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Rates and coverage for monotone densities
using projection-posterior
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We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic
properties. We consider a “projection-posterior” approach, where we construct a prior on density functions through
random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting
a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior
conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the
projection-posterior contracts at the optimal n−1/3-rate. We then construct a consistent test based on the posterior
distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-
posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage
turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed
in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an
intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We
conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.
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1. Introduction

We consider the problem of making inference about a bounded, monotone density g on a bounded
interval, based on independent and identically distributed (i.i.d.) observations. The domain can be taken
to be the unit interval, without loss of generality. We shall also discuss extensions of our results to the
positive half-line in the end. Shape restrictions like monotonicity or convexity often naturally appear
in modeling, especially in the context of inverse problems; see Groeneboom and Jongbloed [29] for
details. The maximum likelihood estimator (MLE) of a monotone decreasing density g on the positive
half-line exists, and is characterized as the left-continuous derivative of the least concave majorant of
the empirical distribution function of the data (Grenander [27]), commonly known as the Grenander
estimator. Prakasa Rao [35] obtained the limiting distribution of the Grenander estimator based on n

i.i.d. observations at an interior point, centered and scaled by n1/3. The asymptotic distribution is given
by the distribution of the minimizer Z of a two-sided Brownian motion with a parabolic drift, and is
commonly called the Chernoff distribution, named after the work of Chernoff [17]. Groeneboom [28]
computed the density of Z, and Groeneboom and Wellner [30] tabulated its quantiles. A confidence
interval for the density at a point may be obtained from the limiting distribution, but that approach
involves the additional challenging work of estimating the derivative of the function. Estimation of
monotone regression, commonly known as isotonic regression, was addressed well in the literature
(Barlow and Brunk [5], Barlow et al. [4], Leeuw et al. [20], Brunk [11]). Huang and Zhang [33] and
Huang and Wellner [32] respectively obtained estimators of a monotone density and a monotone hazard
rate under right-censoring. In shape-restricted inference, confidence sets were constructed by Dümbgen
[21], Dümbgen and Johns [22], Cai et al. [14], Schmidt-Hieber et al. [39], Banerjee and Wellner [3]
and Banerjee [2]. Testing the hypothesis of monotonicity of a regression function was addressed by
Bowman et al. [10], Hall and Heckman [31] Ghosal et al. [24], Gijbels et al. [26], and others.
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Bayesian methods for shape-restricted inference and their properties have been studied less exten-
sively in the literature. A prior on a decreasing density may be constructed by using its well-known
representation as a scale mixture of the uniform kernel, by putting a Dirichlet process prior on the
mixing distribution. Brunner and Lo [13] and Brunner [12] used this technique to construct priors on
unimodal densities. Wu and Ghosal [45] showed that the resulting prior assigns positive probabilities to
Kullback–Leibler neighborhoods of a decreasing true density, and hence the posterior is weakly consis-
tent by a well-known theorem of Schwartz [40]. Salomond [36] showed that the posterior concentrates
at the optimal rate n−1/3 up to a logarithmic factor. Salomond [38] proposed a Bayesian approach to
testing the hypothesis of monotonicity of regression. Very recently, a “projection-posterior” approach
to inference in a monotone regression model has been proposed by Chakraborty and Ghosal [15,16].
They considered a prior distribution based on random step functions by putting a prior distribution on
the step-heights, without imposing the monotonicity constraint on them. This allows us to retain conju-
gacy and easier expressions for the posterior distribution. To impose the monotonicity constraint, they
projected a sample from the posterior distribution on the space of monotone functions, thus inducing
a random measure appropriate for inference. This idea of embedding the functions in a larger model
where the posterior is easily represented and then using the projection map to comply with the restric-
tion was earlier used by Lin and Dunson [34], who used a Gaussian process prior for the same problem,
and by Bhaumik and Ghosal [6–8] for regression models driven by ordinary differential equations. The
technique has been recently used by Bhaumik et al. [9] for regression models described by partial dif-
ferential equations. For monotone regression, the projection map on posterior samples can be easily
computed by the Pool–Adjacent–Violators Algorithm (PAVA) (pages 9–15, Section 2.3 of Barlow et
al. [4]). Chakraborty and Ghosal [15] showed that the resulting posterior contracts optimally at the
rate n−1/3 and constructed a universally consistent test for the hypothesis of monotonicity following
Salomond’s [38] idea of extending the null region by the amount given by the contraction rate. The
asymptotic coverage of a Bayesian credible interval for the value of the regression function at an in-
terior point using quantiles of the projection-posterior distribution was computed by Chakraborty and
Ghosal [16].

In the present paper, we propose Bayesian methods for estimation, uncertainty quantification
and testing for a bounded, monotone decreasing density g on [0,1], based on n i.i.d. observations
X1, . . . ,Xn from g. We pursue the projection-posterior approach. This is especially useful in studying
the coverage of a credible interval for the function value g(x0) at an interior point x0. We assign a ran-
dom histogram prior on g where the probability contents of the intervals are jointly given a Dirichlet
distribution. This is equivalent with a finite random series prior (Shen and Ghosal [42]) using the basis
consisting of indicators of equal-length disjoint intervals and a Dirichlet distribution on the vector of
coefficients. The resulting unrestricted posterior is conjugate, allowing a simple description and easy
generation of samples for projection. In particular, a representation of a Dirichlet distribution in terms
of independent gamma variables allows us to use the techniques of empirical processes to study the
asymptotic properties of the projection-posterior process through a switch-relation expressing the slope
of the least concave majorant with the minimizer of the original function perturbed by a quadratic term.
We compute the limiting coverage of a (1−α)-credible interval for g(x0). Interestingly, the asymptotic
coverage is not 1−α, but is higher. This is the opposite of a phenomenon Cox [18] observed about arbi-
trarily low limiting coverage of Bayesian credible sets in smoothing regimes. The present “reverse-Cox
phenomenon” has been recently observed by Chakraborty and Ghosal [16] in the context of monotone
regression. Like them, we show that the limit is driven by two independent Brownian motions, and is
free of any unknown parameters, thus allowing a recalibration to meet a targeted coverage.

The rest of the paper is organized as follows. Section 2 lists the notations, describes the prior distribu-
tion and introduces the notion of a projection-posterior. Section 3 states results on posterior contraction
rates, Bayesian testing errors, and coverage of a projection-posterior credible interval for the density
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function at a fixed interior point. Simulation results are discussed in Section 4. Proofs of the main re-
sults are provided in Section 5. The paper concludes with a discussion on an extension of the proposed
methods to a decreasing density on the domain (0,∞). The appendix section contains the proofs of the
auxiliary results.

2. Setup, prior and projection-posterior

We consider n i.i.d. observations

X1, . . . ,Xn
i.i.d.∼ g, (2.1)

from a distribution G on (0,1] with density g. We consider the problems of obtaining a posterior
contraction rate for Bayesian estimation of g and the coverage of a Bayesian credible interval for
g(x0), the value of the density g at a fixed x0 ∈ (0,1) under the assumption that g is bounded and
decreasing, and also the problem of testing the hypothesis that g is decreasing. Let g0 stand for the
true density, and E0(·) and Var0(·) respectively stand for the expectation and variance operators taken
under g0. We write Dn for the data (X1, . . . ,Xn). Let a prior distribution on g be denoted by � and let
�(·|Dn) refer to the corresponding posterior distribution.

For g : (0,1] �→ R and d the L1- or the L2-distance, let the projection of g on F with respect to
d be the function g∗ that minimizes d(g,h) over h ∈ F . Let d(g,F) = d(g, g∗) denote the value of
the minimized distance. The induced posterior distribution of g∗, to be called the projection-posterior
distribution, will be viewed as a random measure for inference on g.

We put a prior on g through step functions with J equispaced knots j/J , j = 1, . . . , J , and an
appropriate joint distribution on the step heights, where J may be chosen deterministically (depending
on n) or may be given a further prior. More specifically, let Ij = ((j − 1)/J, j/J ], j = 1, . . . , J , and

g = J

J∑
j=1

θj1Ij
, (θ1, . . . , θJ ) ∼ Dir(α1, . . . , αJ ), (2.2)

where b1J
−b2 ≤ αj ≤ b3 for all j = 1, . . . , J , for some positive constants b1, b2, b3. The parameter

J is chosen deterministically as J = Jn suitably depending on n, or is given a prior distribution π .
Thus the prior is a finite random series prior with the basis (1Ij

: 1 ≤ j ≤ J ) and Dirichlet prior

on the coefficients, as termed by Shen and Ghosal [42]. We shall write α. = ∑J
j=1 αj and note that

α. = O(J ) under the assumed condition. The associated sieve on which the prior is supported is thus
given by FJ = {

g = J
∑J

j=1 θj1Ij
: θ1 ≥ · · · ≥ θJ }. It is immediate that the posterior distribution of g

(given J ) is again of the same form, with αj updated to α∗
j = αj + Nj , where Nj = ∑n

i=1 1{Xi ∈ Ij },
j = 1, . . . , J . Here, to keep the notation simple, we have suppressed the dependence on J , in that,
N1, . . . ,NJ , θ1, . . . , θJ , and α1, . . . , αJ are triangular arrays of numbers, and I1, . . . , IJ are a triangular
array of disjoint intervals partitioning (0,1]. For a given real-valued function h on (0,1], we denote
by hJ the step function J

∑J
j=1 ηj1Ij

, where ηj = ∫
Ij

h(x)dx. If h is a probability density, so is hJ .

