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Abstract— This paper proposes a vehicular edge federated
learning (VEFL) solution, where an edge server leverages highly
mobile connected vehicles’ (CVs’) onboard central processing
units (CPUs) and local datasets to train a global model.
Convergence analysis reveals that the VEFL training loss depends
on the successful receptions of the CVs’ trained models over
the intermittent vehicle-to-infrastructure (V2I) wireless links.
Owing to high mobility, in the full device participation case
(FDPC), the edge server aggregates client model parameters
based on a weighted combination according to the CVs’ dataset
sizes and sojourn periods, while it selects a subset of CVs in
the partial device participation case (PDPC). We then devise
joint VEFL and radio access technology (RAT) parameters
optimization problems under delay, energy and cost constraints
to maximize the probability of successful reception of the locally
trained models. Considering that the optimization problem is
NP-hard, we decompose it into a VEFL parameter optimization
sub-problem, given the estimated worst-case sojourn period,
delay and energy expense, and an online RAT parameter
optimization sub-problem. Finally, extensive simulations are
conducted to validate the effectiveness of the proposed solutions
with a practical 5G new radio (5G-NR) RAT under a realistic
microscopic mobility model.

Index Terms— Connected vehicle (CV), energy efficiency (EE),
federated learning (FL), vehicular edge network (VEN).

I. INTRODUCTION

WHILE modern connected vehicles (CVs) are an essen-
tial part of an intelligent transportation system (ITS),

higher automation on the road demands more exploration.
One way to achieve higher automation is to put more
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sensors on the onboard units of these CVs to facilitate real-
time sensing and onboard computing [1]. Machine learning
(ML) has shown its potential in various ITS applications,
such as object detection, traffic sign classification, congestion
prediction, velocity/acceleration prediction, etc., to name a
few [2]. However, the sensing capabilities and onboard
computation powers of CVs are still limited. Moreover,
offloading raw data to an edge server raises immense
privacy risks and requires humongous bandwidth. Therefore,
a privacy-preserving distributed ML solution is urgently
needed for modern vehicular edge networks (VENs) to ensure
higher automation levels on the road where the moving CVs
must make operational decisions swiftly.

With its privacy-preserving and distributed learning abilities,
federated learning (FL) [3] is, thus, an ideal solution for VENs.
Note that FL follows the parameter server paradigm, where the
server distributes a global ML model to the clients, who then
perform local model training in parallel on their devices and
send their locally trained model parameters to the server [4].
Thus, the CVs do not need to share their raw data, i.e., data
remains private. Besides, system and data heterogeneity of the
CVs can be handled by carefully designing model aggregation
rules and local training loss functions.

Unlike traditional stationary clients, however, devising a
vehicular edge FL (VEFL) framework is challenging for
multiple reasons. Firstly, limited radio coverage makes the
sojourn periods of the highly mobile CVs very short.
Therefore, the CVs can perform local model training only
for a few iterations before moving out of the coverage area.
Secondly, modern CVs’ onboard central processing units
(CPUs) are responsible for many operational computations.
Besides, the CVs are owned by different clients who may
not readily join the FL process. Therefore, a service level
agreement (SLA) between a CV that wishes to utilize its
limited resource for FL model training and the edge server
should exist. Note that an SLA is a commitment between
the server and the CV that both parties agree to uphold.
Thirdly, a proper radio access technology (RAT) solution is
required since the server can aggregate trained models only if
these models are successfully received at the aggregation time.
However, the high mobility of the CVs makes communication
over the intermittent wireless vehicle-to-infrastructure (V2I)
links even more challenging. As such, we shall carefully
orchestrate the interplay between the server and the RAT
solution to perform VEFL. Moreover, the underlying RAT
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requires mandatory resource management. Finally, system
and data heterogeneity among the CVs is a norm in VENs
since automotive makers produce products with different
features.

A. Related Work

We have seen many remarkable contributions to joint FL
and wireless network parameter optimizations [4], [5], [6], [7],
[8]. However, these studies did not consider the fundamental
constraint in VEN, i.e., client’s high mobility, which results
in a very short sojourn period. Some recent works [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18] also considered
FL for different tasks in VENs. However, only a handful
of studies [19], [20], [21], [22] addressed the constraints
present in VENs. Zeng et al. proposed a dynamic federated
proximal algorithm to design a controller for autonomous
vehicles in [19]. The authors considered moving connected
and autonomous vehicles as FL clients and devised their
algorithm accounting for the communication and computation
delay constraints. The communication delay was derived using
a simplistic channel model with one channel realization. Each
vehicle had a unique orthogonal resource block to offload its
trained model to the server.

Xiao et al. jointly consider vehicular client selection,
transmission power selection, CPU frequency selection and
local model accuracy optimization under delay and energy
constraints in [20]. More specifically, the authors assumed data
quality is known, and optimized local model precision before
the server performs global aggregation. Besides, the authors
considered a transmission control protocol/internet protocol
based channel model with a unique radio resource for each
client for offloading its trained model. Taik et al. considered a
clustered vehicular FL in [21]. The authors used the traditional
federated averaging (FedAvg) algorithm, where the vehicular
cluster head performed model aggregation from the cluster
members and then forwarded the aggregated model to the
server. Liu et al. used a proximal FL algorithm, which is
very similar to the widely used FedProx algorithm [23], for
vehicular edge computing in [22]. The impact of mobility and
wireless links was not considered in [22].

Asynchronous communication and model aggregation
mechanisms were also proposed in some recent works [24],
[25], [26]. More specifically, [24] considered a semi-
synchronous FL for the Internet of vehicles, where the authors
dynamically adjusted the server’s waiting time between two
global rounds in proportion to the total participating clients.
A hierarchical asynchronous FL was considered in [25].
A semi-asynchronous hierarchical FL for transportation
system was proposed in [26]. Particularly, [26] assumed a
synchronous model aggregation for the local-edge level and a
semi-synchronous model aggregation for the edge-cloud level.

B. Motivations and Our Contributions

While [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]
showed the efficacy of FL in different vehicular applications
and [19], [20], [21], [22] addressed some typical resource-
constraints in VENs, these studies had their own limits.
Particularly, due to the intermittent wireless V2I links, VEFL

is not as straightforward as broadcasting the global model
and then aggregating locally trained model parameters under
perfect wireless communication links between the server and
clients. A practical RAT, such as the 5G new radio (5G-
NR), is required for the parameter server to broadcast the
global model in the downlink and then receive the model from
the vehicular clients in the uplink. Moreover, the parameter
server must devise the VEFL strategy to accommodate the
underlying RAT’s characteristics. As such, a joint study should
address the constraints of the parameter server, mobile clients
and the underlying RAT. It is worth pointing out that 3rd
generation partnership project (3GPP) release 18 will include
different artificial intelligence and ML solutions for its data-
driven network applications [27]. Besides, different work
groups within 3GPP are working actively to include ML
in the next-generation standard. Moreover, ML-application-
based RAT design is also a part of standardization for
release 18 [28].

In this work, we, therefore, present a VEFL framework
with a joint study of the impact of the mobility of the
clients, i.e., the CVs, with a practical 5G-NR-based RAT
solution and under strict delay, energy, computation resource,
radio resource and cost constraints. More specifically, our
contributions are summarized as follows:

• Leveraging 5G-NR RAT, we propose a VEFL framework
where an edge server utilizes a fixed bandwidth part
(BWP) [29] and an uplink heavy frame structure
to receive the locally trained ML models over the
intermittent V2I links from highly mobile CVs which
participate in the model training and charge the server
based on SLAs.

• We consider a full device participation case (FDPC)
and a more practical partial device participation
case (PDPC), where all CVs and only a subset of
CVs participate in the model training, respectively.
As FDPC is less flexible, to combat high mobility,
i.e., short sojourn period, the server aggregates local
model parameters based on a weighted combination
reflecting the CVs’ expected sojourn periods and dataset
sizes.

• In both cases, corresponding joint VEFL and RAT
parameter optimization problems are formulated to
maximize the probability of successful trained models
reception at the server under strict delay, energy and cost
constraints. Since channel state information (CSI) can
vary in each slot and is unknown beforehand, the original
joint problem is decomposed into a VEFL parameter
optimization sub-problem, given the upper bounds of the
communication delay, energy expense and cost, and a
RAT parameter optimization sub-problem that aims to
maximize long-term energy-efficiency (EE).

• The non-convex VEFL parameter optimization sub-
problems are solved using standard relaxations and the
difference between convex (DC) approach. The fractional
non-convex long-term EE optimization problem is first
transformed into a tractable form using the Dinkelbach
method, which is further converted into a per-slot online
optimization problem leveraging Lyapunov drift-plus-
penalty-based stochastic optimization.
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Fig. 1. Vehicular FL system model.

• Finally, using simulation of urban mobility (SUMO) [30],
we simulate a microscopic mobility scenario in Down-
town Raleigh, NC, USA, and use four popular ML
datasets to show the effectiveness of our proposed
solutions.

The rest of the paper is organized as follows: Section II
introduces our proposed VEFL system model. Section III
provides the convergence analysis and our joint problem
formulation. Section IV presents the solution to the problem.
We discuss our simulation results in Section V. Finally,
Section VI concludes the paper.

II. VEFL SYSTEM MODEL

We consider a VEN confined within a region of interest
(RoI), as shown in Fig. 1. The edge server—embedded into
the next generation Node B (gNB)—wishes to perform a
distributed ML task leveraging the moving CVs’ onboard
CPUs and local datasets. Similar to [31], [32], SLAs between
the CVs and the edge server, which require the edge server
to pay the CVs for contributing to the VEFL task, are
assumed.1 Note that the terms server and gNB are used
interchangeably when there is no ambiguity. We consider a
general learning task, which can be object detection, traffic
sign classification/detection, velocity/acceleration prediction,
traffic congestion prediction, travel time prediction, fuel
consumption prediction, etc., for our VEFL. Moreover, the
VEN operates in a discrete time-slotted manner. The slots are
denoted by T = {t}|T |

t=1. Particularly, the gNB has a fixed
BWP for the VEFL to provide radio connectivity to the moving
client CVs. The server can only leverage the trained ML
model on the CVs’ onboard CPUs within the communication
range of the gNB. Denote the communication radius of the
gNB by r.

The CVs enter and leave the RoI following some
distributions, i.e., the CV set may not be the same in all time
slots due to high mobility. Denote the CV set during time slot
t by Vt = {v}Vt

v=1. Moreover, the server knows the maximum

1However, the implementation of SLAs in a practical VEN implicates the
core network and the user plane and control plane protocol stacks [33], [34],
which are beyond the scope of this paper.

possible velocity on the roads inside this RoI. Denote the
maximum possible velocity of the RoI by umax. Assuming
the gNB is located at the center of the coordinate system of
the RoI, its coverage circle is given by

x2 + y2 = r2, (1)

where x and y are the horizontal and vertical coordinates,
respectively.

A. CV Mobility Model

Denote the coordinate of v ∈ Vt, during slot t,
by

(
xloc

v (t), yloc
v (t)

)
as shown in Fig. 2. Also, let us denote

CV v’s velocity and acceleration during time t by uv(t) and
u̇v(t), respectively. We consider the widely used car-following
mobility (CFP) model, known as the intelligent driver model
(IDM) mobility model, to model microscopic mobility for the
CVs [35]. In IDM, the mobility is controlled by the following
instantaneous acceleration equation [35]:

u̇v(t) = ū1

(
1− [uv(t)/umax]4

)
− ū1[s∗v/∆dv(t) ]2, (2)

where ū1 is the maximum acceleration or a constant that
depends on the design. ∆dv(t) is the front bumper to the back
bumper distance of CV v and the vehicle directly in front of
it, during time t. Furthermore, s∗v is the desired dynamical
distance and is calculated as follows:

s∗v = ssaf + uv(t) · tdst + [uv(t) ·∆uv(t)]/(2
√

ū1ū2), (3)

where ssaf is the safety distance between v and the CV
directly in front of it, tdst is the desired time headway
that gives the minimum possible time to the CV directly
in front of v, ∆uv(t) is the velocity difference between v
and the vehicle in front of it, and ū2 is a positive number
that defines the comfortable braking deceleration. Note that,
in (2), the first term, i.e., ū1

(
1− [uv(t)/umax]4

)
, is the

instantaneous acceleration of CV v, which essentially is the
desired acceleration on a free road. The second term is
the deceleration induced by the CV in front of it [35].

