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The covariant parton model (CPM) is a consequent application of the parton model concept to the

nucleon structure. In this model, there is a choice to put quarks either in a pure-spin state or in a mixed-spin

state. We show that the mixed-spin version of the CPM does not support the quark-model relations among

transverse momentum dependent parton distributions (TMDs) which were shown to hold in a large class of

quark models. One can enforce the quark-model relations to be valid in the CPM by imposing a condition

which is equivalent to putting the quarks in a pure-spin state. This gives a complementary perspective on

the connection of the pure- and mixed-spin state CPM versions and provides a fresh view on the question

whether the quark-model relations could be realized in QCD as “approximate relations” with some useful

numerical accuracy.
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I. INTRODUCTION

Transverse momentum dependent parton distributions

(TMDs) entail the description of the nucleon structure in

deep-inelastic scattering (DIS) processes when in the final

state one detects an adequate transverse momentum which is

small compared to the hard scaleQ of the process [1]. For the

understanding of the nonperturbative properties of TMDs,

quark models play an important role in two ways. First,

undistracted by technical complexities inherent in a full QCD

treatment, in models one may investigate in a simpler

theoretical framework the significance of a specific physical

aspect and gain in this way valuable insights. Second, in

situations where some of the TMDs are still not yet well

known, results from models may be helpful to interpret first

data or give useful estimates for counting rates in future

experiments such as theElectron-IonCollider [2]. In thisway,

modelscomplementphenomenologyandlatticeQCDstudies.

In this work, we will study the covariant parton model

(CPM) which is based on Feynman’s parton model concept

[3,4]. The latter played a historically important role for the

interpretation of DIS processes and establishing QCD and

can, in a certain sense, be viewed as a “zeroth-order

approximation” to QCD [1,5]. The parton model provides

often an effective first step toward an understanding of

QCD processes. For instance, the “generalized parton

model” of Refs. [6–10] helped to pave the way to modern

TMD phenomenology. The exploration of the parton model

concept for the sake of studying TMDs and their non-

perturbative properties was carried out in Refs. [11–25].

Further applications of the parton model concept can be

found in Refs. [26–30].

Because of the absence of interactions, the description of

the nucleon structure in the parton model is particularly

lucid, and the TMDs are described in terms of covariant

functions depending on the variable P · k, where Pμ

denotes the nucleon momentum and kμ quark momentum.

Despite the simplicity of the model, there was an interesting

puzzle. One group claimed that the description of TMDs

requires two independent covariant functions [16–23],

while the other group claimed that one needs three

independent covariant functions [24]. This puzzle was

resolved recently by showing that the results of the two

groups are equivalent except for the treatment of the quark

polarization state [25]. In Refs. [12–23] the quarks were

chosen to be in a pure-spin state, while in Ref. [24] they

were (implicitly) assumed to be in a mixed-spin state. Other

than that, the results of the two groups are equivalent [25].

Here, we will take a different point of view as compared

to Ref. [25], where the focus was on technical aspects of the

quark correlator. In this work, the starting point is the

quark-model aspect of the approach: The CPM is after all a

quark model, i.e., a model without gauge field degrees of

freedom. In several models of such type, it was observed

that certain relations exist between different TMDs to

which we shall refer as quark-model relations (QMRs).

Not all quark models support the QMRs, but it is worth

stressing that a wide class of very different models does.
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The goal of this work is to investigate whether the TMDs

in the mixed-spin state version of the CPM [24,25] obey the

QMRs. We shall see that this is not the case and show that

imposing the validity of the QMRs in this model yields the

same condition as when one chooses the quarks to be in a

pure-spin state. In other words, if one starts with the mixed-

spin state version of the CPM and demands the model to

comply with the QMRs supported in other quark models,

then one must introduce the pure-spin state model.

Our study is insightful in two ways. First, it gives

insights on the CPM and its relation to other quark models.

Second, it opens a new perspective on QMRs and may shed

light on the question whether they could hold in QCD as

approximate relations with a potentially useful numerical

accuracy in some range of x and kT .
The structure of this work is as follows. In Sec. II, we

present the QMRs and briefly discuss their understanding

within quark models. In Sec. III, we review the CPM and

present the results for TMDs in the mixed-spin state version

of the CPM. In Sec. IV, we investigate the linear and

nonlinear QMRs in the CPM. In Sec. V, we discuss the

physical implications of our findings, and in Sec. VI, we

draw conclusions and give an outlook for future studies.

