 10 with A; < 1 in the role of A. Indeed, this follows from (7.3) and Hy, Ha < L.

Let s; € {a; —d;,bj,c;} be as in Lemma 10(a). By Lemma 10(a) and (7.3), for a given pair (s1, s2),
there are < 1 choices for the two triples (a; — dj, b;, ¢;), which then determine both sides of (7.4). Using
this preliminary observation, we do the counting in two steps.

First we count (71, v2) satisfying (7.2) and (a3 +d1)? # (a2 +dz)?. By (7.3), there are < Hy H» choices for
the pair (s1, s2), hence < HyHy choices for the two triples (a; — d;, b;, ¢;). Given the triples, by (7.3)—(7.4)
and the divisor bound, there are < 1 choices for (a; + dy,as + dz). This is admissible for (7.5).
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Now we count (71,72) satisfying (7.2) and (a1 + d1)? = (a2 + d2)?. In this case, Lemma 10(b) coupled
with (7.3)—(7.4) shows that s? — s3 < /H; + v/ Hs. Hence, by the divisor bound (separating the case when
s? = s%), there are < max(H;, Hs) choices for the pair (si, s2) and same for the two triples (a; — d;, b;, ¢ ).
Independently of the triples, by (7.3), there are < min(Hy, Hs) choices for (a; + di, a2 + d2). This is again
admissible for (7.5). O

7.8. Interlude: a first moment count

For the proof of Theorem 2 in §8 below, we need a variation of the previous Diophantine argument that
is most conveniently stated and proved at this point. For £ € {1, L% L*} and every 0 < 6 < 1, we will
establish an upper bound on the quantity

Mp(g, L, L,e,6):= Y #{veTn:|lg” A9l < £, dist(¢g~"'59, D) <}, (7.6)
neD(L,L)

where the implied constant is absolute. As before, we conclude from the conditions in (7.6) and the explicit
description in (7.1) that

Iyl < £ and Ly, Ly < LY. (7.7)
We shall prove the following result using (7.7) and the identity
(a —d)* + 4bc = (a + d)* — 4n. (7.8)

Lemma 12. Let Q C G be a compact subset, L > 1, and e > 0. For g € Q and 0 < § < 1, we have the
following bounds:

Mp(g,L,1,¢,0) <o 1, (7.9)
Mp(g, L, L* ,8) <q L? + L*¢*, (7.10)
Mp(g, L, L* &,8) <q L* + L°%*. (7.11)

Proof. The bound (7.9) corresponds to £ = 1, and it is immediate from (7.7). Hence we focus on the
bounds (7.10)—(7.11) that correspond to £ € {L?, L*}. We shall use that the entries a, b, c,d € Z[i] of each
participating 7 satisfy the conditions of Lemma 10 with A = £1/46, as follows from (7.7).

First we count parabolic matrices +. In this case, we have (a —d)?+4bc = 0, hence also a —d, b, ¢ < L1465
by Lemma 10(b). If bc # 0, then there are < £/2 choices for a + d = £2,/n, and < L£/2§? choices for
a —d # 0. The difference a — d determines the product bc uniquely, hence by the divisor bound, there
are < 1 choices for (b,c). This is admissible for (7.10)—(7.11). If bc = 0, then there are < £/ choices for
a=d==%/n,and < 1+ L2 choices for (b, c). This is again admissible for (7.10)—(7.11).