Moreover, we assume the server does not need to know the
entire trajectory of the vehicle. Therefore, the server will only
estimate the guaranteed sojourn period tsoj

v,t. To find tsoj
v (t),

first, we write the horizontal and vertical lines that intersect
the gNB’ radio coverage circle boundary as follows:

y = yloc
v (t), (4)

x = xloc
v (t). (5)

Note that (4) and (5) are represented by the purple and orange
color chords, respectively, in Fig. 2. We can then find the
x-coordinates of the gNB coverage boundary by solving (1)

and (4) as xbnd,1
v (t) =

√
r2 − yloc

v (t)2 and xbnd,2
v (t) =

−
√

r2 − yloc
v (t)2. As such, we can find the horizontal

distances of these boundary points and the current location
of the CV (xloc

v (t), yloc
v (t)) as dy

x1
=

∣∣xloc
v (t)− xbnd,1

v (t)
∣∣

and dy
x2

=
∣∣xloc

v (t)− xbnd,2
v (t)

∣∣. Similarly, we can find
the y-coordinates of the gNB coverage boundary by

solving (1) and (5) as ybnd,1
v (t) =

√
r2 − xloc

v (t)2 and
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Fig. 2. Finding coverage boundary points.

ybnd,2
v (t) = −

√
r2 − xloc

v (t)2. Then, the corresponding
vertical distances of these boundary points and the current
location of the CV (xloc

v (t), yloc
v (t)) are calculated as dy1

x =∣∣yloc
v (t)− ybnd,1

v (t)
∣∣ and dy2

x =
∣∣yloc

v (t)− ybnd,2
v (t)

∣∣.
As such, from time t, the minimum expected sojourn period

of v under the gNB’s coverage is bounded below by

tsoj
v (t) ≥ min

{
dy

x1
, dy

x2
, dy1

x , d
y2

x

}
/umax. (6)

Note that (6) is based on a linear trajectory and uniform
velocity umax, which is the worst-case estimation of the
sojourn period of the CV.

B. V2I Radio Access Technology Model

We assume that the VEN operates in TDD mode and
has a fixed W Hz BWP for providing RAT connectivity
over the universal mobile telecommunications system (UMTS)
air interface (Uu interface) for the VEFL. Note that TDD
facilitates channel reciprocity and thus offers less control
overhead. Besides, we assume that all transceivers can mitigate
the Doppler effect satisfactorily.2 For model distribution in
the downlink, as the gNB sends the same data to all selected
CVs, it can use the entire spectrum and high transmission
power to broadcast the model. Therefore, similar to [4], [8],
[19], we ignore the downlink communication. The W Hz
bandwidth is divided into orthogonal physical resource blocks
(pRBs). Denote the pRB set of the allocated BWP by the set
Z = {z}Zz=1. Note that due to orthogonal pRBs, there is no
intra-cell interference. Besides, as we consider a single cell,
the proposed VEN is interference-free.

The gNB considers the 5G-NR frame structure in which the
radio frame is 10 ms long with 10 subframes. Within each 1 ms
subframe, there are 2n̄ slots, where n̄ is the sub-carrier spacing
numerology [36]. The pRB allocation granularity is the slot,
i.e., the pRBs can be allocated to different users in each slot
t. Each slot carries 14 OFDM symbols in the time domain
and 12 sub-carriers in the frequency domain. Moreover, the
OFDM symbols can be configured based on the duplexing
mode. As this is uplink-heavy transmission, we consider a
downlink-control uplink transmission slot format as shown in

2Although Doppler shift is a well-known problem, if the underlying RAT
mitigates it adequately, it is less critical for our proposed VEFL framework.

Fig. 3. As such, we consider the effective uplink data rate per
slot, which will be fleshed out in what follows.

We consider a single-input-multiple-output (SIMO) case,
where the gNB has N antennas, and each CV has a single
antenna. Note that our framework can also be extended to
other multiple-antenna communication models.3 During slot
t, denote the channel between CV v and the nth antenna of
the gNB over pRB z by hn,v,z(t). Then, we denote the entire
channel response at VU v from the gNB over PRB z as

hv,z(t) =
√
ψv(t)ϱv(t)h̆v,z(t) ∈ CN×1, (7)

where
√
ψv(t), ϱv(t) and h̆v,z(t) =

[h1,v,z(t), . . . , hN,v,z(t)]T ∈ CN×1 are large scale fading,
log-Normal shadowing and fast fading channel responses
from the N antennas, respectively. The path losses are
modeled based on the urban macro (UMa) model [37].

To that end, denote CV v’s unit powered intended signal
for the gNB by sv(t) ∈ C and allocated uplink transmission
power for pRB z by Pv,z(t). Assuming receiver beamforming
vector gv,z(t) ∈ CN×1, the effective uplink signal received at
the gNB, over pRB z, is calculated as follows:

yv,z(t) = Iv,z(t) ·
√
Pv,z(t)gv,z(t)

Hhv,z(t)sv(t) + η, (8)

where Iv,z(t) ∈ {0, 1} is an indicator function that takes value
1 when pRB z is allocated to CV v, and η ∼ CN(0, ς2) is the
circularly symmetric zero mean Gaussian distributed random
variable with variance ς2.

Then, we calculate the received signal-to-noise ratio (SNR)
at the gNB for CV v’s uplink transmission as follows:

Γv,z(t) =
(
Iv,z(t) · Pv,z(t)

∣∣gv,z(t)
Hhv,z(t)

∣∣2)/(ως2), (9)

where ω is the pRB size. The gnB can configure CV-specific
CSI reference signal (RS) to estimate the channels. Since
5G-NR has the flexibility of configuring CSI-RS periodically,
semi-persistently or aperiodically and may also perform uplink
channel information multiplexing on the physical uplink
shared channel [38], this work primarily focuses on the overall
VEFL framework considering CSI is known at the gNB.4

Therefore, the gNB can use maximal ratio combining receiver
beamforming to get gv,z(t) = hv,z(t)/ ∥hv,z(t)∥, which gives
the following uplink SNR over pRB z.

Γv,z(t) = (Iv,z(t) · Pv,z(t) ∥hv,z(t)∥2)/(ως2). (10)

To this end, we can calculate the achievable data rate at the
gNB from CV v’s uplink as follows:

rv(t) = ω(1− υ) · Iv(t)
∑Z

z=1
Eh [log2(1 + Γv,z(t))] , (11)

where Iv(t) ∈ {0, 1} is an indicator function that takes value
1 when CV v ∈ Vt is scheduled for transmissions in slot t
and the expectation is over the channel hv,z(t). Besides, υ

3However, the TDD-based massive MIMO requires rigorous channel
estimation/equalization, beam management, etc., which deserve separate
studies.

4Channel estimation delay is a part of the RAT and is less critical for our
proposed VEFL framework as the server only uses the worst-case estimated
channel, discussed in Section IV, to determine the approximate upper bound
for the uplink model offloading delay.
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Fig. 3. OFDM Symbols within a slot [36].

Fig. 4. Time slot orchestration in the proposed VEFL.

is the loss due to control signaling overhead. For our case,
if the flexible symbol in Fig. 3 is allocated for uplink, we set
υ = 1/14. Moreover, if it is not assigned to uplink, we set
υ = 2/14.

C. Preliminaries of VEFL

Denote the server’s global ML model by ωωω. Denote the
dataset available at CV v by Dv = {xi, yi}|Dv|

i=1 , where xi

and yi are the ith sample feature and the corresponding label,
respectively. Therefore, during time t, the entire dataset can be
denoted as Dt = {Dv}Vt

v=1. The edge server aims to optimize

min
ωωω
F (ωωω) =

∑Vt

v=1
pvfv(ωωω), (12)

where pv ∈ [0, 1] is the linear combination weight for
CV v with

∑Vt

v=1 pv = 1. While the typical FedAvg set
pv = |Dv|/|Dt| [3], we will explore more on how to properly
set these weights in what follows. Besides, fv(ωωω) is the local
empirical loss function of CV v.

The server distributes the global model during the VEFL
global rounds k = 1, . . . ,K as shown in Fig. 4. Denote
the slots corresponding to the global rounds by the set
Tg = {t̆k}Kk=1, where t̆1 represents the VEN slot t at which
k = 1. For example, in Fig. 4, t̆1 = 3 and t̆2 = 10. Note
that throughout our discussions, we will use the notation k
and term round to represent VEFL global round, while the
notation t and term slot will represent the discrete time slot
of the VEN.

Denote the duration between global round k + 1 and k by

tth(k) = κ×
(
t̆k+1 − t̆k

)
, (13)

where κ is the transmission time interval (TTI). Besides, Tg ⊂
T is known to all CVs that have SLAs with the server. Denote
the available CV pool during global round k by Vt̆k

. Without
any loss of generality, denote the global model at the server
during global round k by ωωωk. The server then broadcasts ωωωk to
all CV v ∈ Vt̆k

. Denote the local copy of CV v’s model at the
beginning of round k by ωωωv,k, i.e., ωωωv,k ← ωωωk for all v ∈ Vt̆k

.
Upon receiving the global model, each v ∈ Vt̆k

performs local
model training to minimize the following objective function

min
ωωω
fv(ωωω,ωωωk) = Fv(ωωω) + (µ/2)∥ωωω −ωωωk∥2, (14)

where Fv(ωωω) is CV v’s local empirical loss function on its
dataset Dv . An L2 regularization is added to Fv(ωωω) to tackle
heterogeneity that often arises in FL.

Each v ∈ Vt̆k
trains its local model on its local dataset Dv

for lv(k) iterations and obtains the following updated model

ωωωv,k+1 = ωωωv,k − δ
∑lv(k)

l=1
∇fv(ωωω,ωωωv,k), (15)

where δ is the step size. After this local training, the CVs
send ωωωv,k+1’s to the server. The server then performs weight
aggregations, which will be discussed in more detail in the
following section, and computes the updated global model
ωωωk+1 for the next round. The above processes repeat until the
globally trained model reaches an expected level of precision.

D. Delay Calculation

1) Model Training Delay: Denote CV v’s CPU computation
cycle frequency by ηv(k) ∈ {ηmin

v , ηmax
v }. Assuming CV

v requires cv CPU cycles to process per-bit data, the local
computation delay for one local iteration is calculated as [4]

tcmp
v,itr = cvDv/ηv(k), (16)

where Dv is the dataset size of v in bits. Then, to perform
lv(k) local iterations during global round k, the total local
computation delay of CV v is

tcmp
v (k) = lv(k) · tcmp

v,itr. (17)

2) Communication Delay: Let the model parameters be of
M dimension, i.e., ωωω ∈ RM . Then, the required number of
bits for transmitting the model parameters is calculated as

S(ωωω,FPP) =
∑M

m=1
[1 + FPP(m)], (18)

where FPP(m) represents floating point precision. Note that
besides FPP(m) bits to send the mth element of ωωω, we need
1 additional bits to represent its sign.

This model payload size S(ωωω,FPP) is usually on the scale
of megabits (Mbs) and takes more than one coherence time and
frequency block. Therefore, if a CV starts model offloading
from slot t > t̆k after it finishes the local model training during
VEFL global round k, the offloading delay is calculated as

ttx
v(k)

=κ·min
{
T : κ(1−υ)

∑T

t̄=t
rv(t̄)≥S(ωωω, FPP), T ∈Z+

}
. (19)

For CV v ∈ Vt̆k
, the total delay between two VEFL global

rounds is, thus, calculated as follows:

tv(k) = tcmp
v (k) + ttx

v (k). (20)
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E. Energy Consumption

1) Local Model Training Energy Consumption: We calcu-
late the energy consumption of CV v ∈ Vt̆k

for its local model
training during round k as

ecmp
v (k) = lv(k) · (ζ/2)cvDvηv(k)2, (21)

where ζ/2 is the effective capacitance of CV v’s CPU chip.
2) Communication Energy Consumption: We calculate the

uplink transmission energy consumption of the client v ∈ Vt̆k

during round k as

etx
v (k) =

∑T

t̄=t

∑Z

z=1
Pv,z(t̄), (22)

where T is calculated is (19).
Therefore, we calculate the total energy consumption

associated with client v’s local computation and uplink
communication as follows:

etot
v (k) = ecmp

v (k) + etx
v (k). (23)

III. VEFL CONVERGENCE ANALYSIS
AND PROBLEM FORMULATION

A. Convergence Analysis

We make the following standard assumptions [23], [39].
Assumption 1 (L-Lipschitz Gradient): For all v ∈ Vt̆k

in
all k, Fv(ωωω) is L-Lipschitz gradient for any two parameter
vectors ωωω and ωωω′, i.e., ∥∇Fv(ωωω)−∇Fv(ωωω′)∥ ≤ L ∥ωωω −ωωω′∥.

