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ABSTRACT

Items in working memory (WM) are prioritized if they are relevant to task goals, are physically salient, or have acquired importance from implicit learning. We
propose that all forms of prioritization increase the likelihood of recall, but only goal-driven attention will affect the quality of those representations. In a delayed-
estimation task with four colors, prioritization was manipulated via a predictive spatial cue (goal-driven attention), a non-predictive peripheral cue (physical
salience), or implicit learning of a previously relevant target location. Probabilities of recalling the target (Piarger) and memory precision were estimated using a
Bayesian implementation of the mixture model. Strong evidence was observed that all forms of prioritization increased Pyarger, Whereas physical salience and implicit
learning had only weak or negligible effects on precision compared to goal-driven attention. We propose that generating and maintaining high-resolution memories is
an effortful process that will primarily be invoked when participants voluntarily prioritize memory items.

Introduction

Working memory (WM) has a limited capacity and is unable to store
all information encountered in the environment. This limited capacity
places heavy demands on prioritization including selecting which in-
formation to encode into WM and maintaining the quality of these
selected representations over time. Prioritization is based on several
factors such as relevance to task goals, physical salience, and implicit
learning from past experience (Awh, Belopolsky, & Theeuwes, 2012).
Prioritization by any of these methods results in better recall (Fang,
Ravizza, & Liu, 2019; Gong & Li, 2014; Ravizza et al., 2016; Schmidt et
al, 2002; Umemoto et al., 2010; see Ravizza and Conn. 2021 for a re-
view), but it is unclear whether all modes of prioritization affect WM in
the same way. The goal of the current study was to investigate how WM
representations are affected by the mode of prioritization.

Here, we investigated three ways in which prioritization influences
WM performance. First, information that is relevant to task goals can be
prioritized in a voluntary manner through goal-driven attention. Sec-
ond, physical salience (e.g., high contrast, sudden onset, loudness) can
capture attention even if the information is not task relevant. Third,
information that has been previously selected can influence prioritiza-
tion through implicit learning despite being irrelevant to current task
goals. All three ways of prioritization improve WM performance, but it is
unclear whether this improvement is due to the same underlying
mechanisms.

Leading models of WM generally assume that prioritization is
important for maximizing a limited-capacity resource (Baddeley, 2012;
Cowan, 1999), but they assume that the effects on performance are
equivalent regardless of how information is prioritized. For example,
several models posit that both goal-driven attention and physical
salience increase the activation level of items in long-term memory
(Cowan, 1988, 1999; Brown, Preece, & Hulme, 2000; Farrell & Lew-
andowsky, 2002). Thus, both ways of prioritizing information are
thought to increase the likelihood that information is encoded. After
attentional selection at encoding, these models are agnostic as to the fate
of information that has been prioritized through different selection
mechanisms. Information that is strongly activated, either by goal-
driven attention or physical salience, is placed in the “focus of atten-
tion” (FOA) and is maintained in an active state by control processes
such as attentional refreshing and articulatory rehearsal (Cowan, 1999;
although see, Oberauer (2019); thus, maintenance processes are pre-
sumed to be similar regardless of how information is prioritized.
Moreover, no model has addressed the effect of prioritization through an
implicitly learned attentional bias. In the present study, we assessed the
effect of prioritization on the likelihood that information is selected at
encoding as well as whether the mode of prioritization had similar or
different effects on the quality of the representation.

Prioritization could improve WM in at least two ways: 1) increasing
the probability that information is selected for encoding into WM and, 2)
if selected, by generating and maintaining a high-quality representation.
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We hypothesize that the mechanisms of prioritization do not entirely
overlap and that prioritization through goal-driven attention increases
both the likelihood of encoding and the quality of the representation. In
contrast, we suggest that physical salience and implicit learning pri-
marily orient attention to prioritized information while having less of an
effect on representational quality.

This hypothesis is consistent with observed differences in the effects
of prioritization in perceptual tasks; namely, goal-driven attention en-
hances both the speed of orienting and the strength of the perceptual
representation of attended stimuli whereas physical salience primarily
affects the former (for a review, see Prinzmetal & Landau, 2008). For
example, both predictive (goal-driven attention) and non-predictive
(physical salience) spatial cues improved reaction time in a facial
discrimination task while only predictive cues improved accuracy
(Prinzmetal, McCool, & Park, 2005). Moreover, neural responses to
goal-driven prioritization increased along the visual pathway whereas
the effects of physical salience remained at a constant, and lower, level
(Dugué et al., 2020). These observations suggest that goal-driven
attention leads to longer or deeper processing of the attended stimulus
than physical salience and, perhaps, implicit learning.

