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Abstract—Deep fading represents the typical error event when
communicating over wireless channels. We show that deep fading
is particularly detrimental for federated learning (FL) over
wireless communications. In particular, the celebrated FEDAVG
and several of its variants break down for FL tasks when deep
fading exists in the communication phase. The main contribution
of this paper is an optimal global model aggregation method at
the parameter server, which allocates different weights to differ-
ent clients based on not only their learning characteristics but
also the instantaneous channel state information at the receiver
(CSIR). This is accomplished by first deriving an upper bound on
the parallel stochastic gradient descent (SGD) convergence over
fading channels, and then solving an optimization problem for the
server aggregation weights that minimizes this upper bound. The
derived optimal aggregation solution is closed-form, and achieves
the well-known O(1/t) convergence rate for strongly-convex loss
functions under arbitrary fading and decaying learning rates.
We validate our approach using several real-world FL tasks.

I. INTRODUCTION

Despite recent progress on optimizing communications for
distributed machine learning (ML), the understanding of how
wireless impacts its convergence (especially for federated
learning (FL)) is still limited. For example, it is well-known
that channel fading is a unique characteristic that differentiates
wireless communication from others (e.g., wired or deep space
communication), and we now have a very good understanding
of the random fading effect on wireless communications [1],
[2]. However, such understanding only partially applies to
wireless FL, because its objective is not limited to achieving
low error probability with high data rate [3]. In particular,
the goal of communication in FL is to have an accurate
final ML model with fast convergence, which relies on the
progressive communication rounds that collectively determine
the learning performance. It is unclear how, in the presence
of individual and highly dynamic fading channel conditions
across different clients and across different learning rounds, the
server should aggregate the heterogeneously erroneous local
model estimates to have an accurate global model. In fact, as
we report in the experiment results using real-world FL tasks,
the de facto fading-unaware federated averaging (FEDAVG)
[4], including several of its variants that exclusively utilize ML
model training enhancements, break down when deep fading
exists in the upload communication phases. This highlights
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the need to explicitly incorporate fading in the global model
aggregation.

FL over noisy or fading channels has been studied in e.g.,
[5]-[8], which largely focus on unifying the local model up-
load and the global model aggregation with over-the-air (OTA)
computation, which leverages the superposition nature of the
wireless medium to directly “compute” the desired model
aggregation. These designs however all require transmitter-
side channel state information (CSIT), while this work only
assumes receiver-side channel state information (CSIR). A
direct consequence of no CSIT is that we cannot preclude
clients whose channels are in deep fade to participate in FL,
which is commonly used in OTA FL [6], [7]. Neither can
we pre-cancel the fading effect at the client as in [7] which,
combined with OTA computation, removes the fading effect
and only needs to address the channel noise.

Another line of research related to this paper is the design
of global model aggregation methods at the parameter server
[9]. A related work [10] studies server aggregation for fading
channels, where the aggregation is based only on channel
statistics. Our work, on the other hand, focuses on model
aggregation to account for the heterogeneous and random
instantaneous fading channels, with a goal of directly mini-
mizing the convergence rate upper bound.

In this work, we first analyze the impact of wireless
channels on the convergence of distributed SGD. We then
optimize FEDAVG to accommodate heterogeneous and deep-
faded wireless channels in the model upload phases. Towards
this end, we focus on an uplink fading communication model
and a distributed SGD system, and consider the channel
fading effect on uploading the model updates. To derive an
optimal federated averaging method that incorporates channel
fading, we analyze the convergence of parallel SGD over
fading channels with an arbitrary feasible set of aggregation
weights. We then minimize the convergence bound by adjust-
ing the FEDAVG weight selection. The optimization problem
is convex, with a simple closed-form solution. We show that
with an additional (weaker) non-uniformly bounded variance
assumption, the optimal weight assignment can be similarly
obtained when minimizing the drift term, and the resulting
upper bound highlights how fading affects the convergence
under optimal server aggregation. We validate these claims by
performing real-world FL tasks, including both the relatively
easy MNIST handwritten digit classification and the more dif-
ficult CIFAR-10 image classification tasks. The experimental
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results indicate that fading-aware model aggregation not only
significantly outperforms vanilla FEDAVG and its variants, but
in fact approaches the performance with neither fading nor
noise, i.e., FEDAVG under perfect communications [4], [11].

