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Rates and coverage for monotone densities
using projection-posterior

MOUMITA CHAKRABORTY" and SUBHASHIS GHOSALT

Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, North Carolina 27695-
8203, USA. E-mail: *mchakra@ncsu.edu; "sghosal @ncsu.edu

We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic
properties. We consider a “projection-posterior’” approach, where we construct a prior on density functions through
random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting
a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior
conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the
projection-posterior contracts at the optimal n~1/3_rate. We then construct a consistent test based on the posterior
distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-
posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage
turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed
in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an
intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We
conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.
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1. Introduction

We consider the problem of making inference about a bounded, monotone density g on a bounded
interval, based on independent and identically distributed (i.i.d.) observations. The domain can be taken
to be the unit interval, without loss of generality. We shall also discuss extensions of our results to the
positive half-line in the end. Shape restrictions like monotonicity or convexity often naturally appear
in modeling, especially in the context of inverse problems; see Groeneboom and Jongbloed [29] for
details. The maximum likelihood estimator (MLE) of a monotone decreasing density g on the positive
half-line exists, and is characterized as the left-continuous derivative of the least concave majorant of
the empirical distribution function of the data (Grenander [27]), commonly known as the Grenander
estimator. Prakasa Rao [35] obtained the limiting distribution of the Grenander estimator based on n
i.i.d. observations at an interior point, centered and scaled by n'/3. The asymptotic distribution is given
by the distribution of the minimizer Z of a two-sided Brownian motion with a parabolic drift, and is
commonly called the Chernoff distribution, named after the work of Chernoff [17]. Groeneboom [28]
computed the density of Z, and Groeneboom and Wellner [30] tabulated its quantiles. A confidence
interval for the density at a point may be obtained from the limiting distribution, but that approach
involves the additional challenging work of estimating the derivative of the function. Estimation of
monotone regression, commonly known as isotonic regression, was addressed well in the literature
(Barlow and Brunk [5], Barlow et al. [4], Leeuw et al. [20], Brunk [11]). Huang and Zhang [33] and
Huang and Wellner [32] respectively obtained estimators of a monotone density and a monotone hazard
rate under right-censoring. In shape-restricted inference, confidence sets were constructed by Diimbgen
[21], Diimbgen and Johns [22], Cai et al. [14], Schmidt-Hieber et al. [39], Banerjee and Wellner [3]
and Banerjee [2]. Testing the hypothesis of monotonicity of a regression function was addressed by
Bowman et al. [10], Hall and Heckman [31] Ghosal et al. [24], Gijbels et al. [26], and others.
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Bayesian methods for shape-restricted inference and their properties have been studied less exten-
sively in the literature. A prior on a decreasing density may be constructed by using its well-known
representation as a scale mixture of the uniform kernel, by putting a Dirichlet process prior on the
mixing distribution. Brunner and Lo [13] and Brunner [12] used this technique to construct priors on
unimodal densities. Wu and Ghosal [45] showed that the resulting prior assigns positive probabilities to
Kullback-Leibler neighborhoods of a decreasing true density, and hence the posterior is weakly consis-
tent by a well-known theorem of Schwartz [40]. Salomond [36] showed that the posterior concentrates
at the optimal rate n~!/3 up to a logarithmic factor. Salomond [38] proposed a Bayesian approach to
testing the hypothesis of monotonicity of regression. Very recently, a “projection-posterior” approach
to inference in a monotone regression model has been proposed by Chakraborty and Ghosal [15,16].
They considered a prior distribution based on random step functions by putting a prior distribution on
the step-heights, without imposing the monotonicity constraint on them. This allows us to retain conju-
gacy and easier expressions for the posterior distribution. To impose the monotonicity constraint, they
projected a sample from the posterior distribution on the space of monotone functions, thus inducing
a random measure appropriate for inference. This idea of embedding the functions in a larger model
where the posterior is easily represented and then using the projection map to comply with the restric-
tion was earlier used by Lin and Dunson [34], who used a Gaussian process prior for the same problem,
and by Bhaumik and Ghosal [6-8] for regression models driven by ordinary differential equations. The
technique has been recently used by Bhaumik et al. [9] for regression models described by partial dif-
ferential equations. For monotone regression, the projection map on posterior samples can be easily
computed by the Pool-Adjacent—Violators Algorithm (PAVA) (pages 9-15, Section 2.3 of Barlow et
al. [4]). Chakraborty and Ghosal [15] showed that the resulting posterior contracts optimally at the
rate n~!/3 and constructed a universally consistent test for the hypothesis of monotonicity following
Salomond’s [38] idea of extending the null region by the amount given by the contraction rate. The
asymptotic coverage of a Bayesian credible interval for the value of the regression function at an in-
terior point using quantiles of the projection-posterior distribution was computed by Chakraborty and
Ghosal [16].

In the present paper, we propose Bayesian methods for estimation, uncertainty quantification
and testing for a bounded, monotone decreasing density g on [0, 1], based on n i.i.d. observations
X1, ..., X, from g. We pursue the projection-posterior approach. This is especially useful in studying
the coverage of a credible interval for the function value g(xp) at an interior point xo. We assign a ran-
dom histogram prior on g where the probability contents of the intervals are jointly given a Dirichlet
distribution. This is equivalent with a finite random series prior (Shen and Ghosal [42]) using the basis
consisting of indicators of equal-length disjoint intervals and a Dirichlet distribution on the vector of
coefficients. The resulting unrestricted posterior is conjugate, allowing a simple description and easy
generation of samples for projection. In particular, a representation of a Dirichlet distribution in terms
of independent gamma variables allows us to use the techniques of empirical processes to study the
asymptotic properties of the projection-posterior process through a switch-relation expressing the slope
of the least concave majorant with the minimizer of the original function perturbed by a quadratic term.
We compute the limiting coverage of a (1 —«)-credible interval for g(xo). Interestingly, the asymptotic
coverage is not 1 —«, but is higher. This is the opposite of a phenomenon Cox [18] observed about arbi-
trarily low limiting coverage of Bayesian credible sets in smoothing regimes. The present “reverse-Cox
phenomenon” has been recently observed by Chakraborty and Ghosal [16] in the context of monotone
regression. Like them, we show that the limit is driven by two independent Brownian motions, and is
free of any unknown parameters, thus allowing a recalibration to meet a targeted coverage.

The rest of the paper is organized as follows. Section 2 lists the notations, describes the prior distribu-
tion and introduces the notion of a projection-posterior. Section 3 states results on posterior contraction
rates, Bayesian testing errors, and coverage of a projection-posterior credible interval for the density
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function at a fixed interior point. Simulation results are discussed in Section 4. Proofs of the main re-
sults are provided in Section 5. The paper concludes with a discussion on an extension of the proposed
methods to a decreasing density on the domain (0, co). The appendix section contains the proofs of the
auxiliary results.

2. Setup, prior and projection-posterior

We consider # i.i.d. observations
X110 Xy ™, @.1)

from a distribution G on (0, 1] with density g. We consider the problems of obtaining a posterior
contraction rate for Bayesian estimation of g and the coverage of a Bayesian credible interval for
g(xp), the value of the density g at a fixed xo € (0, 1) under the assumption that g is bounded and
decreasing, and also the problem of testing the hypothesis that g is decreasing. Let go stand for the
true density, and Eq(-) and Varg(-) respectively stand for the expectation and variance operators taken
under go. We write D, for the data (X1, ..., X,). Let a prior distribution on g be denoted by IT and let
I1(-| Dy,) refer to the corresponding posterior distribution.

For g : (0,1] — R and d the LLi- or the L,-distance, let the projection of g on F with respect to
d be the function g* that minimizes d(g, h) over h € F. Let d(g, F) = d(g, g*) denote the value of
the minimized distance. The induced posterior distribution of g*, to be called the projection-posterior
distribution, will be viewed as a random measure for inference on g.

We put a prior on g through step functions with J equispaced knots j/J, j =1,...,J, and an
appropriate joint distribution on the step heights, where J may be chosen deterministically (depending
on n) or may be given a further prior. More specifically, let I; = ((j — 1)/J, j/J], j=1,...,J, and

J
g=JY 0jl;. (601.....07)~Dir(ar,....a,), (2.2)
j=1

where b1 J 22 < o j<bsforall j=1,...,J, for some positive constants by, bz, b3. The parameter
J is chosen deterministically as J = J,, suitably depending on n, or is given a prior distribution .
Thus the prior is a finite random series prior with the basis (17, : 1 < j < J) and Dirichlet prior

on the coefficients, as termed by Shen and Ghosal [42]. We shall write o, = Z{:l a; and note that
o, = O(J) under the assumed condition. The associated sieve on which the priof is supported is thus
given by Fj = {g =J Z]J'=1 0jly; 161 > ---=0;}. It is immediate that the posterior distribution of g
(given J) is again of the same form, with «; updated to a;f =aj + Nj, where N; = Y I(X; e 1;},
j=1,...,J. Here, to keep the notation simple, we have suppressed the dependence on J, in that,
Ni,...,Nj,01,...,05,and a, ..., oy are triangular arrays of numbers, and /1, ..., I; are a triangular
array of disjoint intervals partitioning (0, 1]. For a given real-valued function % on (0, 1], we denote

by hj the step function J ij':l njli;, where nj = fl,- h(x)dx. If h is a probability density, so is 4.