Assumption 2 (B-Dissimilar Gradients): The local gradi-
ent at the CVs are at most B-dissimilar from the global
gradient ∇f(ωωω), i.e., ∥∇Fv(ωωω)∥ ≤ B ∥∇f(ωωω)∥, for all v.

Assumption 3 (σ-Bounded Hessian): The smallest eigen
value of the Hessian matrix is −σ for all CVs, i.e.,
∇2Fv ⪰ −σI. This also implies that the fv(ωωω,ωωωk) in (14)
is µ′ = µ− σ strongly convex.

Assumption 4 (γ-Inexact Local Solvers): Local update of
the CV v results in γ-inexact solution ωωωv,k+1 of (14) in all
global round k. In other words, the local update of CV v yields
∥∇fv(ωωωv,k+1,ωωωk)∥ ≤ γ ∥∇fv(ωωωk,ωωωk)∥, where γ ∈ [0, 1].
Note that γ = 0 means solving (14) optimally, while an
increased value indicates how the updated model differs from
the exact solution.

Additionally, we consider full-batch gradient descent, i.e.,
each CV performs its model training in its entire dataset, which
can be extended to stochastic gradient descent.

Denote the successful trained local model reception from
the client v during global round k by

1
(
tv(k) ≤ tth(k)|dv(k) ≤ r

)
=

{
1, with probability psuc

v (k),
0, with probability (1−psuc

v (k)),
. (24)

where dv(k) is the distance of v after performing lv(k)
iterations from the gNB.

We consider two cases for device participation, namely, the
FDPC and the PDPC. While all CVs with SLAs participate
in model training for the former scenario, only a subset of
these CVs participates in the latter. In both cases, for the
model aggregation, the server can take a client’s locally trained

Fig. 5. CCDF of CVs expected sojourn period.

model ωωωv,k+1 only when it successfully receives it within the
deadline threshold tth(k). As such, for FDPC, we express the
server’s aggregation rule as

ωωωk+1 = ωωωk +

Vt̆k∑
v=1

[pv · 1
(
tv(k) ≤ tth(k)|dv(k) ≤ r

)
psuc

v (k)

× (ωωωv,k+1 −ωωωk)
]
, (25)

where pv ∈ (0, 1] and
∑Vt̆k

v=1 pv = 1. Moreover,
pv = p̄v/

∑Vt̆k
v=1 p̄v , where p̄v is calculated as follows:

p̄v = (1− λ )[Dv/
∑Vt̆k

v=1
Dv] + λ [tsoj

v (t̆k)/
∑Vt̆k

v=1
tsoj
v (t̆k)],

(26)

where λ ∈ [0, 1] is a parameter that balances the weight of
the sojourn period and dataset size.

Note that the averaging step in (25) is unbiased, i.e.,
E [ωωωk+1] =

∑Vt̆k
v=1 pv · ωωωv,k+1. Besides, we adopt this

aggregation weight pv inspired by the complementary
cumulative distribution function (CCDF) of the CVs’ expected
sojourn periods tsoj

v (t̆k)’s. Particularly, at high speed, tsoj
v (t̆k)

can be very small, as shown in Fig. 5. For example, at a
maximum velocity umax of 26.82 meter/second (m/s), about
28% CVs have an expected sojourn period smaller than
5 seconds. Besides, about 13% CVs have smaller than
2.5 seconds sojourn periods. As such, the aggregation rule
shall also weigh this short sojourn period since these CVs are
likely to execute only a few local iterations compared to the
other CVs with relatively higher sojourn periods.

One popular way to combat the straggler effect is to
aggregate model parameters upon the reception of the first
|Ck|, where Ck ⊆ Vt̆k

[40]. In federated edge learning (FEEL),
RAT resource is limited. Besides, the CVs are required to
perform their own computational tasks, while the server is
required to pay a fee if it selects a CV for model training.
As such, it is practical to select the subset Ck at the beginning
of VEFL round k. In this pragmatic case, we thus assume that
the server uniformly selects |Ck| CVs out of the original Vt̆k

CVs without replacement in each VEFL round k. Moreover,
we stress that the server decides how many total CVs it can
select based on its limited monetary and bandwidth budgets.
In other words, we leave this |Ck| as a design parameter that

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 21,2023 at 00:34:51 UTC from IEEE Xplore.  Restrictions apply. 



PERVEJ et al.: RESOURCE CONSTRAINED VEFL WITH HIGHLY MOBILE CONNECTED VEHICLES 1831

the server determines contingent on the resource-constraint
circumstances. Denote the event that CV v is selected during
VEFL round k by

1 (v ∈ Ck) =

{
1, with probability qv(k)
0, with probability (1− qv(k)) .

(27)

Considering the above factors, the server chooses the
following aggregation rule for PDPC.

ωωωk+1 = ωωωk+
∑Vt̆k

v=1

[
pv ·

1
(
v ∈ Ck, tv(k) ≤tth(k)|dv(k)≤r

)
qv(k)psuc

v (k)

× (ωωωv,k+1 −ωωωk)
]
. (28)

When all selected CVs have the same pv , the averaging
step in (28) is unbiased, i.e., E [ωωωk+1] =

∑Vt̆k
v=1 pv · ωωωv,k+1.

The VEFL algorithm is summarized in Algorithm 1. The
convergence analysis for PDPC is derived in Theorem 1.

Theorem 1: Using our assumptions and aggregation
rule (28), the expected loss decrease after one VEFL round
is

E [f(ωωωk+1)]− f(ωωωk) ≤ (B (1 + γ) /µ′)

×
(
1+

BL(1 + γ)
2µ′

∑Vt̆k

v=1

pv

qv(k)psuc
v (k)

)
∥∇f(ωωωk)∥2 . (29)

Proof: The proof is left in Appendix A.
Remark 1: From the convergence analysis in (29),

we observe that pv , qv(k), psuc
v (k) and ∥∇f(ωωωk)∥ may vary

in each VEFL round k. Besides, it is generally impossible to
find a closed-form expression for ∥∇f(ωωωk)∥ by relating it to
the learning parameters [6], [41]. As such, in each VEFL
round, we aim to sub-optimally minimize the loss in (29) by
concentrating on

∑Vt̆k
v=1 pv/[qv(k)psuc

v (k)].
Remark 2: Note that FDPC is a special case of PDPC,

where all CVs participate in the model training. Moreover, the
convergence analysis and problem formulation are similar.

B. Problem Formulation

In our proposed VEFL, we explicitly consider CVs mobility,
system heterogeneity—in terms of CPU frequency and energy
budget—across CVs, intermittent Uu links, and the server’s
limited monetary and radio budgets. Denote the fixed monetary
budget of the server for global round k by Ξ(k) unit. Denote
the cost for each unit of energy by ϕv unit/Joule. The energy
consumption of a CV depends on its number of local iterations
lv(k), CPU frequency ηv(k) and total uplink transmission
power to offload the trained model ωωωv,k+1. Particularly,
as part of the SLA, each CV first reports its minimum CPU
frequency ηmin

v , maximum CPU frequency ηmax
v , maximum

transmission power Pmax
v , energy budget ebud

v (k), dataset size
Dv and charging policy ξv(lv(k), ηv(k)) to the server. More
specifically, the CVs have the following charging policy.

ξv(lv(k), ηv(k)) = etot
v (k) ϕv + ϕ̄v, (30)

where etot
v (k) is calculated in (23). As such, etot

v (k) ϕv is the
CV’s expected operational cost, and ϕ̄v is a constant term to
ensure its gain upon participating in model training.

Algorithm 1 Vehicular Edge Federated Learning
Input: Total global round K

1 for k = 1 to K do
2 Broadcast ωωωk to the client CV set Yk

/* Yk = Vt̆k
and Yk = Ck, respectively

for FDPC and PDPC */
3 for v ∈ Yk in parallel do
4 Train the received global model for lv(k) local

iterations to get the locally trained model ωωωv,k+1

5 Offload ωωωv,k+1 back to the server using the
allocated TTIs and pRBs by the gNB

6 end
7 Server aggregates client CVs models to get the

updated global model ωωωk+1 using (25) and (28),
respectively, for FDPC and PDPC

8 end
Output: Global ML model ωωωK

To this end, denote 111(k) =
[
1 (1 ∈ Ck) , . . . ,

1
(
Vt̆k
∈ Ck

) ]T ∈ RVt̆k, lll(k) = [l1(k), . . . , lVt̆k
(k)]T ∈

RVt̆k , ηηη(k) =
[
η1(k), . . . , ηVt̆k

(k)
]T ∈ RVt̆k , III(t) =

[I1(t), . . . , IVt̆k
(t)]T ∈ RVt̆k , ĬIIv(t) = [Iv,1(t), . . . , Iv,Z(t)]T ∈

RZ , ĬII(t) = [̆III1(t), . . . , ĬIIVt̆k
(t)]T ∈ RVt̆k

×Z , pv(t) =
[Pv,1(t), . . . , Pv,Z(t)]T ∈ RZ and p(t) =
[p1(t), . . . ,pVt̆k

(t)]T ∈ RVt̆k
×Z . Based on Theorem 1

and Remark 1, in each VEFL round k, we want to sub-
optimally minimize the loss by minimizing the relaxed
objective

∑Vt̆k
v=1 pv/[qv(k)psuc

v (k)]. Note that qv(k) in the
denominator is essentially the expectation of CV selection
1(v ∈ Ck), which is a VEFL parameter. Besides, psuc

v is
the CV’s local model reception successful probability that
depends on the RAT configurations. Instead of solving∑Vt̆k

v=1 pv/[qv(k)psuc
v (k)] directly, we pose it as relaxed a

linear objective
∑Vt̆k

v=1 1(v ∈ Ck) · psuc
v (k) that we want to

maximize. Note that maximization of total user participation
in a similar fashion is also common in the literature
[42], [43], [44]. Besides, this practical objective function
also works well in simulation. Recall that CSI is not fixed,
the server has a limited monetary budget, and the gNB has
a limited BWP. On the one hand, knowing psuc

v (k) at the
beginning of a VEFL round is impossible. On the other
hand, the CV selection indicator functions appear in many of
our constraints in the following. Therefore, using the binary
CV selection indicator function 1(v ∈ Ck) in the objective
function serves two primary purposes: congruent problem
decomposition in the sequel and elimination of optimization
parameter qv(k). As such, we want to solve the following
relaxed problem.

maximize
111(k),lll(k),ηηη(k),III(t),̆III(t),p(t)

∑Vt̆k

v=1
1(v ∈ Ck) · psuc

v (k), (31)

s.t. (C1)
∑Vt̆k

v=1
1(v ∈ Ck) = |Ck| , (31a)

(C2) 1(v ∈ Ck)tv(k) ≤ tth(k), ∀v, ∀k, (31b)

(C3) 1(v ∈ Ck)tv(k) ≤ 1(v ∈ Ck)tsoj
v (t̆k), ∀v, ∀k, (31c)
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(C4) 1(v ∈ Ck)etot
v (k) ≤ 1(v ∈ Ck)ebud

v (k), ∀v, ∀k, (31d)

(C5)
∑Vt̆k

v=1
1(v ∈ Ck)ξ(lv(k), ηv(k)) ≤ Ξ(k), ∀k, (31e)

(C6) 1(v ∈ Ck) · lv(k) ≥ ldes
k , lv(k) ∈ Z+, ∀k, ∀v (31f)

(C7)
∑

v∈Ck

Iv,z(t) = 1, ∀t, ∀v ∈ Ck, ∀z, (31g)

(C8)
∑Z

z=1

∑
v∈Ck

Iv,z(t) = Z, ∀t, ∀v ∈ Ck, ∀z, (31h)

(C9)
∑

v∈Ck

Iv(t) ≤ Z, ∀t, ∀v ∈ Ck, (31i)

(C10) {Iv(t), Iv,z(t)} ∈ {0, 1}, ∀t, ∀v ∈ Ck, ∀z, (31j)
(C11) 0 ≤ Iv,z(t)Pv,z(t) ≤ Pmax

v , ∀t, ∀z, ∀v ∈ Ck (31k)

(C12)
∑Z

z=1
Iv,z(t)Pv,z(t) ≤ Pmax

v , ∀t, ∀z, v ∈ Ck, (31l)

where constraint (31a) restricts the server to choose |Ck|
CVs in VEFL global round k. The second constraint in
C2 restricts the total delay to be within the deadline budget.
Constraint C3 in (31c) ensures that the total computation and
transmission time is within the expected worst-case sojourn
period. Besides, constraint (31d) is taken to restrict the total
energy consumption to be within the total energy budgets of
the CVs. C5 in (31e) ensures that the server’s total expense
cannot exceed its budget Ξ(k). Furthermore, constraint C6 is
for the non-negative integer values of the local iteration
numbers lv(k)’s. Constraint C7 in (31g) ensures that one
pRB is allocated to only one CV and constraint C8 in (31h)
ensures all pRBs are allocated to all CVs. C9 ensures that the
total number of scheduled CVs in a slot does not exceed the
total available pRBs. Constraint C10 is for the binary decision
variables. Finally, constraints C11 and C12 ensures that the
allocated power over pRB z and over all Z pRBs are less
than the maximum possible transmission power of the CV,
respectively.