Rather than affecting the strength of attentional processing, physical
salience and implicit learning primarily affect the speed of orienting
(Riggio & Kirsner, 1997; Huang, Theeuwes, & Donk, 2020). Event-
related potential studies support this hypothesis; for example, the la-
tency of the N2pc component, an early marker of selective attention, was
shorter for physically salient targets in a visual search task compared to
non-salient targets, but the amplitude of the N2pc was unchanged
(Bachman et al., 2020). Similarly, implicit perceptual learning resulted
in shorter latencies of the N2pc when stimuli were irrelevant to a visual
search task than when they were task relevant and, thus, engaged goal-
driven attention (Qu, Hillyard, Ding, 2017). In contrast, targets selected
through goal-driven attention showed higher N2pc amplitudes rather
than latency differences compared to non-prioritized targets (Kiss, Van
Velzen, & Eimer, 2007). Physically salient items are thought to be
prioritized through bottom-up attention (Santangelo, 2015) which is
both automatic and transient (Miiller & Rabbitt, 1989) and this is re-
flected in shorter latencies of attentional selection rather than an in-
crease in the strength of attentional effects.

We propose that this fast and automatic orientation to physically
salient and implicitly learned items increases the probability that the
attended item is encoded. Consistent with this idea, physically salient
items that captured attention were marked by indicators that they were
encoded first; namely, they were recalled first in a free-recall task
(Ravizza, Uivlugt & Hazeltine, 2016). Similarly, we propose that items
prioritized through implicit learning will also result in the automatic
orienting of attention to those items in line with ideas that implicit
learning creates an “attentional habit” (Jiang et al. (2015)).

The faster but more transient effects of physical salience and implicit
learning may not have as profound an effect on WM performance as
goal-driven prioritization, however. We hypothesize, that representa-
tional quality is less affected from prioritization through physical
salience or implicit learning. The transient effects of automatic attention
selection will likely dissipate and, thus, not provide for further prefer-
ential processing of the selected stimulus. Moreover, the process of
prioritizing information during maintenance takes effort and does not
occur automatically. Attentional refreshing and subvocal rehearsal are
both strategies that are used to maintain information in WM and both
are undertaken voluntarily (Hasher and Zacks (1979); see Camos et al.,
2018, for a review). There is no reason to rehearse or refresh physically
salient or implicitly learned information that is irrelevant to task goals.
Instead, the focus of attention (FOA) should alternate between items
during retention, such that the quality of the representation of physically
salient or implicitly learned information degrades in the same way as all
other representations in WM.

In contrast, goal-driven attention is thought to improve recall
because of a greater probability of selection at encoding and greater
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refreshing of the representation during maintenance (Gazzaley & Nobre,
2012). At encoding, goal-driven attention will increase the likelihood
that information will be encoded first, making it more likely to enter WM
(Ravizza, Uivlugt & Hazeltine, 2016). Moreover, these items may be
more deeply processed at encoding as suggested from the results of
perceptual tasks and, thus, the quality of the representation may benefit.
Goal-driven attention is also hypothesized to produce further benefits by
prioritizing information during maintenance (Awh, Vogel & Oh, 2006).
During maintenance, the quality of the representation in WM remains
high for goal-relevant information because this information is more
likely to occupy the FOA in order to be rehearsed or refreshed. We
propose that information prioritized because of its relevance to task
goals is more likely to occupy the FOA and/or stay in the FOA longer
during retention. Consequently, attended items are processed longer or
more deeply at both encoding and/or maintenance resulting in a high-
quality representation.

A few studies have compared the effects of prioritization on WM
performance, typically comparing prioritization via goal-driven atten-
tion and physical salience (Schmidt, Vogel, Woodman, & Luck, 2002;
Ravizza, Uivlugt & Hazeltine, 2016). These studies, however, were un-
able to isolate whether the observed advantage for prioritized infor-
mation was due to increased selection at encoding and/or the resolution
of the memory representation. This is because the dependent variable in
these studies was accuracy, a measure which reflects both factors. To
test our hypotheses, we used a delayed estimation task (Wilken & Ma,
2004) for color that allows for estimates of the probability that an item
enters and is recalled from WM (Pqrger) and the precision of the memory
representation (k). We propose that all three methods will increase
Prarger, however, precision should be much less affected from physical
salience or implicit learning.

In all prioritization conditions, we tested WM for four colors, each
presented in a different quadrant. Goal-driven attention was directed
using a central, spatial cue that predicted the location of the color that
was most likely to be probed. In contrast, a peripheral and non-
predictive cue appeared in one of the four quadrants in order to cap-
ture attention via a salient onset at that location. Implicit learning was
manipulated by asking participants to first perform a visual search task
in which the target was more likely to occur in one quadrant. They then
performed the same WM task as described above except that no pre-cue
appeared. If participants have learned to prioritize one quadrant, items
that appear at that location should be better recalled. Our analyses will
focus on the difference in performance for prioritized and non-
prioritized information depending on how information was prioritized.

Experiment 1
Methods

The data, supplemental materials, and scripts are available here: htt
ps://osf.io/eqvam/.

Design and Participants. We used a between-subjects design because
carryover effects have been found in how participants use the cue
(Prinzmetal et al., 2015); namely, participants are more likely to treat a
non-predictive cue as predictive. Moreover, implicit learning of the cued
location might also carry over to the other conditions or be wiped out
based on selection history in previous conditions.