In particular, if gog denotes the true density, goy = J Z,J'=1 ( f I go)1l I its projection on the sieve, will
serve as a useful approximation to g¢ in the proofs.

Since we do not impose monotonicity on g in the prior, the posterior measure also does not comply
with the monotonicity restriction, and needs to be modified. Let IT} be the distribution of the Li-
projection g* of g on F, that is, for every measurable subset B of F, IT(B) =TIl(g : g* € B|D,), and
is viewed as a random probability measure quantifying the uncertainty in g after observing the sample.
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By arguments similar to those in the proof of Lemma 2.2. of Groeneboom and Jongbloed [29], it
follows that the projection of a density g = J ZJJ-=1 01y, is also a piece-wise constant decreasing den-
sity g* =J Z]J‘:1 9;‘111. , thatis, 0 > --- > 607 and ij':l 9]’.‘ = 1. In particular, the projection-posterior
charges only decreasing densities, and hence is suitable for inference on a decreasing density. Further,
by Theorem 2.1 of Groeneboom and Jongbloed [29], it follows that both IL;- and LL,-projection of
g=J ij':l 6;1y; are obtained by minimizing Z;Zl 16; — 9;‘|2 subject to 6 > - -- > 6. The solution
of this constrained minimization problem is given by the slopes (left-derivatives) of the least concave
majorant of the graph of the line segments connecting the points

J
{0,0),(1/J.61/7),2/J, 61+62)/T),.... (1, (29,')/1)}, (2.3)
j=1
at the points j/J, j =1,..., J; see Section 2.1 of Groeneboom and Jongbloed [29]. In particular, the

LL; - and LL»-projections are the same, and henceforth will be unambiguously referred to as the monotone
projection. This can be computed very efficiently by the PAVA for any sample of (61, ..., 0;) from its
conjugate Dirichlet posterior.

We shall use the following notations throughout this paper. For two sequences of real numbers a,
and by, a, < by, (equivalently, b, = a,) means that a,, /b, is bounded, a, < b, means that a, /b, — 0,
a, =< b, means that they are of the same order, and a, ~ b, means that a, /b, — 1. Let N={1,2,...}
be the set of positive integers and let No = N U {0}. For a random variable X and a sequence of
random variables X, X, ~» X means that X,, converges in distribution to X, X,, — p X means that X,,
converges to X in probability, X, = op(Y;) for another sequence Y,, means that X,,/Y,, - p 0, X,, =
Op(Y,) means that X,,/Y, is bounded with probability arbitrarily close to 1. For random variables X

and Y, X 4 Y means that X and Y have the same distribution. The e-covering number of a set A with
respect to a metric d, denoted by N'(e, A, d), is the minimum number of balls of radius € needed to
cover A.

Let the space of real-valued, bounded, monotone decreasing functions on (0, 1] be denoted by F, its
LLi-closure by F, and the space of monotone decreasing functions on (0, 1] bounded in absolute value
by K > 0 be denoted by F (K). A real-valued function f on (0, 1] is called S-Holder continuous for
some B € (0, 1) if there exists some L > 0 such that for all x, y € (0, 1), | f(x) — f(y)| < L|x — y|P.
The set of B-Holder continuous functions on (0, 1] is denoted by H (B, L). For T C R, L (T) denotes
the space of bounded functions on 7.

3. Main results

The following result gives the contraction rate of the projection-posterior distribution with respect to
the IL;-distance on densities.

Theorem 3.1 (Posterior contraction for monotone density). Let go € F4+ and 1 K J K n. Then,
with €, = max{s/J /n, J*I}, Eo IT (llg — goll1 > Myen) — O for every M,, — oo. In particular, when
J < n'/3, the projection-posterior contracts at the optimal rate €, =n~'/3

If go lies between two positive numbers, J has prior probability mass function w and for some
ay,az >0,

o1/ logJ <7(J) < e*a2110g/’ (3.1

then Eq IT}; (||g —goll1 > Mo(n/logn)_l/4) — 0, for some My > 0.
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Remark 3.1. In the above result, the posterior contraction for the projection-posterior is inherited from
the unrestricted posterior using the triangle inequality (see the proof of Theorem 3.1). Therefore, the
contraction rate is also valid about the unrestricted posterior. It is also not essential that the true density
is monotone. The same proof shows that at any true density go, monotone or not, the IL-contraction
rate is max(/J/n, ||go — gos|l1). We shall use this fact to construct a Bayesian test for monotonicity.

Putting a prior on J in the second part of the theorem is unnecessary for optimal posterior contrac-
tion. In fact, the obtained rate is suboptimal. However, the conclusion is needed to study the asymptotic
properties of a Bayesian test with power adapting to smoothness in Theorem 3.3 below.

A natural test for the hypothesis of monotonicity is given by the posterior probability of F_ : reject
the hypothesis if [1(g € F| D) is smaller than 1/2, say. However, in spite of posterior consistency at
a monotone go, the above posterior probability may be low because gy may be approximated by non-
monotone functions. To compensate for that, the set /. needs to be enlarged to the extent the posterior
allows a departure from go. With the choice J =< n'/3 which corresponds to the best contraction rate
n~!/3 in the L;-distance, the enlargement needs to be M,n~!/3 for some slowly growing sequence
M,, — oo. This approach was also pursued by Salomond [37,38] and Chakraborty and Ghosal [15] for
monotone regression. We show that the level goes to zero, the power goes to 1 at a fixed alternative,
and the power is high against a sufficiently separated smooth alternative even when it approaches the
null.

Theorem 3.2 (Test for monotonicity). Consider a test for monotonicity given by ¢, =
HIId(f, Fy) < Mnn’1/3|Dn) < y}, where d is the LLy-distance, 0 < y < 1 is any predetermined
constant, J < n'/3 and M,, — oo is a chosen slowly varying sequence. Then the following assertions
hold.

(a) (Consistency under Hy): For any fixed go € F+, Eop, — 0, and further the convergence is
uniform over F (K) for any K > 0.

(b) (Universal Consistency): For any fixed density go ¢ Fy, Eo(1 — ¢) — 0.

(c) (High power at converging smooth alternatives): Forany 0 < 8 < 1and L > 0, sup{Eq(1 —¢,) :
Jfoe H(B, L), d(fo, F+) > pn(B)} — 0, where

_ Ccn=PB3, forsome C >0ifB <1,
PABY=N =13, forany C= 1ifp=1.

The procedure involving the test ¢, is computationally simple as it does not involve a prior on J.
However, with a deterministic choice of J, the required separation from the null hypothesis does not
adapt to the smoothness § of the function class in the alternative. More specifically, an order of separa-
tion n~A/3 (up to a logarithmic factor) is needed, which is larger than the optimal order n=#/(0+28) of
separation for 8 < 1. Adaptation can however be restored by using a prior on J and letting the cut-off
value for the discrepancy with F depend on J.

Theorem 3.3 (Adaptive test for monotonicity). In a prior for g given by (2.2), let J be also unde-
termined and be given the prior (3.1). Let a test for monotonicity be given by ¢, = L{IT(d(f, F+) <
Mo/ J(logn)/n|Dy) < v}, where d is the LLi-distance, 0 < y < 1 is a predetermined constant and
My > 0 is a sufficiently large constant. Then,

(a) (Consistency under Hy): for any fixed gy € F4 lying between two positive numbers, Eop, — 0,
and the convergence is uniform over F4(K);
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(b) (Universal Consistency): for any fixed go ¢ Fy lying between two positive numbers, Eq(1 —
¢én) > 0;

(c) (Adaptive power at converging smooth alternatives): for go ¢ F, go € H(B, L), there exists C
depending on B and L only such that

sup{Eo(1 — n) : g0 € H(B, L), d (g0, F4) > C(n/logn)~F/1+2P} — 0,
provided that gg lies between two positive numbers.

Now we turn to the study of the limiting coverage of a posterior credible set. More specifically, we are
interested in quantifying the uncertainty in the value of the density function g at a given interior point
assuming that g is bounded and globally decreasing, and obtain the limiting coverage of the resulting
posterior credible interval. Let xg € (0, 1) be such that g’(xg) exists and g’(xg) < 0. We consider a
projection-posterior credible interval for g(xp) using posterior quantiles of g*(xg) = J Z]J'=1 97 I{xo €
1}, where 9;‘, j=1,...,J, are obtained from (2.3). To study the limiting shape of the posterior
distribution, following the clue from the classical Bernstein—von Mises theorem, it seems natural to
center g(xo) by a suitable estimator and scale the difference by n!/3. A natural candidate is the MLE
of g, but it is not structurally similar to the projection-posterior distribution, which is supported on
F4+ N F;. Aremedy is to center at the sieve-MLE g, of g obtained by maximizing the likelihood over
g € FL N Fy, with a given choice of J. The following result shows that an analog of the Bernstein—von
Mises theorem does not hold but it nevertheless gives a useful intermediate result necessary to obtain
the limiting coverage in the theorem following it.

Let a = /go(x0), b = [g((x0)|/2 and Cp = 2b(a/b)*3. For a continuous function w on R, let
A% = argmax{w(t) — 12 :1t €R}. Let Wy, W5 be independent two-sided Brownian motions on R with
Wi(0) = W2(0) =0, Z = A}, and Zg =P(A}, yy, < 0|Wy).