Remark 3: The VEFL parameters, i.e., 1(k), lll(k) and ηηη(k),
and the RAT parameters, i.e., III(t), ĬII(t) and p(t), are coupled
in problem (31). One of the main challenges of this problem
is that the CVs must know their lv(k)’s and ηv(k)’s when
the VEFL round k starts. However, to solve (31) for these
values, the server must also know ttxv (k)’s and etx

v (k)’s,
which is impossible at the beginning of the VEFL round
because the Uu links change in each slot. Moreover, the server
also needs to know the charging policies ξv(lv(k), ηv(k))’s,
which depend on the total energy consumption etot

v (k)’s.
As such, in the following, we decompose this joint problem
into a VEFL parameter optimization sub-problem and a RAT
parameter optimization sub-problem. More specifically, the
VEFL parameter optimization sub-problem uses the worst-case
estimation of ttxv (k)’s and etx

v (k)’s at the beginning of each
VEFL round k. On the other hand, the server solves the RAT
parameter optimization sub-problem when it requests for the
trained models of the CVs.

IV. PROBLEM TRANSFORMATIONS AND SOLUTIONS

This section demonstrates our problem decomposition,
followed by the solutions. First, we illustrate the problem
decomposition steps for the two sub-problems discussed
in Remark 3 through Fig. 6. As the original VEFL

Fig. 6. Problem decomposition steps.

parameter optimization sub-problem (c.f. (34)) is challenging,
we perform linear programming (LP) relaxation and transform
it into a convex optimization problem (c.f. (48)) that we
solve to obtain the optimized 1(k), lll(k) and ηηη(k) values.
Moreover, the server monitors the payload buffers of the
CVs and optimizes the RAT parameters to maximize the
probability of successful reception psuc

v (k)’s of the CVs’
trained models (c.f. (52)). However, since the CSI changes
in each slot, the psuc

v (k)’s can only be determined after
completing the VEFL round. As such, we convert the
problem into a per-slot utility maximization problem (c.f.
(64)). To that end, the earliest deadline first (EDF) based
scheduling [45] is adopted, followed by the resource allocation
optimization. When more than one CV is scheduled, the
RAT parameter optimization problem (c.f. (67)) is non-convex.
Thus, we perform LP relaxation, use the DC techniques
and transform it into a relaxed convex optimization problem
(c.f. (74)) that we solve to optimize the pRB and power
allocations.

The server considers the following upper-bounded transmis-
sion energy consumption to calculate its per round cost at the
beginning of each VEFL round k.

ξ̂v(lv(k), ηv(k)) =
[
ecmp
v (k) + κPmax

v · t̄txv
]
ϕv + ϕ̄v, (32)

where t̄txv is the worst case total number of required TTIs,
which is calculated in (33).

t̄txv =
⌈
S(ωωω,FPP)/(κ(1−υ)ω · E

[
log2(1+Γ̄v)

]
×z̃(k))

⌉
, (33)

where ⌈·⌉ is the ceil operator and Γ̄v = min{{Γv,z}Zz=1} is
the worst-case SNR over the worst channel.5 Besides, z̃(k) =
Z/Vt̆k

if Z < Vt̆k
and z̃(k) = 1 otherwise.

A. PDPC: VEFL Parameter Optimizations

Given the upper-bounded communication delay and energy
consumption, the server wishes to jointly optimize 111(k), lll(k)
and ηηη(k). Intuitively, the trained model ωωωv,k is expected
to deliver better performance if CV v trains it for more
local iterations. Besides, more training samples usually help
enhance a trained model’s test performance. However, since
the CVs are not stationary, short sojourn periods can also play

5In practical 3GPP networks, one may use the historical CSI information
to get an estimated worst-case channel condition.
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a critical role. As such, we want to configure 1(k), lll(k) and
ηηη(k) under the joint consideration of the sojourn periods and
the dataset sizes. Considering the worst-case communication
delay, energy consumption and cost, we optimize the weighted
sum of CVs’ local training iterations, which is given as

maximize
111(k),lll(k),ηηη(k)

∑Vt̆k

v=1
1(v ∈ Ck)lv(k) Θv, (34)

s.t. C1, C6, (34a)

(C̃2) 1(v ∈ Ck)tcmp
v (k) + κ1(v ∈ Ck)t̄tx

v

≤ 1(v ∈ Ck)min{tth(k), tsoj
v (t̆k)} ∀v, k, (34b)

(C̃3) 1(v ∈ Ck)ecmp
v (k)

+κ1(v∈Ck)t̄txv P
max
v ≤1(v∈Ck)·ebud

v (k), ∀v, k, (34c)

(C̃5)
∑Vt̆k

v=1
1(v ∈ Ck)ξ̂(lv(k), ηv(k)) ≤ Ξ(k), ∀k, (34d)

where the constraints are taken for the same reasons as in (31)
and Θv = θv/

∑Vt̆k
v=1 θv , where θv is calculated in (35).

θv = (1− λ̄ )[Dv/
∑Vt̆k

v=1
Dv] + λ̄ [tsoj

v (t̆k)/
∑Vt̆k

v=1
tsoj
v (t̆k)],

(35)

where λ̄ ∈ [0, 1] is a weighting parameter. A higher value
of λ̄ puts more weight on the estimated sojourn period,
while a smaller value puts more weight on the dataset size.
Note that if the server solves (34), it is expected to have
psuc

v (k) = 1 since we consider the worst-case estimate for
the transmission delay, energy consumption and cost. In other
words, the sub-problem (34) retains the original problem’s
constraints and is expected to maximize the original objective
function in each VEFL round.

Problem (34) has binary, integer and multiplicative decision
variables and is NP-hard. Moreover, the CPU frequency and
local iteration numbers are inexorably related, affecting the
CV selection process. To tackle these grand challenges, we do
standard LP relaxation on lv(k), which gives the following
modified problem.

maximize
111(k),lll(k),ηηη(k)

∑Vt̆k

v=1
1(v ∈ Ck)lv(k) Θv, (36)

s.t. C1, C̃2, C̃3, C̃5, (36a)

(C̃6) 1(v ∈ Ck) · lv(k) ≥ ldes
k , ∀v, k, (36b)

To that end, we now handle the multiplicative 1(v ∈ Ck) and
lv(k) variables. To tackle this non-linearity, let us define the
following new variable:

l̃v(k) := lv(k) 1(v ∈ Ck). (37)

Since 1(v ∈ Ck) ∈ {0, 1} and lmin
v ≤ lv(k) ≤ lmax

v ,
we can equivalently write this new variable with the following
inequalities:

lmin
v 1(v ∈ Ck) ≤ l̃v(k) ≤ lmax

v 1(v ∈ Ck), (38a)

lmin
v (1−1(v∈Ck))≤ lv(k)− l̃v(k)≤ lmax

v (1−1(v∈Ck)), (38b)

0 ≤ l̃v(k) ≤ lmax
v . (38c)

Moreover, using the DC trick, the binary CV selection decision
variables can equivalently be represented as follows:

∑Vt̆k

v=1
1(v ∈ Ck)−

∑Vt̆k

v=1
(1(v ∈ Ck))2 ≤ 0, (39a)

0 ≤ 1(v ∈ Ck) ≤ 1, ∀v ∈ Vt̆k
(39b)

Equation (39a) is non-convex. However, since it is the
difference between two convex functions, we can equivalently
write the optimization problem as follows:

minimize
111(k),̃lllk,lll(k),ηηη(k)

−
Vt̆k∑
v=1

l̃v(k)Θv + ϑ̄
[ Vt̆k∑

v=1

1(v ∈ Ck)

−
Vt̆k∑
v=1

(1(v ∈ Ck))2
]
, (40)

s.t. (38a), (38b)(38c), (39b), (40a)

(C̃1)
∑Vt̆k

v=1
1(v ∈ Ck) ≤ |Ck|, ∀k, (40b)

(C̃2) (l̃v(k)cvDv)/ηv(k) + 1(v ∈ Ck)κt̄tx
v

≤ 1(v ∈ Ck)min{tth(k), tsoj
v (t̆k)} ∀v, k, (40c)

(C̃3) l̃v(k)(ζ/2)cvDvηv(k)2

+ 1(v ∈ Ck)κt̄txv P
max
v ≤ 1(v ∈ Ck)ebud

v (k), ∀v, k, (40d)

(C̃5)
∑Vt̆k

v=1

(
[l̃v(k)(ζ/2)cvDvηv(k)2 + 1(v ∈ Ck)

× κPmax
v t̄txv ]ϕv+1(v∈Ck)ϕ̄v

)
≤Ξ(k), ∀k, (40e)

(C̃6) l̃v(k) ≥ ldes
k , ∀v, k, (40f)

where ϑ̄ ≫ 0 is a penalty function that forces 1(v ∈ Ck) to
be either 0 or 1.

Note that (40) is a DC problem. We use successive convex
approximation (SCA) to approximate the second quadratic
term inside the penalty function as follows:∑Vt̆k

v=1
(1(v ∈ Ck))2 ≥

∑Vt̆k

v=1
(1(v ∈ Ck, i))2

+
∑Vt̆k

v=1
2 · 1(v ∈ Ck, i)[1(v ∈ Ck)− 1(v ∈ Ck, i)]

= H(1(v ∈ Ck, i)), (41)

where 1(v ∈ Ck, i) is an initial feasible point. Moreover,
we can linearize the first term in C̃2 as follows:

l̃v(k)cvDv

ηv(k)
≈ l̃v(k, i)cvDv

ηv(k, i)
+

cvDv

ηv(k, i)
[l̃v(k)− l̃v(k, i)]

+
l̃v(k, i)cvDv

−(ηv(k, i))2
[ηv(k)− ηv(k, i)]

= A1(l̃v(k), ηv(k)), (42)

where l̃v(k, i) and ηv(k, i) are two initial feasible points.
Similarly, we can linearize the multiplicative term in C̃3 and
C̃5 as follows:

l̃v(k)(ζ/2)cvDvηv(k)2

≈ l̃v(k, i)(ζ/2)cvDvηv(k, i)2

+ (ζ/2)cvDvηv(k, i)2[l̃v(k)− l̃v(k, i)]
+ l̃v(k, i)ζcvDvηv(k, i)[ηv(k)− ηv(k, i)]

= A2(l̃v(k), ηv(k)). (43)

Moreover, (40f) may not always be possible due to practical
limitations. As such, we find the upper-bounded l̃v(k) based
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on the time constraints as follows:

l̃v(k) ≤
[
1(v ∈ Ck, i)min{tth(k), tsoj

v (t̆k)}
+ [(l̃v(k, i)cvDv)/(−ηv(k, i)2)][ηv(k)− ηv(k, i)]
−1(v ∈ Ck, i)κt̄txv

]
× [ηv(k, i)/(cvDv)]

= B1(l̃v(k), ηv(k)). (44)

Furthermore, CV’s energy constraint provides the following
upper bound.

l̃v(k)≤
[
1(v ∈ Ck, i)ebud

v (k)

+ (ζ/2)cvDvηv(k, i)2[l̃v(k)− l̃v(k, i)]
−1(v ∈ Ck, i)κt̄txv P

max
v

+ l̃v(k, i)(ζ/2)cvDvηv(k, i)2
]
/[l̃v(k, i)ζcvDvηv(k, i)]

=B2(l̃v(k), ηv(k)). (45)

Therefore, combining both time and energy constraints, the
upper-bounded l̃v(k) is obtained as follows:

l̃v(k) ≤ min{B1(l̃v(k), ηv(k)), B2(l̃v(k), ηv(k))}. (46)

Similarly, we can write the lower bound as follows:

l̃v(k) ≥ min
{
ldes
k ,min{B1(l̃v(k), ηv(k)), B2(l̃v(k), ηv(k))}

}
.