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model, including the problem
formulation of distributed SGD, the standard FL pipeline, and
communication over fading channels. The novel design of
optimal server aggregation in the presence of fading channels
is presented in Section III. Experimental results are reported
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL
A. Distributed SGD

We study the standard empirical risk minimization (ERM)
problem in ML:

min F(x) = min 1 Z l(x;2), (1)

x€R4

where x € R? is the machine learning model variable that one
would like to optimize, I(x;z) is the loss function evaluated
at model x and data sample z = (i, zou), Which describes
an input-output relationship of z;, and its label z,:, and
F : R? — R is a differentiable loss function averaged
over the total dataset D with size m. We assume that there
is a latent distribution v that guides the generation of the
global dataset D, i.e., every data sample z € D is drawn
independently and identically distributed (IID) from v. We
denote x* £ argmin, s F(x), f* £ F(x*).

Distributed and decentralized ML, including FL, aims at
solving the ERM problem (1) by using a set of clients
that run local computations in parallel, hence achieving a
wall-clock speedup compared with the centralized training
paradigm. We consider a distributed ML system with one
central parameter server (e.g., at the base station) and a set
of n clients (e.g., mobile devices). Mathematically, (1) can be
equivalently formulated as
F (x), 2)

xERY m
1€[n]

min F(x) = min
x€ER

where F;(x) is the local loss function at client 7, defined as the
average loss over its local dataset D; with size m,;. We make
the standard assumption that local datasets are disjoint, i.e.,
D = UjemDi and m = 3,1,y m;. This work focuses on the
full clients participation setting, where all n clients participate
in every round of distributed SGD. To ease the exposition and
simplify the analysis, we also assume that all clients have the
same local dataset size, i.e., m; = m;, Vi, j € [n].

B. FEDAVG Pipeline

The considered distributed ML pipeline follows the standard
framework of FEDAVG [4], with an explicit consideration
of fading channels in the upload communication phase. In
particular, the FEDAVG pipeline works by iteratively execut-
ing the following steps at the ¢-th learning round, for an
te [Tl ={1,2,---, T}

(1) Download the global model. The server broadcasts
the current global model x; to all clients. In a wireless
FL setting, the base station typically has significantly more
transmit power and communication resources than the clients,
which are mostly battery-powered mobile devices with limited
capabilities. As a result, it is often assumed that the download
communication phase is error-free [6], [8], [12]. We follow the
same assumption of perfect download communication, which
results in all clients having the exact information of x;.

(2) Local model update at clients. Client ¢ updates the
received global model x; based on its local dataset D;. In
this work, we assume that SGD is used in the model training.
Specifically, SGD at client ¢ operates by updating the weight
iteratively (for E steps in each learning round) as follows:

Initialization: Xi,o = X¢,
Iteration: x;T = xi,T_l — Utvfi(xiﬁ_l),VT =1, .,E,
Output: xiH = xi’E,
where we define

fix)21(x&), fx)21(x9). 3)

Here & and ¢ are data points sampled independently and
uniformly at random (u.a.r.) from the local dataset of client
1 and global dataset, respectively.

(3) Upload local models. After the local model update,
client ¢ needs to transmit s; ; £ xi 11 — X; to the parameter
server so that it can recover x; ;. With the fading channel
model and the transmitter/receiver processing described in
Section II-C, the parameter server is able to recover

Yit = Sit t Zit 4

for client <’s model update, where z,; is the post-processing
effective noise vector whose characteristics are given in Sec-
tion II-C.

(4) Global aggregation. The server aggregates the received
local models in (4) to generate a new global ML model
x¢+1. We follow the spirit of FEDAVG [4] but leave open
the aggregation weights design:

X4l = X + Z DitYit
i€[n]

with >, pi,e = 1, for any t € [T].
C. Communication over Fading Channels

We now elaborate on the upload communication phase in the
previous section, where each client ¢ aims at sending vector s; ;
to the server over wireless fading channels. At the transmitter
(client ¢), a total transmit power of P is enforced, and the
transmitted symbol vector can be written as

P
——5Sit &)
E |lsi]*
It can be easily verified that the power constraint P is satisfied.
Note that (5) requires the second-order statistics of s; ;. This
can be obtained with a method similar to [7, Sec. III-A].

