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Imaging beyond the diffraction limit barrier has attracted wide attention due to the ability to resolve previously hid-
den image features. Of the various super-resolution microscopy techniques available, a particularly simple method
called saturated excitation microscopy (SAX) requires only simple modification of a laser scanning microscope:
The illumination beam power is sinusoidally modulated and driven into saturation. SAX images are extracted from
the harmonics of the modulation frequency and exhibit improved spatial resolution. Unfortunately, this elegant
strategy is hindered by the incursion of shot noise that prevents high-resolution imaging in many realistic scenarios.
Here, we demonstrate a technique for super-resolution imaging that we call computational saturated absorption
(CSA) in which a joint deconvolution is applied to a set of images with diversity in spatial frequency support among
the point spread functions (PSFs) used in the image formation with saturated laser scanning fluorescence micros-
copy. CSA microscopy allows access to the high spatial frequency diversity in a set of saturated effective PSFs, while
avoiding image degradation from shot noise. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.482203

1. INTRODUCTION

Optical imaging is a pervasive tool used to observe the world
because the optical radiation can nondestructively interro-
gate complex objects to perform a wide array of useful tasks.
Conventional imaging strategies are limited in their ability to
resolve fine spatial features due to what was previously viewed
as a fundamental limitation on the ability to resolve features
significantly smaller than the optical wavelength [1]. This
limitation stems from the fact that only spatial frequencies
smaller than the optical wavelength will propagate any reason-
able distance for far-field detection. As a result, the high spatial
frequency content obtained through interaction with objects
containing structures much smaller than the wavelength evanes-
cently decays, which leads to a long-held notion that imaging
such small features requires a near-field scanning method [2] to
optically image such small object features.

The emergence of super-resolution imaging techniques has
shattered the notion that sub-wavelength structures cannot
be resolved with far-field optical microscopy [3–5]. Through
the manipulation of excited state populations with nonlinear
switching beams, the region of luminescent emission [6,7] or
transient absorption [8] can be restricted to a region an order

of magnitude smaller than a diffraction-limited focal spot.
These methods require the careful overlap of two laser beams of
different colors: an excitation beam and a de-excitation beam.

An alternate method that exploits a simpler experimental
strategy only requires a single beam to drive the excited state
population into saturation. This method, called saturated
excitation (SAX) microscopy [9,10], can produce images
that resolve spatial features with a resolution that defeats the
diffraction limit. SAX super-resolution images are obtained by
modulating the total power of the illumination light intensity
sinusoidally and measuring the harmonics of the input modula-
tion frequency recovered from the signal emitted by the object.
While SAX microscopy is an elegant laser scanning method that
requires only a small modification of a laser scanning micro-
scope, SAX enhancements in resolution improvement suffer
from contamination by the shot noise that is present across all
harmonics [11]. A further improvement to this method called
dSAX [10] extracts the nonlinear signal in a more efficient
manner, yielding the same resolution enhancements as SAX, but
with a higher SNR. While this method improves the SNR, it still
discards most of the energy contained in the signal by separating
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Fig. 1. Graphical representation of how the data (top) and image
(bottom) are formed using CSA (excluding noise). Image courtesy of
MicroscopyU [13].

the higher-resolution images according to different orders of
nonlinear signal extracted.

In this paper, we demonstrate what we believe, to the best
of our knowledge, is a new technique called computational
saturated absorption (CSA) using a joint deconvolution fusion
algorithm called super-deconvolution imaging (SDI) [12].
CSA produces excellent super-resolution image quality under
conditions where SAX imaging is highly degraded due to cor-
ruption by shot noise. In our improved imaging approach, a
sequence of laser-scanned fluorescent images are acquired under
differing levels of saturation of the excited state of the fluores-
cent molecule. The underlying object is estimated from the set
of images that are jointly deconvolved with the set of saturated
point spread functions (PSFs), as shown in Fig. 1. The power
of the CSA technique is that it does not rely on information
only contained at a certain harmonic to get super-resolution
information and is able to use all the nonlinear components
together instead of separately. CSA leverages prior information
of the saturation function and iteratively solves for an image that
best matches the entire set of data given the model of how the
PSF should change with corresponding levels of saturation. This
leads to a high-resolution, high-SNR image without the need to
trim out certain portions of the signal that contain the nonlinear
response, as in SAX and dSAX. At higher levels of saturation,
the effective PSF (ePSF) becomes brighter, broader, and steeper,
so that the SNR of the data and the steepness of the edges of the
ePSF increase. With this strategy, we obtained higher-resolution
images than allowed by the diffraction limit. Moreover, we
show that the image quality obtained by CSA is superior to
imaging under similar conditions with SAX microscopy as well
as traditional deconvolution techniques.