(47)

To that end, we optimize the upper bound of problem (40)
by successively optimizing the following problem:

minimize
111(k),̃lllk,lll(k),ηηη(k)

−
Vt̆k∑
v=1

l̃v(k)Θv + ϑ̄

[ Vt̆k∑
v=1

1(v ∈ Ck)

−H(1(v ∈ Ck, i))
]
, (48)

s.t. (38a), (38b), (38c), (39b), (46), (47) (48a)

(C̃1)
∑Vt̆k

v=1
1(v ∈ Ck, i) ≤ |Ck|, ∀k, (48b)

(C̃5)
∑Vt̆k

v=1

(
[A2(l̃v(k), ηv(k))+κ1(v ∈ Ck, i)Pmax

v t̄txv ]ϕv

+ 1(v ∈ Ck, i)ϕ̄v

)
≤ Ξ(k), ∀k, (48c)

where H(1(v ∈ Ck, i)) is the global underestimation of∑Vt̆k
v=1(1(v ∈ Ck))2 and is calculated in (41). Moreover,

A2(l̃v(k), ηv(k)) is calculated in (43). The server solves (48)
to jointly optimize the VEFL parameters and conveys the
l∗v(k)’s and η∗v(k)’s to the selected CVs as part of the SLAs.
Note that problem (48) is convex and can be solved efficiently
using existing solvers such as CVX [46]. We use Algorithm 2
to solve (48) iteratively. Since (48) has 4Vt̆k

decision variables,
2+6Vt̆k

constraints, and Algorithm 2 runs for a maximum of
I iterations, the computation time complexity of our proposed
solution is O

(
64IV 3

t̆k
(2 + 6Vt̆k

)
)

[47].
Remark 4: Note that for FDPC, as all CVs are to be

selected, there are no binary 1(v ∈ Ck) variables. Apart from
the DC trick, we follow a similar approach as in (34) to jointly
optimize lll(k) and ηηη(k) by maximizing the weighted sum of
the CVs’ local iterations, where we put the weight based on
the aggregation weight pv = p̄v/

∑Vt̆k
v=1 p̄v . We omitted the

optimization problem for brevity. Moreover, the following RAT
parameter optimization process is also used for FDPC.

Algorithm 2 Iterative Joint CV Selection and Local
Iteration Selection Process
Input: Initial feasible set 1(v ∈ Ck, i), l̃ll(k, i), ηηη(k, i),

i = 0, maximum iteration I , precision level ϵprec,
initial penalty ϑ0

22 Repeat:
3 i← i+ 1; ϑ̄← ϑ0 + i

4 Solve (48) using ϑ̄, 1(v ∈ Ck, i− 1), l̃ll(k, i− 1) and
ηηη(k, i− 1) to find 1(v ∈ Ck, i), l̃ll(k, i) and ηηη(k, i)

5 Until converge with ϵprec precision or i = I
Output: CV selection set 111(k), local iteration set lll(k)

and CPU frequencies ηηη(k)

B. RAT Parameter Optimization

The server initiates CVs’ trained models reception from slot
τ(k) = min

{
τ1(k), . . . , τ|Ck|(k)

}
, where τv(k) is calculated

in (49), to minimize its operating cost.

τv(k)=

{
t̆k+

⌊
tsoj
v (t̆k)/κ

⌋
−t̄txv , if tsoj

v (t̆k)<tth(k),
t̆k+1 − t̄txv , otherwise.

(49)

Intuitively, the RAT resources are required only when there are
uplink payloads. As such, (49) calculates the slot at which a
CV finishes its local model training, and τ(k) ensures that the
server does not start the model receptions if no CV finishes
its local model training.

Upon solving (48), the server broadcasts the global model
ωωωk, lll(k), ηηη(k) and the transmission-reception starting slot
τ(k). Then, after performing lv(k) local iterations, CV v needs
to offload its trained model ωωωv,k+1 to the server. From slot
τ(k) and onward until the t̆k+1, the server needs to perform
CV scheduling and resource allocations to successfully receive
the payloads within each CV’s specific deadline constraint.
Denote these optimization slots for the server by the set
Tk = {t}t̆k+1

t=τ(k).
Note that all CVs have the same payload of S(ωωω,FPP) bits

to offload to the server since they receive the same model.
The server maintains a virtual remaining-local-model-payload
buffer of the CVs Q(t) ∆= [Q1(t), . . . , Q|Ck|(t)], where CV
v’s remaining payload buffer Qv(t) evolves as follows:

Qv(t+ 1) = [Qv(t)− κ · rv(t)]+, ∀ t, (50)

where [·]+ means max{·, 0} and rv(t) is the uplink data rate
calculated in (11). Considering the above factors, we can
calculate the probability of successful reception of the CV’s
trained model ωωωv,k+1 as follows:

psuc
v (k) = 1− [Qv(t̆k+1)/S(ωωω,FPP)]. (51)

We stress that this psuc
v (k) depends on the CSI, RAT

parameters and the quality of the worst-case required number
of slots t̄txv , calculated in (33).

Given that the VEFL parameters are solved using (48),
we aim to solve the following sub-problem for jointly
optimizing the RAT parameters.

maximize
x(t)

∑|Ck|

v=1
psuc

v (k), (52)
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s.t. C7 − C12, (52a)

ttx
v (k) ≤ κ ·min

{
t̆k +

⌊
tsoj
v (t̆k)/κ

⌋
− τv(k),

t̆k+1 − τv(k)
}
, (52b)

where x(t) = [III(t), ĬII(t),p(t)]. Constraints in (52a) are taken
for the same reasons as in the original problem in (31).
Besides, constraint (52b) ensures that the entire trained model
ωωωv,k+1 has to be received within the remaining min

{
t̆k +⌊

tsoj
v (t̆k)/κ

⌋
− τv(k), t̆k+1 − τv(k)

}
slots.

Remark 5: The maximization of
∑|Ck|

v=1 p
suc
v (k) in (52) is

not straightforward since the CSI varies in each slot t, and the
CVs require multiple transmission slots to offload their trained
models. Besides, while psuc

v (k) is calculated at the end of the
current VEFL round k, based on (51), the RAT parameters
must be optimized in each slot t. Note that the radio resources
are available for the entire VEFL round. Intuitively, the server
should seek a cost-effective way to perform the VEFL training
and trained model reception to optimize the associated
monetary cost, as defined in (30). As such, we aim to devise a
per-slot-based long-term energy efficiency (EE) maximization
problem to maximize the probability of successful model
reception implicitly. In other words, to maximize psuc

v (k), the
server aims to maximize the transmission EE, which shall also
ensure optimized cost ξv(lv(k), ηv(k)).

Without any loss of generality, we define EE as follows:

β(t) =
( ∑|Ck|

v=1
rv(t)

)
/
( ∑|Ck|

v=1

∑Z

z=1
Pv,z(t)

)
. (53)

Note that (53) is the standard EE of a wireless network that
calculates the tradeoff between the total sum rate and the total
energy expense [48]. The expected average EE during round
k is calculated as

β̄(k) = r̄(k) /P̄(k), (54)

where r̄(k) =
[
1/(t̆k+1 − τ(k))

] ∑t̆k+1

t=τ(k) E
[ ∑|Ck|

v=1 rv(t)
]

and P̄(k) =
[
1/(t̆k+1 − τ(k))

] ∑t̆k+1

t=τ(k) E
[ ∑|Ck|

v=1∑Z
z=1 Pv,z(t)

]
. We jointly optimize the RAT parameters to

maximize the EE as

maximize
x(t)

β̄(k), (55)

s.t. C7 − C12, (55a)

ttx
v (k) ≤ κ ·min

{
t̆k +

⌊
tsoj
v (t̆k)/κ

⌋
− τv(k),

t̆k+1 − τv(k)
}
, (55b)

where the constraints are taken for the same reasons as
in (52).

Remark 6: By maximizing the EE, problem (55) ensures
that the monetary cost for the uplink transmission is optimized,
while constraint (55b) ensures that all local ωωωv,k+1’s are fully
received. Therefore, if problem (55) is solved, the server should
ensure the maximization of

∑|Ck|
v=1 p

suc
v (k) in a cost effective

way, which provides the expected loss minimization of the
VEFL.

The objective function in (55) is fractional, non-convex and
challenging to solve. In practice, the Dinkelbach method [49]
is widely used to transform the fractional objective function
equivalently into a linear one. Denote the optimal solution

for (55) by x∗(t) = [III∗(t), ĬII
∗
(t),p∗(t)] and the corre-

sponding optimal long-term EE by β̄(k)∗ = r̄(k)∗/P̄(k)∗.
Then, using the Dinkelbach approach, we transform the
fractional objective function to the following equivalent
form [50]:

β̄(k) = r̄(k) /P̄(k) = r̄(k) − β̄(k)∗P̄(k). (56)

However, since β̄(k)∗ is unknown beforehand, avail-
able historical information is usually utilized. Denote
β̄(k, t) as

β̄(k, t)

:=
[∑t−1

t̂=τ(k)

∑|Ck|

v=1
rv(t̂)

]/[∑t−1

t̂=τ(k)

∑|Ck|

v=1

∑Z

z=1
Pv,z(t̂)

]
, (57)

where β̄(k, τ(k)) = 0.
To that end, plugging (56) and (57) into the objec-

tive function of (55), we get the modified objective
r̄(k) − β̄(k, t)P̄(k). Then, we can rewrite problem (55) as
follows:

minimize
x(t)

− r̄(k) + β̄(k, t)P̄(k), (58)

s.t. C7 − C12, (55b), (58a)

Note that problems (55) and (58) are equivalent [50],
and similar treatment is widely used in the literature
[48], [50], [51], [52].

Clearly, problem (58) is stochastic due to the intermittent
Uu links and is challenging to solve. As such, we leverage the
Lyapunov optimization framework to transform (55) into an
online and per-slot-wise deterministic optimization problem.
Let us define a quadratic Lyapunov function as

L(Q(t)) := (1/2)
∑|Ck|

v=1
Qv(t)2. (59)

Then, we can write the conditional Lyapunov drift as

∆(Q(t)) = E [L(Q(t+ 1))− L(Q(t))|Q(t)] . (60)

To that end, we express a Lyapunov drift-plus-penalty function
as follows:

∆C(Q(t)) = ∆(Q(t)) + C · E
[
−

∑|Ck|

v=1
rv(t)

+ β̄(k, t)
∑|Ck|

v=1

∑Z

z=1
Pv,z(t)|Q(t)

]
, (61)

where C ∈ [0,+∞] is a control parameter that adjusts the
trade-off between EE and payload buffer backlogs.

Remark 7: We want to minimize the upper-bounded Lya-
punov drift-plus-penalty function in (61). The right-hand side
suggests minimizing the drift, i.e., payload buffer size, while
the added penalty controls the EE of the system.