Though our primary analysis used Bayesian data analysis methods,
sample size was determined with a classical power analysis. To do so, an
effect size (d = .68) was estimated from the main effect of cue validity
for predictive and non-predictive cues in our previous WM study (Rav-
izza, Uivlugt & Hazeltine, 2016). With this effect size, we estimated that
a minimum of 19 participants per group would provide a power of .8 to
detect validity effects at an alpha of .05. Given that an implicit atten-
tional bias in the WM task likely relies upon learning during the search
task, we doubled the number of participants suggested by this power
analysis and aimed to recruit 38 per group. All participants provided
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informed consent and had normal or corrected-to-normal vision. Thirty-
four (average age = 18.82; 4 M/30F), 31 (average age = 19.29; 13 M/
18F), 55 undergraduates (average age = 19.5; 12 M/43F) received
course credit for their participation in the goal-driven, physical salience,
and implicit learning conditions, respectively. We excluded three par-
ticipants in the implicit learning condition because they performed > 3
SDs below the mean accuracy (93.8%; SD = 11%) on the search task,
detecting only 50-60% of targets. Data from three additional partici-
pants in this condition were lost due to technical failures. Thus, 49
participants remained in the final sample in the implicit learning
condition.

Stimuli. Four colored disks, each subtending .9° of visual angle, were
generated using Matlab (MathWorks, Natick, MA) and MGL (http://gru.
stanford.edu/mgl) and presented simultaneously at an equal distance
(2.8°) from a central fixation cross at the corners of an imaginary square.
To ensure colors were rendered with equal luminance, the monitors
were calibrated using an I1 Pro spectrophotometer (Xrite, Grand Rapids,
MI) with gamma correction. Color coordinates in CIE L*a*b* color space
were converted to monitor RGB values with a white point measured as
the display’s white background. We generated a color wheel consisting
of 180 evenly-spaced hues from a circle in CIE L*a*b color space (radius
= 79, luminance = 74, a = 25, b = 38). The four colors for each trial
were chosen at random with the constraint that they were separated by
at least 25° on the color wheel.

Procedure. Goal-driven attention to a location was isolated by
manipulating the probability that an item at a cued location will have to
be recalled (Schmidt, Vogel, Woodman, & Luck, 2002; Ravizza, Uivlugt
& Hazeltine, 2016). A predictive (50% valid), central cue was presented
consisting of a black fixation cross, subtending .4° of visual angle, with
the lines of one quadrant, chosen randomly, turning white and thick-
ening to indicate the position most likely to be probed (Fig. 1, left).
Colors at the three uncued locations were equally likely to be probed
(16.7%). Participants were informed that the cue would often predict
the location of the probed item so that attention could be deployed in a
strategic, goal-driven manner.

To assess the effects of physical salience, a non-predictive (25%
valid), peripheral cue in the form of a white, circular frame appeared at
the location of one of the colors, subtending 2° of visual angle (Fig. 1,
center). The prioritized quadrant was chosen at random on each trial.
The cue did not predict the probed location and participants were told to
ignore it. Thus, any benefit to the cued item can be attributed to auto-
matic orienting to the cued location.

The predictive and non-predictive cues appeared for 50 ms followed
by a 100-ms interval before the test array of four colored disks which
appeared for 300 ms (Fig. 1); this short cue-to-target interval prevents
inhibition of return in the physical salience condition but is long enough
to allow for attentional selection in the goal-driven condition (Klein
(2000)). The cue was absent in the implicit learning condition and the
color in each quadrant was equally likely to be probed at recall.

After a delay of 1 s, memory for the array was tested by presenting a
probe at the location corresponding to one of the items. Participants
were asked to click on a color wheel in order to indicate the color of the
disk at the probed location. The color wheel rotated across trials so that
participants could not anticipate where colors would appear at recall.
This ensured that they had to remember the color itself rather than a
location on the color wheel. A practice block of 5 trials was given before
the main task. Participants then performed 12 blocks of 48 trials each for
a total of 576 trials per participant.

Before performing the color WM task, participants in the implicit
learning condition searched for a rotated T among Ls (Fig. 1, right), in
which the target was presented more often in one quadrant than the
other three (50% vs 16.7%). The prioritized quadrant was counter-
balanced across participants. Stimuli were presented in white font on a
black background. Twelve stimuli were presented at random locations in
the display with a minimum spacing of 1.6°. Three stimuli were pre-
sented in each quadrant and subtended 1.6°. The display stayed on the
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Search Task

Goal-driven Physical Salience Past experience
Predictive Non-predictive No cue
o ar G-

Cue — 50 ms + 100 ms delay

Array —300 ms
1000 ms delay

)

Probe - click on color

Fig. 1. Experimental procedure. Participants performed a working memory
task with 4 colors. Colors were preceded by a central, predictive cue (left; goal-
driven condition), a peripheral, non-predictive cue (center; physical salience
condition), or no-cue (right; past experience condition). In the latter condition,
participants performed a search task in which the target appeared more
frequently in one quadrant. At recall, participants clicked on a color wheel to
indicate the color at the probed location after a 1-second delay.

screen until participants used the mouse to click on the target. There was
a jittered .6 — 1 s ITI between trials. Participants were not informed
about the greater target prevalence based on location so that learning
would be implicit; however, awareness was assessed at the end of the
WM task. Seven blocks of the search task (36 trials per block) were
performed after a practice block of 4 trials.