In particular, if g0 denotes the true density, g0J = J
∑J

j=1(
∫
Ij

g0)1Ij
, its projection on the sieve, will

serve as a useful approximation to g0 in the proofs.
Since we do not impose monotonicity on g in the prior, the posterior measure also does not comply

with the monotonicity restriction, and needs to be modified. Let �∗
n be the distribution of the L1-

projection g∗ of g on F , that is, for every measurable subset B of F , �∗
n(B) = �(g : g∗ ∈ B|Dn), and

is viewed as a random probability measure quantifying the uncertainty in g after observing the sample.
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By arguments similar to those in the proof of Lemma 2.2. of Groeneboom and Jongbloed [29], it
follows that the projection of a density g = J

∑J
j=1 θj1Ij

is also a piece-wise constant decreasing den-

sity g∗ = J
∑J

j=1 θ∗
j 1Ij

, that is, θ∗
1 ≥ · · · ≥ θ∗

J and
∑J

j=1 θ∗
j = 1. In particular, the projection-posterior

charges only decreasing densities, and hence is suitable for inference on a decreasing density. Further,
by Theorem 2.1 of Groeneboom and Jongbloed [29], it follows that both L1- and L2-projection of
g = J

∑J
j=1 θj1Ij

are obtained by minimizing
∑J

j=1 |θj − θ∗
j |2 subject to θ∗

1 ≥ · · · ≥ θ∗
J . The solution

of this constrained minimization problem is given by the slopes (left-derivatives) of the least concave
majorant of the graph of the line segments connecting the points

{
(0,0) , (1/J, θ1/J ) , (2/J, (θ1 + θ2)/J ) , . . . , (1, (

J∑
j=1

θj )/J )
}
, (2.3)

at the points j/J , j = 1, . . . , J ; see Section 2.1 of Groeneboom and Jongbloed [29]. In particular, the
L1- and L2-projections are the same, and henceforth will be unambiguously referred to as the monotone
projection. This can be computed very efficiently by the PAVA for any sample of (θ1, . . . , θJ ) from its
conjugate Dirichlet posterior.

We shall use the following notations throughout this paper. For two sequences of real numbers an

and bn, an � bn (equivalently, bn � an) means that an/bn is bounded, an 
 bn means that an/bn → 0,
an � bn means that they are of the same order, and an ∼ bn means that an/bn → 1. Let N = {1,2, . . .}
be the set of positive integers and let N0 = N ∪ {0}. For a random variable X and a sequence of
random variables Xn, Xn �X means that Xn converges in distribution to X, Xn →P X means that Xn

converges to X in probability, Xn = oP (Yn) for another sequence Yn means that Xn/Yn →P 0, Xn =
OP (Yn) means that Xn/Yn is bounded with probability arbitrarily close to 1. For random variables X

and Y , X
d= Y means that X and Y have the same distribution. The ε-covering number of a set A with

respect to a metric d , denoted by N (ε,A,d), is the minimum number of balls of radius ε needed to
cover A.

Let the space of real-valued, bounded, monotone decreasing functions on (0,1] be denoted by F+, its
L1-closure by F̄+, and the space of monotone decreasing functions on (0,1] bounded in absolute value
by K > 0 be denoted by F+(K). A real-valued function f on (0,1] is called β-Hölder continuous for
some β ∈ (0,1) if there exists some L > 0 such that for all x, y ∈ (0,1), |f (x) − f (y)| ≤ L|x − y|β .
The set of β-Hölder continuous functions on (0,1] is denoted by H(β,L). For T ⊂ R, L∞(T ) denotes
the space of bounded functions on T .

3. Main results

The following result gives the contraction rate of the projection-posterior distribution with respect to
the L1-distance on densities.

Theorem 3.1 (Posterior contraction for monotone density). Let g0 ∈ F+ and 1 
 J 
 n. Then,
with εn = max{√J/n,J−1}, E0 �∗

n (‖g − g0‖1 > Mnεn) → 0 for every Mn → ∞. In particular, when
J � n1/3, the projection-posterior contracts at the optimal rate εn = n−1/3.
If g0 lies between two positive numbers, J has prior probability mass function π and for some

a1, a2 > 0,

e−a1J logJ ≤ π(J ) ≤ e−a2J logJ , (3.1)

then E0 �∗
n

(‖g − g0‖1 > M0(n/ logn)−1/4
) → 0, for some M0 > 0.
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Remark 3.1. In the above result, the posterior contraction for the projection-posterior is inherited from
the unrestricted posterior using the triangle inequality (see the proof of Theorem 3.1). Therefore, the
contraction rate is also valid about the unrestricted posterior. It is also not essential that the true density
is monotone. The same proof shows that at any true density g0, monotone or not, the L1-contraction
rate is max(

√
J/n,‖g0 − g0J ‖1). We shall use this fact to construct a Bayesian test for monotonicity.

Putting a prior on J in the second part of the theorem is unnecessary for optimal posterior contrac-
tion. In fact, the obtained rate is suboptimal. However, the conclusion is needed to study the asymptotic
properties of a Bayesian test with power adapting to smoothness in Theorem 3.3 below.

A natural test for the hypothesis of monotonicity is given by the posterior probability of F+: reject
the hypothesis if �(g ∈ F+|Dn) is smaller than 1/2, say. However, in spite of posterior consistency at
a monotone g0, the above posterior probability may be low because g0 may be approximated by non-
monotone functions. To compensate for that, the set F+ needs to be enlarged to the extent the posterior
allows a departure from g0. With the choice J � n1/3 which corresponds to the best contraction rate
n−1/3 in the L1-distance, the enlargement needs to be Mnn

−1/3 for some slowly growing sequence
Mn → ∞. This approach was also pursued by Salomond [37,38] and Chakraborty and Ghosal [15] for
monotone regression. We show that the level goes to zero, the power goes to 1 at a fixed alternative,
and the power is high against a sufficiently separated smooth alternative even when it approaches the
null.

Theorem 3.2 (Test for monotonicity). Consider a test for monotonicity given by φn =
1{�(d(f,F+) ≤ Mnn

−1/3|Dn) < γ }, where d is the L1-distance, 0 < γ < 1 is any predetermined
constant, J � n1/3 and Mn → ∞ is a chosen slowly varying sequence. Then the following assertions
hold.

(a) (Consistency under H0): For any fixed g0 ∈ F+, E0φn → 0, and further the convergence is
uniform over F+(K) for any K > 0.

(b) (Universal Consistency): For any fixed density g0 /∈ F̄+, E0(1 − φn) → 0.
(c) (High power at converging smooth alternatives): For any 0 < β ≤ 1 and L > 0, sup{E0(1−φn) :

f0 ∈ H(β,L), d(f0,F+) > ρn(β)} → 0, where

ρn(β) =
{

Cn−β/3, for some C > 0 if β < 1,

CMnn
−1/3, for any C > 1 if β = 1.

The procedure involving the test φn is computationally simple as it does not involve a prior on J .
However, with a deterministic choice of J , the required separation from the null hypothesis does not
adapt to the smoothness β of the function class in the alternative. More specifically, an order of separa-
tion n−β/3 (up to a logarithmic factor) is needed, which is larger than the optimal order n−β/(1+2β) of
separation for β < 1. Adaptation can however be restored by using a prior on J and letting the cut-off
value for the discrepancy with F+ depend on J .

Theorem 3.3 (Adaptive test for monotonicity). In a prior for g given by (2.2), let J be also unde-
termined and be given the prior (3.1). Let a test for monotonicity be given by φn = 1{�(d(f,F+) ≤
M0

√
J (logn)/n|Dn) < γ }, where d is the L1-distance, 0 < γ < 1 is a predetermined constant and

M0 > 0 is a sufficiently large constant. Then,

(a) (Consistency under H0): for any fixed g0 ∈ F+ lying between two positive numbers, E0φn → 0,
and the convergence is uniform over F+(K);
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(b) (Universal Consistency): for any fixed g0 /∈ F̄+ lying between two positive numbers, E0(1 −
φn) → 0;

(c) (Adaptive power at converging smooth alternatives): for g0 /∈ F+, g0 ∈ H(β,L), there exists C

depending on β and L only such that

sup{E0(1 − φn) : g0 ∈ H(β,L), d(g0,F+) > C(n/ logn)−β/(1+2β)} → 0,

provided that g0 lies between two positive numbers.

Now we turn to the study of the limiting coverage of a posterior credible set. More specifically, we are
interested in quantifying the uncertainty in the value of the density function g at a given interior point
assuming that g is bounded and globally decreasing, and obtain the limiting coverage of the resulting
posterior credible interval. Let x0 ∈ (0,1) be such that g′(x0) exists and g′(x0) < 0. We consider a
projection-posterior credible interval for g(x0) using posterior quantiles of g∗(x0) = J

∑J
j=1 θ∗

j 1{x0 ∈
Ij }, where θ∗

j , j = 1, . . . , J , are obtained from (2.3). To study the limiting shape of the posterior
distribution, following the clue from the classical Bernstein–von Mises theorem, it seems natural to
center g(x0) by a suitable estimator and scale the difference by n1/3. A natural candidate is the MLE
of g, but it is not structurally similar to the projection-posterior distribution, which is supported on
F+ ∩FJ . A remedy is to center at the sieve-MLE ĝn of g obtained by maximizing the likelihood over
g ∈ F+ ∩FJ , with a given choice of J . The following result shows that an analog of the Bernstein–von
Mises theorem does not hold but it nevertheless gives a useful intermediate result necessary to obtain
the limiting coverage in the theorem following it.

Let a = √
g0(x0), b = |g′

0(x0)|/2 and C0 = 2b(a/b)2/3. For a continuous function w on R, let
�∗

w = arg max{w(t) − t2 : t ∈ R}. Let W1,W2 be independent two-sided Brownian motions on R with
W1(0) = W2(0) = 0, Z = �∗

W1
and ZB = P(�∗

W1+W2
≤ 0

∣∣W1).
In the first part of the result, we show that the limiting distribution of the sieve-MLE is the classical

Chernoff distribution, which is the limiting distribution of the MLE over the whole of F+.

Theorem 3.4 (Point-wise distributional limit). If n1/3 
 J 
 n2/3, then the following assertions
hold.

(a) For every z ∈R, P0(n
1/3(ĝn(x0) − g0(x0)) ≤ z) → P(C0Z ≤ z).

(b) For every z ∈R, P0 × �(n1/3(g∗(x0) − g0(x0)) ≤ z|Dn) → P(C0�
∗
W1+W2

≤ z).

(c) For any z ∈ R, the conditional probability �(n1/3(g∗(x0) − ĝn(x0)) ≤ z
∣∣Dn) does not have a

limit in probability.