In the first part of the result, we show that the limiting distribution of the sieve-MLE is the classical
Chernoff distribution, which is the limiting distribution of the MLE over the whole of F..

Theorem 3.4 (Point-wise distributional limit). If n'/3 <« J « n?/3, then the following assertions
hold.

(a) Forevery z € R, Po(n'/3(g,(x0) — g0(x0)) <z) = P(CoZ < 2).

(b) For every z € R, Py x T(n"/3(g* (x0) — g0(x0)) < 2| Dy) = P(CoAYy, 4y, <2).

(c) For any z € R, the conditional probability TI(n'/3
limit in probability.

(8% (x0) — €n(x0)) < z|Dy) does not have a

Define stochastic processes F, and F* on R by F; (z|D,) = [1(n'3(g*(x0) — go(x0)) < z|Dn)
and F*(z|W1) = P(2b(a/b)*? A}, |y, <z IW1). Forevery n > 1,y €0, 1/2], define the (1 — y)-th
posterior quantile Q, , =inf{z € R : I1(g*(x0) < z|D,) > 1 — y}, the associated two-sided (1 — y)-
credible interval 1., =[Qn 1-y,2, On,y/2]. We then have the following result. The interesting aspect

is that the unknown scaling constant C disappears from the expression for the limiting coverage.

Theorem 3.5 (Coverage of credible interval). Ifn'/3 « J <« n?/3, then

(a) for every z € R, F(z| D) ~ F*(z|W));
(b) the limiting coverage of I, is given by

Po (g0(x0) € In,y) > P(y/2<Zp <1—y/2).
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For 0 <u < 1, let A(u) =P(Zp < u) be the distribution function of Zp, to be called the Bayes—
Chernoff distribution. Then it follows from Lemma 3.5 of Chakraborty and Ghosal [16] that A(1 —u) =
1 — A(u). Hence the limiting coverage in (b) can be written as 1 — 2A(y /2), which only depends on
y, not on any characteristics of gg. Thus, even though the limiting coverage is not identical with the
nominal credibility 1 — y, the limiting coverage can be computed for each credibility level. These
values were given in Table 1 of Chakraborty and Ghosal [16]) numerically using Monte Carlo. This
reveals that the limiting coverage is slightly higher than the nominal credibility when it is over 50%, and
a targeted coverage 1 — « can be obtained by choosing 1 — y = 1 —2A~!(a/2), which can be obtained
from Table 2 of Chakraborty and Ghosal [16]. For instance, to obtain 95% asymptotic coverage, the
credibility level needs to be set to 93.4%. If viewed as a mechanism to obtain a confidence interval
with a targeted coverage, the procedure does not require estimation and plugging-in of any nuisance
parameters, which is a big advantage of the proposed method.

4. Simulation

In this section, we conduct a simulation study to investigate the behavior of the proposed Bayesian
procedures in finite samples. To keep the discussion concise, we only study the most interesting aspect,
namely, the coverage and size of point-wise credible intervals and compare with the corresponding
confidence interval based on the sieve-MLE. We consider the density of Beta(1,3) as go and make
inference on its value at xo = 0.4. We take J equal to the greatest integer less than or equal to n'/3 log n.
For each instance of data, we generate 1000 posterior samples of g, isotonize each g to obtain g*(xp).
We also compute the sieve-MLE g, (xo) for every instance of data, using the same value of J.

To obtain a two-sided 100(1 — «)% projection-posterior credible interval for g(xg), we find the
/2 and (1 — «/2) quantiles of the 1000 samples of g*(xp). We construct the adjusted projection-
posterior credible interval using the A (@/2) and (1 — A7 (1 —/2)) quantiles of g*(xg) where Al
is found from Table 1 of Chakraborty and Ghosal [16]). The adjusted credible interval thus formed has
projection-posterior credibility A~! (1 — a), and its coverage in large samples is expected to be (1 — ).
We compute the confidence interval using g, (xo) based on the quantiles of the Chernoft’s distribution.

Table 1. Comparison of obtained coverage and average length of unadjusted and adjusted Bayesian credible
intervals and a confidence interval based on the sieve-MLE. In the table, Cp («), CE (o) and CF (o) respectively
denote the coverages of the (1 — «)-level projection-posterior credible interval, recalibrated projection-posterior
credible interval with target coverage (1 — «), and the (1 — «)-level confidence interval based on gy (xg). The
average lengths of the intervals are respectively denoted by L g (o), L”é (o) and L p(a)

-« n =100 | n =500

| Cs@ Lp@) Ch@ Li@ Crp@ Lr@ | Cp@) Lp@ Ch@ L@ Cr@ Lp@)

0.99 0.994 0.97 0.986 0.91 0.990 1.33 0.994 0.66 0.990 0.61 0.988 0.79
0.98 0.982 0.89 0.978 0.84 0.984 1.21 0.984 0.61 0.976 0.57 0.982 0.72
0.96 0.974 0.80 0.964 0.75 0.962 1.08 0.976 0.54 0.974 0.50 0.970 0.64
0.94 0.964 0.74 0.952 0.70 0.952 0.99 0.972 0.50 0.954 0.47 0.948 0.59
0.92 0.948 0.69 0.930 0.65 0.930 0.93 0.952 0.47 0.928 0.44 0918 0.55
0.90 0.930 0.65 0.912 0.62 0.908 0.87 0.928 0.44 0914 0.41 0.906 0.52
0.88 0.916 0.62 0.896 0.59 0.882 0.83 0918 0.42 0.902 0.40 0.884 0.49
0.86 0.896 0.59 0.878 0.56 0.866 0.79 0.902 0.40 0.892 0.38 0.862 0.47
0.84 0.878 0.56 0.862 0.54 0.854 0.75 0.892 0.38 0.884 0.36 0.854 0.45
0.82 0.862 0.54 0.840 0.51 0.830 0.72 0.884 0.36 0.866 0.35 0.826 0.43
0.80 0.840 0.52 0.830 0.49 0.812 0.69 0.866 0.35 0.850 0.33 0.812 0.41
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Figure 1. Obtained coverages and lengths of intervals across different nominal credibility levels (1 — «), for
n = 100, averaged over 500 replications.

The constant C that appears in Theorem 3.4 involves g(xo) and g’(xo), which are respectively esti-
mated using the density function in R and successive differentiation on a fine grid.

We report the coverages and lengths of the three intervals averaged over 500 replications of data
for two values of n in Table 1. For a better understanding, we plot the coverages and lengths in Fig-
ures 1-2. We observe that the projection-posterior credible intervals are mildly conservative in that the
coverage values are slightly higher than the corresponding credibility, as predicted by Theorem 3.5.
The recalibrated intervals are thus slightly shorter, and their coverage values are seen to be closer to
the target (1 — o). The confidence interval using the asymptotic distribution of the sieve-MLE with the
value of the normalizing constant estimated from the data is seen to have adequate coverage, although
it is noticeably longer. Thus the Bayesian intervals give more accurate and precise quantification of the
uncertainty in the value of the function at the point of interest.

We also explore how the coverages and lengths of the intervals vary with increasing », and beyond
what n the asymptotic regime starts being observed. We display the coverages and lengths averaged
over 500 replications for several cases of n, for the target coverage (1 — «) equal to 0.95 and 0.98 in
Figures 3—4. The chosen sample sizes are n = 50, 80, 100, 200, 300, 500, 600, 800, 1000, 1200, 1500,
1800, 2000. As expected, with increasing n, the lengths of the intervals are seen to go down. The

Coverage of intervals, n=500 Length of intervals, n=500
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— projection-posterior interval length
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I
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T T T T (=] T T T T
0.80 085 0.90 0.95 0.80 085 0.90 0.95
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Figure 2. Obtained coverages and lengths of intervals across different nominal credibility levels (1 — «), for
n = 500, averaged over 500 replications.
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Figure 3. Coverages and lengths of intervals across different sample sizes for (1 — «) = 0.95, averaged over 500
replications.
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Figure 4. Coverages and lengths of intervals across different sample sizes for (1 — «) = 0.98, averaged over 500
replications.
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Figure 5. Coverage of (unadjusted) projection-posterior credible interval and that of a confidence interval based
on the Grenander’s estimator near 0. Samples of size n = 500 are generated from an exponential distribution and
100 replications of the data are used.
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coverages seem to behave like what we would expect in the asymptotic regime, even for smaller sample
sizes like 50 and 80.

It would be interesting to study the coverage of projection-posterior credible intervals when x is
close to 0 and g is unbounded. We compare the coverage of our unadjusted Bayesian credible interval
(with prior supported on the unbounded domain) to that of a frequentist confidence interval based
on the Grenander’s estimator and quantiles of the Chernoff distribution, for data generated from the
exponential distribution with a rate 1. We use 100 replications of the data, with n = 500. The coverages
for intervals with level 0.95 are displayed in Figure 5. We observe that although both the methods yield
intervals with coverage less than the nominal level 0.95, the Bayesian credible interval has much more
coverage than the confidence interval, when x is less than 0.005.