Data Analyses. Deviations between the original and reported color
were calculated for each trial. These errors were then fit using a hier-
archical Bayesian framework (Oberauer et al., 2017) applied to the
three-component Swap Model (Bays, Catalao, & Husain, 2009) (see
Supplementary data for model fits). This model (Bays, Catalao, &
Husain, 2009) assumes errors come from a mixture of a uniform distri-
bution, reflecting a guess response when an item is not in memory and a
Gaussian (von Mises) distribution reflecting mnemonic imprecision
when an item is in memory. In addition, this model estimates a measure
of swap rate, the rate at which participants misreported the color of a
different item than the one that was probed. We estimated the swap rate
in order to get a purer measure of whether the target was in WM. For
example, reporting a color from a different location than the one probed
might appear as a random (guess) response but, instead, the error was
due to misremembering the location of the color. Given our hypothesis
that prioritization increases the likelihood that items enter WM, it is
critical to get as pure a measure as possible of this variable.

The hierarchical Bayesian mixture model outputs three parameters:
the probability that the response comes from any item in the memory set
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(Pm), precision (x), and the probability that the response is a feature of
the target (Pt) (see Supplemental Figs. 1-3 for model fits). From these
estimates, we derived the probability that the response reflects the color
of the probed item, or Pigrge, and the probability that colors were
swapped, Pgyqp, as follows:

Pmrget = Pm* Pt

Pyap = Pm*(1 — PY)

Given that Pm includes both the probability of a swap and the
probability of recalling the target, analyses focused on the latter esti-
mates in order to isolate these two sources of error. Guess rates (1-Pm)
are available as Supplementary Table 1 at https://osf.io/eqvam/.

Our focus on the Pygrgr as an indicator of whether items were encoded
into and recalled from WM does not imply that encoding is binary. Some
WM models assume that all items are encoded with greater or lesser
precision and that participants never “guess” (Bays and Husain, 2008;
van den Berg et al., 2012; Wilken & Ma, 2004). We and others (Myers
et al., 2014; Gunseli et al., 2015; Weber, et al., 2016; Pertzov, Manohar,
Husain, 2017) assume, however, that items may enter WM with such
low precision that the response is no better than a guess (Donkin et al.,
2013). Moreover, there is a tight correspondence between guess rate and
participants’ self-reports of guessing (Adams, Vogel, & Awh, 2017).
Thus, estimating the Pygrgr provides a way to assess the likelihood that
items have been encoded with enough precision that their recall is better
than a guess.

We have predicted that precision will show little effect from physical
salience or implicit learning. Bayesian statistical analyses are, thus, the
most appropriate to use as we can assess evidence both for and against
the null hypothesis. For the WM analyses, we report the mean posterior
value and the 95% Highest Density Interval (HDI) in brackets next to the
mean to describe the posterior distribution over the parameters in each
of the prioritization conditions. Values within the HDI are more credible
(i.e., have higher probability density) than values outside the HDI, and
the values within the HDI have a total posterior probability of 95%. To
assess the effect of prioritization on the estimates, we report the differ-
ence between prioritized and non-prioritized trials in terms of the
parameter value and the corresponding HDI. We also report Bayes
Factors (BF) to evaluate the strength of evidence for the null hypotheses
with BFs less than 1 reflecting support for the null hypotheses. BF were

=

RT (s)

[
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estimated via the Savage-Dickey approximation method (Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010).

To test our hypothesis, we modeled two separate interaction effects
for each parameter. Each interaction compared prioritization effects (i.
e., prioritized target — nonprioritized target) from voluntary (goal-driven
attention) and automatic (physical salience or implicit learning) atten-
tion. We predict an interaction effect in precision in both analyses in
which precision effects are greater as a result of goal-driven attention
than either physical salience or implicit learning. In contrast, only main
effects of prioritization are predicted for Pigrg.;. While we had no strong
hypotheses for Pg,qp, we surmise that deeper processing from goal-
driven attention may produce a stronger binding between color and
location and, thus, reduce Pgyqp compared to physical salience and im-
plicit learning.

Results and discussion

Search Task. Before the WM task, participants performed a search
task in which the target was more likely to appear in one quadrant.
Search accuracy was high (infrequent: 95.6%; frequent: 96.2%) and did
not reliably differ between targets at the frequent and infrequent loca-
tions, t(48) = 1.80, p = .078. Target location affected RT, however
(Fig. 2). A 2 (frequent/infrequent) x 7(block) repeated-measures
ANOVA produced main effects of location, F(1,48) = 20.79, p < .001,
1% = .30, and block, F(6,288) = 32.36, p < .001, 57 = .40. Targets at the
more frequent quadrant were detected faster than those at the infre-
quent locations and participants showed learning over time (Fig. 2). The
lack of a reliable interaction effect indicated that speed increased simi-
larly at both frequent and infrequent locations, F(6,288) = 2.00, p =
.066, ;13 =.04.