II. QUARK-MODEL RELATIONS AMONG TMDs

In contrast to QCD, in quark models, relations among

different TMDs can exist due to the simpler model

dynamics or due to model symmetries. Some of these

relations, such as, e.g., the quark-model Lorentz-invariance

relations (qLIRs), are generic in the sense that they hold in

quark models which respect Lorentz symmetry and contain

no gauge field degrees of freedom [31–33] but are not valid

in QCD [34–36]. We quote here only one qLIR, namely,

h
q
Tðx; kTÞ − h

⊥q
T ðx; kTÞ ¼ h

⊥q
1L ðx; kTÞ; ð1Þ

on which it will be instructive to follow up below. A

discussion of other qLIRs can be found, for instance, in

Ref. [37]. We remark that the notation in Eq. (1) and

throughout this work is kT ¼ jk⃗T j, and k2T will always

denote jk⃗T j2.
The main focus of this work is another set of relations

which have been observed in several very different quark

models. These relations, to which we will refer in the

following as QMRs, are given by

g
⊥q
1T ðx; kTÞ ¼ −h

⊥q
1L ðx; kTÞ; ð2aÞ

g
⊥q
T ðx; kTÞ ¼ −h

⊥q
1T ðx; kTÞ; ð2bÞ

g
⊥q
L ðx; kTÞ ¼ −h

q
Tðx; kTÞ; ð2cÞ

g
q
1
ðx; kTÞ − h

q
1
ðx; kTÞ ¼ h

⊥ð1Þq
1T ðx; kTÞ; ð2dÞ

g
q
Tðx; kTÞ − h

q
Lðx; kTÞ ¼ h

⊥ð1Þq
1T ðx; kTÞ: ð2eÞ

In addition to the linear QMRs (2), also two nonlinear

QMRs have been found which are given by

1

2
½h⊥q

1L ðx; kTÞ�2 ¼ −h
q
1
ðx; kTÞh⊥q

1T ðx; kTÞ; ð3aÞ

1

2
½g⊥q

1T ðx; kTÞ�2 ¼ g
⊥q
1T ðx; kTÞg

⊥q
L ðx; kTÞ

þ g
q
Tðx; kTÞg

⊥q
T ðx; kTÞ: ð3bÞ

The transverse moment of a TMD is defined as

h
⊥ð1Þq
1T ðx; kTÞ ¼

k2T
2M2

h
⊥q
1T ðx; kTÞ: ð4Þ

The relations (2) and (3) hold in a wide class of quark

models which are based on very different model concepts

including the spectator model, bag model, or light-front

constituent quark model [38–45]. The QMRs (2a), (2d),

and (3a) involving twist-2 TMDs were shown to arise from

a certain rotational symmetry of the model light cone wave

functions [45]. This symmetry is effectively present in

many models including, e.g., the pure-spin version of the

CPM [16,23].

It is important to remark that not all models support the

QMRs. For instance, certain spectator model variants,

where (to allow more flexible modeling) a larger number

of free model parameters was introduced [46], do not

support QMRs. Another example is the quark-target model

[47], where the presence of gluon degrees of freedom

spoils QMRs.

III. QUARK CORRELATOR AND TMDs IN CPM

In this section, we first review the general structure of the

quark correlator in quark models and then discuss the

specific results for the correlator and TMDs in the CPM,

briefly commenting on the two versions of this model.

A. Quark correlator in a generic quark model

In a theory without explicit gauge degrees of freedom,

the quark correlator for the nucleon is defined as follows:

Φ
q
ijðk; P; SÞ ¼

Z

d4z

ð2πÞ4 e
ikzhNjΨ̄q

j ð0ÞΨ
q
i ðzÞjNi; ð5Þ

where kμ is the quark 4-momentum and Pμ and Sμ are the
nucleon 4-momentum and polarization vectors satisfying

P2 ¼ M2, S2 ¼ −1, and P · S ¼ 0. In quark models,

the Lorentz structure of the correlator (5) is described in

terms of kμ, Pμ, and Sμ as follows (we use the convention

ε0123 ¼ 1 and assume a covariant normalization of nucleon

states) [33]:
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Φ
qðk; P; SÞ ¼ MA

q
1
þ =PA

q
2
þ =kA

q
3
þ i

2M
½=P; =k�Aq

4

þ iðk · SÞγ5Aq
5
þM=Sγ5A

q
6
þ ðk · SÞ

M
=Pγ5A

q
7

þ ðk · SÞ
M

=kγ5A
q
8
þ ½=P; =S�

2
γ5A

q
9
þ ½=k; =S�

2
γ5A

q
10

þ ðk · SÞ
2M2

½=P; =k�γ5Aq
11
þ 1

M
εμνρσγμPνkρSσA

q
12
:

ð6Þ

The amplitudes A
q
i ¼ A

q
i ðP · k; k2Þ in Eq. (6) are real

functions of the Lorentz scalars P · k and k2 [32,33]. The

amplitudes A
q
i are chiral even for i ¼ 2, 3, 6, 7, 8, 12 and

chiral odd for i ¼ 1, 4, 5, 9, 10, 11. In QCD and in models

with gauge field degrees of freedom, in the definition of the

quark correlator (5), Wilson lines must be included which

run along a nearly lightlike 4-vector nμ dictated by hard-

momentum flow in the considered process [1]. The

presence of the additional vector nμ allows for 20 further

Lorentz structures which are often denoted as Bi ampli-

tudes [34–36]. The T-odd amplitudes A
q
i for i ¼ 4, 5, 12

vanish in quark models as do the pertinent T-odd TMDs,

because their modeling requires explicit gauge field

degrees of freedom [48]. The T-odd amplitudes are

included in Eq. (6) merely for completeness. In this work,

we will focus on T-even TMDs; see the Appendix for the

explicit expressions.

B. Quark correlator in the CPM, and the two model

versions

In the CPM, one can explore the equation of motion for

the quark fields ði=∂ −mqÞΨqðzÞ ¼ 0 in order to derive the

following results for the amplitudes [24,25]:

A
q
1
¼ mq

M
A
q
3
; A

q
2
¼ 0; A

q
4
¼ 0; A

q
5
¼ 0;

A
q
6
¼ mq

M
A
q
10
; A

q
7
¼ −

mq

M
A
q
11
; A

q
9
¼ 0;

A
q
10

¼ ðP · kÞ
M2

A
q
11
−
mq

M
A
q
8
; A

q
12

¼ 0: ð7Þ

The T-odd amplitudes A
q
4
, A

q
5
, and A

q
12

vanish in the CPM,

which is a general quark-model prediction due to the

absence of gauge field degrees of freedom [48].

Interestingly, also the T-even amplitudes A
q
2
and A

q
9
vanish,

which is a specific feature of the CPM and is, in general,

not the case in other quark models. The amplitudes A
q
1
, A

q
6
,

and A
q
7
are proportional to current quark masses and, hence,

negligibly small for the light quark flavors. At this stage the

relations (7) imply that in the CPM three independent

amplitudes exist which can be chosen to be the unpolarized

amplitude A
q
3
, the chiral-even polarized amplitude A

q
8
, and

the chiral-odd polarized amplitude A
q
11
.