5. Proofs

Proof of Theorem 3.1. If g* is the monotone projection of a density g and the true density
go is monotone, then by the definition of the projection and the triangle inequality, d(g*, go) <
d(g*, g) +d(g, go) <2d(g, go). Thus the contraction rate of the unrestricted posterior is inherited by
the projection-posterior, and hence it suffices to obtain the contraction rate of the unrestricted posterior.

For a bounded, monotone density go, with go(0) defined to be go(0+) without loss of generality, we
have that [ |go(x) — gos (x)|dx is

J J
3 /I 180(x) — J6o;1dx <Y [g0((j — 1)/) — go(i/DIL;1 < [80(0) — go(DI/J. (5.1
j=1"1 j=1

since Jy; lies between go(j/J) and go((j —1)/J) and the length |/;| of I; is 1/J. Thus it suffices to
prove that [ |g(x) — gos (x)|dx < «/J/n with posterior probability exceeding 1 — § in Py-probability
for any predetermined § > 0. Since the [L,-distance dominates the LL;-distance, in view of Markov’s
inequality and the standard bias variance decomposition, it suffices to establish that ijl Eo (0 i —
on)2 <1/n and ij-zl Eo Var(0;1D,) < 1/n, where éj = («j + N;)/(a. +n) is the posterior mean of
6;. The latter follows from Var(6;|D,) = (o; + N;j)(a. —aj+n—N;)/((«, +n)(a.+n+1) < (o +
Nj)/(a.+ n)2. The sum of these is bounded by 1/(«. +n) < 1/n. To take care of the squared bias term,
we further decompose it into Var(éj) and (Eo(éj) — 90j)2. The former term is n6y; (1 —6p;) /(. + n)2,
whose sum over j is bounded by n/(c. + n)> < 1/n since ZJJ-=1 6o = 1. The latter term is equal to
ij-:l (aj— aﬂoj)z/(a. +n)2 < J/n2 < 1/n because 6 are bounded by a multiple of Jland o <J
by the assumption that «¢; are bounded. This proves the first part.

For the second part, we apply the general theory of posterior contraction with i.i.d. observations with
respect to the L -distance on densities (Ghosal et al. [23] or Ghosal and van der Vaart [25]). If €, is the
targeted posterior contraction rate, we first need to estimate the prior concentration rate and establish
that for some C > 0,

—logT(g: K (g0, &) < Ce2, V(go, g) < Ce?) Sne?, (5.2)

where K (g0, g) = [ golog(go/g) and V (g0, 8) = [ &o log?(go/g) stand for the Kullback—Leibler di-
vergences. To this end, we observe from (5.1) that the I; -approximation rate at monotone functions by
a step function with J equal intervals is J~!. Hence with J, < € 2, we have that ||gg — 8oj, I = enz.

Therefore, their Hellinger distance d (g0, o7.) is bounded by [0 — go7.Il}/* < €, (cf., Lemma B.1(i)
of Ghosal and van der Vaart [25]). Because go and hence also g j, are uniformly bounded above and
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below, it follows from Lemma B.2 of Ghosal and van der Vaart [25] that K (go, g) and V(go, g) are
also bounded by a constant multiple of 63. We note that for J = J,,,

Jn
K (g0, 8) = K (g0, 80j,) + / golog(gyy,/8) = K(go. &j,) + 290,' log(60;/6;)
j=1
and similarly
Jn
V(g0.8) <2V (80, 897) +2 / 201022207, /8) = 2V (0, 807,) +2. 3 60 1og (@01 /0.
j=1
Therefore, for (5.2), it suffices to lower bound
I Jn
AT 60;log(B0;/0;) < €2, 0o 10g(00;/0)) < €2l] = Iy). (5.3)
j=1 j=1

By the assumption that g¢ is upper and lower bounded, we have that 6y; < 1/ J,, uniformly in j. Hence

if Z}’.":l 0 — 60| < €2/Jy K 1/Jy, it follows that 6; < 1/J, uniformly in j. Thus by Lemmas B.1
and B.2 of Ghosal and van der Vaart [25], it follows that

Jn Jn Ju In
max{) 60, 1og(60;/6;). Y _60;108*(00;/0/)} <D 10 — /oo;1* < D16, — bojl.
j=1 j=1 j=1 j=1

Therefore, the expression in (5.3) is bounded below by
Jn
T (DT 10j = 00j| < €/ Tl J = J) Z expl—a1 J, log J, — coJy log(Ju /)]

j=1

by the estimate given by Lemma G.13 of Ghosal and van der Vaart [25]. Hence, if we choose J, =
JnTogn and €, = J, '/* = (n/logn)~1/* so that log J,, = log(1/€,) =< logn and J, logn = ne2, then
(5.2) is satisfied.

Choose S, = UJJ”: Fj as the sieve in Theorem 8.9 of Ghosal and van der Vaart [25], where J,, = LJ,
for a sufficiently large constant L > 0. Then

M(SS) <TI(J > J,) < e~ @nloghn < pmane;

for any predetermined a > 0 if we choose L large enough. Finally, the €,-covering number
N(€n, S, || - I1) of the sieve for the LLj-metric is bounded by Z}J.”zl(3/en)j <Jy (3/6,,)1", so clearly

the entropy condition log N (e, Sy, || - 1) S neﬁ holds. This shows that the IL;-convergence rate is
(n/log n)~1/4 and also we have that [1(J > J,,|Dy,) —p, 0. O

Proof of Theorem 3.2. (a) For gy € F., by the definition of the projection,
(g = g*ll1 > Man™"*|Dy) <T(Ig — goll > Man™"*| D) =, 0

by Remark 3.1. Further, the convergence is uniform over go € F4(K) for any K > 0.
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(b) Let go ¢ F. be a fixed density. The martingale convergence theorem gives ||go — gosll1 — 0
as J < n'/? — oo. Also by Remark 3.1, TI(||g — gos I > Mun~'/3| D) — p, 0. Now by the triangle
inequality and the definition of the projection,

(g, Fy) < Myn~'3|Dy) < T(lIgo — gl + Man™'"? > d(g0, F1)| Dn)
<TI(llg — gosll1 = d(g0, F4+) — ligos — golli — Man™'3| D),

which goes to 0 in Py-probability because d(go, F+) is fixed and positive.

(c) Let go € F§ NH(B, L) such that d(go, F+) = ps(B) and gos be as in part (b). Then it is well-
known (cf. de Boor [19]) that ||go — gosll1 < C(L)J# =< n=A/3 for some constant C(L) depending
only on L. Therefore, from Remark 3.1, T1(||g — goll1 > M,n~'34+C(L)n=P/3|D,) — p, 0, uniformly
for all go € H(B, L) for any M, — oo. Using the fact that

d(g, F+) = d(g0,8™) — d(g.80) = d (g0, F4) —d(g,80) = pn(B) — d(g, 80),

the right side will exceed M,,n~!/3 with posterior probability tending to 1 in Py-probability, provided
that p,(8) > Cn—P/3 for some C > C(L) when B < 1, while for 8 =1, p,(8) = CM,n~'/3 for any
C > 1 ensures that in view of M,, — oo. O

Proof of Theorem 3.3. Let gg be a bounded density function that may or may not be decreasing. Let
Ooj = flj go(x)dx, j=1,...,J. We claim that if log J,, < logn, given any € > 0, for some sufficiently
large M,

EoIl(llg — gos Il = Mo/ J(ogn)/n, J < Ju|Dp) <e. (5.4)

We have N; ~ Bin(n, 6y;) and 6y; < 1/J by the boundedness of the density, simultaneously for all
j=1,...,J.If N ~Bin(n, 0), then from Bennett’s inequality (cf. Proposition A.6.2 of van der Vaart
and Wellner [44]), it easily follows that

P(IN/n — 6| > A/v/n) < 2exp[—1%/(20)]

for any 5 > 0. Hence, upon choosing 1> = 66y, and using 6o; < 1/, we can find C > 0 such that for
any j=1,...,J,J < J,, we have that

P(IN;/n —6o;| > Cy/(logn)/(nJ) <2n>.

Since the cardinality of the set {1 < j < J < J,,} < an < n?, it follows that with probability tending to
one, simultaneously for all J < J,,

max{|N;/n—0p;|:1<j<J} </ (ogn)/(nJ). (5.5)
In particular, this also ensures that
max{N;/n:1<j<J}<J " +/dogn)/(nd) ST} (5.6)

provided that J logn < n. Now, the posterior probability in (5.4) can be written as

Jn J

D TP 16; — boj| = Moy/J (logn)/n

J=1 j=1

J, Dy) (5.7)
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and that TT(Y7_, 16 — 60| = Mo,/J (logn)/n

J, D) bounded by

N ' 12 ‘ |
TWT ;{[Var(e,u, D12 + [E9;1J. Dy) — 601}. (5.8)

Since the prior parameters are bounded, Var(0;|J, D,) S N;/ n? <1/(Jn) and

[E(6j1J, Dn) — 6ol <INj/n—6ojl +1/n S/ (logn)/nJ,

with Py-probability tending to one. Therefore the expression in (5.8) is bounded in Py-probability by
a constant multiple of M Uin view of (5.5). This leads to (5.4).