Using the post-experiment survey data, we coded participants as
aware of the location contingency if they answered that they noticed the
target occurred more frequently in one location and they correctly
identified the frequent quadrant. About 23% (n = 11/49) of participants
stated they were aware of the frequent target location and correctly
identified it. Upon running the analyses described above using aware-
ness as a between-subjects factor, we observed that none of the in-
teractions with awareness were significant (all ps > .15; see
Supplemental Fig. 4).

We found variability in learning with some participants showing

-

-

== infrequent location

frequent location

Block

Fig. 2. Search task results from Experiment 1. Reaction time in the search task for targets presented in the frequent (light gray) and infrequent (dark gray) locations
across blocks. Error bars indicate standard errors of the mean. Only participants in the implicit learning (no cue) condition performed this task.
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better learning for the frequent location and others showing better
learning for infrequent locations. This variability may affect whether an
attentional bias is observed in the WM task. To account for this, the
learning effect in the search task was quantified by subtracting RT in the
final two blocks from RT in the first two blocks for both frequent and
infrequent conditions. We then subtracted the learning effect for infre-
quent items from the frequent items to get a measure of the differential
learning based on location. This measure was then entered as a predictor
of each of the three parameters in the model estimating the effects of
implicit learning. The degree of learning during search, however, did not
improve the fit of the model (DIC = 4.9905e + 04 vs. 4.9839¢ + 04) nor
were any of the coefficients on the search term credibly different from 0.
Thus, we opted for the model that did not account for learning of the
target location.

Piarger. As expected, all three modes of prioritization increased the
probability that an item was encoded and recalled from WM (see Fig. 3
and Table 1). There was decisive evidence that prioritization improved
Piarger as the result of goal-driven attention, Pirgerdiff = -48 [.27-.71],
BF;p > 100 and physical salience Pygrger.giff = -13 [.06-.20], BF19 > 100.
There was also substantial support that implicit learning increased the
probability of encoding and recalling the target from WM, Pygreer.diff = -03
[.01-.05], BF;9 = 5.98.

There was a decisive interaction effect when comparing prioritiza-
tion differences from goal-driven attention and physical salience, Pgrget-

a) 1

0.6
0.4
0.2

0

Prioritized

Prarger

Non-prioritized

M Goal-driven

12
10
8
6
4
2
0

Prioritized

M Physical salience  ®Implicit Learning

Kappa

Non-prioritized

M Goal-driven M Physical salience M Implicit Learning

5
:
04
0.2
0 ] |1

Prioritized Non-prioritized

W Goal-driven  m Physical salience  m Implicit Learning

Fig. 3. Experiment 1 results. Parameter estimates of a) Piarger, b) kappa, and c)
Pgyqp as a function of goal-driven attention (blue), physical salience (red), and
implicit learning (green). Error bars indicate 95% HDI. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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interaction = -17 [.06-.29], BF79 > 100. As can be observed from Fig. 3, this
interaction effect was driven by a difference for non-prioritized infor-
mation; namely, there was strong evidence that non-prioritized infor-
mation was more likely to enter and be recalled from WM in the physical
salience condition than the goal-driven attention condition, Prgernon-
prioritized = -31 [.07 - .57], BF19 = 32.03. There was little evidence for a
difference between the goal-driven attention and physical salience
condition in the probability of recall of the prioritized item, Pyrgerpriori-
tized = --04 [-.13 - .05], BF;p = .66. Thus, non-prioritized items were
much more likely to be forgotten in the goal-driven attention condition,
whereas prioritized items were encoded and recalled to a similar extent
for goal-driven and salience-based prioritization.

The interaction between the goal-driven attention and implicit
learning conditions was also decisive, Purgerinteraction = -23 [.12-.34],
BF10 > 100. This was due both to a greater likelihood of recalling the
non-prioritized targets, Purgetnonprioritized = --32 [-.55 - -.091, BFjg =
12.42, and a lower likelihood of recalling prioritized targets, Piarger.
prioritized = -13 [.06 - .21], BF19 = 12.01, in the implicit learning condition
compared to the goal-driven attention condition. Thus, implicit learning
was a strong determinant of whether a target entered and could be
recalled from WM, but the effect was weaker compared to goal-driven
attention.

k (memory precision). Goal-driven attention, kg = 3.6 [2.7-4.6],
BF7p > 100, and physical salience, kg = 1.6 [.8-2.41, BF19 > 100, had
decisive effects on the precision of prioritized and non-prioritized rep-
resentations (see Fig. 2 and Table 1). We observed substantial evidence
for the predicted interaction effect between goal-driven and physical
salience conditions, Kinteraction = 1.0 [.4-1.6], BF19 = 7.69. There was
more evidence that the interaction was driven by greater precision of
prioritized items, Kprioritizea = -1.9 [-4.3. - .571, BF19 = 1.8, than non-
prioritized items, Knon-prioritized = -13 [-1.8-2.0], BF19 = .42.

There was only anecdotal support for an effect of implicit learning on
precision, kg = .7 [.1-1.3], BF1p = 1.41. The decisive support for an
interaction effect between goal-driven attention and implicit learning,
Kinteraction = 1.5 [.9-2.0]1, BF19 > 100, indicates only anecdotal evidence
for a difference in the precision of non-prioritized items between the
goal-driven attention and implicit learning conditions, non-prioritized =
.62 [-.75-2.0], BF;p = 1.00 whereas there was decisive support that the
precision of prioritized items was greater in the goal-driven attention
condition compared to the implicit learning condition kprioritized = 3.59
[1.8 - 5.4], BF;o > .100.