2. THEORY

To appreciate the improvements in super-resolution imaging
through CSA over SAX, we considered the effect of the PSF
saturation in the two methods. In both cases, we modeled a
laser beam focused to a diffraction-limited spot that can be
described by the PSF for unaberrated illumination optics as
PSFi (ρ̃)= J1(2πNAi ρ̃)/(πNAi ρ̃). The numerical aperture
(NA) of the illumination optic is NAi and ρ̃ is the radial spatial

coordinate ρ that is normalized by the excitation wavelength λ
and J1 is a first-order Bessel function of the first kind. In both
CSA and SAX, the illumination beam is used to drive a fluo-
rescent molecule into saturation during excitation. Assuming
a three-level molecular system with a cw excitation model, the
excited state population is given by e (ρ̃)= α(ρ̃)/(1+ α(ρ̃)).
The local saturation is α(ρ̃)= α0PSFi (ρ̃), with the peak
saturation value α0 = I0/Isat defined as the ratio of the peak
illumination intensity I0 to the saturation intensity of the
fluorophore Isat.

The traditional SAX method for image formation uses
information contained in harmonics generated from the non-
linear response of the saturation excitation of the sample. SAX
microscopy exploits a sinusoidal temporal modulation of the
illumination beam of the form α(ρ̃) fm(x ), where the temporal
modulation is of the form fm(x )= (1+ cos(x ))/2, x =ωm t ,
and ωm is the input modulation frequency. Temporal modula-
tion of the local saturation produces an excited state population
that varies in space and time, so e s [α(ρ̃), x ] = α(ρ̃) fm(x )/
[1+ α(ρ̃) fm(x )]. The nonlinear functional mapping imparted
by the nonlinear saturated excitation function produces har-
monics qωm , where q is the harmonic order index. Each
harmonic separately yields an image, which contains resolu-
tion information beyond that of the diffraction limit. With
each increasing harmonic, the resolution improves, but the
SNR drops dramatically. The imaging model for SAX is gen-
erally constructed by considering a Taylor series expansion
of the excited state saturation, which generates harmonics of
the input modulation frequency ωm that lead to an impulse
response for harmonics that geometrically scale the harmonic
order; i.e., PSFq (ρ̃)∝ PSFq

i (ρ̃). Unfortunately, the Taylor
expansion diverges for relatively small values of peak saturation
(α0 ∼ 0.4), yet large values of peak saturation are required to
produce appreciable SNR in SAX images. The limitation of
the Taylor expansion is easily remedied by computing a cosine
series expansion amplitude of the excited state population
at the q th harmonic of the saturated excited state population
c q (α)= (2π)−1

∫ π
−π

e s (α, x ) cos(q x )dx . An analytic solution

c q (α)= (α/2)2 F̃3(1, 3/2, 2; 2− q , 2+ q ; −α) is expressed
in terms of a regularized hypergeometric function 2 F̃3. The PSF
for the q th SAX order follows from the expansion coefficient
PSFq (ρ̃)= c q [α0PSFi (ρ̃)].

To estimate the SNR, consider a set of N fluorophores
with a radiative emission rate of kr that are localized to a sub-
resolution region in space. The maximum signal for the q th

SAX order occurs when the peak of the illumination PSF is
centered on the fluorescent probe, resulting in a detected photo
rate φq = ηD Nkr c q (α0) that depends on the level of satu-
ration. SAX signals are subject to multiplexed noise because
they are detected in the frequency domain, which means that
the shot noise is determined by the average detected pho-
ton emission rate that is given by φ0 = ηD Nkr c 0(α0), where
c 0(α)= 1− (1+ α)(−1/2), indicating that shot noise rises with
increasing saturation. Here, ηD represents the total detection
efficiency, including the detector efficiency, the transmission
efficiency through optical components, and the collection
efficiency of the objective The peak SNR for the q th order
SAX image is SNRq = κq Y. Here, κq = c q (α0)/

