
Journal of Memory and Language 121 (2021) 104287

Available online 6 September 2021
0749-596X/© 2021 Elsevier Inc. All rights reserved.

Working memory prioritization: Goal-driven attention, physical salience, 
and implicit learning 

Susan M. Ravizza a,*, Timothy J. Pleskac b, Taosheng Liu a 

a Michigan State University, East Lansing, MI, United States 
b University of Kansas, Lawrence, KS, United States  

A B S T R A C T   

Items in working memory (WM) are prioritized if they are relevant to task goals, are physically salient, or have acquired importance from implicit learning. We 
propose that all forms of prioritization increase the likelihood of recall, but only goal-driven attention will affect the quality of those representations. In a delayed- 
estimation task with four colors, prioritization was manipulated via a predictive spatial cue (goal-driven attention), a non-predictive peripheral cue (physical 
salience), or implicit learning of a previously relevant target location. Probabilities of recalling the target (Ptarget) and memory precision were estimated using a 
Bayesian implementation of the mixture model. Strong evidence was observed that all forms of prioritization increased Ptarget, whereas physical salience and implicit 
learning had only weak or negligible effects on precision compared to goal-driven attention. We propose that generating and maintaining high-resolution memories is 
an effortful process that will primarily be invoked when participants voluntarily prioritize memory items.   

Introduction 

Working memory (WM) has a limited capacity and is unable to store 
all information encountered in the environment. This limited capacity 
places heavy demands on prioritization including selecting which in-
formation to encode into WM and maintaining the quality of these 
selected representations over time. Prioritization is based on several 
factors such as relevance to task goals, physical salience, and implicit 
learning from past experience (Awh, Belopolsky, & Theeuwes, 2012). 
Prioritization by any of these methods results in better recall (Fang, 
Ravizza, & Liu, 2019; Gong & Li, 2014; Ravizza et al., 2016; Schmidt et 
al, 2002; Umemoto et al., 2010; see Ravizza and Conn. 2021 for a re-
view), but it is unclear whether all modes of prioritization affect WM in 
the same way. The goal of the current study was to investigate how WM 
representations are affected by the mode of prioritization. 

Here, we investigated three ways in which prioritization influences 
WM performance. First, information that is relevant to task goals can be 
prioritized in a voluntary manner through goal-driven attention. Sec-
ond, physical salience (e.g., high contrast, sudden onset, loudness) can 
capture attention even if the information is not task relevant. Third, 
information that has been previously selected can influence prioritiza-
tion through implicit learning despite being irrelevant to current task 
goals. All three ways of prioritization improve WM performance, but it is 
unclear whether this improvement is due to the same underlying 
mechanisms. 

Leading models of WM generally assume that prioritization is 
important for maximizing a limited-capacity resource (Baddeley, 2012; 
Cowan, 1999), but they assume that the effects on performance are 
equivalent regardless of how information is prioritized. For example, 
several models posit that both goal-driven attention and physical 
salience increase the activation level of items in long-term memory 
(Cowan, 1988, 1999; Brown, Preece, & Hulme, 2000; Farrell & Lew-
andowsky, 2002). Thus, both ways of prioritizing information are 
thought to increase the likelihood that information is encoded. After 
attentional selection at encoding, these models are agnostic as to the fate 
of information that has been prioritized through different selection 
mechanisms. Information that is strongly activated, either by goal- 
driven attention or physical salience, is placed in the “focus of atten-
tion” (FOA) and is maintained in an active state by control processes 
such as attentional refreshing and articulatory rehearsal (Cowan, 1999; 
although see, Oberauer (2019); thus, maintenance processes are pre-
sumed to be similar regardless of how information is prioritized. 
Moreover, no model has addressed the effect of prioritization through an 
implicitly learned attentional bias. In the present study, we assessed the 
effect of prioritization on the likelihood that information is selected at 
encoding as well as whether the mode of prioritization had similar or 
different effects on the quality of the representation. 

Prioritization could improve WM in at least two ways: 1) increasing 
the probability that information is selected for encoding into WM and, 2) 
if selected, by generating and maintaining a high-quality representation. 
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We hypothesize that the mechanisms of prioritization do not entirely 
overlap and that prioritization through goal-driven attention increases 
both the likelihood of encoding and the quality of the representation. In 
contrast, we suggest that physical salience and implicit learning pri-
marily orient attention to prioritized information while having less of an 
effect on representational quality. 