Pgyqp. Swap errors of prioritized items were reduced compared to
non-prioritized items by both goal-driven attention Pgyqp.qiff = .31 [.10-
.53], BF1p > 100 and physical salience, Pgyqp.qgiff = .11 [.04-.181, BF1o >
100, and there was only anecdotal evidence for an interaction effect,
Pgyap-interaction = -10 [-.01 - .22], BFj9 = 1.12. This may be due to ceiling
effects for prioritized items.

Implicit learning had no effect on the swap rate Pg,qp.giff = 0.00 [-.02
- .02], BF1p = .09. The decisive interaction effect, Psyqp-interaction = -15
[-.05-.271, BF;9 > 100, indicated that goal-driven attention had a much
stronger effect on the swap rate than implicit learning.

Summary. The results of Experiment 1 were generally supportive of
our hypotheses that learning through experience primarily affects the
probability that information is encoded and recalled rather than the
quality of the representation, whereas goal-driven attention affects both
processes. We predicted, however, that an effect on precision would only
be observed in the goal-driven attention condition and this was not the
case. Decisive evidence was obtained for physical salience improving
both the probability of encoding and recall and precision. The effect in
precision for salient locations might be a byproduct of the advantage it
has at encoding. Colors at the salient location may be drawn into the
FOA first and, given the short delay of 1 s, there may not be enough time
to bring other locations into the FOA. With more time, the salience
advantage may dissipate given that it is not beneficial to keep the salient
item in the FOA. In Experiment 2, we test this hypothesis by doubling the
delay period and observing whether there is a reliable effect of salience
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Table 1

Parameter estimates for Pygrge;, k, and Pg,qp in prioritized and non-prioritized trials.
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P, target LN

Pswap

Prioritized Non-prioritized

Prioritized

Non-prioritized Prioritized Non-prioritized

Goal-driven
Physical salience
Implicit Learning

.80[.75-.85]
.77[.69-.83]
.67[.61-.73]

.33[.10-54]
.63[.51-.75]
.64[.58-.70]

11.6[10.0-13.2]
9.7[7.0-11.6]
8.0[7.2-8.9]

8.0[6.8-9.1]
8.1[6.6-9.6]
7.4[6.7-8.1]

0[0.0-0.0]
.04[0-.08]
.08[.04-.12]

.31[.10-.53]
.15[.05-.27]
.08[.05-.12]

on precision.
Experiment 2

In Experiment 2, we investigate whether lengthening the delay will
abolish the salience effect on precision. In contrast, we predict that a
significant effect should remain for prioritization through goal-driven
attention.

Participants. Thirty-nine undergraduates (4 M/35F) with an average
age of 18.74 years and 35 undergraduates (12 M/23F) with an average
age of 19.71 received course credit for their participation in physical
salience and goal-driven conditions, respectively. All participants pro-
vided informed consent and had normal or corrected-to-normal vision.
Two participants were excluded in the salience condition for technical
failures that resulted in the loss of their data. A participant in the goal-
driven condition was excluded for failing to follow instructions and
aborting 1/6 of their trials without choosing a color. This left 37 and 34
participants in the salience and goal-driven condition, respectively.

Stimuli. The stimuli were identical to Experiment 1.

Procedure and Analyses. The procedure and analyses were the same as
Experiment 1 except the delay was extended from 1 s to 2 s.

Results and discussion

Piarger. Both forms of prioritization improved the probability of
recalling the target from WM (Fig. 4a). There was decisive evidence that
prioritization improved Pigrge: as the result of goal-driven attention,
Prarger-diff = -22 [.11-.37], BF19 > 100 and substantial evidence for an
effect of physical salience Pygrger-qiff = .04 [.01-.07], BF19 = 9.85. There
was decisive evidence for an interaction, Prarget-interaction = -17 [.06-.29],
BFjp > 100, but only anecdotal evidence that the larger effect of goal-
driven attention was due to greater probability of recall for cued
colors Pigrger-prioritized = --08 [-.17 - .01], BF19 = 2.08 or lower probability
of recall for uncued colors, Piargernonprioritized = -10 [-.06 - .28], BFjg =
1.74.

k (memory precision). As we predicted, there was more evidence for
the null hypothesis that physical salience had no effect on precision, kg
= .40 [-.33-1.13], BF;¢ = .28, when the delay was lengthened (Fig. 4b).
In contrast, substantial evidence was observed that precision was better
for stimuli prioritized through goal-driven attention, kg = 1.04
[.30-1.801, BF1p = 7.13, even with a longer delay. Unlike Experiment 1,
there was no evidence for an interaction, Kinteraction = --64 [-1.7 - .40],
BF1p = .09, however, we note that the cuing effect was reduced in
Experiment 2 in both conditions and the ability to detect this effect may
be reduced.