The two versions of the CPM are best explained by

briefly reviewing what the relations (7) imply for the quark

correlator. Inserting the results in (7) into Eq. (6) yields [25]

Φ
qðk; P; SÞ ¼ ð=kþmqÞðAq

unp þ γ5=wqA
q
polÞ; ð8Þ

where the unpolarized and polarized amplitudes A
q
unp and

A
q
pol, respectively, and w

μ
q are defined as

A
q
unp ¼ A

q
3
; A

q
pol ¼ −

ðP · kÞAq
11
−mqMA

q
8

M2
;

w
μ
q ¼ Sμ − Pμ

ðk · SÞAq
11

ðP · kÞAq
11
−mqMA

q
8

þ kμ
M

mq

ðk · SÞAq
8

ðP · kÞAq
11
−mqMA

q
8

: ð9Þ

The axial vector w
μ
q has the properties of the quark

polarization vector and satisfies k · wq ¼ 0. Notice that

we explicitly assume that the quarks have a nonzero mass.
1

At this point, one has two choices in the model related to

the treatment of the quark polarization; namely, our on-

shell quarks can be in one of the following two states:

mixed-spin state∶ − 1 < w2
q < 0 ⇔ three linearly independent amplitudes∶ A

q
3
; A

q
8
; A

q
11
;

pure-spin state∶ w2
q ¼ −1 ⇔ two linearly independent amplitudes∶ A

q
3
; jAq

8
j ¼ jAq

11
j: ð10Þ

In the more general version of the model, one has three

independent amplitudes [24] which corresponds to quarks

in a mixed-spin state (as long as the inequality jAq
8
j < jAq

11
j

is valid) [25]. Alternatively, one can put the quarks in a

pure-spin state in which case jAq
8
j ¼ jAq

11
j; i.e., in this

version of the model, one has only two independent

amplitudes. In this case, the physical-sign solution is

1
The polarization of massless quarks cannot be described in

terms of a polarization vector. But, ultimately in the massless
case, one has the same choice of putting a quark in a pure-spin vs
mixed-spin state. In this work, it is more insightful to work with
the more general case mq ≠ 0. But, if desired, the current quark
mass effects can be neglected at any stage; cf. [25].
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A
q
8
¼ −A

q
11
, which can be determined from a comparison to

other models and lattice QCD studies [25].

C. TMDs in the mixed-spin state version of the CPM

The starting point for our investigation is the CPM with

quarks in the mixed-spin state. In this section, we quote

the results for T-even TMDs starting with the model

expressions for unpolarized TMDs [we define k� ¼
1
ffiffi

2
p ðk0 � k3Þ]:

f
q
1
ðx; kTÞ ¼ 2Pþ

Z

dk−½xAq
3
ðP · k; k2Þ�kþ¼xPþ ; ð11aÞ

f⊥qðx; kTÞ ¼ 2Pþ
Z

dk−½Aq
3
ðP · k; k2Þ�kþ¼xPþ ; ð11bÞ

eqðx; kTÞ ¼ 2Pþ
Z

dk−
�

mq

M
A
q
3
ðP · k; k2Þ

�

kþ¼xPþ
: ð11cÞ

The expressions for chiral-even polarized TMDs in the

mixed-spin state parton model are given by

g
q
1
ðx; kTÞ ¼ 2Pþ

Z

dk−
�

x2M2 − xP · kþm2
q

M2
A
q
8
ðP · k; k2Þ

−
mq

M
xA

q
11
ðP · k; k2Þ

�

kþ¼xPþ
; ð12aÞ

g
⊥q
1T ðx; kTÞ ¼ 2Pþ

Z

dk−
�

xA
q
8
ðP · k; k2Þ

−
mq

M
A
q
11
ðP · k; k2Þ

�

kþ¼xPþ
; ð12bÞ

g
q
Tðx; kTÞ ¼ 2Pþ

Z

dk−
�

k⃗
2

T þ 2m2
q

2M2
A
q
8
ðP · k; k2Þ

−
mq

M

P · k

M2
A
q
11
ðP · k; k2Þ

�

kþ¼xPþ
; ð12cÞ

g
⊥q
L ðx;kTÞ ¼ 2Pþ

Z

dk−
�

xM2−P ·k

M2
A
q
8
ðP ·k;k2Þ

�

kþ¼xPþ
;

ð12dÞ

g
⊥q
T ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
8
ðP · k; k2Þ�kþ¼xPþ : ð12eÞ

Finally, the model expressions for chiral-odd polarized

TMDs are given by

h
q
1
ðx; kTÞ ¼ 2Pþ

Z

dk−
�

k⃗
2

T − 2xP · k

2M2
A
q
11
ðP · k; k2Þ

þ x
mq

M
A
q
8
ðP · k; k2Þ

�

kþ¼xPþ
; ð13aÞ

h
⊥q
1L ðx; kTÞ ¼ 2Pþ

Z

dk−
�

xA
q
11
ðP · k; k2Þ

−
mq

M
A
q
8
ðP · k; k2Þ

�

kþ¼xPþ
; ð13bÞ

h
⊥q
1T ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
11
ðP · k; k2Þ�kþ¼xPþ ; ð13cÞ

h
q
Lðx; kTÞ ¼ 2Pþ

Z

dk−
�

x2M2 − 2xP · k

M2
A
q
11
ðP · k; k2Þ

þmq

M

P · k

M2
A
q
8
ðP · k; k2Þ

�

kþ¼xPþ
; ð13dÞ

h
q
Tðx; kTÞ ¼ 2Pþ

Z

dk−
�

xM2 − P · k

M2
A
q
11
ðP · k; k2Þ

�

kþ¼xPþ
;

ð13eÞ

h
⊥q
T ðx; kTÞ ¼ 2Pþ

Z

dk−
�

−
P · k

M2
A
q
11
ðP · k; k2Þ

þmq

M
A
q
8
ðP · k; k2Þ

�

kþ¼xPþ
: ð13fÞ

For massless quarks in the mixed-spin state version of the

CPM, the chiral-even (chiral-odd) polarized TMDs are

given entirely in terms of the chiral-even (chiral-odd)

amplitude A
q
8
(A

q
11
).

D. On-shellness and a useful identity

In the CPM the quarks are on shell; i.e., the amplitudes

A
q
i ðP · k; k2Þ are actually functions of the type

A
q
i ðP · k; k2Þ ¼ F

q
i ðP · kÞδðk2 −m2

qÞ: ð14Þ

The explicit expressions for the functions F
q
i ðP · kÞ can be

found in Refs. [23–25] and will not be needed in this work.