√
c 0(α0) and
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Y=
√

NkrηD1t , with 1t denoting the observation time.
For a ∼100 nm diameter sphere with a fluorescent dye and
typical numbers of N ∼ 1000, kr ∼ 1/3.8 ns, ηD ∼ 0.1, and
1t = 50 µs, then Y∼ 1000. For a peak saturation param-
eter of α0 = 0.4, then κ1 = 0.18, κ2 = 0.015, κ3 = 0.0013,
κ4 = 1.1× 10−4. Thus, for these numbers, only the first three
harmonic orders will rise above the noise threshold even in the
shot noise limit. Higher saturation is required to obtain higher
harmonics; however, the PSF for the harmonics will broaden
at increased saturation, degrading the improvements in spatial
resolution.

In contrast, the CSA imaging demonstrated here can exploit
the high spatial frequency content probed by driving laser
scanning microscopy (LSM) into saturation, while simulta-
neously improving the SNR as higher-resolution imaging is
scaled with increased peak saturation. In CSA, we recorded
a set of LSM images, each with an increased level of peak sat-
uration of the illumination PSF. A primary CSA advantage
is that the signal at each saturation level is obtained directly
from the saturated excitation level, leading to an ePSF given by
ψ(ρ̃)= (α0PSFi (ρ̃))/(1+ α0PSFi (ρ̃)) that is parameterized
by the peak saturation parameter α0. Because CSA does not suf-
fer from excess background signal levels, the SNR coefficient for
the recorded image at each saturation level is simply determined
by the detected fluorescent photons from the peak of the PSF at
ρ̃ = 0, leading to a value κCSA =

√
α0/(1+ α0). Several ePSFs

for a range ofα0 values are shown in Fig. 2(d).

3. JOINT DECONVOLUTION ALGORITHM

CSA jointly exploits the information gained by probing a sam-
ple with a set of saturated effective PSFs at several saturation
levels. For each image, the incident laser power is adjusted to set
the peak saturationα0,s that produces an image with an effective
saturated PSF that we denote asψs (ρ), and the subscript s labels
the image in the set with the corresponding saturation level
α0,s , which goes from 1 to M. The 2D discrete approximation
to the ePSF is indicated by the ePSF in bold; ψ s =ψs (xi , y j )

Fig. 2. (a) Expected MTF to increase the levels of saturation in the
asymptotic limit. (b) and (c) How the expected resolution trends with
the max saturation level. (a)–(c) Normalized in terms of wavelength
so they are all unitless. (d) Illustration of how the PSF changes shape
according to the maximum saturation level of each simulation. Each
MTF is generated using the CSA technique with a set of 15 PSFs evenly
sampling the saturation curve starting from .01Isat to the maximum
saturation level. The plots to the right show the PSFs at increasing
levels of peak saturation (α0 = I0/Isat = [.1, 1, 10, 100, 1000],
respectively).

and xi and y j are discrete spatial coordinates values. The com-
putational algorithm uses a vector form of the discrete ePSF
Eψ s = [ψ s ]flatten, in which the flattened vector is composed of
the columns ofψ s stacked on top of one another.

For a fluorescent object with a spatial distribution of flu-
orophore concentration c (ρ), a recorded image in the set is
proportional to c (ρ)~ψs (ρ) as with any incoherent LSM
technique. The discrete approximation to the convolution
model can be written as a matrix equation Eys = As Ec+ Ens ;
that is, the discrete 2D convolution between ψ s and the dis-
crete object [c]i, j = c (xi , y j ) flattened to a column vector
Ec = [c]flatten. The convolution measurement matrix operator
As is the matrix form of the discrete convolution integral for an
ePSF ψ s . Each row of this matrix represents a shifted version
of Eψ s . The discrete signal vector Eys is a 2D image that has been
flattened into a vector. Noise in the measurement is denoted
by Ens .