Pgqp. Decisive evidence was observed that goal-driven attention
lowered the probability of swapping the location of the target and
another stimulus, Pgygp.giff = --13 [-.30-.02], BF79 > 100 (Fig. 4c). There
was more support for the null hypothesis in the case of the effects of
physical salience, Psyqp.giff = .004 [-.02-.02], BFj9 = .11, however. There
was substantial evidence for an interaction effect, Pgygp-interaction = -13
[.01 - .27], BF;9 = 4.14. This interaction was driven by a difference in
Pgyqp in cued trials, Psyap-prioritized = -08 [.03 - .13], BF79 < 100, whereas
swap rate in the non-prioritized trials were equivalent, Pgyap nonprioritized
= -.05 [-.21 - .08], BF1p=.76.

Summary. Despite the longer delay, prioritization effects were still
observed on the probability of encoding and recalling the target for both

Prioritized Non-prioritized

W Goal-directed M Physical salience

b) 12
10

Kappa

o N B O ©®

Prioritized

Non-prioritized

W Goal-directed M Physical salience

¢ 1
0.8

0.6

Swap Rate

0.4

0.2
o = h
Prioritized Non-prioritized

B Goal-directed B Physical salience

Fig. 4. Experiment 2 results. Parameter estimates of a) Piqrg;, b) kappa, and c)
Pg,qp as a function of goal-driven attention (blue) and physical salience (red).
Error bars indicate 95% HDI. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

physical salience and goal-driven attention. The improvement in preci-
sion from physical salience in Experiment 1 was not observed when the
delay was lengthened, although it remained present as a result of goal-
driven attention. This result lends credence to our hypothesis that the
effects of physical salience on precision are transient and, when given
enough time, dissipate because there is no reason to keep physically
salient stimuli in the FOA.

General discussion

In this study, WM performance was enhanced in different ways
depending on how information was prioritized. We proposed that pri-
oritization through goal-driven attention increases the likelihood that
items enter WM and then helps generate and maintain a high-quality
representation until recall. Accordingly, we found that goal-driven
attention increased both the likelihood of recall and the precision of
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the prioritized item. We also proposed that physical salience and im-
plicit learning should benefit WM primarily by increasing the proba-
bility of encoding and recall with a negligible effect on precision. The
data strongly support this hypothesis for the effects of prioritization
through implicit learning; that is, there was more evidence to support
that implicit learning improved the probability of recall rather than
affecting precision. In contrast, physical salience had an effect both on
the probability of recall and the precision of the representation in
Experiment 1. This advantage in precision, however, was weaker
compared to goal-driven attention and dissipated with a longer delay
suggesting that it was a transient effect due to enhanced selection at
encoding.

The effects of prioritization on memory encoding

Prioritization increased the likelihood that items entered and were
recalled from WM regardless of the manner in which priority was set.
This supports our idea that all ways of setting priority involve an initial
orienting to the prioritized location that facilitates the encoding of the
item (Bays & Husain, 2008; Prinzmetal, Ha, & Khani, 2010; Umemoto
et al., 2010). Implicit learning, however, had a more modest effect on
recall than goal-driven attention, which may be due to variability in
learning the prioritized location in the search task. While adding search
time to the model did not account for variance in WM performance,
other factors such as individual differences in the time for implicit
learning to be extinguished might contribute to lower prioritization
effects.

The primary difference, however, between goal-driven attention and
the more automatic forms of prioritization was in the probability of
recalling non-prioritized targets. Goal-driven attention resulted in a
lower likelihood that non-prioritized items would be encoded and
recalled from WM but did not confer an equivalent advantage for
prioritized items compared to the advantage from physical salience. This
result is similar to others showing better performance for non-prioritized
items when priority is determined by physical salience rather than goal-
driven attention (Ravizza, Uivlugt & Hazeltine, 2016; Schmidt et al.,
2002). It is possible that participants overused the predictive cue as a
strategy to reduce WM load by ignoring the other colors in order to do
well on most trials. Alternatively, or additionally, it may be that the
strong effect on precision from goal-driven attention necessitates longer
or deeper processing that, in turn, might take away resources from
encoding non-prioritized items.

The effects of prioritization on memory precision

Neither physical salience nor implicit learning increased precision
for prioritized items as strongly as goal-driven attention. This finding is
consistent with perceptual and neural studies finding an advantage to
the speed of orienting to prioritized information regardless of how it is
prioritized while additional effects, reflective of deeper processing, are
only observed for goal-driven attention (Bachman et al., 2020; Dugué
et al., 2020; Prinzmetal, McCool, & Park, 2005). In addition to deeper or
longer processing at encoding, physical salience and implicit learning
may also confer less advantage on the precision of prioritized items
because of the effortful nature of maintaining WM representations; that
is, when items are not relevant to the goal of the task, more effort to
maintain those items over others in WM is not expended. Regardless of
the reason, these data suggest that differences in the quality of the
representation rather than the likelihood of encoding and recall are
primarily responsible for the weaker prioritization effects observed in
WM accuracy from physical salience (Schmidt, Vogel, Woodman, &
Luck, 2002; Berryhill et al., 2012; Ravizza, Uivlugt & Hazeltine, 2016)
and implicit learning (Jiang et al. (2015)) compared to goal-driven
attention.