Define stochastic processes F ∗
n and F ∗ on R by F ∗

n (z|Dn) = �(n1/3(g∗(x0) − g0(x0)) ≤ z|Dn)

and F ∗(z|W1) = P
(
2b(a/b)2/3�∗

W1+W2
≤ z |W1

)
. For every n ≥ 1, γ ∈ [0,1/2], define the (1 − γ )-th

posterior quantile Qn,γ = inf{z ∈ R : �(g∗(x0) ≤ z|Dn) ≥ 1 − γ }, the associated two-sided (1 − γ )-
credible interval In,γ = [Qn,1−γ /2,Qn,γ /2]. We then have the following result. The interesting aspect
is that the unknown scaling constant C0 disappears from the expression for the limiting coverage.

Theorem 3.5 (Coverage of credible interval). If n1/3 
 J 
 n2/3, then

(a) for every z ∈ R, F ∗
n (z|Dn) � F ∗(z|W1);

(b) the limiting coverage of In,γ is given by

P0
(
g0(x0) ∈ In,γ

) → P(γ /2 ≤ ZB ≤ 1 − γ /2).
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For 0 < u < 1, let A(u) = P(ZB ≤ u) be the distribution function of ZB , to be called the Bayes–
Chernoff distribution. Then it follows from Lemma 3.5 of Chakraborty and Ghosal [16] that A(1−u) =
1 − A(u). Hence the limiting coverage in (b) can be written as 1 − 2A(γ/2), which only depends on
γ , not on any characteristics of g0. Thus, even though the limiting coverage is not identical with the
nominal credibility 1 − γ , the limiting coverage can be computed for each credibility level. These
values were given in Table 1 of Chakraborty and Ghosal [16]) numerically using Monte Carlo. This
reveals that the limiting coverage is slightly higher than the nominal credibility when it is over 50%, and
a targeted coverage 1 −α can be obtained by choosing 1 −γ = 1 − 2A−1(α/2), which can be obtained
from Table 2 of Chakraborty and Ghosal [16]. For instance, to obtain 95% asymptotic coverage, the
credibility level needs to be set to 93.4%. If viewed as a mechanism to obtain a confidence interval
with a targeted coverage, the procedure does not require estimation and plugging-in of any nuisance
parameters, which is a big advantage of the proposed method.

4. Simulation

In this section, we conduct a simulation study to investigate the behavior of the proposed Bayesian
procedures in finite samples. To keep the discussion concise, we only study the most interesting aspect,
namely, the coverage and size of point-wise credible intervals and compare with the corresponding
confidence interval based on the sieve-MLE. We consider the density of Beta(1,3) as g0 and make
inference on its value at x0 = 0.4. We take J equal to the greatest integer less than or equal to n1/3 logn.
For each instance of data, we generate 1000 posterior samples of g, isotonize each g to obtain g∗(x0).
We also compute the sieve-MLE ĝn(x0) for every instance of data, using the same value of J .

To obtain a two-sided 100(1 − α)% projection-posterior credible interval for g(x0), we find the
α/2 and (1 − α/2) quantiles of the 1000 samples of g∗(x0). We construct the adjusted projection-
posterior credible interval using the A−1(α/2) and (1 −A−1(1 −α/2)) quantiles of g∗(x0) where A−1

is found from Table 1 of Chakraborty and Ghosal [16]). The adjusted credible interval thus formed has
projection-posterior credibility A−1(1−α), and its coverage in large samples is expected to be (1−α).
We compute the confidence interval using ĝn(x0) based on the quantiles of the Chernoff’s distribution.

Table 1. Comparison of obtained coverage and average length of unadjusted and adjusted Bayesian credible
intervals and a confidence interval based on the sieve-MLE. In the table, CB(α), C∗

B
(α) and CF (α) respectively

denote the coverages of the (1 − α)-level projection-posterior credible interval, recalibrated projection-posterior
credible interval with target coverage (1 − α), and the (1 − α)-level confidence interval based on ĝn(x0). The
average lengths of the intervals are respectively denoted by LB(α), L∗

B
(α) and LF (α)

1 − α n = 100 n = 500

CB(α) LB(α) C∗
B

(α) L∗
B

(α) CF (α) LF (α) CB(α) LB(α) C∗
B

(α) L∗
B

(α) CF (α) LF (α)

0.99 0.994 0.97 0.986 0.91 0.990 1.33 0.994 0.66 0.990 0.61 0.988 0.79
0.98 0.982 0.89 0.978 0.84 0.984 1.21 0.984 0.61 0.976 0.57 0.982 0.72
0.96 0.974 0.80 0.964 0.75 0.962 1.08 0.976 0.54 0.974 0.50 0.970 0.64
0.94 0.964 0.74 0.952 0.70 0.952 0.99 0.972 0.50 0.954 0.47 0.948 0.59
0.92 0.948 0.69 0.930 0.65 0.930 0.93 0.952 0.47 0.928 0.44 0.918 0.55
0.90 0.930 0.65 0.912 0.62 0.908 0.87 0.928 0.44 0.914 0.41 0.906 0.52
0.88 0.916 0.62 0.896 0.59 0.882 0.83 0.918 0.42 0.902 0.40 0.884 0.49
0.86 0.896 0.59 0.878 0.56 0.866 0.79 0.902 0.40 0.892 0.38 0.862 0.47
0.84 0.878 0.56 0.862 0.54 0.854 0.75 0.892 0.38 0.884 0.36 0.854 0.45
0.82 0.862 0.54 0.840 0.51 0.830 0.72 0.884 0.36 0.866 0.35 0.826 0.43
0.80 0.840 0.52 0.830 0.49 0.812 0.69 0.866 0.35 0.850 0.33 0.812 0.41
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Figure 1. Obtained coverages and lengths of intervals across different nominal credibility levels (1 − α), for
n = 100, averaged over 500 replications.

The constant C0 that appears in Theorem 3.4 involves g(x0) and g′(x0), which are respectively esti-
mated using the density function in R and successive differentiation on a fine grid.

We report the coverages and lengths of the three intervals averaged over 500 replications of data
for two values of n in Table 1. For a better understanding, we plot the coverages and lengths in Fig-
ures 1–2. We observe that the projection-posterior credible intervals are mildly conservative in that the
coverage values are slightly higher than the corresponding credibility, as predicted by Theorem 3.5.
The recalibrated intervals are thus slightly shorter, and their coverage values are seen to be closer to
the target (1 − α). The confidence interval using the asymptotic distribution of the sieve-MLE with the
value of the normalizing constant estimated from the data is seen to have adequate coverage, although
it is noticeably longer. Thus the Bayesian intervals give more accurate and precise quantification of the
uncertainty in the value of the function at the point of interest.

We also explore how the coverages and lengths of the intervals vary with increasing n, and beyond
what n the asymptotic regime starts being observed. We display the coverages and lengths averaged
over 500 replications for several cases of n, for the target coverage (1 − α) equal to 0.95 and 0.98 in
Figures 3–4. The chosen sample sizes are n = 50,80,100,200,300,500,600,800,1000,1200,1500,

1800,2000. As expected, with increasing n, the lengths of the intervals are seen to go down. The

Figure 2. Obtained coverages and lengths of intervals across different nominal credibility levels (1 − α), for
n = 500, averaged over 500 replications.
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Figure 3. Coverages and lengths of intervals across different sample sizes for (1 − α) = 0.95, averaged over 500
replications.

Figure 4. Coverages and lengths of intervals across different sample sizes for (1 − α) = 0.98, averaged over 500
replications.

Figure 5. Coverage of (unadjusted) projection-posterior credible interval and that of a confidence interval based
on the Grenander’s estimator near 0. Samples of size n = 500 are generated from an exponential distribution and
100 replications of the data are used.
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coverages seem to behave like what we would expect in the asymptotic regime, even for smaller sample
sizes like 50 and 80.

It would be interesting to study the coverage of projection-posterior credible intervals when x0 is
close to 0 and g0 is unbounded. We compare the coverage of our unadjusted Bayesian credible interval
(with prior supported on the unbounded domain) to that of a frequentist confidence interval based
on the Grenander’s estimator and quantiles of the Chernoff distribution, for data generated from the
exponential distribution with a rate 1. We use 100 replications of the data, with n = 500. The coverages
for intervals with level 0.95 are displayed in Figure 5. We observe that although both the methods yield
intervals with coverage less than the nominal level 0.95, the Bayesian credible interval has much more
coverage than the confidence interval, when x0 is less than 0.005.

5. Proofs

Proof of Theorem 3.1. If g∗ is the monotone projection of a density g and the true density
g0 is monotone, then by the definition of the projection and the triangle inequality, d(g∗, g0) ≤
d(g∗, g) + d(g, g0) ≤ 2d(g, g0). Thus the contraction rate of the unrestricted posterior is inherited by
the projection-posterior, and hence it suffices to obtain the contraction rate of the unrestricted posterior.

For a bounded, monotone density g0, with g0(0) defined to be g0(0+) without loss of generality, we
have that

∫ |g0(x) − g0J (x)|dx is

J∑
j=1

∫
Ij

|g0(x) − Jθ0j |dx ≤
J∑

j=1

[g0((j − 1)/J ) − g0(j/J )]|Ij | ≤ [g0(0) − g0(1)]/J, (5.1)

since Jθ0j lies between g0(j/J ) and g0((j − 1)/J ) and the length |Ij | of Ij is 1/J . Thus it suffices to
prove that

∫ |g(x) − g0J (x)|dx �
√

J/n with posterior probability exceeding 1 − δ in P0-probability
for any predetermined δ > 0. Since the L2-distance dominates the L1-distance, in view of Markov’s
inequality and the standard bias variance decomposition, it suffices to establish that

∑J
j=1 E0(θ̂j −

θ0j )
2 � 1/n and

∑J
j=1 E0 Var(θj |Dn)� 1/n, where θ̂j = (αj + Nj)/(α. + n) is the posterior mean of

θj . The latter follows from Var(θj |Dn) = (αj +Nj)(α. −αj +n−Nj)/((α. +n)2(α. +n+1)) ≤ (αj +
Nj)/(α. +n)2. The sum of these is bounded by 1/(α. +n) ≤ 1/n. To take care of the squared bias term,
we further decompose it into Var(θ̂j ) and (E0(θ̂j )− θ0j )

2. The former term is nθ0j (1 − θ0j )/(α. +n)2,
whose sum over j is bounded by n/(α. + n)2 ≤ 1/n since

∑J
j=1 θ0j = 1. The latter term is equal to∑J

j=1(αj −α.θ0j )
2/(α. +n)2 � J/n2 ≤ 1/n because θ0j are bounded by a multiple of J−1 and α. � J

by the assumption that αj are bounded. This proves the first part.
For the second part, we apply the general theory of posterior contraction with i.i.d. observations with

respect to the L1-distance on densities (Ghosal et al. [23] or Ghosal and van der Vaart [25]). If εn is the
targeted posterior contraction rate, we first need to estimate the prior concentration rate and establish
that for some C > 0,

− log�(g : K(g0, g) ≤ Cε2
n,V (g0, g) ≤ Cε2

n) � nε2
n, (5.2)

where K(g0, g) = ∫
g0 log(g0/g) and V (g0, g) = ∫

g0 log2(g0/g) stand for the Kullback–Leibler di-
vergences. To this end, we observe from (5.1) that the L1-approximation rate at monotone functions by
a step function with J equal intervals is J−1. Hence with J̄n � ε−2

n , we have that ‖g0 − g0J̄n
‖1 ≤ ε2

n .