However, we will need an identity among the kinematic

variables which holds under the k− integration and can be

derived as follows. Obviously, due to Eq. (14) we have

0 ¼
Z

dk−ðk2 −m2
qÞAq

i ðP · k; k2Þjkþ¼xPþ

¼
Z

dk−ð2kþk− − k⃗
2

T −m2
qÞAq

i ðP · k; k2Þjkþ¼xPþ :

Next, we notice that 2kþk− ¼ 2xPþk− ¼ 2xP · k −
2xP−kþ ¼ 2xP · k − 2x2PþP− ¼ 2xP · k − x2M2 holds

under the integral where kþ ¼ xPþ. Inserting this in the

above intermediate step, dividing by 2x, and rearranging,

we obtain
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Z

dk−ðP ·kÞAq
i ðP ·k;k2Þjkþ¼xPþ

¼
Z

dk−
�

x2M2þ k⃗
2

T þm2
q

2x

�

A
q
i ðP ·k;k2Þjkþ¼xPþ : ð15Þ

Thus, we see that under the k− integral due to the mass-

shell condition implicit in the amplitudes [cf. Eq. (14)] we

can replace the variable P · k by an expression determined

in terms of x, kT , and the nucleon and quark masses. This

identity will be helpful in the following.

IV. CONSEQUENCES OF IMPOSING QMRs IN

MIXED-SPIN STATE CPM

Before we investigate the QMRs in the CPM, it is

instructive to discuss first the example of the qLIR in

Eq. (1). Here and in the following, it is convenient to

reformulate the relations such that all TMDs appear on one

side of the equation. Inserting the model expressions (13b),

(13e), and (13f) for h
q
T, h

⊥q
T , and h

⊥q
1L , we obtain

h
q
Tðx; kTÞ − h

⊥q
T ðx; kTÞ − h

⊥q
1L ðx; kTÞ

¼ 2Pþ
Z

dk−
�

xM2 − P · k

M2
A
q
11
ðP · k; k2Þ

−

�

−
P · k

M2
A
q
11
ðP · k; k2Þ þmq

M
A
q
8
ðP · k; k2Þ

�

−

�

xA
q
11
ðP · k; k2Þ −mq

M
A
q
8
ðP · k; k2Þ

��

kþ¼xPþ
¼ 0:

We see that the qLIR (1) is valid for any A
q
8
ðP · k; k2Þ and

A
q
11
ðP · k; k2Þ. This was to be expected. The qLIRs require

only the absence of gauge field degrees of freedom and,

thus, must be valid in every quark model respecting Lorentz

invariance. The investigation of this and other qLIRs is a

useful cross-check for the theoretical consistency of a

model but does not yield new insights. In this respect,

the QMRs are more insightful, as we shall discuss next.

A. QMR between gear-worm functions, Eq. (2a)

The TMDs g
⊥q
1T ðx; kTÞ and h

⊥q
1L ðx; kTÞ are sometimes

called gear-worm functions. In the spectator model study of

Ref. [38], the QMR (2a) between these TMDs was derived

which was later confirmed in several other quark models.

Inserting the CPM expressions (12b) for g
⊥q
1T ðx; kTÞ and

(13b) for h
⊥q
1L ðx; kTÞ, the relation (2a) can be expressed as

g
⊥q
1T ðx; kTÞ þ h

⊥q
1L ðx; kTÞ

¼ 2Pþ
Z

dk−
�

x −
mq

M

�

½Aq
8
ðP · k; k2Þ

þ A
q
11
ðP · k; k2Þ�kþ¼xPþ : ð16Þ

Clearly, in the mixed-spin state version of the CPM, where

the amplitudes A
q
8
and A

q
11
are unrelated, the relation (2a) is

not valid. If we would like the CPM to comply with this

QMR, then this is possible if and only if we impose the

condition A
q
8
¼ −A

q
11

which corresponds to the pure-spin

state version of the CPM; cf. Eq. (10).

B. QMR between g
⊥q
T and h

⊥q
1T , Eq. (2b)

The QMR (2b) connecting the TMDs g
⊥q
T and h

⊥q
1T was,

to the best of our knowledge, first discussed in Ref. [40].

Inserting CPM expressions (12e) and (13c) for g
⊥q
T ðx; kTÞ

and h
⊥q
1T ðx; kTÞ, respectively, into Eq. (2b) yields

g
⊥q
T ðx;kTÞþh

⊥q
1T ðx;kTÞ

¼ 2Pþ
Z

dk−½Aq
8
ðP ·k;k2ÞþA

q
11
ðP ·k;k2Þ�kþ¼xPþ : ð17Þ

Again we see that if the amplitudes A
q
8

and A
q
11

are

unrelated, then the QMR (2b) is not valid which is the

case in the mixed-spin state version of the model. For the

CPM to comply with this QMR, it is necessary to introduce

the condition A
q
8
¼ −A

q
11

which brings us to the pure-spin

state version of the CPM; cf. Eq. (10).

C. QMR between g
⊥q
L and h

q
T , Eq. (2c)

The QMR (2c) connecting the twist-3 TMDs g
⊥q
L and h

q
T

was derived for the first time in Ref. [38] and later

confirmed in other models. Inserting respectively the model

expressions (12d) and (13f) for the TMDs g
⊥q
L ðx; kTÞ and

h
q
Tðx; kTÞ into Eq. (2c) leads immediately to

g
⊥q
L ðx; kTÞ þ h

q
Tðx; kTÞ

¼ 2Pþ
Z

dk−
�

xM2 − P · k

M2

�

½Aq
8
ðP · k; k2Þ

þ A
q
11
ðP · k; k2Þ�kþ¼xPþ : ð18Þ

Also in this case we see that in the mixed-spin state version

of the CPM the relation (2c) is not valid, unless we demand

that A
q
8
¼ −A

q
11

which is equivalent to introducing the

pure-spin state version of the CPM; cf. Eq. (10).