Sit =
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We consider that the transmission of S; ; experiences a ran-
dom fading channel fluctuation h; ; for each of its d elements.
This holds when the underlying channel follows a block fading
model [1], [2], where the channel remains constant for a
duration of at least d symbol periods (i.e., the coherence time
is larger than d), and then changes independently to another
value following its distribution (e.g., Gaussian).

We then have the received signal

- _ . P .
Vit = hitSie +Zig = higy | ———=8i¢ +2Zit, (6)
E [Isi¢ll

where z, ; denotes an additive white Gaussian noise (AWGN)
vector with d independent Gaussian elements of mean zero
and variance Ny. The receive SNR for client 7 is

SNR; ; = —2- 7
7,1 N() ( )
with the channel power g;, defined as g;; = Hhi}t|\2. We
assume a coherent receiver with perfect channel state infor-
mation at the receiver (CSIR). Hence, the receiver computes
an unbiased estimate of s;; as

1 E|s; > -
Vit = E %yi,t =Si¢+ Ziy, ¥

where the post-processing noise vector z; ; remains Gaussian
distributed but with mean zero and variance E [|s; ¢||>/SNR; ;.

Because the channel coefficient h;; is random, the receive
SNR is also a random variable. Deep fading refers to the event
when g¢;; < 1, which results in a very low instantaneous
SNR. In addition, the random channel coefficients {h; t}ic[n)
across different clients at the same time ¢ also naturally lead to
heterogeneous receive SNRs for estimating {s; ;};c[n). Such
SNR heterogeneity and deep fading effects are particularly
detrimental to the performance of standard model aggregation,
as will be demonstrated in Section IV.

III. OPTIMAL AGGREGATION OVER FADING CHANNELS

Our goal is to design the aggregation weights
{piy i €n],t € [T]} at the server that incorporate the
SNR heterogeneity and deep fading effect. To accomplish
this goal, we first study the convergence behavior with an
arbitrarily feasible choice of {p;.}. We then minimize the
derived convergence upper bound by selecting the optimal
weights. The decoupling of {p;,:% € [n]} at each round ¢
naturally arises because the existing convergence analyses for
distributed SGD, including this paper, are built on recursively
reducing the gap to the optimal model. Optimizing such a
recursive bound for each individual round ¢ naturally reveals
an optimal solution of {p; ; : i € [n]} for every ¢.

Due to space limitation, we only report the optimal design
for parallel SGD, which performs model aggregation after
every SGD step, i.e., £ = 1. The extension to local SGD
[11], where E > 1, is left to the journal version. We focus on
the L-smooth and p-strongly convex loss function I(x;¢&), as
formally stated in Definitions 1 and 2 [13].

Definition 1 [(x;£) is L-smooth: ||Vi(x,£&) — Vi(y,§)| <
L|x -yl for x,y € R? and £ € D.

Definition 2 [(x;&) is p-strongly convex: (VIi(x;€) —
Vily:€),x —y) > plx —yl|* for x,y € R* and & € D.

Our first important result is presented in Proposition 1.

Proposition 1 Consider L-smooth and p-strongly convex loss
Sfunctions f and f;, with IID local datasets at all clients. We
select the stepsize 0y to satisfy n, < 1/(2u),Vt € [T). If we as-
sume unbiased SGD at all clients, i.e., E[V f; (x)] = VF (x),
for i € [n], the following inequality holds for parallel SGD:

E[xir1 —x*[|* < (1 — 2um) E [|x¢ — x*||?

1
et Y (14 gy ) EIVE Gl v e 1] )

1€[n]

where Yt € [T, {p;+ : i € [n]} in an arbitrary set of feasible
aggregation weights in FEDAVG that satisfy

Z pig=1 and 0<p;; <1
1€[n]

(10)

We note that Proposition 1 does not have any of the con-
ventional assumptions of either uniformly bounded variance
or uniformly bounded second moment, or both, for SGD [11],
[14]. This is because Proposition 1 only characterizes the per-
round gap reduction, and still has a second moment term that
we choose not to bound (for now). The rationale, however, is
that regardless of the assumptions we take to bound this term
(and hence derive a final convergence rate upper bound), the
optimization of the aggregation weight {p; , : i € [n]} at each
round ¢ is not affected for parallel SGD. In fact, Proposition 2
is established based on this generality.