Therefore, their Hellinger distance dH (g0, g0J̄n
) is bounded by ‖g0 −g0J̄n

‖1/2
1 ≤ εn (cf., Lemma B.1(ii)

of Ghosal and van der Vaart [25]). Because g0 and hence also g0J̄n
are uniformly bounded above and
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below, it follows from Lemma B.2 of Ghosal and van der Vaart [25] that K(g0, g) and V (g0, g) are
also bounded by a constant multiple of ε2

n . We note that for J = J̄n,

K(g0, g) = K(g0, g0J̄n
) +

∫
g0 log(g0J̄n

/g) = K(g0, g0J̄n
) +

J̄n∑
j=1

θ0j log(θ0j /θj )

and similarly

V (g0, g) ≤ 2V (g0, g0J̄n
) + 2

∫
g0 log2(g0J̄n

/g) = 2V (g0, g0J̄n
) + 2

J̄n∑
j=1

θ0j log2(θ0j /θj ).

Therefore, for (5.2), it suffices to lower bound

π(J̄n)�
( J̄n∑

j=1

θ0j log(θ0j /θj ) ≤ ε2
n,

J̄n∑
j=1

θ0j log2(θ0j /θj ) ≤ ε2
n|J = J̄n

)
. (5.3)

By the assumption that g0 is upper and lower bounded, we have that θ0j � 1/J̄n uniformly in j . Hence

if
∑J̄n

j=1 |θj − θ0j | ≤ ε2
n/J̄n 
 1/J̄n, it follows that θj � 1/J̄n uniformly in j . Thus by Lemmas B.1

and B.2 of Ghosal and van der Vaart [25], it follows that

max{
J̄n∑

j=1

θ0j log(θ0j /θj ),

J̄n∑
j=1

θ0j log2(θ0j /θj )}�
J̄n∑

j=1

|√θj − √
θ0j |2 ≤

J̄n∑
j=1

|θj − θ0j |.

Therefore, the expression in (5.3) is bounded below by

π(J̄n)�(

J̄n∑
j=1

|θj − θ0j | ≤ ε2
n/J̄n|J = J̄n) � exp[−a1J̄n log J̄n − c0J̄n log(J̄n/ε

2
n)]

by the estimate given by Lemma G.13 of Ghosal and van der Vaart [25]. Hence, if we choose J̄n =√
n/ logn and εn = J̄

−1/2
n = (n/ logn)−1/4 so that log J̄n � log(1/εn) � logn and J̄n logn � nε2

n , then
(5.2) is satisfied.

Choose Sn = ∪Jn

j=1Fj as the sieve in Theorem 8.9 of Ghosal and van der Vaart [25], where Jn = LJ̄n

for a sufficiently large constant L > 0. Then

�(Sc
n) ≤ �(J > Jn) ≤ e−a2Jn logJn ≤ e−anε2

n

for any predetermined a > 0 if we choose L large enough. Finally, the εn-covering number
N (εn,Sn,‖ · ‖1) of the sieve for the L1-metric is bounded by

∑Jn

j=1(3/εn)
j ≤ Jn(3/εn)

Jn , so clearly

the entropy condition logN (εn,Sn,‖ · ‖1) � nε2
n holds. This shows that the L1-convergence rate is

(n/ logn)−1/4 and also we have that �(J > Jn|Dn) →P0 0. �

Proof of Theorem 3.2. (a) For g0 ∈F+, by the definition of the projection,

�(‖g − g∗‖1 > Mnn
−1/3|Dn) ≤ �(‖g − g0‖ > Mnn

−1/3|Dn) →P0 0

by Remark 3.1. Further, the convergence is uniform over g0 ∈ F+(K) for any K > 0.
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(b) Let g0 /∈ F̄+ be a fixed density. The martingale convergence theorem gives ‖g0 − g0J ‖1 → 0
as J � n1/3 → ∞. Also by Remark 3.1, �(‖g − g0J ‖1 > Mnn

−1/3
∣∣Dn) →P0 0. Now by the triangle

inequality and the definition of the projection,

�(d(g,F+) ≤ Mnn
−1/3

∣∣Dn) ≤ �(‖g0 − g‖1 + Mnn
−1/3 ≥ d(g0,F+)

∣∣Dn)

≤ �(‖g − g0J ‖1 ≥ d(g0,F+) − ‖g0J − g0‖1 − Mnn
−1/3

∣∣Dn),

which goes to 0 in P0-probability because d(g0,F+) is fixed and positive.
(c) Let g0 ∈ Fc+ ∩ H(β,L) such that d(g0,F+) ≥ ρn(β) and g0J be as in part (b). Then it is well-

known (cf. de Boor [19]) that ‖g0 − g0J ‖1 ≤ C(L)J−β � n−β/3 for some constant C(L) depending
only on L. Therefore, from Remark 3.1, �(‖g−g0‖1 > M ′

nn
−1/3 +C(L)n−β/3|Dn) →P0 0, uniformly

for all g0 ∈ H(β,L) for any M ′
n → ∞. Using the fact that

d(g,F+) ≥ d(g0, g
∗) − d(g, g0) ≥ d(g0,F+) − d(g, g0) ≥ ρn(β) − d(g, g0),

the right side will exceed Mnn
−1/3 with posterior probability tending to 1 in P0-probability, provided

that ρn(β) ≥ Cn−β/3 for some C > C(L) when β < 1, while for β = 1, ρn(β) ≥ CMnn
−1/3 for any

C > 1 ensures that in view of Mn → ∞. �

Proof of Theorem 3.3. Let g0 be a bounded density function that may or may not be decreasing. Let
θ0j = ∫

Ij
g0(x)dx, j = 1, . . . , J . We claim that if logJn � logn, given any ε > 0, for some sufficiently

large M0,

E0�(‖g − g0J ‖1 ≥ M0
√

J (logn)/n,J ≤ Jn|Dn) < ε. (5.4)

We have Nj ∼ Bin(n, θ0j ) and θ0j � 1/J by the boundedness of the density, simultaneously for all
j = 1, . . . , J . If N ∼ Bin(n, θ), then from Bennett’s inequality (cf. Proposition A.6.2 of van der Vaart
and Wellner [44]), it easily follows that

P(|N/n − θ | ≥ λ/
√

n) ≤ 2 exp[−λ2/(2θ)]
for any λ > 0. Hence, upon choosing λ2 = 6θ0j and using θ0j � 1/J , we can find C > 0 such that for
any j = 1, . . . , J , J ≤ Jn, we have that

P(|Nj/n − θ0j | ≥ C
√

(logn)/(nJ ) ≤ 2n−3.

Since the cardinality of the set {1 ≤ j ≤ J ≤ Jn} ≤ J 2
n ≤ n2, it follows that with probability tending to

one, simultaneously for all J ≤ Jn,

max{|Nj/n − θ0j | : 1 ≤ j ≤ J }� √
(logn)/(nJ ). (5.5)

In particular, this also ensures that

max{Nj/n : 1 ≤ j ≤ J }� J−1 + √
(logn)/(nJ )� J−1 (5.6)

provided that J logn � n. Now, the posterior probability in (5.4) can be written as

Jn∑
J=1

�(J |Dn)�
( J∑

j=1

|θj − θ0j | ≥ M0
√

J (logn)/n
∣∣J,Dn

)
(5.7)
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and that �
(∑J

j=1 |θj − θ0j | ≥ M0
√

J (logn)/n
∣∣J,Dn

)
bounded by

√
n/J

M0
√

logn

J∑
j=1

{[Var(θj |J,Dn)]1/2 + |E(θj |J,Dn) − θ0j |}. (5.8)

Since the prior parameters are bounded, Var(θj |J,Dn) �Nj/n2 � 1/(Jn) and

|E(θj |J,Dn) − θ0j | ≤ |Nj/n − θ0j | + 1/n �
√

(logn)/nJ ,

with P0-probability tending to one. Therefore the expression in (5.8) is bounded in P0-probability by
a constant multiple of M−1

0 in view of (5.5). This leads to (5.4).
Note that if E0�(g : ‖g − g0‖1 > M0εn|Dn) → 0 for some M0 > 0, then because g0J is the projec-

tion of g0 on FJ , we have that

�(J : ‖g0J − g0‖1 > M0εn|Dn) ≤ �(‖g − g0‖1 > M0εn|Dn) → 0 (5.9)

in P0-probability.
(a) If g0 ∈ F+, then by the second part of Theorem 3.1 and Remark 3.1, the L1-contraction rate

is εn = (n/ logn)−1/4 and that �(J > Jn|Dn) →P0 0 for Jn � ε−2
n � √

n/ logn. Using the fact that
g0J ∈ F+ (and hence g∗ is closer to g than g0J for any g ∈ FJ ), we have that for any given ε > 0,
there exists M0 > 0 such that

E0�(‖g − g∗‖1 > M0
√

J (logn)/n|Dn) ≤ �(‖g − g0J ‖1 > M0
√

J (logn)/n|Dn) < ε

by (5.4); here we have used �(J > Jn|Dn) →P0 0 and logJn � logn. Arguing as in the proof of part
(a) of Theorem 3.2, the conclusion follows.