The effective optical transfer function (eOTF) is given by
9s (kx , ky )=F {ψs (ρ)}, where k⊥ = (kx , ky ) is the conjugate
variable to ρ and F { } is a Fourier transform. The vectorized
eOTF E9 s = [9 s ]flatten is the flattened form of the discrete eOTF
9 s . Because the image formation process for the saturated
ePSF is linear and shift invariant, the convolution operator has
the form As = F†diag{ E9 s }F, with discrete Fourier transform
(DFT) and the DFT adjoint operators denoted by F and F†,
respectively. As the convolution operator is diagonalized by
the DFT, the adjoint of the convolution operator is simply
A†

s = F†diag{ E9 s }
∗F, where ∗ represents the complex conjugate.

The fact that the adjoint operator is equivalent to a cross corre-
lation is exploited to construct a computationally efficient CSA
image estimation algorithm. The signal spatial frequency vector
is thus given by EYs = E9 s ◦ EC+ ENs , where◦denotes an element-
wise (Hadamard) product between the vectors. Here, EC= FEc,
EYs = FEy, and ENs = FEns are the spatial frequency vectors of the
object, signal, and noise, respectively.

CSA employs a set of data vectors, each taken at a distinct
level of peak saturation α0,s , from which the underlying object
Ec is jointly estimated. In the simplest form, we seek to find an
optimal object vector Ec∗ by

Ec∗ := argmin
Ec>0

1

2

(∥∥AT Ec − EyT

∥∥
2 +

∥∥λI Ec
∥∥

2

)
, (1)

which is a problem formulated as a least mean squared fit. Here,
both the total signal vector EyT and the convolution operator
AT are concatenations of the full data set of M independent
images at separate saturation levels, as shown in Figs. S2 and
S3; therefore, for an N × N data scan for each image, each
signal vector of length N2 is concatenated to form EyT of length
MN2. Similarly, AT is a tall and skinny matrix with dimen-
sions of MN2

× N2; each As is stacked on top of one another
vertically, as shown in Fig. S2. To illustrate the CSA princi-
ple and to estimate the PSF and OTF of the result of super
deconvolution, we compute Eq. (1), with a very small λ value,
which avoids large values in the reconstruction due to small
eigenvalues of A†

TAT . We directly obtain the LMS solution by
computing the regularized Moore–Penrose pseudoinverse of
the concatenated data and convolution operators, which yields
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Fig. 3. These plots show the simulated MTF by direct computation
using the pseudoinverse. A point object was reconstructed, which was
much narrower than the simulated PSFs. The Fourier transform of the
reconstruction was then taken to produce the MTFs. A computing
cluster (ASHA) with 192 GB RAM was used to carry out these simula-
tions. (a) Corresponding MTF for increasing the number of PSFs used
in the super deconvolution for the saturation intensity increasing from
.1Isat to 4Isat. The dashed line corresponds to the usual deconvolution
using a single PSF with the intensity set to .001Isat. The solid black
line is the MTF for the laser scanned image without deconvolution.
(b) Illustration of how the MTF changes with increasing the maximum
intensity to different multiples of Isat (α0 =

I0
Isat
). Each colored curve is

the result of the super deconvolution using 15 PSFs rising to the corre-
sponding saturation level. The dashed line is again the deconvolution
with a single unsaturated PSF. (c) Comparison of MTFs generated
with the traditional SAX technique using the same illumination PSF
and a saturation level of α0 = 4. The first, second, and third harmonics
are used to generate the MTFs. In all the plots, the axis is normalized
in terms of wavelength and spatial frequency to be unitless. All three
simulations used an illumination wavelength of λ= 500 nm with an
NA= 1.4 objective to set the initial resolution.

the solution Ec∗ = (A†
TAT + λI )−1A†

T EyT , where −1 indicates
the matrix inverse. The results of noise-free simulations of a
sub-resolution point object to estimate the PSF and OTF are
presented in Fig. 3. Even in a noise-free case, CSA outperforms
both a simple linear devolution and conventional SAX imaging
by providing much better spatial frequency support for image
formation. Asymptotic behavior of the OTFs with very high
levels of saturation is further explored in Fig. 2.