Proof Sketch. We introduce an auxiliary error-free global
model X;,1 = Zie[n] PitX; 1. We have that

E|xi41 — x*||° = E%er1 — x> + E [[xe41 — et ||

+2E < Z DitZit, X1 — X*>

i€[n]
(11)

where the last equality holds since the noise vector is zero
mean and the channel noise randomness is independent of the
SGD randomness. We then separately bound the two terms in
(11). The first part can be bounded in a standard way while
the second term produces the desired SNR terms.

=E %41 — x*|)? + E [xe41 — Xepa ||

Proposition 2 If E||Vf; (x;)||* can be uniformly bounded
independently of client i € [n], then the optimal aggregation
weights {p; . : i € [n]} that minimize the per-round conver-
gence upper bound in Proposition 1 are given as

. SNR;+/ (1 4+ SNR; ;)

Pit = : (12)
! > e SNRye/ (14 SNR; 1)
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We note that the condition of Proposition 2 only requires
that E ||V f; (x¢)|* has an upper bound that holds for any
i € [n]; it does not have to be instance-dependent or constant.
In fact, the commonly adopted assumptions of uniformly
bounded variance or uniformly bounded second moment both
satisfy this requirement. On the other hand, removing this
constraint does not fundamentally change the result in Propo-
sition 2, and we will see a generalized result in Theorem 1.

Proof Sketch. Because the fading channel and noise only
affect the drift term (the second term on the RHS of (9)),
and the assumption that E ||V f; (x¢)||* can be uniformly
bounded independently of client ¢ € [n] leads to the drift term
being independent of ¢, minimizing the convergence upper
bound in Proposition 1 is equivalent to solving the following
optimization problem at round ¢:

1
.. 2
minimize P 1+ )
{pi,¢:i€[n]} L%] ot < SNRi,t
subject to Z pir=1;0<p;, <L, Vie[n. (13)

i€[n]

It is straightforward to verify that this is a convex optimiza-
tion problem. Standard derivation applying the Karush—-Kuhn—
Tucker (KKT) condition [13] directly leads to (12).

Propositions 1 and 2 establish the per-round model con-
vergence behavior and the corresponding optimal aggregation
weight design. On the one hand, we are often interested in
having a final convergence rate upper bound that characterizes
the relationship between convergence and number of clients n,
number of rounds 7, and channel conditions {SNR; ;}. On the
other hand, as mentioned in Proposition 2, we can have a more
refined control of the convergence if we make client-dependent
assumptions about the second-order behavior of clients SGD
and improve the corresponding convergence derivation. The
following theorem accomplishes these two goals.

Theorem 1 Assume L-smooth and p-strongly convex loss

Sfunctions f; with unbiased SGD on IID local datasets at

clients. We further assume that the loss functions have cllent—

dependent bounded variances: E ||V f; (x;) — VF (x;)||”
) SNR

0'2 Vi € [n] Denote Rit = m Rt

D oic cn ]R”,Bt = mingg|, {a (14+SNR;4) } The optimal

aggregation weights {pm .4 € [n]} that minimize the drift

term in the convergence rate upper bound are given as

R _ R,

Re X Rie

Furthermore, if the slepsize is selected as n; =

(1+ 5i7) .1} -

parallel SGD with server model aggregation weights given in
(14) satisfies

I IA

p:,t = (14)

2
m where

a = 2max{ 1, then the convergence of

E[F (x)] - f* <

Lt a) —x*|2)

L 4
2(t+a) \p*Ry
15)

for any t > 1.

We remark that Theorem 1 uses an assumption of client-
dependent bounded variances, which is weaker than the uni-
formly bounded variances that is often required in the analysis.
Additionally, this is different than the uniformly bounded
second moment assumption in Proposition 2, which is why
the optimal weights in (14) are slightly different than (12). In
practice, o; may not be readily available to FL, and thus we
use (12) in the experiments.