D. QMR of helicity, transversity, and pretzelosity,

Eq. (2d)

This QMR was, to the best of our knowledge, first

discussed in Ref. [41]. The difference of g
q
1
and h

q
1
was

known to be related in models to quark orbital angular

momentum [49,50], implying that pretzelosity is related to

quark orbital angular momentum [43]. Although only a

model relation, this is the only connection of quark orbital

angular momentum to TMDs known so far and attracted a

lot of interest. The QMR (2d) and its connection to quark

orbital angular momentum have been confirmed in several

other model studies. Inserting the model expressions (12a),

(13a), and (13c) into Eq. (2d), we obtain the lengthy

expression
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g
q
1
ðx;kTÞ−h

q
1
ðx;kTÞ−h

⊥ð1Þq
1T ðx;kTÞ

¼2Pþ
Z

dk−
��

x2M2−xP ·kþm2
q−xmqM

M2

�

A
q
8
ðP ·k;k2Þ

þ
�

xP ·k−xmqM−k2T

M2

�

A
q
11
ðP ·k;k2Þ

�

kþ¼xPþ
:

In order to proceed, we eliminate P · k under the integral by
means of the identity (15). After rearranging, the result can

be expressed as

g
q
1
ðx; kTÞ − h

q
1
ðx; kTÞ − h

⊥ð1Þq
1T ðx; kTÞ

¼ 2Pþ
Z

dk−
ðxM −mqÞ2 − k2T

2M2
½Aq

8
ðP · k; k2Þ

þ A
q
11
ðP · k; k2Þ�kþ¼xPþ : ð19Þ

As in the previous cases, we see that in the mixed-spin state

version of the CPM the relation (2d) is not supported. For

this QMR to be valid in the CPM, we must introduce the

condition A
q
8
¼ −A

q
11
which is equivalent to introducing the

pure-spin state version of the CPM; cf. Eq. (10).

E. QMR of twist-3 TMDs g
q
T and h

q
L to pretzelosity,

Eq. (2e)

We now turn our attention to the last linear QMR which

connects g
q
Tðx; kTÞ, h

q
Lðx; kTÞ, and the transverse moment

of pretzelosity. Inserting in Eq. (2e) the model expressions

(12c), (13c), and (13d) for g
q
Tðx; kTÞ, h

q
Lðx; kTÞ, and

h
⊥q
1T ðx; kTÞ gives

g
q
Tðx; kTÞ − h

q
Lðx; kTÞ − h

⊥ð1Þq
1T ðx; kTÞ

¼ 2Pþ
Z

dk−
�

2m2
q þ k2T

2M2
−
mq

M

P · k

M2

�

× ½Aq
8
ðP · k; k2Þ þ A

q
11
ðP · k; k2Þ�kþ¼xPþ : ð20Þ

As in the previous cases, we observe that the QMR (2e) is

not valid in the mixed-spin state version of the CPM and

can be satisfied only when one introduces the condition

A
q
8
¼ −A

q
11
, i.e., the pure-spin state version of the model.

F. Nonlinear QMR between h
q
1, h

⊥q
1L , and h

⊥q
1T in Eq. (3a)

The nonlinear QMR (3a) was derived in Ref. [44].

Inserting the model expressions (13a)–(13c) into the non-

linear relation (3a), we obtain

2h
q
1
ðx;kTÞh⊥q

1T ðx;kTÞþh
⊥q
1L ðx;kTÞ2¼ð2PþÞ2

ZZ

dk−dk0−
�

x
mq

M
ðAq

8
ðP ·k;k2ÞAq

11
ðP ·k0;k02Þ−A

q
8
ðP ·k0;k02ÞAq

11
ðP ·k;k2ÞÞ

þm2
q

M2
ðAq

8
ðP ·k;k2ÞAq

8
ðP ·k0;k02Þ−A

q
11
ðP ·k;k2ÞAq

11
ðP ·k0;k02ÞÞ

�

kþ¼xPþ
; ð21Þ

where k ¼ ðkþ; k−; k⃗TÞ and k0 ¼ ðkþ; k0−; k⃗TÞ andwe used the identity (15) to eliminate the variableP · k under the integral. In
order to proceed,we repeat the calculation leading toEq. (21)with the dummy integrationvariables k− andk0− interchanged and
take the average of the two results. In this way, the “mixed terms” in the first term on the right-hand side of Eq. (21) withA

q
8
A
q
11

cancel out, and we obtain

2h
q
1
ðx; kTÞh⊥q

1T ðx; kTÞ þ h
⊥q
1L ðx; kTÞ2 ¼ ð2PþÞ2

ZZ

dk−dk0−
m2

q

M2
½Aq

8
ðP · k; k2ÞAq

8
ðP · k0; k02Þ

− A
q
11
ðP · k; k2ÞAq

11
ðP · k0; k02Þ�kþ¼xPþ : ð22Þ

It is convenient to rewrite this result in the following equivalent way:

2h
q
1
ðx; kTÞh⊥q

1T ðx; kTÞ þ h
⊥q
1L ðx; kTÞ2 ¼ ð2PþÞ2

ZZ

dk−dk0−
m2

q

M2
½ðAq

8
ðP · k; k2Þ

þ A
q
11
ðP · k; k2ÞÞðAq

8
ðP · k0; k02Þ − A

q
11
ðP · k0; k02ÞÞ�kþ¼xPþ : ð23Þ

In order to show that Eq. (23) is equivalent to Eq. (22), one

can apply the trick with repeating the calculation with the

dummy integration variables k− and k0− interchanged and

taking the average.

As in the case of linear QMRs, the nonlinear relation (3a)

is, in general, not valid in the CPM version with quarks in a

mixed-spin state. Interestingly and in contrast to the linear

case, the violation of the nonlinear QMR (3a) is, however, a

small effect proportional tom2
q=M

2 which is numerically of

the order Oð10−6Þ for the light u and d flavors. This

observation may have interesting consequences on which

we shall comment in Sec. V.

If we insist on the nonlinear QMR (3a) to be exactly

valid formq ≠ 0, then we see from the final expression (23)
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that there are two solutions: A
q
8
¼ �A

q
11
. It is not surprising

to find two solutions, as we deal with a quadratic equation.

Both solutions were encountered in Ref. [25], and A
q
8
¼

þA
q
11

was recognized to be an unphysical solution as it

would imply opposite signs for quark helicity and trans-

versity TMDs in contradiction to results from other models

and lattice QCD. The solution A
q
8
¼ −A

q
11

leads to like

signs for quark helicity and transversity TMDs in agree-

ment with other models and lattice QCD and constitutes,

therefore, the physical solution [25]. Thus, the CPM with

massive quarks complies exactly with the nonlinear QMR

(3a) if and only if we use the pure-spin version of

the model.

G. Nonlinear QMR between

g
⊥q
1T , g

⊥q
L , g

q
T , and g

⊥q
T in Eq. (3b)

The nonlinear QMR (3b) was also derived in Ref. [44].