Computation of the pseudoinverse provides a direct solution
to the super-deconvolution problem for CSA but is infeasible
for realistic image sizes. For an image size of 256× 256 and a
set of 15 images (each at a different saturation level) with zero
padding, the matrix occupies ∼512 GB of data, which exceeds
the available memory in most computers. This computational
hurdle can be significantly reduced by carrying out the opera-
tion of AT and A†

T equivalently in terms of Fourier transforms,
which eliminates the need to store a large concatenated Toeplitz
matrix AT in memory. Due to computational constraints, we
solved the CSA problem with an iterative optimization algo-
rithm called the fast iterative shrinkage thresholding algorithm
(FISTA). Because FISTA is a regularized form of a gradient
descent optimization algorithm we needed a current guess and
the gradient of Eq. (1). The key to handling large data sets with
such an algorithm is to find a method to compute the gradient
value for each iteration without requiring instantiating AT [14].

For efficient computation, the gradient term in the FISTA
algorithm is computed without inverting and instantiating
the large matrices that arise in the CSA problem. To do so, the
gradient Eg of Eq. (1), which for a single image deconvolution
is given by Egs = A†

s (As [Ec − Eys ])+ λ
2Ec, is computed through

FFT operations with Egs = F†( E9
∗

s ◦ F[F†( E9 s ◦ EC)] − Eys ). As
shown in Supplement 1, the efficient gradient computation can
be extended to the concatenated set of saturated measurements
by looking closely at the operation of the joint convolution
operator AT and its adjoint A†

T and comparing to the calculation
of the convolution and cross correlation using Fourier trans-
forms. The convolution of the concatenated set of progressively
saturated ePSFs ψT and the concentration map of our image c
can be calculated ψT ~ c = F†(FψT ◦ Fpad[c]). The pad( )
operation zeropads the object c so it becomes the same size as
ψT (ψT is MN × N and c is N × N). The padding operation
allows the Hadamard product to be carried out and gives the
same result as AT Ec after being flattened. The adjoint operation
A†

T operates on an array that is the same size as our data vector
EyT and outputs a vector the size of Ec.

The adjoint of a convolution is a cross correlation that
can be calculated using Fourier transforms as ψT ? vT =

F†(Fψ∗T ◦ FvT), where ? represents the cross correlation and v
is a dummy array the same size as ψT . The problem here is that
the output of this calculation is not the same size as A†

TvT . This
discrepancy is due to the limited number of columns of AT . The
operation of A†

T only has enough rows to shift ψT with respect
to vT one image width when carrying out the cross correlation.
As shown in Supplement 1, this means the A†

T operation only
returns the central part of the cross correlation of the concat-
enated arrays, which is equivalent to

∑M
s=1 ψs ? vs . The full

cross correlation returns the concatenation of the sum of differ-
ent combinations of images in the set given as F†(Fψ∗T ◦ FvT)=

[ψ1 ? v1|
∑2

j=1 ψ j ? v j |
∑3

j=1 ψ j ? v j |
∑3

j=2 ψ j ? v j |ψ3 ? v3]

(for M = 3). The required adjoint is contained only in the
central image of this full cross correlation.

We can now calculate the operation of AT and A†
T using

efficient FFTs without holding AT in memory using AT Ec =
[F†(9T ◦ Fpad[c])]flatten and A†

T EvT = [C(9∗T ◦ FvT)]flatten.
Here, C(·) is a cropping operator that denotes taking the central
part of the array and [·]flatten describes taking the 2D array and
flattening it into a vector. Using this description, we can now
carry out the super deconvolution of the set of data and satu-
rated PSFs using FISTA while avoiding storing large matrices
in memory. Typical run times to perform the joint deconvolu-
tion range from 5 to 15 min depending on the size of the data
and the required number of iterations. This produces a single
image that combines information from each LSM image to
synthesize a high SNR super-resolution image. See Supplement
1 for a comprehensive overview and detailed explanation of the
CSA algorithm. The pseudocode for the algorithm is shown in
algorithm S2 in Supplement 1 and a block diagram is shown in
Fig. 4.