Now we count non-parabolic matrices v, in which case (a — d)? + 4bc # 0. Let s € {a — d,b,c} be as in
Lemma 10(a). There are < L£/2 choices for s, and for a given s, there are < 1+ £6* choices for the triple
(a—d,b,c) by Lemma 10(a). Altogether, there are < £/ + £3/25* choices for the triple (a — d, b, c). In the
middle range £ = L?, we additionally use that there are < £/2 choices for a + d, whence (7.10) follows. In
the high range £ = L*, n = [213 is a square, and (a — d)? + 4bc # 0 factors as (a + d + 2l1l2)(a + d — 2l112).
Hence the triple (a —d, b, ¢) in fact determines a +d up to < 1 possibilities by the divisor bound, and (7.11)
follows. O
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7.4. Counting setup for g =0

For each £ € {1, L% L*} and 0 < § < 1, we will establish an upper bound on the quantity Mg (g, L, L,d)
consisting of matrices

V= (a b) € My(Z[i]),  dety=ne€D(L,L), |n|=LY?

c d
Dl15g)  logt (7.12)
. —1~ 9 19 0g
dist(g~'3g,S) <4, - :
lg=7gll> — Ve
From the first distance condition in (7.12) we conclude that
a,b,c,d < LYV4, (7.13)
Using the description in (7.1), the distance conditions in (7.12) imply that
Lo, Ly < §4/|n a+d,Li < §+/|n|
) or (7.14)
|54 & L] = (14 0(0)VIn] [Lal. | La| = (1 + O(8) V/[n]
2 2
[+ Lo = |5~ L[ < VL and Lo~ |Ls 5 VL/E (7.15)

As in §6, we split the count into the parabolic and non-parabolic subcounts as
M;(g,L,L,0) = My"(g,L, L, ) + My™ (g, L, L, 9).
We shall prove the following result using (7.12)—(7.15) and (7.8).

Lemma 13. Let Q C G be a compact subset, L > 1, and £ € {L? L*}. For g € Q and 0 < § < 1, we have
the following bounds:

Mg(g,L,1,6) <a 1, (7.16)
MyP(g,L, £,0) <o L' + L5?, (7.17)
L2 L7/252 L4652
Mg (g, L, L?,8) <o L*/* + L36* + +¢z T (7.18)
L4 L6 2
Mg™ (g, L, L*,8) <o L + L°6% + +76' (7.19)

Proof. The bound (7.16) is immediate from (7.13). For the proof of (7.17), we observe that, in the parabolic
case, (7.14) implies Ly, Ly < £/44. Indeed, this is clear when the first half of (7.14) holds. Otherwise, the
conditions @ +d = +2/n and a + d < §+/|n| force § > 1, so the claimed bound is clear again. Applying
Lemma 10(b), we infer that a — d, b, ¢ < £/4§ holds in the parabolic case. From here (7.17) follows readily,
as in the second paragraph of the proof of Lemma 12. Finally, we shall prove (7.18) and (7.19) in the next
two subsections. O

7.5. Volume argument
Here, we present a volume argument that we will use repeatedly to estimate the number of lattice points

satisfying (7.12)—(7.15). The symbol vol will refer to the Lebesgue measure in C™ ~ R?™  with m being
clear from the context.
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The explicit expressions for the linear forms in (7.1) may be rewritten as

[Li Ly Ls] =A(g)la—d b ¢], (7.20)

where Ag : Q@ — GL3(C) is a continuous function. It is straightforward to verify that det Ag(g) = 1/2 holds
identically. We shall also use the 4-dimensional variant

l[a+d L Ly Ls]' =diag(l,Ao(g))[a+d a—d b ¢]". (7.21)

Now, let m > 1 be a fixed integer (m € {2,3,4} in our applications), and let A : @ — GL,,(C) be a fixed
continuous function. As € is compact, there exists a fixed compact subset K = K(A,Q) C C™ such that
each 2m-dimensional lattice A(g)Z[i]™ C C™ (g € Q) has a fundamental parallelepiped lying in K and of
volume < 1. It follows by a standard volume argument that for any compact subset V'C C™ and g € Q we
have

#(VNA(9)Z[i]™) < volV*® where Ve =V +K. (7.22)
We also record for repeated reference a simple volume computation. For r, A > 0, we define the sets