Lemma 1: For an arbitrary x(t) = [III(t), ĬII(t),p(t)], the
Lyapunov drift-plus-penalty function is upper-bounded as

∆C(Q(t)) ≤ ϖ − E
[∑|Ck|

v=1 κrv(t)Qv(t)|Q(t)
]

+C · E
[
−

∑|Ck|
v=1 rv(t)+β̄(k, t)

∑|Ck|
v=1

∑Z
z=1Pv,z(t)|Q(t)

]
,
(62)

where ϖ ≥ 0 does not depend on the queue state.
Proof: The proof is left in Appendix B.
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From Lemma 1, we find the following per-slot utility
function that we want to minimize:

U(t)=Cβ̄(k, t)
∑|Ck|

v=1

∑Z

z=1
Pv,z(t)

−
∑|Ck|

v=1
rv(t)

[
κQv(t)+C

]
. (63)

Using (10) and (11), we can write

U(t)=Cβ̄(k, t)
∑|Ck|

v=1

∑Z

z=1
Pv,z(t)−ω(1−υ)

∑|Ck|

v=1
Iv(t)

×
[∑Z

z=1
log2(1+(Iv,z(t)Pv,z(t)∥hv,z(t)∥2)/(ως2))

]
(κQv(t)+C).

As such, we can pose the following per-slot online
optimization problem that can be solved opportunistically.

minimize
x(t)

U(t), (64)

s.t. C7 − C12, (55b), (64a)

where the constraints are taken for the same reasons as in (58).
Recall that CV v starts offloading its trained model from

slot τv(k). Therefore, in slot t ∈ Tk, denote the CVs that
need to offload their trained models by the set U (t). Since
the gNB can schedule at most Z CVs in a slot for their
uplink transmissions and all ωωωv,k+1’s need to be received
within slot t̆k+1 to meet the deadline threshold, the gNB
has to perform a scheduling decision when |U (t)| > Z.
As such, to ensure (55b), the medium access control (MAC)
scheduler schedules the CVs based on the remaining deadlines
and payload buffer status Qv(t − 1). Particularly, we adopt
the widely used real-time operating system’s EDF-based
scheduling6 [45]. Note that if EDF cannot guarantee zero
deadline violation, no other algorithm can [53]. Algorithm 3
provides the scheduled CV set Ū (t) during slot t.

Per this scheduling policy, a CV is scheduled in at least⌊
(Z/|Ck|) × min

{
t̆k +

⌊
tsoj
v (t̆k)/κ

⌋
, t̆k+1

}
− τv(k)

⌋
slots.

As such, to satisfy constraint (55b), we enforce
rv(t) ≥

Qv(t−1)

κ×min
{

t̆k+
⌊
tsoj
v (t̆k)/κ

⌋
−τv(k),t̆k+1−τv(k)

} , if |Ck| ≤ Z,

Qv(t−1)

κ×
⌊
(Z/|Ck|)×min

{
t̆k+

⌊
tsoj
v (t̆k)/κ

⌋
,t̆k+1

}
−τv(k)

⌋ , else,
(65)

where t = τv(k), . . . ,min{t̆k +
⌊
tsoj
v (t̆k)/κ

⌋
, t̆k+1}.

To that end, note that in a particular slot t, if only 1 CV
requires offloading its trained model, it shall have all pRBs,
i.e., Iv,z(t) = 1, ∀z ∈ Z . The server only needs to optimize
the transmission power of the scheduled CV. As such, in this
special case, we pose the following optimization problem:

minimize
pv(t)

U(t), (66)

s.t. C11, C12, (65), Iv,z(t) = 1, ∀z. (66a)

However, when |U (t)| > 1, the MAC scheduler schedules
the CVs in the set Ū (t) based on Algorithm 3. We, therefore,
reformulate optimization problem (64) as
minimize

x̄(t)
Ū(t), (67)

s.t. C6, C7, C10, C11, (65), Iv,z(t) ∈ {0, 1}, ∀v ∈ Ū (t), z,
(67a)

6Similar scheduling is also widely used in deadline-constrained applica-
tions [32], [53], [54].

Algorithm 3 CV Scheduling in Each TTI

1 Determine the CV set U (t) eligible for scheduling
2 Set empty set Ū (t)
3 if |U (t)| ≤ Z then
4 Ū (t)← U (t)
5 Set Iv(t) = 1, ∀v ∈ U (t)
6 else
7 Ū (t)← indmin[Z]{T thr

1 , . . . , T thr
|U (t)|}, where

T thr
v = min

{
t̆k +

⌊
tsoj
v (t̆k)/κ

⌋
− t, t̆k+1−t

}
/* indmin[Z]{Q} means the index of
the first Z smallest entry of Q

*/
8 Set Iv(t) = 1 ∀v ∈ Ū (t)
9 end

Output: Scheduled CV set Ū (t)

where x̄(t) = [̆III(t),p(t)] is the decision variables set for all
v ∈ Ū (t) and Ū(t) is calculated as

Ū(t) = Cβ̄(k, t)
∑

v∈Ū (t)

∑Z

z=1
Pv,z(t)− ω(1− υ)

×
∑

v∈Ū (t)

[ ∑Z

z=1
log2(1+(Iv,z(t)Pv,z(t)∥hv,z(t)∥2)/(ως2))

]
× [C + κQv(t)].

Problem (67) has binary and multiplicative decision variables,
making it non-convex. To handle these complexities, we intro-
duce the following new variable.

P̃v,z(t) := Iv,z(t)Pv,z(t). (68)

Now, since Iv,z(t) ∈ {0, 1} and 0 ≤ Pv,z(t) ≤ Pmax
v , P̃v,z(t)

is equivalent to the following inequalities:
0 · Iv,z(t) ≤ P̃v,z(t) ≤ Pmax

v · Iv,z(t), (69a)

0 · [1− Iv,z(t)] ≤ Pv,z(t)− P̃v,z(t) ≤ Pmax
v · [1− Iv,z(t)],

(69b)

0 ≤ P̃v,z(t) ≤ Pmax
v , (69c)

Note that the binary decision variable Iv,z(t) ∈ {0, 1} is
equivalent to Iv,z(t) − (Iv,z(t))2 = 0. Then, using the DC
trick, we equivalently represent this binary decision constraint
as [47], [55]:∑

v∈Ū (t)

Z∑
z=1

Iv,z(t)−
∑

v∈Ū (t)

Z∑
z=1

(Iv,z(t))2 ≤ 0, (70a)

0 ≤ Iv,z(t) ≤ 1, ∀v ∈ Ū (t), z ∈ Z . (70b)

To that end, using (68-70b), we equivalently rewrite (67) as

minimize
x̃(t)

Ũ(t), (71)

s.t. C7, C8, (69a), (69b), (69c), (70a), (70b), (71a)∑Z

z=1
P̃v,z(t) ≤ Pmax

v , ∀t, ∀z, (71b)

r̃v(t) ≥ Qv(t− 1)
κ×

⌊
(Z/|Ck|)× (min{t̆k+

⌊
tsoj
v (t̆k)/κ

⌋
, t̆k+1} − t)

⌋ ,
(71c)

where x̃(t) = [ĬII(t),p(t), p̃(t)], p̃(t) =
[p̃1(t), . . . , p̃|Ck|(t)]

T , p̃v(t) = [P̃ 1
v (t), . . . , P̃v,z(t)]T ,

Ũ(t) = Cβ̄(k, t)
∑

v∈Ū (t)

∑Z
z=1 P̃v,z(t) − ω(1 −
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υ)
∑

v∈Ū (t)[
∑Z

z=1 log2(1+(P̃v,z(t) ∥hv,z(t)∥2)/(ως2))][C+
κQv(t)] and r̃v(t) = ω(1 − υ)

∑Z
z=1[log2(1 +

(P̃v,z(t) ∥hv,z(t)∥2)/(ως2))].
Notice that constraint (70a) makes problem (71) non-

convex. Particularly, constraint (70a) is the difference between
two convex functions. Thus, this constraint can be incorporated
into the objective function to act as a penalty when violated.
Particularly, for a sufficiently large constant ϑ, optimization
problem (71) can be equivalently [55] represented as

minimize
x̃(t)

Ũ(t)+ϑ
[ ∑
v∈Ū (t)

Z∑
z=1

Iv,z(t)−
∑

v∈Ū (t)

Z∑
z=1

(Iv,z(t))2
]
, (72)

s.t. C7, C8, (69a), (69b), (69c), (70b), (71b), (71c). (72a)

Intuitively, ϑ ≫ 0 penalizes the objective function when any
Iv,z(t) is not either 0 or 1. Therefore, for a hefty ϑ, the pRB
allocation parameter will need to be either 0 or 1 to minimize
the objective function [47], [55].

Remark 8: The optimization problem (72) belongs to the
DC function programming because all four terms in the
objective functions are convex, and the constraints span a
convex set.
To that end, we use SCA to approximate the second term
of (70a). Using Taylor expansion, we write the following for
a feasible point Iv,z(t, j).∑
v∈Ū (t)

Z∑
z=1

(Iv,z(t))2 ≥
∑

v∈Ū (t)

Z∑
z=1

(Iv,z(t, j))2

+
∑

v∈Ū (t)

Z∑
z=1

2Iv,z(t, j)[Iv,z(t)− Iv,z(t, j)] = H (̃III(t, j)), (73)

where ĨII(t, j) is the set of all feasible points for all v and
z. As such, given an initial feasible x̃(t, j), we obtain the
upper bound of (72) via optimizing the following convex
optimization problem.

minimize
x̃(t,j)

Ũ(t) + ϑ
[ ∑

v∈Ū (t)

Z∑
z=1

Iv,z(t)−H (̃III(t, j))
]
, (74)

s.t. C7, C8, (69a), (69b), (69c), (70b),(71b), (71c), (74a)

where x̃(t, j) = [̃III(t, j),p(t, j), p̃(t, j)] and H (̃III(t, j)) is the
global underestimation of

∑
v∈Ū (t)

∑Z
z=1(Iv,z(t))2.

Note that (74) is convex and can be solved efficiently
using existing solvers such as CVX [46]. Particularly, we use
Algorithm 4 and CVX to solve (74) iteratively. Note that (74)
has 3(|Ū (t)| × Z) decision variables and 4(|Ū (t)| × Z) +
2|Ū (t)| + Z + 1 constraints. Besides, in the worst-case,
|Ū (t)| = Z. Moreover, we need to run Algorithm 3 to get
the required scheduling decisions before solving (74). As such
the time complexity of running Algorithm 4 for J iterations
is O

(
27JZ6(4Z2 + 3Z + 1) + |U (t)|2 +Z

)
[47]. Moreover,

our SCA-based solutions of (48) and (74) converge to locally
optimal solutions of the original problems (34) and (64),
respectively [47], [55].

Remark 9 (VEFL Summary): At the beginning of a VEFL
round k, each CV reports its ηmin

v , ηmax
v , Pmax

v , ebud
v (k), Dv

Algorithm 4 Iterative pRB and Power Allocation Process
Input: Initial feasible set x̃(t, j), j = 0, maximum

iteration J , precision level ϵprec, initial penalty ϑ0

22 Repeat:
3 j ← j + 1
4 ϑ← ϑ0 + j
5 Solve (74) using ϑ and x̃(t, j − 1) to find x̃(t, j)
6 Until converge with ϵprec precision or j = J

Output: pRB allocation and power allocation set x̃∗(t)

and ξv(lv(k), ηv(k)) to the server as part of the SLA. The
server solves (48) to jointly optimize 111(k), lll(k) and ηηη(k).
It then sends the most recent global model ωωωk, l∗v(k)’s and
η∗v(k)’s to the selected CVs. Each CV uses the optimized η∗v(k)
to train the received ML model for l∗v(k) local rounds on its
local dataset. The server and the CVs work together to receive
the CVs’ locally trained models ωωωv,k+1’s. More specifically,
the server keeps track of the remaining payload buffer Q(t),
which essentially tells it how much of ωωωv,k+1’s are yet to
be received. Recall that the server estimated the worst-case
required number of offloading time slots t̄txv and determined
the VEN slot τ(k) from which it shall start receiving the
ωωωv,k+1’s. The server makes the payload offloading scheduling
decisions based on Algorithm 3 from this slot τ(k). It then
solves (66) to optimize the transmission power if only one
CV is scheduled. Otherwise, it solves (74) to optimize the
pRB and power allocation jointly. The scheduled CVs then
receives their I∗v,z(t)’s and P ∗

v,z(t)’s from the server, and
continue offloading their ωωωv,k+1’s. To that end, the server
updates the global model based on its aggregation rule
defined in (28) and repeats the above processes for the next
round.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setting