4. RESULTS

To benchmark the expected performance of the CSA algorithm,
we performed simulations, the results of which are shown in
Fig. 5. As discussed earlier, CSA can fully exploit the improved
high spatial frequency object information because this strategy
does not suffer from multiplexed shot noise that buries the
higher harmonics in traditional SAX imaging. The top left set of
images in Fig. 5 displays the results of our simulations, where the

https://doi.org/10.6084/m9.figshare.23268731
https://doi.org/10.6084/m9.figshare.23268731
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Fig. 4. Block diagram showing each step of CSA imaging as well as the FISTA algorithm.

left column shows dSAX with and without noise, as shown in
Figs. 5(d) and 5(a), respectively. The middle column of images
are traditional third-order (q = 3) SAX images (noise-free), as
shown in Fig. 5(b), and with noise, as shown in Fig. 5(e). The
right column has images for CSA, with Fig. 4(c) showing the
noise-free result and Fig. 5(f ) showing the result when noise
is present. While the images in the bottom row are degraded
compared to the top row, CSA super-resolution imaging is
significantly more robust to noise and produces a much higher-
quality image. As shown in Fig. 3(a), the number of PSFs used
does not show a dramatic difference in OTF support. Fifteen
PSFs were used in the simulations, but similar results should be
expected to use fewer PSFs. While the superior image quality
is evident in Fig. 5(f ), the image itself provides no quantitative
argument for the superior image quality.

To evaluate the spatial frequency information content of the
reconstructed images, the radially averaged spatial frequency
content of the images is shown in Fig. 5(g). The true object
radial spatial frequency distribution is denoted by the solid black
line. Noise-free reconstructions for a maximum peak satura-
tion parameter of α0 = 4 are shown by solid lines for dSAX,
CSA, and three harmonics of SAX. Image reconstructions in
the presence of both additive Gaussian (standard deviation of
1% of the maximum value) and Poisson noise (mean photon
count= 25000) are indicated by dashed lines of the same color.
CSA shows robust behavior in the presence of noise, whereas
the limitations of the multiplexed shot noise is evident in the
constant values of spatial frequency amplitude at high spatial
frequencies that is determined by the value of c 0 in the cosine
expansion. In the case of SAX, we see that the cutoff spatial fre-
quency for imaging depends on the noise level. As the noise level
rapidly rises with higher SAX orders, the cutoff spatial frequency
is reduced. These particular values of cutoff depend on the noise
level in the measurement, which in turn follows the average
value of the fluorescent emission. Thus, traditional SAX imag-
ing is likely limited to bright objects. The dSAX method was
also compared, which extracts the third-order nonlinear signal
from the same saturated images used for CSA. The result is that
with no noise present, both dSAX and the third harmonic from
SAX yield nearly identical results. When noise is introduced,
the dSAX method yields much higher SNR. Even though dSAX
gives a much better SNR than SAX it still relies on the extraction
of the third-order nonlinear signal, which suffers from the same

Fig. 5. (a) and (d) Simulations comparing the imaging performance
of the dSAX; (b) and (e) SAX; and (c) and (f ) CSA imaging techniques
with and without noise. Images (a)–(c) show the reconstructions
without noise and (d)–(f ) with additive Gaussian noise and Poisson
noise present in the simulated data (mean photon count of 25000 and
additive Gaussian noise with standard deviation of 1% of the maxi-
mum value). (a) and (d) Reconstructed images using dSAX extracting
the third-order nonlinear signal [10]. (b) and (e) Reconstructed images
using SAX demodulated at the third harmonic. (c) and (f ) CSA tech-
nique with a set of 15 images with the intensity going from .01 to
4Isat. The data is simulated with a nuclear pore complex image [15].
(g) Radial average of the spatial frequency content of the reconstructed
images with each normalized to the DC value. (g) and (h) Solid lines
indicate the reconstructions without noise present and the dashed lines
represent reconstructions with noise present. (h) Transfer function
of the reconstructed images. This is found by dividing the Fourier
transform of the reconstructed image by the Fourier transform of the
true image and then taking the radial average. Bar graph (i) shows the
MSE of each of the reconstructions. SNR values were also calculated
for CSA (23.3 dB), dSAX (18.1 dB), and SAX demodulated at the first
through third harmonics (38.17 dB, 21.3 dB, and 8.7 dB).

multiplexed noise. While CSA is not subject to multiplexed
noise, we see that the amplitude of the spatial frequency content
is attenuated at high spatial frequencies when noise is present.