Wl(T, A) = {(21,252) S (Cz : |Zl‘, ‘2’2

| < (21% < A}a
Wa(r, A) = {(21,22) € C* : |21], | 22| <,

|Z1|2 [2f?] < A}

Cutting these into two parts according to whether |z2| < |z1] or |z2] > |21], we obtain readily by Fubini’s
theorem that

vol W;(r, A) < min(r*, r?A).
On the other hand, we have
Wj(r,A)* € W;(r+O(1), A+ O(r + 1))
with implied constants depending only on A and €2, hence
vol Wj(r,A)* < min((r + 1), (r + *(A +r+1)) < L+ r2A + 7% (7.23)
7.6. Middle and high range for g =0

We now estimate the count M (g, L, £, ) in the “middle range” £ = L? and the “high range” £ = L*.
In the high range, we shall focus on the non-parabolic contribution M;""(g, L, L*,§), since we have already
proved (7.17), and here we shall profit substantially from the fact that det~ is a square.

7.6.1. Middle range
In the middle range £ = L?, we estimate the number of choices in Mg (g, L, L?,6) as follows.
For the case when the first half of (7.14) holds, we introduce the set

V1(9) == {(20,21722,23) e C*: 29,21 < LV4, R(z0z1) < VL/Y,
29,23 < LY, 2] — |23)* < VLY,

suppressing from notation the dependence implicit in <. Then we have by (7.23)
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vol V4 (8)® < vol Wi (LY \/L]0)* -vol Wo (LY 26, /L))
< (L3 4+ L)V (1 + L3163 + £6%)V0).

For the case when the second half of (7.14) holds, we introduce the set

V2(6) = {(20,21,22,23) S (C 120,21 K L 1/4 5 §R Z()Zl ﬁ/g,
20,23 X L /4 |2’2‘2 |213|2 <V E/f}7

suppressing from notation the dependence implicit in <. Then we have by (7.23)

vol Va(8)® < vol Wy (LY 45, \/L/)® - vol Wo(LY*,\/L]E)*
< (L3* + z/\/z)u + 53/453 + L£52)V1).

Using (7.12)—(7.15), (7.21)—(7.22), and (7.24)—(7.25), we conclude (7.18) in the form
M (g, L, L?,6) < (L*? + L2 )V0)(1 + L%/%6% + L*6% V).

7.6.2. High range

(7.24)

(7.25)

As in the proof of Lemmata 9 and 12, in the high range £ = L*, once the triple (a —d, b, ¢) is determined
for a non-parabolic matrix v (so that (7.8) holds), a + d and along with it + is determined up to < 1
choices by the divisor bound, using that n = [2[3 is a square. We now estimate the number of choices in

M{™ (g, L, L%, §) as follows.
For the case when the first half of (7.14) holds, we introduce the set

V3(8) :={(21,22,23) € C® : 21 < LY 29,25 < LY46, | 2] — |28 = \/L—/K},
suppressing from notation the dependence implicit in <. Then we have by (7.23)
vol V3(8)* < VL - vol Wo(LY48,\/L]0)* < VL(1 + L6V + £L3/*5°).
For the case when the second half of (7.14) holds, we introduce the set
Va(0) == {(21,22,23) eEC: i< £1/45, 29,23 < L’l/4, |22|2 — |Z3|2 < m},
suppressing from notation the dependence implicit in <. Then we have by (7.23)
Vol V4(8)® < (1 + LY48)2 -vol Wo(LY*,\/L]0)* < (1+ VL) (LY* + £/V70).
Using (7.8), (7.12)—(7.15), (7.20), (7.22), and (7.26)—(7.27), we conclude (7.19) in the form
M;™(g, L, L*,8) < L2(1 + L*&? /VE + L36%) + (1 + L26%)(L® + L*/V7).

The proof of Lemma 13 is complete.