For our RoI, we use the real-world map information of
downtown Raleigh, NC, USA, from OpenStreetMap.7 We
then use SUMO to model practical microscopic mobility as
presented in Section II-A. We repeat our simulation process
for 5 times to get the average performance. The VEN is
simulated for 2000 seconds in each of these repeats. There
are 293, 297, 299, 292 and 287 unique CVs, respectively
in these 5 repeats. Besides, the total CVs present in the
VEN slots varies. Each CV’s minimum and maximum CPU
frequencies are selected randomly from [1 × 103, 5 × 103]
Hz and [1.9 × 109, 2.8 × 109] Hz, respectively. The energy
budget, required CPU cycle to process per bit data, per
unit energy cost and ϕ̄vs are randomly chosen from [20, 30]
Joules, [20, 30], [5, 10] units and [10, 20] units, respectively.
For the RAT parameters, we consider r = 500 meter, Z =
10, ω = 1.8 MHz,8 n̄ = 1, subcarrier spacing 30 KHz
and κ = 0.5 ms. We assume the gNB has 4 antennas,

7https://www.openstreetmap.org
8With numerology 1, the pRB size is 360 KHz. However, for the ease of

faster simulation, we considered that the pRB size is 5× 360 KHz.
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Fig. 7. (a) FDPC - impact of CV velocity: tth(k) = 5, Dir(α = 0.1), λ = 0. (b) FDPC - impact of λ : tth(k) = 5, Dir(α = 0.1), umax = 0.45 m/s.
(c) FDPC - impact of λ : tth(k) = 5, Dir(α = 0.1), umax = 20.12 m/s. (d) FDPC - performance when λ = 1: tth(k) = 5, Dir(α = 0.1). (e) FDPC -
Impact of tth(k): Dir(α = 0.1), λ = 1, umax = 0.45 m/s. (f) FDPC - Impact of tth(k): Dir(α = 0.1), λ = 1, umax = 20.12 m/s. (g) FDPC: total
costs for different tth(k). (h) PDPC: Impact of CV velocity: tth(k) = 5, Dir(α = 0.1). (i) Performance comparison: tth(k) = 5s, umax = 20.12m/s,
Dir(α = 0.1). (j) Failure rate of achieving 70% test accuracy: tth(k) = 5 s, umax = 0.45 m/s, Dir(α = 0.1). (k) CCDF of success probability comparison:
tth(k) = 5, Dir(α = 0.1). (l) CDF of per round cost comparison: tth(k) = 5, Dir(α = 0.1).

whereas the CVs have single antennas. For model training
and testing, we use a) MNIST [56], b) FashionMNIST [57] c)
German Traffic Sign Recognition Benchmark (GTSRB) [58]
and d) CIFAR-10 [59] datasets. We use a simple convolutional
neural network (CNN) with two convolutional layers, each
followed by max-pooling layers, one fully connected layer
and the output layer. For the non-IID data distribution,
we use symmetric Dirichlet distribution Dir(α) with the
concentration parameter α and use a similar approach as in [4]
to distribute the labels across the unique CVs. Note that a
smaller α means the label distribution across CVs is more
skewed.

To this end, we study the impact of different system
parameters using the FashionMNIST dataset for FDPC and
PDPC. We will also use the other three datasets to compare the
performances later in Section V-D. Note that we have omitted
the results of the VEFL and RAT parameter optimizations for
brevity.

B. Simulation Results: FDPC

1) FDPC-Impact of Velocity and λ : First, we validate our
aggregation rule’s necessity for different velocities. Note that
in (26), if we put zero weight on the estimated sojourn period,
then the server essentially aggregates the model weights

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 21,2023 at 00:34:51 UTC from IEEE Xplore.  Restrictions apply. 



PERVEJ et al.: RESOURCE CONSTRAINED VEFL WITH HIGHLY MOBILE CONNECTED VEHICLES 1839

solely based on the dataset sizes of the CVs. When the
FEEL clients are stationary, it makes sense to aggregate the
model parameters based on the dataset sizes. However, when
the clients are mobile, which is the case for CVs, solely
aggregating based on dataset size may not yield the best
results. This is particularly true when mobility is relatively
high. The expected sojourn period of the CV decreases as the
velocity increases. Therefore, a CV has less time to perform
its local iterations as it must offload the trained model before
moving out of the gNB’s coverage area. This essentially means
that the performance of the trained global model may not
yield good test accuracy. A similar trend is also observed
in our simulation results. Fig. 7(a) shows how test accuracy
varies across the VEFL rounds for different CV velocities for
α = 0.1. We observe that the performance decreases when
umax increases. Note that the solid lines in the figures show the
mean values, while the shaded strip is the standard deviation.
These simulation results also reveal that the deviation also
increases with increased velocity.

In addition, it is beneficial to put more weight on the
expected sojourn period. Our results in Fig. 7(b) and Fig. 7(c)
also validate this claim. When umax = 0.45 m/s, we observe
that λ = 0.8 and λ = 1 yield nearly identical performance
in Fig. 7(b). Besides, when umax = 20.12 m/s, λ = 1 clearly
provides the best test accuracy, which is reflected in Fig. 7(c).
Fig. 7(d) verifies that our proposed aggregation policy works
for all umaxs. Furthermore, the standard deviations in the test
accuracy are also negligible for all velocities.

2) FDPC-Impact of tth(k): The impact of the deadline
threshold tth(k) between two VEFL rounds can also affect
the learning performance. Intuitively, having a smaller tth(k)
means the server can run more VEFL rounds within a fixed
time duration. Therefore, the trained model’s test accuracy
is expected to be better with a smaller tth(k). However,
although this holds at low velocity, it is not straightforward
at a higher umax since the short sojourn period may lead to
a smaller lv(k). Therefore, under high mobility, the server
shall carefully decide the deadline threshold tth(k) to get
a reasonably trained model from the participating CVs. Our
simulation results also reveal similar trends in Fig. 7(e) and
Fig. 7(f). Particularly, when umax = 0.45 m/s, we observe that
tth = 3 s and tth = 5 s yield almost similar performances.
However, at umax = 20.12 m/s, we observe that tth(k) = 3 s
clearly does not provide better results over tth(k) = 5 s and
tth(k) = 10 s. Furthermore, a shorter tth(k) also causes more
VEFL rounds, which causes more expenses for the server.
Fig. 7(g) shows how the total cost

∑K
k=1

∑Vt̆k
v=1 ξ(lv(k), ηv(k))

vary for different tth(k). Here, we stress that a smaller tth(k)
can be desirable for the server if it requires a trained global
model that delivers a certain level of accuracy quickly at the
cost of higher expenses. As such, depending on its operational
needs, it may choose the desired deadline threshold.

C. Simulation Results: PDPC

Note that the length of subset Ck is a design parameter that
the system administrator can choose. Based on our simulation
setting, we found that |Ck| = 8 provides the best results for

MNIST and GTSRB datasets, while |Ck| = 10 and |Ck| =
12 work best for the FashionMNIST and CIFAR-10 datasets,
respectively. Moreover, our framework is general, where the
server can adjust this value in each VEFL round.

1) PDPC-Impact of Velocity: We now validate that our
PDPC solution is robust against different velocities. Recall
that we maximize a weighted summation of lv(k)s, where
we choose the weight based on expected sojourn periods and
dataset sizes of the CVs. Particularly, since PDPC allows
the server to choose the CVs at the beginning of the VEFL
rounds, we put equal weights on the sojourn periods and the
dataset sizes, i.e., λ̄ = 0.5 in (35). Therefore, a proper joint
optimization for 1(v ∈ Ck), lv(k) and ηv(k) can combat
the effect of short sojourn periods under high mobility. Our
simulation results also validate this. In Fig. 7(h), we observe
that the test accuracies are very similar for umax = 0.45 m/s,
umax = 11.18 m/s and umax = 20.12 m/s. Particularly, when
umax = 0.45 m/s and the VEFL rounds are k = 100, k = 200,
k = 300 and k = 400, the test accuracies are 76.71%, 79.19%,
81.17% and 82.53%, respectively. For the same VEFL rounds,
when umax = 11.18 m/s, the test accuracies are 76.17%,
78.56%, 80.67% and 82.11%, respectively. Besides, when
umax = 20.12 m/s, the test accuracies are 76.08%, 78.74%,
81.12% and 82.3%, respectively.

Note that PDPC performs similarly to FDPC with respect
to different tth(k), which we skip presenting for brevity.

D. Performance Comparisons

We now compare the performances of our proposed FDPC
and PDPC VEFL schemes with the state-of-the-art FedProx
[23] and anarchic federated averaging - cross-device (AFA-
CD) [60] baselines. For FedProx and AFA-CD, we consider
two cases, namely, (1) all constraints are present, and (2)
no constraints are enforced. Note that the latter is the ideal
case that does not consider any delay, energy, monetary or
radio resource constraints. Besides, for the baselines with
system constraints, we assume that the server expends an equal
amount of its budget for all CVs. Furthermore, taking the
maximum CPU frequencies ηmax

v ’s, the lv(k)’s are chosen to
satisfy the time and energy constraints. Moreover, we use the
same RAT solution for offloading the CVs’ trained models.
Note that the baselines with constraints are expected to
perform worse when the velocity increases since they do not
consider mobility in the model weights aggregation. We also
compare the results with the centralized ML, which serves
as the performance upper bound as the server can access all
training data.

To that end, we compare these schemes with umax =
20.12 m/s in Fig. 7(i). When VEFL rounds are k = 200,
k = 300 and k = 400, the test accuracies with FDPC are
78.91%, 81.43% and 81.77%, respectively. On the other hand,
PDPC delivers 78.74%, 81.12% and 82.30% test accuracies
for the same respective VEFL rounds. By contrast, for the
same VEFL rounds, when all constraints are present, FedProx
returns 35.89%, 39.94% and 45.07%, while AFA-CD yields
55.03%, 60.51% and 63.59 % test accuracies. Moreover, in the
ideal case, i.e., without (W/O) constraints, FedProx delivers
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TABLE I
TEST ACCURACY WITH TRAINED ωωωK

77.75%, 80.09% and 80.98%, and AFA-CD returns 56.26%,
59.04% and 63.19% test accuracies. These results suggest
that our proposed FDPC and PDPC schemes significantly
outperform the baselines. It is worth noting that FedProx W/O
constraints performs similarly to our solutions with constraints,
while the AFA-CD fails to achieve good performance. This
is due to the fact that FedProx also incorporates a similar
local loss function for the clients, whereas AFA-CD does
not incorporate any proximal terms and employs a different
aggregation rule. Besides, the gap with the centralized ML is
expected due to the inherent nature of the system model. More
specifically, all training data samples are distributed among the
CVs without repetitions. As such, once a CV moves out of the
communication area, its training data samples are no longer
available. Moreover, these CVs may only perform a few local
rounds before moving out of the gNB’s coverage.

Besides, unlike in the ideal case, under all system
constraints, FedProx suffers from potential model divergence.
In such a constrained case, notice that the best test accuracy
of 55.06% is achieved with FedProx when k = 81. However,
ωωωk does not converge and fluctuates rapidly, as shown in
Fig. 7(i). It is even more evident in Fig. 7(j), which shows
the failure rate of achieving a test accuracy of 70% for
different umax. We can see that FDPC achieves a higher
test accuracy than the accuracy threshold for all velocities
after about 51 VEFL rounds with probability 1. On the other
hand, we notice a few oscillations with PDPC. Particularly, the
probability of having a higher test accuracy than the threshold
becomes one after about 51 VEFL rounds, notwithstanding
a 20% drop at VEFL round k = 95. However, from k =
96 onward, PDPC delivers a higher test accuracy than the
threshold with probability 1. Contrary to these guaranteed
performances with FDPC and PDPC, the performance of
FedProx with constraints is unreliable. Even at low mobility,
umax = 0.45 m/s, we observe that FedProx’s performance
oscillates. This baseline shows that the test accuracy can be
less than the threshold 20% of the time, even at VEFL round
k = 349 with relatively low mobile CVs. Furthermore, AFA-
CD fails to achieve the desired 70% accuracy.