Note that if EqI1(g : |lg — goll1 > Moe,|D,) — 0 for some My > 0, then because gg; is the projec-
tion of gg on F;, we have that

I1(J - llgos — gollt > Mo€n|Dp) < TI(llg — goll1 > Mo€n|Dn) — 0 (5.9)

in Pp-probability.

(a) If go € F4, then by the second part of Theorem 3.1 and Remark 3.1, the LLj-contraction rate
is €, = (n/logn)’l/4 and that I1(J > J,|Dy,) — p, 0 for J, < 6;2 =< 4/n/logn. Using the fact that
gos € F4+ (and hence g* is closer to g than go; for any g € F;), we have that for any given € > 0,
there exists My > 0 such that

EoIl(llg — gl > Mo/ J (logn)/n|Dy) < T1(llg — gos It > Mo/ J (logn)/n|Dy) < €

by (5.4); here we have used IT1(J > J,|D,) — p, 0 and log J,, < logn. Arguing as in the proof of part
(a) of Theorem 3.2, the conclusion follows.

(b) Let go ¢ F be a fixed density bounded away from zero and infinity. By the martingale con-
vergence theorem, ||gos — goll1 — 0 as J — 00, so for a given € > 0, we can get Jy (depending on
€ but not depending on n) such that ||gos, — goll1 < €/2. Then we have I1(||g — goll1 <€) > II(J =
Jo)II(Jo szil |0; — 60j| < €/2) > 0. Further, for J, ~ cn/logn with a sufficiently small ¢ > 0, by
the tail-estimate of the prior distribution (3.1), there exists a constant » > 0 depending on ¢ such that
[1(J > J,) < e "". Considering a sieve S, = {g =J ij':l 0jly;,J < Jn}, standard estimates give a
bound for its metric entropy a multiple of J, logn ~ cn, and that I1(Sy;) < e~ Therefore it follows
(see Theorem 6.17 of Ghosal and van der Vaart [25]) that EqI1(J > J,|D,) — 0 and the posterior is
consistent at gg with respect to the LLj-metric. Hence it suffices to restrict J to at most J,,.

Observe that for any g € F, the distance to the monotone projection

d(g. F4+) = ligo — golli — lg — gos It — lligos — goll1- (5.10)

Since go does not belong to the topological closure of F,, the first term is fixed and positive.
By (5.4), with posterior probability tending to 1 in Py-probability, the second term is bounded by
VJn(logn)/n < ¢, which can be taken to as small as we need. By (5.9) and posterior consistency,
the third term can also be made arbitrarily small with high posterior probability. Thus IT(d (g, F+) >
Mo,/ J(logn)/n|D,) — p, 1, that, is the power tends to 1.

(c) Let go € H(B, L) be at least C(n/logn) P/CP+D away from F, for some sufficiently large
C > 0 in terms of the L -metric. Observe that by the Lipschitz continuity of go, with 6p; = || 1; 805

J
llgo — gos =Z |g0(x) — J6o;ldx < sup |go(x) — go(»)| < LJF. (.11
j=171i

)C,yElj
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Then standard arguments as in the second part of the proof of Theorem 3.1 with J—# replac-
ing J~!/2 give bounds for prior concentration and metric entropy, leading to the posterior con-
traction rate €, = (n/ logn)’ﬁ/ @B+1D) gt go with respect to the ILj-distance. Further, it follows that
I1(J < M'(n/logn)"/?A+D|D,) —p, 1 for some sufficiently large M’. To complete the proof, we
proceed as in part (b) with the following changes. The second term in (5.10) is bounded by a mul-
tiple of (n/logn)~#/CA+D with high posterior probability. By (5.9), the third term is bounded by a
multiple of (n/logn)~#/GF+1D) with high posterior probability. Therefore, for C > 0 large enough,
lgo — ggll1 is larger than any predetermined constant multiple of (n/log n)~B/CB+D which exceeds

Mo,/ J (logn)/n with high posterior probability. Thus the power of ¢, at go tends to one. ]

In the remaining proofs below, we use the following “switch relation” (Page 56 of Groeneboom and
Jongbloed [29]): for a lower semi-continuous function ® on an interval I with ®* its least concave
majorant, and X denoting the left-derivative of ®*, forevery t € I, v € R,

{Cb*l(t)>v}:{argmin{dD(s)—vs:s61}<t}, (5.12)

where ‘argmin’ selects the maximum of the minimizers when multiple minimizers exist.

To prove Theorems 3.4 and 3.5, we need to establish a few auxiliary lemmas. The first two lem-
mas are about the asymptotics for the sieve MLE, showing that the local empirical process, whose
maximization leads to the normalized sieve MLE, converges to an appropriate Gaussian process, and
its maximizer is tight, respectively. The remaining two results are Bayesian analogs of these two re-
sults, replacing the empirical process by the posterior process. The proofs of these lemmas are given
in the appendix. Below, W; and W, will stand for independent two-sided Brownian motions with

—-1/3
W1(0) = W,(0) = 0. We shall use the convention that for # < 0, a sum of the form Z;(;“F;J"” +]tm
[x0J]

stands for the corresponding sum Zj=F Cotn—130 141"

Lemma 5.1. Ifn'3 « J < n*?, then

Cotn P00
(n2/3 3 (—]—gOTO):te[—K,K]>w(an(t)—btzzte[—K, K1)
j=[x0J]+1

in Loo([—K, K1), for all K > 0.

Lemma 5.2. Ifn'/3 « J « n?*?3, then for all z € R,

[(xo+n~30)J1 [(xo+n=131)J7

arg max {n2/3 Z (& - gO(XO)) —n'3; Z ; = 0p,(1).

n J
teR j=[x0J]+1 j=IxoJ1+1

Lemma 5.3. Ifn'/3 < J < n?3, then

[(o+n~130)71 20(0)
£ n*3 0 — te[-K,K
(7 X 0= ek k)

J=IxoJ1+1

D,)

~ L(aWi(t) +aWa(t) —bt* 1t € [—K, K1|Wy) (5.13)

in Loo([—K, K1), for all K > 0.
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Lemma 5.4. Ifnl/3 <« J & n?3, then for all 7 € R, there exists K > 0 such that

[(xo+n~130)J7

[(xo+n~131)J1 (xo)
IT{ | arg max (Qj—go 0 )—n_l/3z Z —t>K|D, ) —p0.
teR . J . J
J=lxoJ1+1 J=IxoJ1+1
Proof of Theorem 3.4. Let Uy(s) = >/ (N;/n) and Gy(s) = X1 =1 = [s71/J. Let 7, =
}11/3(.1_1 [x0J] — x0). From the switch relation (5.12) and a change of variable s = x¢ + n—1/3¢, for

z€eR,

P($,(x0) < go(x0) +n~/32)

= P(argmax {U,(s) — (g0(x0) +n32)G,(5)} = Tx0J1/J)
s€[0,1]

= P(argmax {n*/> (U, (s) — Uy (x0)) — n**(go(x0) +n~32)(G(s) — Gp(x0))} = [x0J1/J)
s€[0,1]

= P(arg max {n2/3(Un(xo +n7 130 — Uy (x0))
teR

—n*(go(x0) + 1" 32)(Gu(xo + 1711 — Gu(x0)} = 1)

[o+n~!P0JT [o+n™ P01
= P(argmax {n?/’ Z —L 2B (go(x0) +n"32) Z —}>).
reR j=lxod1+1 j=TxoJ1+1
Note that
n Bzl N (o +n"P0)I = [xoJ 1= D=zt + 0PI~ >z (5.14)

because J > n!/3. Since 1, — 0, we evaluate

[(xo+n~'31)J1 N (xo)
P(én(x0) < g0(xo) +n~ P2y =P(argmax {n®* 3" (=L - EEL) _y) > o).
1 =l J

From Lemma 5.1 and 5.2, the Argmax Theorem and Lemma A.1, we have that the expression converges
to

P(argmax{aW;(t) — bt* — zt} > 0) = P((a/b)*/* argmax{W; (t) — 1*} + RN 0)
teR teR 2b

= P(2b(a/b)* argmax{W; (1) — 1%} > —2)
teR

= P(2b(a/b)*? argmax{W; (t) — 1*} < 2).
teR

The last step follows from the fact that argmax{W;(r) — t> : t € R} is symmetric about zero. Substi-
tuting Co = 2b(a/b)*/3 in the last expression of the display we get P(n'/3 (8, (x0) — go(x0)) < z) —
P(Coargmax {W;(t) —t? :# € R} <z) as n — oo. This establishes the part (a).