Inserting the model expressions (12b)–(12e) into the non-

linear relation (3b), we obtain

2g
⊥q
1T ðx; kTÞg

⊥q
L ðx; kTÞ þ 2g

q
Tðx; kTÞg

⊥q
T ðx; kTÞ − g

⊥q
1T ðx; kTÞ2

¼ ð2PþÞ2
ZZ

dk−dk0−
�

x
mq

M
ðAq

8
ðP · k; k2ÞAq

11
ðP · k0; k02Þ − A

q
8
ðP · k0; k02ÞAq

11
ðP · k; k2ÞÞ

þ m2
q

M2
ðAq

8
ðP · k; k2ÞAq

8
ðP · k0; k02Þ − A

q
11
ðP · k; k2ÞAq

11
ðP · k0; k02ÞÞ

�

kþ¼xPþ
; ð24Þ

where we used the identity (15) to eliminate the variable

P · k in the coefficient of the A
q
8
ðk · P; k2ÞAq

8
ðP · k0; k02Þ

term (in other cases, P · k cancels out). The expression

under the integral of (24) coincides with the expression in

(21), and the further steps continue from here in the same

way as in Sec. IV F including all considerations and

conclusions.

V. DISCUSSION OF THE RESULTS

In order to better understand the physical implications of

our results, it is instructive to briefly review the relation

between the two versions of the CPM [25]. As mentioned in

Sec. III B, in Ref. [25] it was recognized that for massive

quarks, mq ≠ 0, the quark correlator can be expressed

compactly by introducing an axial vector w
μ
q which has the

properties of a quark polarization vector and satisfies

k · wq ¼ 0. One then has a choice: A quark can be in a

pure-spin state with w2
q ¼ −1 or mixed-spin state with

−1 < w2
q < 0. These two choices lead to the two versions

of the model; cf. Eq. (10).

It is an interesting question which of the two CPM

versions might be more realistic from a phenomenological

point of view. At first glance, one could suspect the mixed-

spin state version of the CPM to be phenomenologically

more realistic due to a larger flexibility with three inde-

pendent covariant functions which can be determined from

parametrizations of unpolarized, helicity, and transversity

parton distribution functions [51–63]. (The scale at which

the covariant functions are determined from parametriza-

tions is part of the modeling. We follow up on this

important point in more detail in Sec. VI.) This question

can be answered by future studies, when more of the TMDs

become better known and constrained by data.

Meanwhile, one could also try to address this question

based on what is known about TMDs from other quark

models. A striking observation is that a large class of quark

models supports the QMRs. Thus, one could wonder

whether, based on a comparison to other models, for

instance, the linear QMRs (2) should also hold in the

CPM. If one would like the CPM to comply with the

QMRs, then one must introduce a condition between the

polarized amplitudes, namely, A
q
8
¼ −A

q
11

as shown in

Sec. IV, which leads at once to the pure-spin state version

of the CPM.

To be more precise, when one approaches the issue from

the point of view of a quark polarization vector w
μ
q, the

pure-spin conditionw2
q ¼ −1 tells us only that jAq

8
j ¼ jAq

11
j,

and the CPM per se is not able to predict the sign of the

chiral-odd TMDs. It is necessary to resort to results from

other models and lattice QCD to determine the physical

solution [25]. Here, the situation is different. The linear

QMRs already “encode” the information from other models

about the relative signs of the polarized chiral-even and

chiral-odd TMDs. By imposing the linear QMRs in the

mixed-spin version of the CPM, one is unambiguously led

to the condition A
q
8
¼ −A

q
11

without encountering any

spurious unphysical solution.

Thus, there are two ways to introduce the CPM with

quarks in a pure-spin state: (a) by demanding that w2
q ¼ −1

and determining the physical solution or (b) by demanding

that the model be compliant with the QMRs observed in

other quark models. The two procedures are conceptually

quite different but nevertheless equivalent. This is an

interesting observation in itself and gives new insights

on the CPM. Notice that this observation is independent of

whether one considers massive quarks or neglects quark

mass effects; cf. footnote 1.
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These considerations are of interest beyond the CPM and

give rise to a question regarding the spin state of quarks in

other models which, to the best of our knowledge, has not

been addressed in literature. Considering that the TMDs in

the CPM comply with QMRs if and only if the quarks are

in a pure-spin state, one may wonder whether the reverse is

true: If a quark model supports the QMRs, are the quarks in

this model necessarily in a pure-spin state? We do not know

the answer. It will be interesting to address this question in

other models.

The above remarks about the QMRs leading to the

condition A
q
8
¼ −A

q
11

refer to the linear case (2). For the

nonlinear QMRs (3), the situation is different. These

relations are quadratic in TMDs, and hence it is not

surprising to encounter two solutions A
q
8
¼ �A

q
11
, one of

which is physical and the other unphysical. As a conse-

quence, with nonlinear QMRs (3) alone, we would need to

use additional constraints to determine the physical and

eliminate the unphysical solution—analogously as it was

done with the two solutions of the condition w2
q ¼ −1

in Ref. [25].

However, there is an interesting difference between the

ways the CPM can comply with linear and nonlinear QMRs

which bears an unexpected observation. In the more general

mixed-spin state version of the CPM, the violation of the

nonlinear QMRs (3) is proportional to the square of the

current quark masses. In other words, already in the mixed-

spin version of the CPM the nonlinear QMRs (3) are

supported modulo current quark mass effects proportional

to m2
q=M

2 which is numerically an effect of the order of

10−6 for the up and down flavors.

This is an interesting observation for the following

reason. The description of TMDs in QCD becomes

equivalent to that in the parton model in the Wandzura-

Wilczek-type (WW-type) approximation [39]. This

approximation consists in exploring the QCD equations

of motion for twist-3 TMDs to relate them to the better

known twist-2 TMDs and the so-called tilde terms which

are contributions due to quark-gluon-quark matrix elements

and current quark mass terms. Neglecting the tilde and

current quark mass terms constitutes the WW-type approxi-

mation. [The attribute “type” is added to distinguish the

more complex TMD case from the original WW-approxi-

mation for the collinear function g
q
TðxÞ [64].] The explora-

tion of the free equation of motion in the parton model

generates exactly the same mass terms as in QCD but, of

course, no tilde terms. In this sense, the predictions of the

parton model are equivalent to the description of TMDs in

QCD in the WW-type approximation.