Proof Sketch. We start with the same step (11) as in the
proof of Proposition 1. Now, since each client ¢ has a different
variance bound for the SGD, we can show that:

2

Do piaViG)| <D vl + LR x — x|

i€[n] i€[n]
(16)
Similar to the derivation of (16), we have
pz ta
Blxir1 — e |” < n? SNR..
1€[n]
pi7 *
+ L%n? Z SNRt“Eth —x*|*. (7)
i€[n ’
Defining A, = E||x; — x*||> and combining (11) and (17),
we have
p?t
A1 <[1-2 L*n? |1 = A
t+1 < pne + Loy + Z SNR,, t
i€[n] ’
+ni Y pliot 1 (18)
nt pz t SNR@t .

i€[n]

It is clear that the drift term in the per-round convergence
bound has a similar structure as the objective function of (13),
and we can apply the same steps to derive the optimal weights
and prove the theorem. The notable difference is the additional
terms in the coefficient of A;, which can be bounded using
the properties of 7;.

IV. EXPERIMENTAL RESULTS
A. Setup

To understand the impact of fading on distributed ML and
evaluate the performance of the proposed aggregation method,
we carry out a standard FL experiment of the CIFAR-10
classification task [15]. We report experimental results for both
IID and non-IID datasets, as well as full and partial clients
participation. Note that these results extend beyond the setting
for the theoretical analysis. The experimental setup follows [4]
and complete details remain the same as [16]. When fading
channel is considered, we simulate a standard Rayleigh fading
channel with average channel power of 1. The transmit power
is normalized to be 1, thus leading to the default average
signal-to-noise ratio (SNR) to be 0 dB.

We consider the following schemes in the experiments. (1)
Perfect_comm: the ideal case with perfect communication. (2)
AWGN: no fading but channel has AWGN, leading to equal
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Fig. 1. IID local datasets and full clients participation.

—— perfect_comm
AWGN

— Fedavg_clipping

— FedAvg_lowlR

251 — FedAvg_opt

Fig. 2. Non-IID local datasets and partial clients participation.

aggregation weight. (3) FedAvg_clipping: vanilla FEDAVG
with equal aggregation weight. However, we have observed
in all experiments that directly using vanilla FEDAVG fails
to converge for all tasks when fading is present. We are
thus forced to implement ML enhancements. Since there
are gradient explosions in FEDAVG, the popular gradient
clipping method [17] is used. (4) FedAvg_lowLR: in order
to improve the FedAvg_clipping performance, we combine
the low learning rate method [18] with gradient clipping. (5)
FedAvg_opt: the method we proposed in this paper.

All of the reported results are obtained by averaging over
five independent runs based on different data distribution,
client selection and random seed of the noise. We also report
the final test accuracy, which is averaged over the last ten
rounds, as the performance of the final global model.

B. Results

We can see from Fig. 1 that both variants of the original
FEDAVG have poor performance (testing accuracy and training
loss), and even fail to converge in some case. The issues
mainly come from the “deep drops” that largely reset the
training. These deep drops are caused by the random fading
effect, not the channel noise — the supporting evidence is that
the AWGN case does not have this performance degradation,
and all schemes experience the same realization of channel
noises (when applicable). We also remind the reader that
this is already after averaging over five independent runs,
which “masks” the severity of each valley (since it is unlikely
different runs have such drops at the same round) but increases
the number of rounds this may happen.

More importantly, we note that the proposed FedAvg_opt
is very effective in handling the channel fading — without
using any of the ML tricks it is able to achieve comparable
performance as Perfect_comm. The same observations also
hold for non-IID local datasets and partial clients participation,
as shown in Fig. 2.

V. CONCLUSION

We have shown that the channel fading effect is detrimental
to the performance of the popular federated averaging that is
widely adopted in distributed machine learning. Deep fading,
as opposed to channel noise, is the dominating effect in
disrupting the convergence of distributed ML. We analyzed
the convergence of parallel SGD under channel fading and
arbitrary server aggregation. We then minimized the resulting
convergence bound by adjusting the aggregation weights,
which led to a closed-form solution. This solution further led
to the main theoretical result that even under random channel
fading across clients and communication rounds, federated
averaging with optimized weights can still maintain the same
O(1/t) convergence for strongly-convex loss functions — the
same as when there is neither fading nor noise.
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