Since g* is piece-wise constant on each /;, g*(xg) = GF‘XO Ak We first evaluate the expression Py x

M (n'/3(g*(x0) — go(x0)) < z| D) =Po x TL(6f, ;1 < go(x0) +n~"3z| D) for z € R as n — oo.
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Let ¢, (-) denote the graph of the lines connecting the points

2 J
{00,0), U700, @171 6. ... (1LY 6.
k=1

k=1

along with ¢, (s) =0 for s <0 and ¢, (s) = Zl{:] O for s > 1. Observe that ¢ agrees with the cu-

mulative distribution function of the density g at the points j/J, j =0, 1, ..., J. Define a stochastic
process U, (s) = Z;;’ﬂ 6;. Since GF‘XO 77 is the left-derivative of the least concave majorant of c(-) at

the point [xoJ]/J, by the switch relation (5.12), the fact that U,(s) = G,(s) =0 for s < 0 and that the
location of minimum does not change upon adding a constant term or upon multiplication by a positive
constant, we have that g*(xo) < go(xo) +n~'/3z if and only if argmax{c,(s) — (go(x0) + n~137)s:
s >0} > [xoJ]/J. Hence the probability of this event can be written as

Py x I(argmax{c,(s) — (go(x0) +n~"?2)s} > [x0J1/J|Dy)
seR

=Py x U(al‘gmax{ﬁn (s) — (go(x0) +n32)Gr(s)} = J ' [x0J] |D,)
seR

=Py x H(argmax {n2/3(0n(s) — Un(x()))
seR

—n*(g0(x0) + 17 P2)(Gu(s) — Gu(xo))} = T x0T 1| Dy). (5.15)
The last expression in (5.15) then equals to
Py x H(argmax{nz/S(l}n(xo + n_1/3f) — 0n (x0))
teR
—n*(go(x0) + 1 32)(Gu(xo +n7'P1) = Gu(x0))} = 14| Dn)

[(xo+n~131)J]
=Py x I1(arg max {n2/3 Z ©; — J " g0(x0))
relk j=Txo 141

—n' By ([0 + 1720 J7 = [x0J1 = D} = 7| Dy). (5.16)

Using Lemma 5.3 and 5.4, a multivariate version of the Argmax Theorem (see Theorem 3.6.10 of
Banerjee [1]), and Lemma A.1, we rewrite (5.16) to obtain

Py x T1(n'/3 (g*(x0) — g0(x0)) < z|Dy)

— P(argmax{aW(t) + aWa(t) — bt* —zt} > 0)
teR

=P((a/b)*3 argmax{ W, () + Wa(r) — 1} + — > 0)
teR 2b

=P(2b(a/b)*? argmax{W, (1) + W (t) — 1} < z),
teR
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the last step following from the fact that arg max {W1 )+ Wo(t) — 2:te R} is symmetric about zero.
Substituting Co = 2b(a/b)*/3 above, we get

Py x TT(n'/3(g*(x0) — g0(x0)) < z|Dy) — P(Coarg max{ Wi (r) + Wa(t) — 1*} < z).
reR

This completes the proof of part (b).
(c) For every z1, z2, t1, 12 € R, define

[(xo+n~131)J1 [(xo+n~131)J1

Nj  go(xo) _1 1
Hy,(t s = SV /3 —
1n(t1, 21) ‘ Z ( " 7 )—n""z ' Z 7
j=Ix0J1+1 j=Tx0J1+1
[(xo+n~131)J1 20(x0) [Grot+n~130) 7
_ o 80W0)N 13 _
Han(12,22) = ‘ Z (0 Vi )—n"" 2 | Z 7
j=Ix0J1+1 j=Tx0J1+1

Then from the proofs of parts (a) and (b), and the Multivariate Argmax Theorem, we have
(argmax{Hy,(t1, z1) : t1 € R}, argmax{Hy, (t2, z2) : 1 € R}) converges weakly to

(argmax{a W (1)) — btj — z111}, argmax{a W (2) + aWa(t2) — bt3 — 2212}). (5.17)

teR rnheR
Rewriting n'/3(g* (x0) — &n(x0)) as n'/3(g*(x0) — go(x0)) — n'/3(gx(x0) — go(x0)), and using (5.17)
and Lemma A.1, we get that for all z € R,

Po x T1(n'/3(g* (x0) — & (x0)) <2IDy) = P (CoAly, 1, — CoAly, <2).
From the proof of part (a) of Theorem 3.5, we also obtain that
M (n'(g*(x0) = 81 (x0)) < 2| Dn) ~ P(CoAYy, 1w, — CoAYy, <zIW1).

If TI(n'/3(g*(x0) — &n(x0)) < z|D,) converges in probability, then the limit must be the ran-
dom variable Q = P(CoA}, ,y, — CoA}y, < zIWi). Let Wy =n'(g*(x0) — gn(x0)) and Q, =
I (n'/3(g*(x0) — 8n(x0)) < z|Dy). If Q,, were to converge in probability, then Ay ow, — A%y, and Q
would be independent in view of Lemma 3.1 of Sen et al. [41]. But as both of them depend on Wy, the
convergence in probability cannot happen. O

Proof of Theorem 3.5. Asn!/3 (g*(x0) — go(xp)) is the argmax of the process on the left side of (5.13)
in Lemma 5.3 and the argmax itself is conditionally tight by Lemma 5.4, the Argmax theorem applied
to the conditional distribution concludes that

M(n'73 (g*(x0) — go(x0)) < z| Dn)

~ P(argmax{a W, (1) + aWa(t) — bt — zt} > 0| W)
teR

4 P(Co argmax{Wi(¢) + Wa(¢) — t2} < Z}W]).
teR

The last step uses Lemma A.1 and the fact that  — —t leaves the independent processes W; and W,
distributionally invariant. This completes the proof of part (a).
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Now to prove Part (b). By the definition of posterior quantile O, ,, we have that go(xo) < Qj,, if
and only if TT(g*(x0) < go(x0)|Dy) <1 — y. Therefore,

Po (30(x0) = Qn.y) =Po (' (g" (x0) = g0(x0)) < 01D,) <1 =)

—P(F*O|W) <1-vy), (5.18)

from Part (a) with z = 0. Observing that F*(0|W;) = P(COAWH_W <0|W)) = P(AWIJrW2 <0|Wp) =
Zp, the right hand side of (5.18) reduces to P(Zp <1 — y). O

6. Extension to unbounded domain

In this section, we seek analogous results on contraction rates, testing, and coverage of credible inter-
vals for a bounded, decreasing density g on the half-line (0, c0). We modify the random histogram
prior on an increasing, but still a finite, subinterval of the positive half-line, whose length is controlled
by another parameter. More specifically, let Ijy =k -1+ (G —1)/J,k—1+j/J], j=1,...,J,
k=1,..., K. Note that U _11jk = (k= 1, k], that is, like the unit interval in the previous sections,
the 1nterval (k—1,k]is also split into J equal pieces having length |Ijx| =1/J forall j=1,...,J,
k=1, ..., K. Then analogously, we put a prior I1;x for g by

J K
ZZ 0k L1, (6.1)
j=lk=1

Ojx:1<j=J, 1<k=<K)~Dir(aj:1=<j=<J, 1 <k=<K),

where aji, j=1,...,J,k=1,..., K, are bounded by a constant b > 0. The parameters J and K can
be appropriately chosen depending on 7, or may be given prior distributions. Assuming an exponential-
type tail condition, which allows choosing K relatively low, the following result obtains a contraction
rate using deterministic J and K.

Since under this prior construction with a given K, some observations call be larger than K, creating
a conflict with the proposed model, we need to clarify what is meant by the posterior distribution in
this case. The natural consideration is to ignore such observations, as they contain no information about
Ojk, j=1,...,J,k=1,..., K. Then the number of admissible observations X; < K is random, but
as K — oo, the proportion of such observation Go(K) — 1, and hence asymptotically almost all
observations are admissible.

Theorem 6.1. Let gg be a bounded, decreasing density on (0, 00). Then using the prior Il defined
by (6.1) with J, K — 0o with n, the LLy-posterior contraction rate at gy is max{/JK/n, J ', 1 —
Go(K)}. In particular, if 1 — Go(x) < e—ax’ for some a,r > 0, upon choosing K ~ (logn/(3a))'/"
and J =< n'3(1ogn)~V/3")  the contraction rate reduces to the nearly optimal rate n='/3(logn)'/®").

Proof. Define go(0) = go(0+) and

J
80,JK = Z

j=lk=1

K i, gowdu

J K
T l{xeljk}=ZZJeoh,‘k]l{xeljk},
J

j=lk=1
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where 69 jx = |, Ik go(x)dx. Then go sk is a decreasing sub-probability density on (0, o0). We now

show that go sk approximates go within J 41— Go(K) in LL;. This follows since for every j, k and
x € ljg, gotk — 1+ j/J) < gosk(x) < gotk =1+ (j —1)/J), leading to

/Igo(X) — 80,7k (x)|dx

120(X) — go0.sk (¥)]dx + fk go(¥)dx

Ljk

||M\

K
1
Z gok =1+ —=1/J) _gO,JK(k_1+j/J)}7+1_G0(K)

1
= 7(80(0) = go(K)) + 1 = Go(K)

using the decreasing property of g and the telescoping nature of the sum. To finish the proof, we show
that EoT1(|lg — go.sx ||t > Mu/TK /7 + J~'|D,) — 0 for any M, — oo.

Let Njg =Y I{X; €Iy}, j=1.....J,k=1,....K,and N. = 37_; 3§ | Nj;. Observe that
1—N./n=0p( —Go(K)).

Now ||g — go.sk 1 = Zj:l Zle 6% — 0o, jkl, so it is enough to show that

J K
EolT1(Y "> " 10jx — b0.jx| > My/TK /n|Dy) — 0. (6.2)

j=lk=1

This can be established exactly as in proof of the first part of Theorem 3.1, after observing that the
effective sample size, that is, the number of observations falling in (0, K] is N, ~ n in Py-probability,
and the observations falling outside do not alter the posterior distribution. The extra factor K appears
in the bound because now there are J K intervals, instead of just J previously.