The linear QMRs (2) hold in the CPM only if one

introduces an additional constraint, which is equivalent to

putting the quarks in a pure-spin state. It remains to be seen

whether this leads to a realistic modeling of the nucleon

structure from a phenomenological point of view. However,

the nonlinear QMRs (3) do not require such an additional

condition and are valid also for (light) quarks in a mixed-

spin state. This could imply that the nonlinear QMRs (3)

are more likely to be supported in QCD because no

additional (pure-spin state) condition is required for their

validity.

The observation that the nonlinear QMRs (3) could be

valid in the WW-type approximation is interesting. The

WW-type approximation has been explored for phenom-

enological applications, for instance, in Ref. [65]. The

quality of this approximation cannot be determined a priori,

and it needs to be investigated on a case by case basis

because different quark-gluon-quark matrix elements are

neglected in each case. In some cases, the WW-type

approximation was shown to work with a phenomenologi-

cally useful approximation [65,66], and in one case there is

support from lattice QCD [67]. It will be very interesting to

investigate whether the nonlinear QMRs (3) could be valid

in QCD with a similarly useful approximation.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the quark-model

relations in the mixed-spin version of the covariant-parton

model. The equations of motion in the CPM imply some

conditions among the amplitudes in the quark correlator but

leave the amplitudes A
q
8
and A

q
11
unrelated. We have shown

that the linear QMRs are not valid, unless one introduces

the condition A
q
8
¼ −A

q
11
. This condition is equivalent to

putting the quarks in a pure-spin state (more precisely, the

pure-spin state condition only implies jAq
8
j ¼ jAq

11
j and

does not determine the relative sign).

Our results are of interest, because they give insights on

the CPM and raise interesting questions about quark

models and QMRs. The observation that imposing linear

QMRs is equivalent to putting the quarks in a pure-spin

state is primarily an insight about the CPM but may be of

interest also beyond this model for the following reason. In

the CPM, the two statements (i) quarks are in the pure-spin

state and (ii) model complies with QMRs are equivalent. It

will be interesting to investigate whether this is the case

also in other models: If a quark model obeys the QMRs, are

then the quarks in this model in a pure-spin state? This

aspect deserves further investigations.

We also learn an interesting lesson about QMRs. In

QCD, each TMD is an independent function describing a

different aspect of the nucleon structure, and no relations

among TMDs exist. In quark models, the situation can be

simpler and relations among TMDs may exist. Such

relations become particularly interesting if they are sup-

ported by a wide class of different quark models as is the

case with the QMRs which arise from a certain symmetry

of the nucleon wave function which is present in many

(though not all) quark models.

QMRs become even more interesting if they require only

general model assumptions. In the CPM, the linear QMRs

require a strong model assumption; namely, the quarks
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must be in pure spin state. The situation is different for the

nonlinear QMRs. These relations become exact in the CPM

for quarks in a pure-spin state and/or for massless quarks.

However, even in the most general case in the CPM, i.e., for

massive quarks in a mixed-spin state, the nonlinear QMRs

are still valid to a very good approximation, namely, up to

negligibly small quadratic quark mass effects ∝ m2
q=M

2.

Thus, the nonlinear QMRs are practically supported in

the CPM independently of the quark spin state. In other

words, the nonlinear QMRs require no strong model

assumption (like the pure-spin condition). From the point

of view of the CPM, all that is required for the nonlinear

QMRs is the absence of interactions. From the point of

view of QCD, this, in turn, means that the nonlinear QMRs

could be valid in the WW-type approximation.

It is important to remark that even if the QMRs were

valid at one scale, due to the different evolution equations

of the different TMDs, they would not be valid at other

scales. However, considering their crude nature, the “accu-

racy” of quark models can be expected to be around

Oð30%–40%Þ [68,69], and the TMD evolution effects

are not a dominant uncertainty. It will be interesting to

see whether phenomenological extractions or lattice QCD

results will support, at some scale, predictions from quark

models like the CPM within such model accuracy.

The spin state of a quark in QCD is not easy to determine

[70–72]. The comparison of the CPM predictions to

phenomenological results for TMD extractions will con-

stitute one way to infer to which extent the quarks in QCD

can be viewed as being in a pure- or mixed-spin state. It will

be interesting to shed more light on the polarization state of

the quarks in the nucleon based on dedicated phenomeno-

logical, model, and lattice QCD studies.
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APPENDIX: QUARK-MODEL EXPRESSIONS FOR

T-EVEN TMDs

In this Appendix, to make this work self-contained, we

list the quark-model expressions for T-even TMDs in terms

of the amplitudes defined in Eq. (6). These expressions are

valid in all models without gauge field degrees of freedom.

In QCD, the TMDs depend on the renormalization scale μ2

and the scale ζ at which light cone divergences are

regulated. In this work, we do not indicate the scales for

brevity. The determination of these scales in a model

calculation is an important part of the modeling. In previous

works in the CPM, the scales were assumed to

be μ2 ¼ ζ ≃ ð3 − 4Þ GeV2.

In the twist-2 case, the expressions for TMDs read

f
q
1
ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
2
þ xA

q
3
�kþ¼xPþ ; ðA1Þ

g
q
1
ðx;kTÞ¼2Pþ

Z

dk−
�

−A
q
6
−
P·k−M2x

M2
ðAq

7
þxA

q
8
Þ
�

kþ¼xPþ
;

ðA2Þ

g
⊥q
1T ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
7
þ xA

q
8
�kþ¼xPþ ; ðA3Þ

h
q
1
ðx; kTÞ ¼ 2Pþ

Z

dk−
�

−A
q
9
− xA

q
10
þ k⃗

2

T

2M2
A
q
11

�

kþ¼xPþ
;

ðA4Þ

h
⊥q
1L ðx; kTÞ ¼ 2Pþ

Z

dk−
�

A
q
10
−
P · k −M2x

M2
A
q
11

�

kþ¼xPþ
;