(b) Let g0 /∈ F̄+ be a fixed density bounded away from zero and infinity. By the martingale con-
vergence theorem, ‖g0J − g0‖1 → 0 as J → ∞, so for a given ε > 0, we can get J0 (depending on
ε but not depending on n) such that ‖g0J0 − g0‖1 < ε/2. Then we have �(‖g − g0‖1 < ε) ≥ �(J =
J0)�(J0

∑J0
i=1 |θj − θ0j | < ε/2) > 0. Further, for Jn ∼ cn/ logn with a sufficiently small c > 0, by

the tail-estimate of the prior distribution (3.1), there exists a constant b > 0 depending on c such that
�(J > Jn) ≤ e−bn. Considering a sieve Sn = {

g = J
∑J

j=1 θj1Ij
, J ≤ Jn

}
, standard estimates give a

bound for its metric entropy a multiple of Jn logn ∼ cn, and that �(Sc
n) ≤ e−bn. Therefore it follows

(see Theorem 6.17 of Ghosal and van der Vaart [25]) that E0�(J > Jn|Dn) → 0 and the posterior is
consistent at g0 with respect to the L1-metric. Hence it suffices to restrict J to at most Jn.

Observe that for any g ∈FJ , the distance to the monotone projection

d(g,F+) ≥ ‖g0 − g∗
0‖1 − ‖g − g0J ‖1 − ‖g0J − g0‖1. (5.10)

Since g0 does not belong to the topological closure of F+, the first term is fixed and positive.
By (5.4), with posterior probability tending to 1 in P0-probability, the second term is bounded by√

Jn(logn)/n ≤ c, which can be taken to as small as we need. By (5.9) and posterior consistency,
the third term can also be made arbitrarily small with high posterior probability. Thus �(d(g,F+) ≥
M0

√
J (logn)/n|Dn) →P0 1, that, is the power tends to 1.

(c) Let g0 ∈ H(β,L) be at least C(n/ logn)−β/(2β+1) away from F+ for some sufficiently large
C > 0 in terms of the L1-metric. Observe that by the Lipschitz continuity of g0, with θ0j = ∫

Ij
g0,

‖g0 − g0J ‖1 =
J∑

j=1

∫
Ij

|g0(x) − Jθ0j |dx ≤ sup
x,y∈Ij

|g0(x) − g0(y)| ≤ LJ−β. (5.11)



1106 M. Chakraborty and S. Ghosal

Then standard arguments as in the second part of the proof of Theorem 3.1 with J−β replac-
ing J−1/2 give bounds for prior concentration and metric entropy, leading to the posterior con-
traction rate εn = (n/ logn)−β/(2β+1) at g0 with respect to the L1-distance. Further, it follows that
�(J ≤ M ′(n/ logn)1/(2β+1)|Dn) →P0 1 for some sufficiently large M ′. To complete the proof, we
proceed as in part (b) with the following changes. The second term in (5.10) is bounded by a mul-
tiple of (n/ logn)−β/(2β+1) with high posterior probability. By (5.9), the third term is bounded by a
multiple of (n/ logn)−β/(2β+1) with high posterior probability. Therefore, for C > 0 large enough,
‖g0 − g∗

0‖1 is larger than any predetermined constant multiple of (n/ logn)−β/(2β+1), which exceeds
M0

√
J (logn)/n with high posterior probability. Thus the power of φn at g0 tends to one. �

In the remaining proofs below, we use the following “switch relation” (Page 56 of Groeneboom and
Jongbloed [29]): for a lower semi-continuous function � on an interval I with �∗ its least concave
majorant, and �∗l denoting the left-derivative of �∗, for every t ∈ I , v ∈ R,{

�∗l (t) > v
} = {

arg min{�(s) − vs : s ∈ I } < t
}
, (5.12)

where ‘arg min’ selects the maximum of the minimizers when multiple minimizers exist.
To prove Theorems 3.4 and 3.5, we need to establish a few auxiliary lemmas. The first two lem-

mas are about the asymptotics for the sieve MLE, showing that the local empirical process, whose
maximization leads to the normalized sieve MLE, converges to an appropriate Gaussian process, and
its maximizer is tight, respectively. The remaining two results are Bayesian analogs of these two re-
sults, replacing the empirical process by the posterior process. The proofs of these lemmas are given
in the appendix. Below, W1 and W2 will stand for independent two-sided Brownian motions with

W1(0) = W2(0) = 0. We shall use the convention that for t < 0, a sum of the form
∑�(x0+n−1/3t)J �

j=�x0J �+1

stands for the corresponding sum
∑�x0J �

j=�(x0+n−1/3t)J �+1
.

Lemma 5.1. If n1/3 
 J 
 n2/3, then

(
n2/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

(Nj

n
− g0(x0)

J

) : t ∈ [−K,K]
)
�

(
aW1(t) − bt2 : t ∈ [−K,K])

in L∞([−K,K]), for all K > 0.

Lemma 5.2. If n1/3 
 J 
 n2/3, then for all z ∈R,

arg max
t∈R

{
n2/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

(Nj

n
− g0(x0)

J

) − n1/3z

�(x0+n−1/3t)J �∑
j=�x0J �+1

1

J

}
= OP0(1).

Lemma 5.3. If n1/3 
 J 
 n2/3, then

L
(

n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(
θj − g0(x0)

J

) : t ∈ [−K,K]
∣∣∣∣Dn

)

� L
(
aW1(t) + aW2(t) − bt2 : t ∈ [−K,K]∣∣W1

)
(5.13)

in L∞([−K,K]), for all K > 0.
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Lemma 5.4. If n1/3 
 J 
 n2/3, then for all z ∈ R, there exists K > 0 such that

�

(∣∣∣∣ arg max
t∈R

{ �(x0+n−1/3t)J �∑
j=�x0J �+1

(
θj − g0(x0)

J

) − n−1/3z

�(x0+n−1/3t)J �∑
j=�x0J �+1

1

J

}
> K

∣∣∣∣Dn

)
→P0 0.

Proof of Theorem 3.4. Let Un(s) = ∑�sJ �
j=1 (Nj/n) and Gn(s) = ∑�sJ �

j=1 J−1 = �sJ �/J . Let τn :=
n1/3(J−1�x0J � − x0). From the switch relation (5.12) and a change of variable s = x0 + n−1/3t , for
z ∈R,

P(ĝn(x0) ≤ g0(x0) + n−1/3z)

= P
(

arg max
s∈[0,1]

{
Un(s) − (g0(x0) + n−1/3z)Gn(s)

} ≥ �x0J �/J )
= P

(
arg max
s∈[0,1]

{
n2/3(Un(s) − Un(x0)) − n2/3(g0(x0) + n−1/3z)(Gn(s) − Gn(x0))

} ≥ �x0J �/J )
= P

(
arg max

t∈R
{
n2/3(Un(x0 + n−1/3t) − Un(x0))

− n2/3(g0(x0) + n−1/3z)(Gn(x0 + n−1/3t) − Gn(x0))
} ≥ τn

)

= P
(

arg max
t∈R

{
n2/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

Nj

n
− n2/3(g0(x0) + n−1/3z)

�(x0+n−1/3t)J �∑
j=�x0J �+1

1

J

} ≥ τn

)
.

Note that

n1/3zJ−1(�(x0 + n−1/3t)J � − �x0J � − 1) = zt + O(n1/3J−1) → zt (5.14)

because J � n1/3. Since τn → 0, we evaluate

P(ĝn(x0) ≤ g0(x0) + n−1/3z) = P
(

arg max
t∈R

{
n2/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

(Nj

n
− g0(x0)

J

) − zt
} ≥ 0

)
.

From Lemma 5.1 and 5.2, the Argmax Theorem and Lemma A.1, we have that the expression converges
to

P
(

arg max
t∈R

{aW1(t) − bt2 − zt} ≥ 0
) = P

(
(a/b)2/3 arg max

t∈R
{W1(t) − t2} + z

2b
≥ 0

)
= P

(
2b(a/b)2/3 arg max

t∈R
{W1(t) − t2} ≥ −z

)
= P

(
2b(a/b)2/3 arg max

t∈R
{W1(t) − t2} ≤ z

)
.

The last step follows from the fact that arg max{W1(t) − t2 : t ∈ R} is symmetric about zero. Substi-
tuting C0 = 2b(a/b)2/3 in the last expression of the display we get P(n1/3(ĝn(x0) − g0(x0)) ≤ z) →
P

(
C0 arg max

{
W1(t) − t2 : t ∈R

} ≤ z
)

as n → ∞. This establishes the part (a).
Since g∗ is piece-wise constant on each Ij , g∗(x0) = θ∗�x0J �. We first evaluate the expression P0 ×

�(n1/3(g∗(x0) − g0(x0)) ≤ z|Dn) = P0 × �(θ∗�x0J � ≤ g0(x0) + n−1/3z|Dn) for z ∈R as n → ∞.
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Let cn(·) denote the graph of the lines connecting the points

{
(0,0), (J−1, θ1), (2J−1,

2∑
k=1

θk), . . . , (1,

J∑
k=1

θk)
}
,

along with cn(s) = 0 for s ≤ 0 and cn(s) = ∑J
k=1 θk for s ≥ 1. Observe that c agrees with the cu-

mulative distribution function of the density g at the points j/J , j = 0,1, . . . , J . Define a stochastic
process Ũn(s) = ∑�sJ �

j=1 θj . Since θ∗�x0J � is the left-derivative of the least concave majorant of c(·) at

the point �x0J �/J , by the switch relation (5.12), the fact that Ũn(s) = Gn(s) = 0 for s ≤ 0 and that the
location of minimum does not change upon adding a constant term or upon multiplication by a positive
constant, we have that g∗(x0) ≤ g0(x0) + n−1/3z if and only if arg max{cn(s) − (g0(x0) + n−1/3z)s :
s ≥ 0} ≥ �x0J �/J . Hence the probability of this event can be written as

P0 × �
(

arg max
s∈R

{cn(s) − (g0(x0) + n−1/3z)s} ≥ �x0J �/J |Dn

)
= P0 × �

(
arg max

s∈R
{Ũn(s) − (g0(x0) + n−1/3z)Gn(s)} ≥ J−1�x0J �|Dn

)
= P0 × �

(
arg max

s∈R
{
n2/3(Ũn(s) − Ũn(x0))

− n2/3(g0(x0) + n−1/3z)(Gn(s) − Gn(x0))
} ≥ J−1�x0J �|Dn

)
. (5.15)

The last expression in (5.15) then equals to

P0 × �
(

arg max
t∈R

{n2/3(Ũn(x0 + n−1/3t) − Ũn(x0))

− n2/3(g0(x0) + n−1/3z)(Gn(x0 + n−1/3t) − Gn(x0))} ≥ τn|Dn

)

= P0 × �
(

arg max
t∈R

{
n2/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

(θj − J−1g0(x0))

− n1/3zJ−1(�(x0 + n−1/3t)J � − �x0J � − 1)
} ≥ τn|Dn

)
. (5.16)

Using Lemma 5.3 and 5.4, a multivariate version of the Argmax Theorem (see Theorem 3.6.10 of
Banerjee [1]), and Lemma A.1, we rewrite (5.16) to obtain

P0 × �(n1/3(g∗(x0) − g0(x0)) ≤ z|Dn)

→ P
(

arg max
t∈R

{aW1(t) + aW2(t) − bt2 − zt} ≥ 0
)

= P
(
(a/b)2/3 arg max

t∈R
{W1(t) + W2(t) − t2} + z

2b
≥ 0

)
= P

(
2b(a/b)2/3 arg max

t∈R
{W1(t) + W2(t) − t2} ≤ z

)
,
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the last step following from the fact that arg max
{
W1(t) + W2(t) − t2 : t ∈R

}
is symmetric about zero.