If we assume the bound go(x) < e~*", we have the tail estimate [x go)dx < [ e dx =
r7! s e @y~ 1H/rdy < =K Choosing J < n!/3(logn) =1/ and K ~ (logn/(3a))!/", the rate
n~13(logn)!/3" is immediately obtained. O

Based on the above convergence result, a Bayesian test as in Theorem 3.2 with J < n!/3(logn)~1/G")
and K ~ (logn/ (3a))Y/" under the tail condition go(x) < e~ is immediate, with an enlargement of
the null hypothesis by the amount M,,n~'/3(logn)!/G®" in L for any M,, — oo. It is not clear whether
an adaptive test analogous to that in Theorem 3.3 has the stated asymptotic properties, since the proof
with random J and K depends on the conclusion in the second part of Theorem 3.1. This needs a
lower bound for the true density to control the Kullback-Leibler divergence, which is not possible on
an unbounded domain.

Finally, the coverage result for the credible interval for g(x¢) holds, because this is a local result not
affected by the tail part. More precisely, in the proof of the result, we only need to deal with locations
within a constant multiple of n~!/3 of the point of interest x to study the convergence of the processes.
It is easy to see that this involves only N j; with k bounded in 7, and hence these are uniformly of the
order n/J. The rest of the arguments apply.
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Appendix

The following result is an argmax analog of Lemma A.3 of Chakraborty and Ghosal [16]. Its proof is
analogous and is omitted.

Lemma A.1. Let Wy, W, be independent two-sided standard Brownian motions starting at zero. Then
fora,b>0andceR,

(a) argmax{aWi(¢) +aW,(¢t) — bt +ct:t R}
4 (a/b)*/? argmax {W (1) + Wa(t) — 12 :t € R} — i;
(b) argmax{aWi(¢t) — bt’4ct:te R}
2 (a/b)*3 argmax{Wi (1) — 1% : g € R} —
(c) Forci,cr eR,

[

2b°

(argmax{aW; (1)) — bti +cit1 : 1) € R},
argmax{a Wi (r2) + aWa(t2) — bt22 + ety ith € R})

4 ((a/b)z/3 argmax{Wi(#;) — t12 1 eR}— ;—l]),
(a/b)¥3 argmax{Wi (hy) + Wa(ha) — h3 : hy € R} — g—Z).

Proof of Lemma 5.1. We consider the part ¢ > 0 in the proof; the proof for the part + < 0 follows
similarly. Let f;, ;(x) =n!/¢(1{x < [(xo +n~'31)J1/J} — 1{x < [x0J7/J}). Note that

~1/3
203 RXOMX: 07! (& _ go(xo))

=M1+l " J

=G (far) + VnEofrs —nzﬁ%’“)(r(m +n730 I = [x0J ),

where {G,(fu.r) : t € [0, K]} is the empirical process corresponding to the class F, :={f,;: ¢t €
[0, K1}.
We first show that

VIEq fur — 1?3 go(x0) ([ (xo +n~36)J1 — [x0J 1) /T — —bt*. (A.1)

Using Taylor’s expansion go(u) — go(xo) = (g'(x0) + o(1))(u — x) of g around xg, we write the ex-
pression above as

23 [(xo+n~'31)J1/7 1 5
n?! / (g (x0) + (1)) (4 — x)dt = ~ gl (x)1® + o(1),
rxoJ1/J 2

establishing the assertion (A.1), as b = —g(/)(x()) /2.

The class F;, is easily seen to be a VC-class. Hence by Example 2.11.24 of van der Vaart and
Wellner [44], the entropy condition in Theorem 2.11.22 of van der Vaart and Wellner [44] holds. We
check the remaining conditions of that theorem to conclude that {G,(f; ;) : t € [0, K]} converges to a
tight centered Gaussian process on Lo ([0, K]).
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Define F,(x) =n'/0(1{x < [(xo+n~'3K)J1/J} — 1{x < [x9J]/J}). Then F, is an envelope for
Fu, thatis, | f,,.;] < Fy, for every ¢ € [0, K]. Using the continuity of g in a neighborhood of x¢, we have
that

[xot+n~'3K)J1/T

EoF; =n'/3 / [g0(x0) + o(1)1du = K go(x0) + o(1),
([xod D/ J

which is bounded. Next we note that E()Fnz]l{F,, > n4/n} — 0 for every n > 0, which is immediate
because for any x, the indicator vanishes for all sufficiently large .
Next, fix any sequence &, | 0. Then by the boundedness of gp, for 0 <7 <,

[(xo+n~13s)J71/J

EO(fn,s - fn,t)2 = n1/3/ gO(u)du

([xo+n=131)J1) /7
nl/3
< T(f(Xo +nB5) I = [(xo +n730)J7)

<l|s—tl+o@'3/1),

which goes to zero uniformly on {(s,#) : 0 <7 <s,|s — ] < d,}.
We shall now find the limit of the covariance Eo( fy.s fn.r) — Eo(fn.s)Eo(fn,s) forall 0 <¢ <s. By
the orthogonality of f, ; — fu.; and f, ;, we have that

[(xo+n~ 13001/

Eo(fus fu) = Eo(f2) =n'/ f go(w)du — go(xo)1.
[x0J1/J

Further, Eof,, = n'/®[go(x0) + o(1)][n"'3(t + o(1))] — 0. Therefore, for any s,f, we have
Cov(fu.s» fu.r) = min(s, t)go(xo) as n — oo. Hence all assumptions of Theorem 2.11.22 of van der
Vaart and Wellner [44] are satisfied for the limit process given by a W () — bt?, completing the proof
of the lemma. O

Proof of Lemma 5.2. Fix z and denote the maximizer in the statement by h,. As in the proof of
Lemma 5.1, we restrict attention to # > 0. The tightness can be similarly proved for the argmax with ¢
restricted to the left of zero, and the final result by combining the two conclusions.

For r > 0, define a stochastic process

Kn(r) =B 1{(Tx0J 1/, T(xo + r)J1/J1} — (go(x0) + zn =3 (T (xo + 1)1 — Tx0J 1)/ J

and a function K(r) = Go(xg + r) — Go(x0) — go(xo)7 on the positive half-line. Note that ﬁn =
n'/3argmax{K, (r) : r € R}. We apply Theorem 3.2.5 of van der Vaart and Wellner [44] on K,
and K to show that argmax{K,(r) : r € R} = Op(n~1/3). We have that K,(0) = K(0) = 0 and
EoK, (r) — K(r) for all r. Also, by a Taylor series expansion go(s) — go(xo) = (g{)(xo) +o0(1))(s —x0),
we have that

1 ’ 2 2
K (r) = go(xo)r + E(go()m) +o(1)r” —go(xo)r S —r-. (A2)

Next, for sufficiently small §, we bound Ej sup{/n|K,(r) — K(r)| : |r| < 8}. We can write
(K, (r) — K (r)) as the difference of G, 1{([xoJ1/J, [(xo +r)J]/J]} and

[V (Go(xo + 1) — Go(xo) — go(x0)r) + zn/01([(xo + r)J 1 — [x0J 1)/ J. (A3)
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Clearly, the class of indicators M := {1{([xoJ1/J, [(xo +7)J]/J]}:0 < r < 8} has envelope M5 =
1{(x0, x0 + 6]} < 1 and forms a VC-class. From the discussion on page 291 of van der Vaart and
Wellner [44], we have that

n
E§sup{|Gu(f): f € M5} S (E§MP)? sup /0 VIog N(€[[M5 2.0, Ms, || - 2. 0)de.
0

Observe that E3M52 < 8, while the uniform entropy integral is finite by Theorem 2.6.9 of van der Vaart
and Wellner [44]. Thus the display above is bounded by /5.

The second factor in (A.3) is bounded by r < §. The first term in the first factor in (A.3) is bounded in
absolute value by a multiple of \/n82 in view of (A.2), while the second term is bounded by a multiple
of n!/6. Therefore, the expression in (A.3) is bounded by /783 4 n'/65. Piecing these bounds together,
we have that

Eosup{|Kn(r) — K(r)|: 0 <r <8} <8+ /n8> +n'/%.

Hence by Theorem 3.2.5 of van der Vaart and Wellner [44] with ¢, (8) = 8+ ﬁSS +nl/6§, the rate
n~1/3 is obtained by solving the rate equation /8 + /n8> +n'/%8 < /ns>.