ðA5Þ

h
⊥q
1T ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
11
�kþ¼xPþ : ðA6Þ

In the twist-3 case, the expressions are given by

eqðx; kTÞ ¼ 2Pþ
Z

dk−½Aq
1
�kþ¼xPþ ; ðA7Þ

f⊥qðx; kTÞ ¼ 2Pþ
Z

dk−½Aq
3
�kþ¼xPþ ; ðA8Þ

g
q
Tðx; kTÞ ¼ 2Pþ

Z

dk−
�

−A
q
6
þ k⃗

2

T

2M2
A
q
8

�

kþ¼xPþ
; ðA9Þ

g
⊥q
L ðx; kTÞ ¼ 2Pþ

Z

dk−
�

−
P · k −M2x

M2
A
q
8

�

kþ¼xPþ
;

ðA10Þ

g
⊥q
T ðx; kTÞ ¼ 2Pþ

Z

dk−½Aq
8
�kþ¼xPþ ; ðA11Þ

h
q
Lðx; kTÞ ¼ 2Pþ

Z

dk−
�

−A
q
9
−
P · k

M2
A
q
10

þ ðP · k −M2xÞ2
M4

A
q
11

�

kþ¼xPþ
; ðA12Þ

h
q
Tðx;kTÞ¼2Pþ

Z

dk−
�

−
P ·k−M2x

M2
A
q
11

�

kþ¼xPþ
; ðA13Þ

h
⊥q
T ðx; kTÞ ¼ 2Pþ

Z

dk−½−Aq
10
�kþ¼xPþ : ðA14Þ
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In QCD also B
q
i amplitudes enter; see, e.g., [37] for the full

expressions. But in quark models the 14 T-even TMDs are

expressed in termsofnineT-evenA
q
i amplitudes.This implies

five relations, namely, the qLIRs mentioned in Sec. II.

We also remark that, in contrast to QCD, in the CPM no

UVor rapidity divergences appear. This allows one to relate

TMDs and collinear parton distribution functions simply as

f
q
1
ðxÞ ¼

R

d2kTf
q
1
ðx; kTÞwith a finite kT integration, which

in QCD [1] as well as in some models [73] is spoiled by the

appearance of divergences.

[1] J. Collins, Cambridge Monogr. Part. Phys., Nucl. Phys.,

Cosmol. 32, 1 (2011).

[2] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).

[3] R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

[4] R. P. Feynman, Photon-Hadron Interactions (CRC Press,

Boca Raton, FL, 1972).

[5] R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer, and

G. G. Ross, Nucl. Phys. B152, 285 (1979).

[6] M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B

362, 164 (1995).

[7] M. Anselmino, M. Boglione, and F. Murgia, Phys. Rev. D

60, 054027 (1999).

[8] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian,

F. Murgia, and A. Prokudin, Phys. Rev. D 71, 074006

(2005).

[9] M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, S.

Melis, and F. Murgia, Phys. Rev. D 73, 014020 (2006).

[10] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.

Murgia, E. R. Nocera, and A. Prokudin, Phys. Rev. D 83,

114019 (2011).

[11] P. Zavada, Phys. Rev. D 55, 4290 (1997).

[12] P. Zavada, Phys. Rev. D 65, 054040 (2002).

[13] P. Zavada, Phys. Rev. D 67, 014019 (2003).

[14] A. V. Efremov, O. V. Teryaev, and P. Zavada, Phys. Rev. D

70, 054018 (2004).

[15] P. Zavada, Eur. Phys. J. C 52, 121 (2007).

[16] A. V. Efremov, P. Schweitzer, O. V. Teryaev, and P. Zavada,

Phys. Rev. D 80, 014021 (2009).

[17] P. Zavada, Phys. Rev. D 83, 014022 (2011).

[18] A. V. Efremov, P. Schweitzer, O. V. Teryaev, and P. Zavada,

Phys. Rev. D 83, 054025 (2011).

[19] P. Zavada, Phys. Rev. D 85, 037501 (2012).

[20] P. Zavada, Phys. Rev. D 89, 014012 (2014).

[21] P. Zavada, Phys. Lett. B 751, 525 (2015).

[22] P. Zavada, arXiv:1911.12703.

[23] S. Bastami, A. V. Efremov, P. Schweitzer, O. V. Teryaev, and

P. Zavada, Phys. Rev. D 103, 014024 (2021).

[24] U. D’Alesio, E. Leader, and F. Murgia, Phys. Rev. D 81,

036010 (2010).

[25] F. Aslan, S. Bastami, and P. Schweitzer, Nucl. Phys. B984,

115947 (2022).

[26] J. Blümlein and N. Kochelev, Phys. Lett. B 381, 296 (1996).

[27] J. Blümlein and N. Kochelev, Nucl. Phys. B498, 285 (1997).

[28] J. Blümlein and A. Tkabladze, Nucl. Phys. B553, 427

(1999).

[29] R. G. Roberts and G. G. Ross, Phys. Lett. B 373, 235

(1996).

[30] J. D. Jackson, G. G. Ross, and R. G. Roberts, Phys. Lett. B

226, 159 (1989).

[31] R. D. Tangerman and P. J. Mulders, Phys. Rev. D 51, 3357

(1995).

[32] P. Mulders and R. Tangerman, Nucl. Phys. B461, 197

(1996).

[33] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).

[34] R. Kundu and A. Metz, Phys. Rev. D 65, 014009 (2002).

[35] K. Goeke, A. Metz, P. V. Pobylitsa, and M. V. Polyakov,

Phys. Lett. B 567, 27 (2003).

[36] K. Goeke, A. Metz, and M. Schlegel, Phys. Lett. B 618, 90

(2005).

[37] A. Metz, P. Schweitzer, and T. Teckentrup, Phys. Lett. B

680, 141 (2009).

[38] R. Jakob, P. J. Mulders, and J. Rodrigues, Nucl. Phys.A626,

937 (1997).

[39] H. Avakian, A. V. Efremov, K. Goeke, A. Metz, P.

Schweitzer, and T. Teckentrup, Phys. Rev. D 77, 014023

(2008).

[40] H. Avakian, A. V. Efremov, P. Schweitzer, O. V. Teryaev, F.

Yuan, and P. Zavada, Mod. Phys. Lett. A 24, 2995 (2009).

[41] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan,

Phys. Rev. D 78, 114024 (2008).

[42] B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D 78,

034025 (2008).

[43] J. She, J. Zhu, and B. Q. Ma, Phys. Rev. D 79, 054008

(2009).

[44] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan,

Phys. Rev. D 81, 074035 (2010).
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