Substituting C0 = 2b(a/b)2/3 above, we get

P0 × �(n1/3(g∗(x0) − g0(x0)) ≤ z|Dn) → P
(
C0 arg max

t∈R
{W1(t) + W2(t) − t2} ≤ z

)
.

This completes the proof of part (b).
(c) For every z1, z2, t1, t2 ∈R, define

H1n(t1, z1) =
�(x0+n−1/3t1)J �∑

j=�x0J �+1

(Nj

n
− g0(x0)

J

) − n−1/3z1

�(x0+n−1/3t1)J �∑
j=�x0J �+1

1

J
,

H2n(t2, z2) =
�(x0+n−1/3t2)J �∑

j=�x0J �+1

(
θj − g0(x0)

J

) − n−1/3z2

�(x0+n−1/3t2)J �∑
j=�x0J �+1

1

J
.

Then from the proofs of parts (a) and (b), and the Multivariate Argmax Theorem, we have
(arg max{H1n(t1, z1) : t1 ∈ R}, arg max{H2n(t2, z2) : t2 ∈ R}) converges weakly to(

arg max
t1∈R

{aW1(t1) − bt2
1 − z1t1}, arg max

t2∈R
{aW1(t2) + aW2(t2) − bt2

2 − z2t2}
)
. (5.17)

Rewriting n1/3(g∗(x0) − ĝn(x0)) as n1/3(g∗(x0) − g0(x0)) − n1/3(ĝn(x0) − g0(x0)), and using (5.17)
and Lemma A.1, we get that for all z ∈ R,

P0 × �
(
n1/3(g∗(x0) − ĝn(x0)) ≤ z|Dn

) → P
(
C0�

∗
W1+W2

− C0�
∗
W1

≤ z
)
.

From the proof of part (a) of Theorem 3.5, we also obtain that

�
(
n1/3(g∗(x0) − ĝn(x0)) ≤ z|Dn

)
� P

(
C0�

∗
W1+W2

− C0�
∗
W1

≤ z|W1
)
.

If �(n1/3(g∗(x0) − ĝn(x0)) ≤ z|Dn) converges in probability, then the limit must be the ran-
dom variable Q = P(C0�

∗
W1+W2

− C0�
∗
W1

≤ z|W1). Let W ∗
n = n1/3(g∗(x0) − ĝn(x0)) and Qn =

�(n1/3(g∗(x0) − ĝn(x0)) ≤ z|Dn). If Qn were to converge in probability, then �∗
W1+W2

− �∗
W1

and Q

would be independent in view of Lemma 3.1 of Sen et al. [41]. But as both of them depend on W1, the
convergence in probability cannot happen. �

Proof of Theorem 3.5. As n1/3(g∗(x0)−g0(x0)) is the argmax of the process on the left side of (5.13)
in Lemma 5.3 and the argmax itself is conditionally tight by Lemma 5.4, the Argmax theorem applied
to the conditional distribution concludes that

�
(
n1/3(g∗(x0) − g0(x0)) ≤ z

∣∣Dn

)
� P

(
arg max

t∈R
{aW1(t) + aW2(t) − bt2 − zt} ≥ 0

∣∣W1
)

d= P
(
C0 arg max

t∈R
{W1(t) + W2(t) − t2} ≤ z

∣∣W1
)
.

The last step uses Lemma A.1 and the fact that t �→ −t leaves the independent processes W1 and W2
distributionally invariant. This completes the proof of part (a).
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Now to prove Part (b). By the definition of posterior quantile Qn,γ , we have that g0(x0) ≤ Qn,γ if
and only if �(g∗(x0) ≤ g0(x0)|Dn) ≤ 1 − γ . Therefore,

P0
(
g0(x0) ≤ Qn,γ

) = P0

(
�(n1/3(g∗(x0) − g0(x0)) ≤ 0|Dn) ≤ 1 − γ

)
→ P

(
F ∗(0

∣∣W1) ≤ 1 − γ
)
, (5.18)

from Part (a) with z = 0. Observing that F ∗(0|W1) = P(C0�
∗
W1+W2

≤ 0|W1) = P(�∗
W1+W2

≤ 0|W1) =
ZB , the right hand side of (5.18) reduces to P(ZB ≤ 1 − γ ). �

6. Extension to unbounded domain

In this section, we seek analogous results on contraction rates, testing, and coverage of credible inter-
vals for a bounded, decreasing density g on the half-line (0,∞). We modify the random histogram
prior on an increasing, but still a finite, subinterval of the positive half-line, whose length is controlled
by another parameter. More specifically, let Ijk = (k − 1 + (j − 1)/J, k − 1 + j/J ], j = 1, . . . , J ,
k = 1, . . . ,K . Note that ∪J

j=1Ijk = (k − 1, k], that is, like the unit interval in the previous sections,
the interval (k − 1, k] is also split into J equal pieces having length |Ijk| = 1/J for all j = 1, . . . , J ,
k = 1, . . . ,K . Then analogously, we put a prior �JK for g by

g = J

J∑
j=1

K∑
k=1

θjk1Ijk
, (6.1)

(θjk : 1 ≤ j ≤ J, 1 ≤ k ≤ K) ∼ Dir(αjk : 1 ≤ j ≤ J, 1 ≤ k ≤ K),

where αjk , j = 1, . . . , J , k = 1, . . . ,K , are bounded by a constant b > 0. The parameters J and K can
be appropriately chosen depending on n, or may be given prior distributions. Assuming an exponential-
type tail condition, which allows choosing K relatively low, the following result obtains a contraction
rate using deterministic J and K .

Since under this prior construction with a given K , some observations call be larger than K , creating
a conflict with the proposed model, we need to clarify what is meant by the posterior distribution in
this case. The natural consideration is to ignore such observations, as they contain no information about
θjk , j = 1, . . . , J , k = 1, . . . ,K . Then the number of admissible observations Xi ≤ K is random, but
as K → ∞, the proportion of such observation G0(K) → 1, and hence asymptotically almost all
observations are admissible.

Theorem 6.1. Let g0 be a bounded, decreasing density on (0,∞). Then using the prior �JK defined
by (6.1) with J,K → ∞ with n, the L1-posterior contraction rate at g0 is max{√JK/n,J−1,1 −
G0(K)}. In particular, if 1 − G0(x) � e−axr

for some a, r > 0, upon choosing K ∼ (logn/(3a))1/r

and J � n1/3(logn)−1/(3r), the contraction rate reduces to the nearly optimal rate n−1/3(logn)1/(3r).

Proof. Define g0(0) = g0(0+) and

g0,JK =
J∑

j=1

K∑
k=1

∫
Ijk

g0(u)du

|Ijk| 1{x ∈ Ijk} =
J∑

j=1

K∑
k=1

Jθ0,jk1{x ∈ Ijk},
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where θ0,jk = ∫
Ijk

g0(x)dx. Then g0,JK is a decreasing sub-probability density on (0,∞). We now

show that g0,JK approximates g0 within J−1 + 1 −G0(K) in L1. This follows since for every j, k and
x ∈ Ijk , g0(k − 1 + j/J ) ≤ g0,JK(x) ≤ g0(k − 1 + (j − 1)/J ), leading to

∫
|g0(x) − g0,JK(x)|dx

=
J∑

j=1

K∑
k=1

∫
Ijk

|g0(x) − g0,JK(x)|dx +
∫ ∞

K

g0(x)dx

≤
J∑

j=1

K∑
k=1

{g0(k − 1 + (j − 1)/J ) − g0,JK(k − 1 + j/J )} 1

J
+ 1 − G0(K)

≤ 1

J
(g0(0) − g0(K)) + 1 − G0(K)

using the decreasing property of g0 and the telescoping nature of the sum. To finish the proof, we show
that E0�(‖g − g0,JK‖1 > Mn

√
JK/n + J−1|Dn) → 0 for any Mn → ∞.

Let Njk = ∑n
i=1 1{Xi ∈ Ijk}, j = 1, . . . , J , k = 1, . . . ,K , and N. = ∑J

j=1
∑K

k=1 Njk . Observe that
1 − N./n = OP (1 − G0(K)).

Now ‖g − g0,JK‖1 = ∑J
j=1

∑K
k=1 |θjk − θ0,jk|, so it is enough to show that

E0�
( J∑

j=1

K∑
k=1

|θjk − θ0,jk| > Mn

√
JK/n|Dn

) → 0. (6.2)

This can be established exactly as in proof of the first part of Theorem 3.1, after observing that the
effective sample size, that is, the number of observations falling in (0,K] is N. ∼ n in P0-probability,
and the observations falling outside do not alter the posterior distribution. The extra factor K appears
in the bound because now there are JK intervals, instead of just J previously.