(7.26)

(7.27)
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7.7. Proof of Theorem 3

In the case ¢ = 0, we combine Lemmata 5 and 13 to see that

1
[60(9)” <10 £° (L + 53 (L, L) + S (L, L4)) + L,

where
1 L2+ L7252 L42 1 1 L
Sy(L,L?) := <L3/2+L353+ + > < + =+ —,
0( ) 5 dzya:dic \/Z5L3 \/Z ¢ 1,3/2 \/Z 03/2
1/VI<8<1
1 L* + L1552 1 L L7
So(L, L*) := <L3+L562—|—7> ST+ =+
o 6(12(1. NGI% Ve L Vi
yadic
1/VI<8<1
Putting everything together, we conclude that
1 L I?
2 < g? = — = L2€—48 87/4
[bo(9)” S1.2 67| 7 + 7))t <L,

by making the essentially optimal choice L := 7¢/4 (which satisfies our earlier condition L > 7).
The case ¢ = +/ is immediate from Lemmata 6 and 11, hence the proof of Theorem 3 is complete.

8. Proof of Theorem 2

In this section, we prove Theorem 2. Here we take the aim of the softest possible proof based on the
localization properties of the averaged spherical trace function (proved in Theorem 5 and then encoded in
the form of the amplified pre-trace inequality in Lemma 5) and the already available ingredients for the
counting problem.

For each £ € {1,L? L*} and 5= (61,02) with 0 < 01,62 < €%, the count M*(g,L,E,g) in Lemma 5 may
be estimated in a split fashion as

M*(ngvag) < min (MK(Q,L,E,(Sl),M'D(g,L,,C,E,(sg)),

where

Mk (g, L, L,0) = Z #{yel, dist (¢ '99,K) <4},
neD(L,L)

and Mp(g,L,L,e,0) is as in (7.6). The quantity Mg (g, L, £, J) is the classical Diophantine count in the
spherical sup-norm problem in the eigenvalue aspect, which in the present context was treated in detail in
[2]. In the notation of that paper, we have:

o u(ygK, gK) =< dist(g~ 99, K)* in [2, (5.3)];
e N=1and r xq 1 for g € Q, in [2, (6.2)].

Thus the count Mg (g, L, L, 1) agrees with M(gK, L, £,0(6%)) in [2, (5.17)—(5.18)]. Importing estimates
(2, (7.1), (7.2), (7.5), (11.1), (11.6)], we conclude that
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MK(gaLaLdl) <0 1) MK(ngvLQa(Sl) <0 L2+L4617 MK(gaLaL4751) <0 L3+L651~

The count Mp(g, L, L,e,0) was estimated in Lemma 12. Combining everything, we obtain the following
lemma.

Lemma 14. For g € Q, L > 0, and arbitrary € > 0 and § = (01,02) with 0 < §; < 1, the quantity

-

M*(g,L,L,6) in Lemma 5 satisfies

-

M*(g,Lalaa) <0 ]-7
M*(g,L, L% 8) <o min (L + L*61, L? + L*33),
M*(g, L, L*, &) <o min (L® + L%y, L? + L°33).

We are now ready for the proof of Theorem 2. From Lemma 14, we have for every pair 5= (61, 92) with
0< 61,52 < £¢ that

M*(g,L,1,8) M*(g,L,L%8) M*(g,L, L5 1
(9 ) Mg ) Mg )m(

7 3 T 7 + L7 min (51,5§)> :

Inserting this into Lemma 5, we find that

1 (1 . )
64(9)1* <1.0 € ) Z m (E + L? min (51,53)) + L2048
§ dyadic, §;<1
528,31/V

1 1 1 LQ

—\<£2 — 4+ E Lzmin(7’6754) #62 (_+ ),

<L gdyadic §; <1 \/Z6162 b L 62/9
5%5221’/\]/2

where we used min(A4, B,C) < A*°B*°C'/9 in the last step. The choice L := 7¢%*/?7 is optimal up to a
constant, and it satisfies our earlier condition L > 7, hence we obtain Theorem 2 in the form

pglalle <. 2927

The proof of Theorem 2 is complete.
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