Although PDPC yields slightly higher performance oscil-
lations than FDPC initially, it is still a practical solution

in resource-constrained circumstances. To further study its
benefits, we now examine the CCDF of psuc

v (k). Recall that for
FDPC, FedProx and AFA-CD, all CVs with SLAs receive the
global model and participate in the training process. However,
due to mobility, some CVs may not finish even a single local
iteration within the allocated deadline. Besides, the energy
constraint can also potentially restrict some CVs from training
and offloading their models. On the other hand, in PDPC,
this can be mitigated by appropriately selecting the subset Ck.
In any case, if the server does not receive a CV’s local model
within tth(k), it considers that as a failure. Our simulation
results in Fig. 7(k) suggest that in all VEFL rounds, a CV
successfully offloads its locally trained model to the server
with at least 0.9 probability 97.3%, 100%, 97.1% and 97%
percent of the times for FDPC, PDPC, FedProx and AFA-
CD, respectively. Moreover, a CV has a success probability
of at least 0.99 for 76.45% and 100% of the VEFL rounds,
respectively, in FDPC, PDPC, and 76.25% of the VEFL rounds
for FedProx and AFA-CD, with all constraints present.

PDPC not only guarantees a 100% trained models reception
but also yields a lesser expense for the server. This is due
to the fact that the server only needs to pay the fees to
the selected CVs in the subset Ck. Our simulation results
in Fig. 7(l) show that, in a VEFL round, the server’s cost
is less than 700 units for about 23.75%, 100%, 46.8% and
47.3% of the times, respectively, for FDPC, PDPC, FedProx
and AFA-CD. Note that PDPC not only requires a lesser
expense but also delivers near identical test accuracies to
FDPC.

Table I shows the performance comparisons on MNIST,
FashionMNIST, GTSRB and CIFAR-10 datasets with the
obtained global model after K = 400 VEFL rounds when
umax = 20.12 m/s, tth = 5 s and Ξ(k) = 1000 units. Under
the resource-constrained scenario, it can be observed that both
FDPC and PDPC perform similarly while the baselines lag
significantly. Furthermore, even without constraints, AFA-CD
fails to perform reasonably in GTSRB and CIFAR-10 datasets.
Moreover, the proposed schemes achieve performance
comparable to FedProx W/O constraints, which validates the
effectiveness of our proposed solutions under extreme resource
constraints.
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VI. CONCLUSION

A novel vehicular edge federated learning framework that
leverages a 5G-NR RAT and the limited computation powers
of the moving CVs is proposed in this work. Under delay,
energy and cost constraints, first, subset CV selection, local
iterations and CPU frequencies are jointly optimized given the
estimated worst-case sojourn period and communication delay
and cost. Then, the RAT parameters are jointly optimized using
an online per-slot-based stochastic optimization technique.
Extensive simulation results suggest that the server can
combat high mobility by aggregating the trained model
parameters using a weighted combination of sojourn periods
and dataset sizes in FDPC, whereas by appropriately
selecting a subset of CVs in PDPC. Moreover, the proposed
method outperforms the state-of-the-art FedProx and AFA-
CD algorithms under the same constraints in all the examined
scenarios.

APPENDIX A
PROOF OF THEOREM 1

Using Taylor expansion, we can write the following:

f(ωωωk+1) = f(ωωωk) + ⟨∇f(ωωωk),ωωωk+1 −ωωωk⟩

+
1
2!

(ωωωk+1 −ωωωk)T ∇2f(ωωωk) (ωωωk+1 −ωωωk) + h(o), (75)

(a)

≤ f(ωωωk) + ⟨∇f(ωωωk),ωωωk+1 −ωωωk⟩︸ ︷︷ ︸
Term 1

+
L

2
∥ωωωk+1 −ωωωk∥2︸ ︷︷ ︸

Term 2

,

where h(o) represents higher-order terms. We reach to (a) by
ignoring h(o) and using Assumption 1.

Bound Term 2: Let ω̂ωωv,k+1 = arg min
ωωω

fv(ωωω,ωωωk). Then,

due to µ′-strong convexity of fv(ωωω,ωωωk), we can write

∥ω̂ωωv,k+1 −ωωωv,k+1∥

≤ 1
µ′
∥∇fv(ω̂ωωv,k+1,ωωωk)−∇fv(ωωωv,k+1,ωωωk)∥ ,

= (1/µ′) ∥∇fv(ωωωv,k+1,ωωωk)∥
(a)

≤ (γ/µ′) ∥∇fv(ωωωk,ωωωk)∥ ,

= (γ/µ′) ∥∇Fv(ωωωk)∥
(b)

≤ [(Bγ)/µ′] ∥∇f(ωωωk)∥ , (76)

where we obtain (a) and (b) using Assumption 4, i.e., γ-
inexact local solvers and Assumption 2, i.e., B-dissimilarity,
respectively. Similarly, we can write

∥ω̂ωωv,k+1−ωωωk∥≤
(

1
µ′

)
∥∇Fv(ωωωk)∥=

(
B

µ′

)
∥∇f(ωωωk)∥. (77)

Then, using triangle inequality we can write

∥ωωωv,k+1 −ωωωk∥ ≤ [(B(1 + γ))/µ′] ∥∇f(ωωωk)∥ . (78)

Now using (78) and (28), we get

∥ωωωk+1 −ωωωk∥2

=
∥∥∥∥

Vt̆k∑
v=1

[
pv ·

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k) psuc

v (k)

× (ωωωv,k+1 −ωωωk)
]∥∥∥∥2

(a)

≤
Vt̆k∑
v=1

pv ·
∥∥∥∥1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

× (ωωωv,k+1 −ωωωk)
∥∥∥∥2

,

(b)
=

Vt̆k∑
v=1

pv ·
(

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

)2

×∥ωωωv,k+1 −ωωωk∥2 ,
()
=
B2(1 + γ)2

µ′2
∥∇f(ωωωk)∥2

×
Vt̆k∑
v=1

pv ·
(

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

)2

, (79)

where (a) follows from Jensen’s inequality due to
the convexity of ∥·∥2. (b) stems using the fact that
1(v∈Ck,tv(k) ≤tth(k)|dv(k)≤r)

qv(k)psuc
v (k) is scalar. Moreover, we get

to (c) using (78).
Bound Term 1: Using the aggregation rule defined in (28),

we can write

⟨∇f(ωωωk),ωωωk+1 −ωωωk⟩ =
〈
∇f(ωωωk),

∑Vt̆k

v=1

[
pv ·

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)
(ωωωv,k+1 −ωωωk)

]〉
,

=

Vt̆k∑
v=1

pv ·
1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

× ⟨∇f(ωωωk),ωωωv,k+1 −ωωωk⟩ ,

≤ B (1 + γ) /(µ′) ∥∇f(ωωωk)∥2
∑Vt̆k

v=1
pv

×
1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)
. (80)

Then, plugging (80) and (79) in (75), we get the following

f(ωωωk+1) ≤ f(ωωωk) +B (1 + γ) /(µ′) ∥∇f(ωωωk)∥2

×
Vt̆k∑
v=1

pv ·
1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

+
LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2

Vt̆k∑
v=1

pv

·
(

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

)2

. (81)

Therefore, we can calculate the expected training loss decrease
in one global round by taking the expectation of (81) as

E [f(ωωωk+1)]− f(ωωωk)

≤ E
{
B (1 + γ) /(µ′) ∥∇f(ωωωk)∥2

×
Vt̆k∑
v=1

pv ·
1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

}
+ E

{
LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2
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×
Vt̆k∑
v=1

pv ·
(

1
(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
qv(k)psuc

v (k)

)2}
,

=
B (1 + γ)

µ′
∥∇f(ωωωk)∥2 +

LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2

×
Vt̆k∑
v=1

pv ·
E

{
[1

(
v ∈ Ck, tv(k) ≤ tth(k)|dv(k) ≤ r

)
]2

}
qv(k)2psuc

v (k)2
,

(a)
=

B (1 + γ)
µ′

∥∇f(ωωωk)∥2 +
LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2

×
∑Vt̆k

v=1
[pv/(qv(k)2psuc

v (k)2)]

×E
{[

1 (v ∈ Ck)× 1
(
tv(k) ≤ tth(k)|dv(k) ≤ r

)]2}
,

(b)
=

B (1 + γ)
µ′

∥∇f(ωωωk)∥2 +
LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2

×
∑Vt̆k

v=1
[pv/(qv(k)2psuc

v (k)2)]×

E
{[

1 (v ∈ Ck)
]2 × E

[
1
(
tv(k) ≤ tth(k)|dv(k) ≤ r

)]2}
,

=
B

(
1 + γ

)
µ′

∥∇f(ωωωk)∥2 +
LB2(1 + γ)2

2µ′2
∥∇f(ωωωk)∥2

×
∑Vt̆k

v=1
[pv/(qv(k)psuc

v (k))],

=
B(1+γ)
µ′

[
1+

BL(1+γ)
2µ′

Vt̆k∑
v=1

pv

qv(k)psuc
v (k)

]
∥∇f(ωωωk)∥2, (82)

where we write (a) using the fact that 1 (v ∈ Ck)
and 1

(
tv(k) ≤ tth(k)|dv(k) ≤ r

)
are independent. Besides,

in (b) the outer and inner expectations are with respect
to CV sampling and successful trained model receptions,
respectively.

APPENDIX B
PROOF OF LEMMA 1

Using the remaining payload buffer in (50), we can write

Qv(t+ 1)2 =
(
[Qv(t)− κ · rv(t)]+

)2
,

≤ Qv(t)2 + κ2rv(t)2 − 2κrv(t)Qv(t),
Qv(t+ 1)2 −Qv(t)2

≤ κ2rv(t)2 − 2κrv(t)Qv(t),

(1/2)
|Ck|∑
v=1

[
Qv(t+ 1)2 −Qv(t)2

]
≤ −

|Ck|∑
v=1

κrv(t)Qv(t)+(1/2)
|Ck|∑
v=1

κ2rv(t)2, (83)

where the last inequality is obtained by dividing both sides
by 2 and summing up the inequalities for all v ∈ Vt̆k

. Then,
using (11), we can write

L(Q(t+ 1))− L(Q(t))

≤ −
|Ck|∑
v=1

κrv(t)Qv(t)

+ (κ2ω2(1−υ)2/2)
|Ck|∑
v=1

[
Iv(t)2

( Z∑
z=1

log2(1+Γv,z(t))
)2]

,

(a)

≤ −
|Ck|∑
v=1

κrv(t)Qv(t) + (κ2ω2(1− υ)2/2)
|Ck|∑
v=1

×
[
Iv(t)2 · Z

Z∑
z=1

(log2(1 + Γv,z(t)))
2
]
,

(b)

≤ −
|Ck|∑
v=1

κrv(t)Qv(t) + [(Zκ2ω2(1− υ)2)/(ln 2)2]

×
[ |Ck|∑

v=1

Iv(t)2 ·
Z∑

z=1

(Iv,z(t) · Pv,z(t) ∥hv,z(t)∥2)/(ως2)
]
, (84)

where (a) comes from Cauchy-Schwarz inequality on real

numbers
(∑Z

z=1 az · 1
)2

≤
(∑Z

z=1 a
2
z

)
·
(∑Z

z=1 12
)

and (b)
stems from (log2(1 + a))2 ≤ (2a/(ln 2)2).

Now, since both Iv(t) and Iv,z(t) are binary indicator
functions with maximum value of 1, we can write the
following:

Zκ2ω2(1− υ)2

(ln 2)2

|Ck|∑
v=1

Iv(t)2 ·
Z∑

z=1

Iv,z(t) · Pv,z(t) ∥hv,z(t)∥2

ως2

(a)

≤ Zκ2ω2(1− υ)2

(ln 2)2

|Ck|∑
v=1

12 ·
Z∑

z=1

1 · P max
v

Z ∥hv,z(t)∥2

ως2
,

=
κ2ω2(1− υ)2

(ln 2)2

|Ck|∑
v=1

Z∑
z=1

(Pmax
v ∥hv,z(t)∥2)/(ως2) = ϖ, (85)

where, in (a), we use the fact that Pmax
v is equally distributed

among all pRBs.
Then, using ϖ, adding C · (−

∑|Ck|
v=1 rv(t) +

β̄(k, t)
∑|Ck|

v=1

∑Z
z=1 Pv,z(t)) on both sides of (83) and

taking expectation on both sides conditioned on the queue
state Qv(t), we reach to (62).
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