If we assume the bound g0(x) � e−axr
, we have the tail estimate

∫ ∞
K

g0(x)dx �
∫ ∞
K

e−axr
dx =

r−1
∫ ∞
Kr e−ayy−1+1/rdy � e−aKr

. Choosing J � n1/3(logn)−1/(3r) and K ∼ (logn/(3a))1/r , the rate
n−1/3(logn)1/(3r) is immediately obtained. �

Based on the above convergence result, a Bayesian test as in Theorem 3.2 with J � n1/3(logn)−1/(3r)

and K ∼ (logn/(3a))1/r under the tail condition g0(x) � e−axr
is immediate, with an enlargement of

the null hypothesis by the amount Mnn
−1/3(logn)1/(3r) in L1 for any Mn → ∞. It is not clear whether

an adaptive test analogous to that in Theorem 3.3 has the stated asymptotic properties, since the proof
with random J and K depends on the conclusion in the second part of Theorem 3.1. This needs a
lower bound for the true density to control the Kullback–Leibler divergence, which is not possible on
an unbounded domain.

Finally, the coverage result for the credible interval for g(x0) holds, because this is a local result not
affected by the tail part. More precisely, in the proof of the result, we only need to deal with locations
within a constant multiple of n−1/3 of the point of interest x0 to study the convergence of the processes.
It is easy to see that this involves only Njk with k bounded in n, and hence these are uniformly of the
order n/J . The rest of the arguments apply.
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Appendix

The following result is an argmax analog of Lemma A.3 of Chakraborty and Ghosal [16]. Its proof is
analogous and is omitted.

Lemma A.1. Let W1,W2 be independent two-sided standard Brownian motions starting at zero. Then
for a, b > 0 and c ∈ R,

(a) arg max{aW1(t) + aW2(t) − bt2 + ct : t ∈R}
d= (a/b)2/3 arg max

{
W1(t) + W2(t) − t2 : t ∈ R

} − c

2b
;

(b) arg max{aW1(t) − bt2 + ct : t ∈R}
d= (a/b)2/3 arg max{W1(t) − t2 : g ∈ R} − c

2b
.

(c) For c1, c2 ∈ R,(
arg max{aW1(t1) − bt2

1 + c1t1 : t1 ∈R},
arg max{aW1(t2) + aW2(t2) − bt2

2 + c2t2 : t2 ∈R})
d= ((a/b)2/3 arg max{W1(t1) − t2

1 : t1 ∈ R} − c1

2b
,

(a/b)2/3 arg max{W1(h2) + W2(h2) − h2
2 : h2 ∈R} − c2

2b

)
.

Proof of Lemma 5.1. We consider the part t ≥ 0 in the proof; the proof for the part t ≤ 0 follows
similarly. Let fn,t (x) = n1/6

(
1{x ≤ �(x0 + n−1/3t)J �/J } − 1{x ≤ �x0J �/J }). Note that

n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(Nj

n
− g0(x0)

J

)

= Gn(fn,t ) + √
nE0fn,t − n2/3 g0(x0)

J
(�(x0 + n−1/3t)J � − �x0J �),

where {Gn(fn,t ) : t ∈ [0,K]} is the empirical process corresponding to the class Fn := {fn,t : t ∈
[0,K]}.

We first show that

√
nE0fn,t − n2/3g0(x0)(�(x0 + n−1/3t)J � − �x0J �)/J → −bt2. (A.1)

Using Taylor’s expansion g0(u) − g0(x0) = (g′(x0) + o(1))(u − x) of g around x0, we write the ex-
pression above as

n2/3
∫ �(x0+n−1/3t)J �/J

�x0J �/J
(g′(x0) + o(1))(u − x)du = 1

2
g′

0(x0)t
2 + o(1),

establishing the assertion (A.1), as b = −g′
0(x0)/2.

The class Fn is easily seen to be a VC-class. Hence by Example 2.11.24 of van der Vaart and
Wellner [44], the entropy condition in Theorem 2.11.22 of van der Vaart and Wellner [44] holds. We
check the remaining conditions of that theorem to conclude that {Gn(fn,t ) : t ∈ [0,K]} converges to a
tight centered Gaussian process on L∞([0,K]).
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Define Fn(x) = n1/6(1{x ≤ �(x0 + n−1/3K)J �/J } − 1{x ≤ �x0J �/J }). Then Fn is an envelope for
Fn, that is, |fn,t | ≤ Fn for every t ∈ [0,K]. Using the continuity of g in a neighborhood of x0, we have
that

E0F
2
n = n1/3

∫ �(x0+n−1/3K)J �/J

(�x0J �)/J
[g0(x0) + o(1)]du = Kg0(x0) + o(1),

which is bounded. Next we note that E0F
2
n1{Fn > η

√
n} → 0 for every η > 0, which is immediate

because for any x, the indicator vanishes for all sufficiently large n.
Next, fix any sequence δn ↓ 0. Then by the boundedness of g0, for 0 ≤ t ≤ s,

E0(fn,s − fn,t )
2 = n1/3

∫ �(x0+n−1/3s)J �/J

(�(x0+n−1/3t)J �)/J
g0(u)du

� n1/3

J

(�(x0 + n−1/3s)J � − �(x0 + n−1/3t)J �)
≤ |s − t | + o(n1/3/J ),

which goes to zero uniformly on {(s, t) : 0 ≤ t ≤ s, |s − t | < δn}.
We shall now find the limit of the covariance E0(fn,sfn,t ) − E0(fn,s)E0(fn,t ) for all 0 ≤ t ≤ s. By

the orthogonality of fn,s − fn,t and fn,t , we have that

E0(fn,sfn,t ) = E0(f
2
n,t ) = n1/3

∫ �(x0+n−1/3t)J �/J

�x0J �/J
g0(u)du → g0(x0)t.

Further, E0fn,t = n1/6[g0(x0) + o(1)][n−1/3(t + o(1))] → 0. Therefore, for any s, t , we have
Cov(fn,s, fn,t ) → min(s, t)g0(x0) as n → ∞. Hence all assumptions of Theorem 2.11.22 of van der
Vaart and Wellner [44] are satisfied for the limit process given by aW1(t) − bt2, completing the proof
of the lemma. �

Proof of Lemma 5.2. Fix z and denote the maximizer in the statement by ĥn. As in the proof of
Lemma 5.1, we restrict attention to t ≥ 0. The tightness can be similarly proved for the argmax with t

restricted to the left of zero, and the final result by combining the two conclusions.
For r ≥ 0, define a stochastic process

Kn(r) = Pn1{(�x0J �/J, �(x0 + r)J �/J ]} − (g0(x0) + zn−1/3)(�(x0 + r)J � − �x0J �)/J

and a function K(r) = G0(x0 + r) − G0(x0) − g0(x0)r on the positive half-line. Note that ĥn =
n1/3 arg max{Kn(r) : r ∈ R}. We apply Theorem 3.2.5 of van der Vaart and Wellner [44] on Kn

and K to show that arg max{Kn(r) : r ∈ R} = OP (n−1/3). We have that Kn(0) = K(0) = 0 and
E0Kn(r) → K(r) for all r . Also, by a Taylor series expansion g0(s)−g0(x0) = (g′

0(x0)+o(1))(s−x0),
we have that

K(r) = g0(x0)r + 1

2
(g′

0(x0) + o(1))r2 − g0(x0)r �−r2. (A.2)

Next, for sufficiently small δ, we bound E∗
0 sup{√n|Kn(r) − K(r)| : |r| < δ}. We can write√

n(Kn(r) − K(r)) as the difference of Gn1{(�x0J �/J, �(x0 + r)J �/J ]} and

[√n(G0(x0 + r) − G0(x0) − g0(x0)r) + zn1/6](�(x0 + r)J � − �x0J �)/J. (A.3)
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Clearly, the class of indicators Mδ := {1{(�x0J �/J, �(x0 + r)J �/J ]} : 0 ≤ r < δ} has envelope Mδ =
1{(x0, x0 + δ]} ≤ 1 and forms a VC-class. From the discussion on page 291 of van der Vaart and
Wellner [44], we have that

E∗
0 sup{|Gn(f )| : f ∈Mδ}� (E∗

0M
2
δ )1/2 sup

Q

∫ η

0

√
logN (ε‖Mδ‖2,Q,Mδ,‖ · ‖2,Q)dε.

Observe that E∗
0M

2
δ � δ, while the uniform entropy integral is finite by Theorem 2.6.9 of van der Vaart

and Wellner [44]. Thus the display above is bounded by
√

δ.
The second factor in (A.3) is bounded by r < δ. The first term in the first factor in (A.3) is bounded in

absolute value by a multiple of
√

nδ2 in view of (A.2), while the second term is bounded by a multiple
of n1/6. Therefore, the expression in (A.3) is bounded by

√
nδ3 +n1/6δ. Piecing these bounds together,

we have that

E0 sup{|Kn(r) − K(r)| : 0 ≤ r < δ}� √
δ + √

nδ3 + n1/6δ.

Hence by Theorem 3.2.5 of van der Vaart and Wellner [44] with φn(δ) = √
δ + √

nδ3 + n1/6δ, the rate
n−1/3 is obtained by solving the rate equation

√
δ + √

nδ3 + n1/6δ ≤ √
nδ2.