The quality of the estimated images can be quanti-
fied by computing the SNR with the formula SNR=
10 log10[

∑N
i=1 X̂ i/

∑N
i=1(X̂ i − X i )] and the mean squared

error (MSE) with the formula MSE= N−1 ∑N
i=1 (X i − X̂ i )

2,
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Fig. 6. (a) Laser scanned image with an input intensity of 0.29α0. (b) Resultant deconvolution of the laser scanned image in (a) using FISTA.
(c) Resultant image using dSAX [10]. (d) Resultant image using CSA with all four laser scanned images using FISTA. Below each image shows a
zoomed-in portion of each corresponding reconstruction along with a line out. This clearly shows a resolution enhancement in the case of CSA since
more fibers can be resolved. This is especially evident near the far-right edge of the fibers where only the CSA reconstruction can distinguish that
there are two sub-resolution fibers that run parallel to each other along this edge. The dSAX image shows an improvement in resolution similar to the
deconvolution, but the SNR is poor compared to the CSA image. Scale bar is 25µm.

where N is the total number of elements, X is the true image,
and X̂ is the observed image. These formulae benefit from the
fact that for the simulations the true object is known. Here, we
see that the first-order SAX image, which is similar to a con-
ventional LSM image, is robust to this particular level of noise.
However, this first-order image has low spatial resolution com-
pared to CSA and higher SAX orders. The second-order SAX
image is mildly affected by the noise, whereas the third-order
SAX image is severely degraded. The CSA image SNR and MSE
are mildly degraded by the noise; however, the SNR is signifi-
cantly higher and the MSE is significantly lower for the CSA
image compared to all SAX image orders. Compared to dSAX,
CSA also results in a higher SNR and spatial frequency content
as observed in both the radial average of the spectrum and trans-
fer function compared to the ground truth. While further study
is required to fully explore the impact of noise, these conditions
clearly show significant benefits for CSA imaging.

The experimental CSA images are shown in Fig. 6. The
experiments were conducted with ∼250 fs pulses centered at
1035 nm (Y-Fi NOPA, Thorlabs Inc.). The peak saturation
parameter α0,s is controlled by varying the average power of
the excitation beam with a constant amplitude RF driving
signal applied to an acousto-optic modulation (AOM). The
illumination beam is directed into a laser scanning nonlinear
microscope [16]. For this experiment, two-photon absorption
of fluorescein-dyed fibers was used. There is no change in the
algorithm from linear absorption to two-photon absorption
for the CSA and dSAX techniques. The only modification for
CSA is to ensure the model for the saturated PSF is adapted to
account for a slight change in the saturation function. This is
described in detail in Section 6 in Supplement 1. The emitted
two-photon fluorescence from the sample is collected in the
forward direction with a photomultiplier tube (PMT) after
being passed through a dichroic filter to reject the pump light.
Saturation curves are measured by recording the PMT signal as
a function of incident illumination power that is rapidly varied

applying a ramp function to the RF modulation signal ampli-
tude of the AOM, allowing for an accurate estimation of the PSF
shape as intensity values reach different saturation levels.

The fluorophore is excited through two-photon absorption
with the pulsed laser source. This excitation produces a satura-
tion curve that is shown in Fig. S7 in Supplement 1. Accurate
modeling of each saturated PSF requires that the saturation
curve be well characterized. Measured fluorescent saturation
data are fit to the pulsed two-photon excitation model given
in Eq. (S16) in Supplement 1. The fit to the experimental
data is used as the nonlinear function map that transforms the
measured low intensity linear PSF to the ePSF at a given exper-
imental saturation level to estimate the saturated ePSFs used in
the super deconvolution process. The effective linear input PSF
is estimated from an image of a 100 nm diameter fluorescent
nanodiamond under conditions of weak (i.e., unsaturated)
excitation. Saturated ePSFs for the super deconvolution model
are synthesized from the saturation curve and the illumination
PSF.

Images of the sample, composed of tissue fibers stained
with fluorescein dye, were taken at four different power lev-
els reaching a maximum peak saturation level three times the
two-photon saturation intensity; i.e., α(2)0 = 3. These images
were used to obtain a saturation curve by rapidly measuring the
fluorescent signal with the excitation beam parked at one posi-
tion in the sample. The measured fluorescent signal data points
were fit to Eq. (S16), which expresses the mean fluorescence
signal F for two-photon emission assuming the pulse duration
is much shorter than the fluorescence lifetime and time between
pulses, and I (2)sat is the two-photon saturation intensity. With the
saturation curve based on a fit to the experimental fluorescent
power saturation curve, the CSA algorithm can be applied to
the image data. The images are first aligned with a cross cor-
relation to remove any spatial drift accumulated between the
scans. The image alignment is performed by minimizing the
cross-correlation amplitude between a selected reference image
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and the remaining images in the stack. Then, a set of saturated
ePSFs were computed using the experimentally derived linear
PSF measurement and the two-photon saturation curve func-
tion. Both the images and the ePSFs are normalized to unity
at their peak values and run through the CSA deconvolution
algorithm, which is a FISTA optimization routine that is used
to estimate a single, high-resolution image. The experimental
reconstructed images are shown in Fig. 6. For comparison,
Fig. 6(a) shows the LSM image for a relatively weak excitation at
α
(2)
0 = 0.29. The simple deconvolution of this image shown in