In this study, physical salience did not maintain precision to the same
degree as goal-driven attention, despite their equivalent effects on the
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likelihood of encoding and recalling the target. The result is consistent
with another study showing that parametric changes of physical salience
modulated the probability that an item was in memory but not estimates
of precision (Constant & Liesefeld, 2021). We found a transient effect of
salience on precision when time to recall is short, which may be due to
bottom-up attention involuntarily placing the cued item in the FOA.
With a relatively short delay, such as the one used in Experiment 1, the
FOA may not have time to alternate to representations at the other lo-
cations. Indeed, no effect of physical salience on precision was observed
for a longer delay in Experiment 2.

There was only anecdotal evidence for an effect of implicit learning
on precision even when the memory delay was short. This difference
between the effects of salience and implicit learning on precision may be
due to a physical cue indicating which quadrant is prioritized. This cue
captured attention in an exogenous manner whereas the effects of im-
plicit learning require directing internal attention. Weaker effects in the
implicit learning condition are consistent with studies finding greater
effects on performance from external attention than internal attention
(Fang, Ravizza, & Liu, 2019; Myers et al., 2015).

The effects of prioritization on memory swap

Swap rate also differed based on how information was prioritized.
Both goal-driven attention and physical salience lowered swap errors to
an equivalent degree in Experiment 1, although no effect was observed
for physical salience in Experiment 2. Note, however, that swap errors
were so low for prioritized items that it is difficult to interpret whether
or not goal-driven attention might have a larger effect on reducing swap
errors than physical salience. Implicit learning, however, had no effect
on the swap rate which, again, might be due to the lack of a physically
present location cue. Such a location cue might induce greater binding of
the color to the location in the goal-driven and physical salience
conditions.

Relation to other studies

This is the first study to investigate how implicit learning of statis-
tical regularities improves WM performance by directly estimating the
probability of target encoding and precision. Our results are consistent
with a previous study in which participants detected changes in a
memory array that were either large (e.g., rectangle — circle) or small
(e.g., ovall — oval2) (Umemoto, Scolari, Vogel, & Awh, 2010). The
results of that study showed that implicit learning improved the detec-
tion of large changes of the memory array, but that there was no benefit
in the detection of small changes. These results are consistent with our
findings as the detection of big changes was thought to reflect the ex-
istence of the object in WM whereas small changes indicated quality of
the representation (Umemoto, Scolari, Vogel, & Awh, 2010).

While there are a handful of studies investigating the effects of im-
plicit learning of statistical regularizes on WM (Olson, Jiang, & Moore,
2005; Umemoto, Scolari, Vogel, & Awh, 2010; Won & Leber, 2017), ours
is one of the few to investigate the transfer of prioritization to an un-
related WM task. Indeed, one study failed to find transfer from implicit
learning in a search task to a memory task (Addleman, Tao, Remington,
& Jiang, 2018). Addleman, et al. (2018) suggest that that transfer only
occurs when two tasks require attention to be moved in the same
habitual way. It may be that our search and WM tasks were similar
enough to promote transfer. For example, targets in the search task were
more likely to be in one quadrant and participants had to move their
attention from one quadrant to another if the target was not in the
frequent location. Similarly, participants were asked to encode the
colors in all four quadrants of our WM task and, so, must move attention
from one quadrant to another in an attempt to memorize the array. In
the study in which there was no transfer (Addleman, Tao, Remington, &
Jiang, 2018), search targets were superimposed on background scenes in
each quadrant and the memory for these scenes was later probed. The
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memory array was displayed throughout a block of several search trials
so that participants were not necessarily moving attention between
scenes. As suggested by Addleman, et al. (2018), it may be that the key
determinant of transfer is the similarity in attentional habits between
tasks.

Previous investigations of prioritization in WM have targeted
filtering, with some information allowed into WM while other infor-
mation excluded in an all-or-none fashion (Dube, Emrich, & Al-Aidroos,
2017). Consider a situation, however, in which you are introduced to a
new group of co-workers and are told beforehand that you will be
working closely with one of them. In this case, you should prioritize the
future co-worker’s name above the others while trying to remember the
others’ names as well as you possibly can. A strength of this study is that
it focuses on situations in which all information must be remembered,
but some information is more important. This allowed us to study the
process of setting priority independently from processes used to ignore
or remove information from WM.

Conclusions

In sum, our predictions about how different modes of prioritizing
information affect WM were generally supported. Physical salience,
implicit learning, and goal-driven attention all improved the likelihood
of an item entering and being recalled from WM, but the latter was the
best method of ensuring a high-quality representation. While goal-
driven attention and physical salience have been extensively studied,
the current study is the first to test predictions derived from a mecha-
nistic framework of how WM performance depends upon the manner of
prioritization. Moreover, this study expands upon previous results by
investigating for the first time how prioritization due to implicit learning
of statistical regularities affects WM performance. Our results suggest
that implicit learning is more similar to prioritization through physical
salience than goal-driven attention. Overall, our results contribute to a
more mechanistic understanding of the interaction between attentional
selection and working memory.
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