Finally, the condition Kn(ĥn) ≥ Kn(0) ≥ Kn(0) − OP0(r
−2
n ) holds by the definition of the maxi-

mizer. �

For the remaining proofs, the dependence of (θ1, . . . , θJ ) makes it harder to deal with the expressions
directly. To bypass the dependence in (θ1, . . . , θJ ), we represent θj as Vj/(

∑J
l=1 Vl), where Vj ∼

Gamma(αj + Nj ,1) independently. Introduce the processes

An(V,Dn, t) = n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(Vj − E(Vj ))/(

J∑
l=1

Vl),

Ān(Dn, t) = n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

{
E(Vj )/(

J∑
l=1

Vl) − Nj/n
}
,

Bn(Dn, t) = n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(
Nj/n − J−1g0(x0))

)
,

where V = (V1, . . . , VJ ). Observe that

An(V,Dn, t) + Ān(Dn, t) + Bn(Dn, t) = n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(θj − J−1g0(x0)). (A.4)

Proof of Lemma 5.3. Note that
∑J

l=1 Vl |Dn ∼ Gamma(α· + n,1), and so we have E(
∑J

l=1 Vl |Dn) =
α· + n, and Var(

∑J
l=1 Vl |Dn) = α· + n. By the assumptions on the prior, max{αj : 1 ≤ j ≤ J } = O(1),

and therefore

n−1
J∑

l=1

Vl = 1 + O(J/n) + OP0(n
−1/2) →P0 1. (A.5)
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We shall show that An(θ,Dn, ·) � aW2 in L∞([−K,K]) and sup{|Ān(Dn, t)| : t ∈ [−K,K]}
→ 0 in probability for all K > 0. To prove the first assertion, define Yn(V,Dn, t) = n−1/3 ×∑�(x0+n−1/3t)J �

j=�x0J �+1 (Vj − E(Vj )). In view of (A.5), the assertion reduces to showing that for all K > 0,

L(Yn(V,Dn, t) : t ∈ [−K,K]|Dn) � L(aW2(t) : t ∈ [−K,K]|W1) (A.6)

in L∞[−K,K].
We first verify the finite-dimensional convergence to Gaussian limits. Since Nj ∼ Bin(n;G0(Ij ))

for 1 ≤ j ≤ J , and g0 is continuous and positive in a neighborhood of x0, with probability tending to

one,
∑�(x0+n−1/3t)J �

j=�x0J �+1 Nj ∼ g0(x0)tn
2/3. Recall that the fourth central moment of Gamma(α,1) is given

by 3α2 + 9α � α2 for α ≥ 1. As Vj ∼ Gamma(αj + Nj ,1) and min{Nj : 1 ≤ j ≤ J } → ∞, we obtain
that

E
[|Vj − E(Vj )|2

∣∣Dn

] = αj + Nj , E
[|Vj − E(Vj )|4

∣∣Dn

]
� (αj + Nj)

2. (A.7)

Therefore, the sum of the variances is

�(x0+n−1/3t)J �∑
j=�x0J �+1

Var
[
n−1/3(Vj − E(Vj ))

∣∣Dn

] = n−2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(αj + Nj) → g0(x0)t (A.8)

in P0-probability.

Also by (A.7) and (5.6), for any |t | ≤ K ,
∑�(x0+n−1/3t)J �

j=�x0J �+1 E
[|n−1/3(Vj − E(Vj ))|4

∣∣Dn

]
is bounded

in probability by a constant multiple of

n−4/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(αj + Nj)
2 � n−4/3

�(x0+n−1/3t)J �∑
j=�x0J �+1

N2
j � n−4/3n−1/3KJ(n2/J 2),

which is at most of the order n1/3/J → 0. This verifies Lyapunov’s condition with the fourth moment,
and hence the Lindeberg condition, for the central limit theorem to hold, giving that Yn(V,Dn, t) �√

g0(x0)t N(0,1), conditionally on Dn, in P0-probability. The joint convergence can be verified by
evaluating the limit of the covariance between Yn(V,Dn, t1) and Yn(V,Dn, t2) for t1 < t2 as

[
E

�(x0+n−1/3t1)J �∑
j=�x0J �+1

(Vj − E(Vj ))

�(x0+n−1/3t2)J �∑
j=�x0J �+1

(Vj − E(Vj ))
∣∣Dn

]

= [ �(x0+n−1/3t1)J �∑
j=�x0J �+1

Var(Vj )
∣∣Dn

] → g0(x0)t1

in P0-probability.
Next, we show the tightness of Yn(V,Dn, ·) in L∞([−K,K]). It suffices to restrict t to [0,K].

Similarly, we can prove tightness with t restricted to [−K,0], and conclude tightness in L∞([−K,K])
after combining. The verification of tightness in L∞([0,K]) involves the verification of asymptotic
stochastic equicontinuity as in Section 2.1.2 of van der Vaart and Wellner [44], or more specifically, as
in Theorem 18.14 of van der Vaart [43]. To derive the required bound, we apply Theorem 2.2.4 of van
der Vaart and Wellner [44] with the L4-norm (i.e., ψ(x) = x4 in the theorem). It suffices to show that

E[|Yn(V,Dn, s) − Yn(V,Dn, t)|4|Dn] � |s − t |2, (A.9)
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because then, with d(s, t) = √|s − t | and η = δ2/3, conditionally on Dn, we obtain

∥∥ sup
d(s,t)≤δ

|Yn(V,Dn, s) − Yn(V,Dn, t)|
∥∥

4 �
∫ η

0
(1/ε2)−1/4dε + δ(η4)−1/4 � δ1/3,

as the ε-packing number with respect to d is of the order ε−2.
To show (A.9), let 0 ≤ t ≤ s and write

Yn(V,Dn, s) − Yn(V,Dn, t) = n−1/3
�(x0+n−1/3s)J �∑

j=�(x0+n−1/3t)J �+1

(Vj − E(Vj ))

as the sum of independent centered random variables. Hence the left hand side of (A.9) is given by

n−4/3{ �(x0+n−1/3s)J �∑
j=�(x0+n−1/3t)J �+1

E[|Vj − E(Vj )|4|Dn]

+
∑

�(x0+n−1/3t)J �+1≤j �=j ′≤�(x0+n−1/3s)J �
E[|Vj − E(Vj )|2|Dn]E[|Vj ′ − E(Vj ′)|2|Dn]

}
.

Using (A.7) and (5.6), we obtain the bound a constant multiple of

n−4/3(n−1/3|s − t |J max{Nj : 1 ≤ j ≤ J })2 � |s − t |2

with probability tending to one, completing the verification of (A.9).
Next, we write Ān(Dn, t) as

∣∣∣∣n2/3
�(x0+n−1/3t)J �∑

j=�x0J �+1

(
αj + Nj∑J

l=1 Vl

− Nj∑J
l=1 Vl

+ Nj∑J
l=1 Vl

− Nj

n

)∣∣∣∣ (A.10)

≤ n2/3∑J
l=1 Vl

�(x0+n−1/3t)J �∑
j=�x0J �+1

max
1≤j≤J

αj + n2/3
∣∣∣∣ n∑J

l=1 Vl

− 1

∣∣∣∣
�(x0+n−1/3t)J �∑

j=�x0J �+1

Nj

n
.

By the assumptions on the prior and (A.5), the first term of (A.10) is bounded in probability by a
constant multiple of n−2/3JK , while the second term is bounded in probability by a constant multiple
of n2/3(J/n)n−1/3J (1/J ) = Jn−2/3 → 0. Therefore, Ān(Dn, ·) →P0 0 in L∞([−K,K]).

The weak convergence of Bn(Dn, ·) to aW1 in L∞([−K,K]) has been established in Lemma 5.1.
Combining all three assertions, we get the result. �

Proof of Lemma 5.4. The main idea of the proof is similar to that of Lemma 5.2 using Theorem 3.2.5
of van der Vaart and Wellner [44] applied to the posterior process. We need to establish the tightness
of the conditional distribution of n1/3hn given Dn in probability, where

hn = arg max
r∈R

{ �(x0+r)J �∑
j=�x0J �+1

(
θj − g0(x0)

J

) − n−1/3z(�(x0 + r)J � − �x0J �)/J}
.



Bayesian inference for monotone densities 1117

Observe that this is equivalent to proving the tightness of n1/3hn with respect to the joint distribution
of (θ1, . . . , θJ ) and the observations X1, . . . ,Xn respectively following the posterior distribution and
the sampling distribution.

For r ≥ 0, let Mn(r) and M(r) be defined as

Mn(r) =
�(x0+r)J �∑
j=�x0J �+1

(
θj − g0(x0)

J

) − zn−1/3(�(x0 + r)J � − �x0J �)/J
and M(r) = G0(x0 + r) − G0(x0) − g0(x0)r , the same as K(r) in the proof of Lemma 5.2. We restrict
to r ≥ 0, and observe that M(0) = 0. The condition M(r) − M(0) � −r2 has been verified within the
proof of Lemma 5.2. We verify other conditions of Theorem 3.2.5 of van der Vaart and Wellner [44]
to show that hn = OP (n−1/3) with respect to the joint probability. As in the proof of Theorem 3.5, we
use the gamma representation in (A.4) for the posterior distribution of (θ1, . . . , θJ ). Then

√
n(Mn(r)−

M(r)) can be rewritten as the sum of

H1n(r) = √
n

∑�(x0+r)J �
j=�x0J �+1(Vj − E(Vj ))/(

∑J
l=1 Vl);

H2n(r) = √
n

∑�(x0+r)J �
j=�x0J �+1{(Nj + αj )/(

∑J
l=1 Vl) − Nj/n};

H3n(r) = √
nPn[1{(�x0J �/J, �(x0 + r)J �/J ]} − 1{(x0, x0 + r]}] − zn1/6(�(x0 + r)J � − �x0J �)/J .

We estimate the maximal size of all these processes over 0 ≤ r < δ in the joint probability.
To estimate sup{|H1n(r)| : 0 ≤ r < δ}, we first bound

P
(

sup
{|√n

�(x0+r)J �∑
j=�x0J �+1

(Vj − E(Vj ))| : 0 ≤ r < δ
} ≥ b|Dn

) ≤ n

�(x0+r)J �∑
j=�x0J �+1

(Nj + αj )/b
2

by the Kolomogorov–Doob maximal inequality. Hence, in view of (5.6), αj = O(1) uniformly for
all 1 ≤ j ≤ J and (A.5), it follows that sup{|H1n(r)| : 0 ≤ r < δ} = OP (

√
δ). For H2n, we have, using

arguments similar to (A.10), sup{|H2n(r)| : 0 ≤ r < δ} = OP (Jn−1/2δ+δ+n−3/2J 2δ), which reduces
to OP (n1/6δ) because of n1/3 
 J 
 n2/3. The last terms H3n(r) was Kn(r) in the proof of Lemma 5.2
and was shown to be OP (

√
δ + √

nδ3 + n1/6δ).
Hence by applying Theorem 3.2.5 of van der Vaart and Wellner [44] with φn(δ) = √

δ + √
nδ3 +

n1/6δ, the rate n−1/3 is obtained by solving the rate equation
√

δ + √
nδ3 + n1/6δ ≤ √

nδ2.
Finally, the condition Mn(hn) ≥ Mn(0) ≥ Mn(0) − OP0(r

−2
n ) holds by the definition of the maxi-

mizer. �
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