Fig. 6(b) shows that higher resolution features can be extracted
from the two-photon fluorescence image of fluorescein-dyed
fibers. A reconstructed image solving for the third-order non-
linear signal using the dSAX technique is shown in Fig. 6(c).
A CSA image obtained from a set of four saturation levels with
α
(2)
0 = .29, .8807, 1.81, 2.98 produces a higher resolution

image with better SNR. For comparison, a zoomed in portion
of each image is shown with plots of a line-out of a section of the
image. This clearly shows a resolution enhancement afforded
by the CSA technique shown in Fig. 6(d) with the CSA image
resolving more fibers than the LSM, deconvolved or dSAX
images. The LSM image shows a relatively high shot noise level.
The dSAX image shows a nice improvement in resolution, but
the SNR is quite low. Single linear deconvolution helps suppress
this noise and brings out some of the high spatial frequency
information in the image. CSA brings out more information
than the linear convolution and dSAX across the spatial fre-
quency band since it uses information from many orders of the
nonlinear signal simultaneously, which highlights the improved
imaging performance using CSA.

5. CONCLUSIONS

To summarize, we have introduced what we believe is a new
super-resolution optical imaging modality in which we exploit
information from a set of images, each acquired with a distinct
ePSF. In this work, the set of ePSFs, each of which corresponds
to a fluorescent image acquired at increasing levels of saturation
of the fluorescent excitation, are jointly deconvolved to produce
a super-resolution image. While the excitation of the fluores-
cent excited state is nonlinear in the case of saturation, we may
define an effective PSF that follows a linear image formation
model that is determined by the saturation curve of the excited
fluorescent molecule. As the saturation level increases, these
ePSFs become steeper, wider, and brighter. As a result, the eOTF
exhibits both a higher SNR and higher spatial frequency support
at higher saturation levels. We developed a computationally
efficient strategy to jointly solve a super deconvolution problem
by combining all the information represented in the spatial fre-
quency diversity across the set of measured images with the set of
ePSFs. This CSA strategy combines all the information acquired
from the set of measurements. Each measurement spans a range
of transverse spatial frequencies. The weakly saturated images
have a narrower range of spatial frequency support, and thus
exhibit higher SNRs in the image data at low transverse spatial
frequencies. By contrast, the higher saturation level images
have higher signals overall, but the signals are spread across a
much broader spatial frequency range. The super deconvolution
requires that the estimated image simultaneously satisfy all the

measured image data. As a result, a high SNR at low spatial
frequencies provided by images with low saturation helps to
stabilize the higher spatial frequency content obtained with
the saturated images. Consequently, CSA yields an improved
spatial resolution as well as higher SNR images than is possible
with conventional LSM, SAX, dSAX or even from the decon-
volution of either LSM or SAX images. Moreover, Fig. 2 shows
that the resolution improvements continue to scale as the peak
saturation increases. Obviously, the improvements cannot scale
indefinitely, but some fluorescent and luminescent systems can
reach extremely high saturation levels while remaining well
below any damage threshold. Indeed, even in the case of organic
dyes that can tolerate GW/cm2 peak intensity levels, α0 ∼ 3000
is possible. In the case of systems with similar absorption cross
sections, but long lifetimes, such as rare earth ions and photo-
switchable proteins, the peak saturation level can exceed 105,
suggesting extremely fine spatial resolution imaging is possible.
There are two other limitations of this technique: its reliance on
relatively high saturation levels, which can cause photobleach-
ing or damage in some samples, and the requirement for precise
knowledge of the system’s PSF and the saturation function of
the samples.
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