Finally, the condition K, (h,) > K,(0) > K,(0) — Op,(r,; 2) holds by the definition of the maxi-
mizer. ([l

For the remaining proofs, the dependence of (61, ..., 67) makes it harder to deal with the expressions
directly. To bypass the dependence in (61, ...,60,), we represent 6; as V;/ (le=1 Vi), where V; ~
Gamma(a; + Nj, 1) independently. Introduce the processes

[(xo+n~131)J7 J
An(V.Dyty=n*? 3" (V; =E(V;)/OQ_ VD),
Jj=[x0J1+1 =1
[xo+n~'30)J1 J
An(Dp,ty=n** 3" {E(V)/Q_ V)= Nj/n},
j=lx0J1+1 =1
[(xo+n~/31)J7
By(Dp,t)y=n*? 3" (Nj/n—J""go(x0)),
J=IxoJ1+1

where V = (Vq, ..., V). Observe that

[(xo+n~1/30) 7
An(V, Dy, 1) + Ay (D, 1) + By(Dp, ) =0 Y~ (0, —J 'go(x0). (A4
J=[x0J7+1

Proof of Lemma 5.3. Note that le=1 Vi|D,, ~ Gamma(x. +n, 1), and so we have E(le=1 Vi|D,) =
. +n, and Var(Zlle ViIDy) = a. +n. By the assumptions on the prior, max{a; : 1 < j < J} = O(1),
and therefore

J
n! Z Vi=140(/n)+ 0p,(n~?) = p 1. (A.5)
=1
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We shall show that A, (0, D, ) ~ aW; in Lo ([—K, K]) and sup{|An(Dn,t)| it e [—-K,K]}
— 0 in probability for all K > 0. To prove the first assertion, define Y,(V,D,,t) = n~'/3 x

Zi73
ZE.(;C?;)"J] HI)J] (V; —E(V})). In view of (A.5), the assertion reduces to showing that for all K > 0,

LY, (V,Dy,t):te[—K,K]|Dy) ~ LaWa(t):t e[-K, K]|Wp) (A.6)

in Lo[—K, K].
We first verify the finite-dimensional convergence to Gaussian limits. Since N; ~ Bin(n; Go(/;))
for 1 < j < J, and go is continuous and positive in a neighborhood of xg, with probability tending to
-1/3 : .
one, ZE(;C?;”J] " lt)” N;j~go (x0)fn?/3. Recall that the fourth central moment of Gamma(e, 1) is given

by 302 + 9a 50{2 fora > 1. As V; ~ Gamma(a; + N;, 1) and min{N; : 1 < j < J} — oo, we obtain
that

B[V, —E(V)P*|Dy]=a; + N;,  E[|V; —E(V)I*|Dn] < (@ + N)?. (A7)

Therefore, the sum of the variances is

[xo+n~'/30)J1 [(xo+n~130)01
Yo Va[n AW B[P =n" Y (@ +N) = g0l (AB)
j=TxoT1+1 j=Txo1+1

in Pp-probability.

-1/3
Also by (A.7) and (5.6), for any |t] < K, 25.(;‘0[;]”” TVE[Inm 3 (v; — E(V;)I*| Dy ] s bounded
in probability by a constant multiple of ‘

[(xo+n~ P01 [(xo+n~131) 07
S @A N S Y N e PRI,
j=lx0 1+1 J=IxoJ1+1

which is at most of the order n'/3/J — 0. This verifies Lyapunov’s condition with the fourth moment,
and hence the Lindeberg condition, for the central limit theorem to hold, giving that Y,,(V, Dy, t) ~»
80(x0)t N(0, 1), conditionally on D,, in Py-probability. The joint convergence can be verified by
evaluating the limit of the covariance between Y, (V, D,, t1) and Y,,(V, Dy, 1) for t| < 1, as

[xo+n~"21)J1 [xo+n~"31)J
[E Y (Vi—EW)) Y (V;—E(V))|Dy]
Jj=[x0J1+1 Jj=Ix0J1+1

[(o+n~131) 01

=[ > Var(Vp)|Da] = golxo)n
J=lxoJ1+1

in Pp-probability.

Next, we show the tightness of Y,(V, D,,-) in Lo ([—K, K]). It suffices to restrict # to [0, K].
Similarly, we can prove tightness with 7 restricted to [— K, 0], and conclude tightness in Lo ([—K, K1)
after combining. The verification of tightness in Lo ([0, K]) involves the verification of asymptotic
stochastic equicontinuity as in Section 2.1.2 of van der Vaart and Wellner [44], or more specifically, as
in Theorem 18.14 of van der Vaart [43]. To derive the required bound, we apply Theorem 2.2.4 of van
der Vaart and Wellner [44] with the L4-norm (i.e., ¥ (x) = x* in the theorem). It suffices to show that

E[|Y,(V, Dy, s) — Yu(V, Dy, O)[* D] < Is — 112, (A9)
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because then, with d(s,t) = /|s —t] and n = §2/3, conditionally on D,,, we obtain
n
| sup [Yu(V,Dy,s) = Yu(V, Dy, 0|, < / (1/e*) ™4 de + (") <815,
d(s,t)<8 0

as the e-packing number with respect to d is of the order € 2.

To show (A.9), let 0 <t < s and write

[Cro+n135)07
Yy (V, Dy, 5) = Yo(V, Dy, 1) =n~ '/ > (V; —E(V})
j=[(xo+n=131)J1+1

as the sum of independent centered random variables. Hence the left hand side of (A.9) is given by

[(xo+n~1/35)J]
n~ 3 > E[|V; —E(V))|*|D,]
J=lxo+n=131)J1+1

+ Z E[|V; —E(Vj)|2|D,,]E[|Vj/ _E(Vj’)|2|Dn]},
[Cxo+n=1 3 TT+1<j#) <[ (xo+n~s) ]

Using (A.7) and (5.6), we obtain the bound a constant multiple of
n= 3 (1P — ]I max{N; : 1< j < J}) S s — 1]

with probability tending to one, completing the verification of (A.9).
Next, we write A, (D,,t) as

[o+n~"30)07

23 aj +N;j  Nj Nj N;

n » - —H— + — (A.10)
j=roral Nei= Vi iV XV

‘ [(xo+n~ 13007 N

273 [Go+n= 307
< n* 2/3

2

j=[x0J]+1

7 max o; +n
1<j<J
Zl:l Vi j=[x0J1+1 ==

s |3

SV

By the assumptions on the prior and (A.5), the first term of (A.10) is bounded in probability by a
constant multiple of n~2/3J K, while the second term is bounded in probability by a constant multiple
of n?3(J/myn=13J(1/J) = In=2/3 — 0. Therefore, A, (D, -) = p, 0 in Loo ([— K, K1).

The weak convergence of B, (D, -) to aW in Lo ([—K, K]) has been established in Lemma 5.1.
Combining all three assertions, we get the result. |

Proof of Lemma 5.4. The main idea of the proof is similar to that of Lemma 5.2 using Theorem 3.2.5
of van der Vaart and Wellner [44] applied to the posterior process. We need to establish the tightness
of the conditional distribution of n'/3h,, given D,, in probability, where

g 8o (xo0)
hy, = argmax { Z (6; — T) —n~P2([(xo+ 11— [x0I D/ T}
reR i
j=lrod1+1
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Observe that this is equivalent to proving the tightness of n'/3/,, with respect to the joint distribution
of (61, ...,60y) and the observations X1, ..., X, respectively following the posterior distribution and
the sampling distribution.

For r >0, let M,,(r) and M (r) be defined as

[(xo+r)J]

My(r)= Y (ej—@)—zn—w(r(xwrm—rxoﬂ)/J

J=lxoJ1+1

and M (r) = Go(xo +r) — Go(xg) — go(xp)r, the same as K (r) in the proof of Lemma 5.2. We restrict
to r > 0, and observe that M (0) = 0. The condition M (r) — M (0) < —r2 has been verified within the
proof of Lemma 5.2. We verify other conditions of Theorem 3.2.5 of van der Vaart and Wellner [44]
to show that /1, = Op (n~'/3) with respect to the joint probability. As in the proof of Theorem 3.5, we
use the gamma representation in (A.4) for the posterior distribution of (81, ..., 8;). Then \/n(M,(r) —
M (r)) can be rewritten as the sum of

Hin(r) = /n XIS (v = BV /(5 Vo)s
Hon(r) = /0 Y200 L (NG +e) /(12 Vi) = Nj /)
Ha, (r) = /nPy[1{([x0J1/J, T(xo + ) J1/J1} — L{(x0, x0 + r1}] — 20/ (T (xo + ) J 1 — [x0J 1)/ J .

We estimate the maximal size of all these processes over 0 < r < § in the joint probability.
To estimate sup{|H1,(r)| : 0 <r < §}, we first bound

[xo+r)J1 [(xo+r)J]
P(sup{lvin Y (V;=E(V;)|:0<r<8}=bD,)<n > (Nj+a;)/b
j=TxoJ1+1 J=TxoJ1+1

by the Kolomogorov—Doob maximal inequality. Hence, in view of (5.6), a; = O(1) uniformly for
all 1 < j < J and (A.S), it follows that sup{|H1,(r)| : 0 <r < 8} = O0p(V3). For Ha,, we have, using
arguments similar to (A.10), sup{| H2, (r)| : 0 < r < 8} = Op(Jn~'/28 +8 +n~3/2J25), which reduces
to Op (n1/98) because of n!/3 « J « n?/3. The last terms Hz, (r) was K, (r) in the proof of Lemma 5.2
and was shown to be Op (v/8 4 /n8> 4+ n'/%8).

Hence by applying Theorem 3.2.5 of van der Vaart and Wellner [44] with ¢,,(8) = /8 4+ /n8> +
n'/03, the rate n='/3 is obtained by solving the rate equation /8 + /n8> +n'/65 < /n8>.

Finally, the condition M, (h,) > M, (0) > M, (0) — Op, (rn’z) holds by the definition of the maxi-
mizer. O
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