This hypothesis is consistent with observed differences in the effects 
of prioritization in perceptual tasks; namely, goal-driven attention en-
hances both the speed of orienting and the strength of the perceptual 
representation of attended stimuli whereas physical salience primarily 
affects the former (for a review, see Prinzmetal & Landau, 2008). For 
example, both predictive (goal-driven attention) and non-predictive 
(physical salience) spatial cues improved reaction time in a facial 
discrimination task while only predictive cues improved accuracy 
(Prinzmetal, McCool, & Park, 2005). Moreover, neural responses to 
goal-driven prioritization increased along the visual pathway whereas 
the effects of physical salience remained at a constant, and lower, level 
(Dugué et al., 2020). These observations suggest that goal-driven 
attention leads to longer or deeper processing of the attended stimulus 
than physical salience and, perhaps, implicit learning. 

Rather than affecting the strength of attentional processing, physical 
salience and implicit learning primarily affect the speed of orienting 
(Riggio & Kirsner, 1997; Huang, Theeuwes, & Donk, 2020). Event- 
related potential studies support this hypothesis; for example, the la-
tency of the N2pc component, an early marker of selective attention, was 
shorter for physically salient targets in a visual search task compared to 
non-salient targets, but the amplitude of the N2pc was unchanged 
(Bachman et al., 2020). Similarly, implicit perceptual learning resulted 
in shorter latencies of the N2pc when stimuli were irrelevant to a visual 
search task than when they were task relevant and, thus, engaged goal- 
driven attention (Qu, Hillyard, Ding, 2017). In contrast, targets selected 
through goal-driven attention showed higher N2pc amplitudes rather 
than latency differences compared to non-prioritized targets (Kiss, Van 
Velzen, & Eimer, 2007). Physically salient items are thought to be 
prioritized through bottom-up attention (Santangelo, 2015) which is 
both automatic and transient (Müller & Rabbitt, 1989) and this is re-
flected in shorter latencies of attentional selection rather than an in-
crease in the strength of attentional effects. 

We propose that this fast and automatic orientation to physically 
salient and implicitly learned items increases the probability that the 
attended item is encoded. Consistent with this idea, physically salient 
items that captured attention were marked by indicators that they were 
encoded first; namely, they were recalled first in a free-recall task 
(Ravizza, Uivlugt & Hazeltine, 2016). Similarly, we propose that items 
prioritized through implicit learning will also result in the automatic 
orienting of attention to those items in line with ideas that implicit 
learning creates an “attentional habit” (Jiang et al. (2015)). 

The faster but more transient effects of physical salience and implicit 
learning may not have as profound an effect on WM performance as 
goal-driven prioritization, however. We hypothesize, that representa-
tional quality is less affected from prioritization through physical 
salience or implicit learning. The transient effects of automatic attention 
selection will likely dissipate and, thus, not provide for further prefer-
ential processing of the selected stimulus. Moreover, the process of 
prioritizing information during maintenance takes effort and does not 
occur automatically. Attentional refreshing and subvocal rehearsal are 
both strategies that are used to maintain information in WM and both 
are undertaken voluntarily (Hasher and Zacks (1979); see Camos et al., 
2018, for a review). There is no reason to rehearse or refresh physically 
salient or implicitly learned information that is irrelevant to task goals. 
Instead, the focus of attention (FOA) should alternate between items 
during retention, such that the quality of the representation of physically 
salient or implicitly learned information degrades in the same way as all 
other representations in WM. 

In contrast, goal-driven attention is thought to improve recall 
because of a greater probability of selection at encoding and greater 

refreshing of the representation during maintenance (Gazzaley & Nobre, 
2012). At encoding, goal-driven attention will increase the likelihood 
that information will be encoded first, making it more likely to enter WM 
(Ravizza, Uivlugt & Hazeltine, 2016). Moreover, these items may be 
more deeply processed at encoding as suggested from the results of 
perceptual tasks and, thus, the quality of the representation may benefit. 
Goal-driven attention is also hypothesized to produce further benefits by 
prioritizing information during maintenance (Awh, Vogel & Oh, 2006). 
During maintenance, the quality of the representation in WM remains 
high for goal-relevant information because this information is more 
likely to occupy the FOA in order to be rehearsed or refreshed. We 
propose that information prioritized because of its relevance to task 
goals is more likely to occupy the FOA and/or stay in the FOA longer 
during retention. Consequently, attended items are processed longer or 
more deeply at both encoding and/or maintenance resulting in a high- 
quality representation. 

A few studies have compared the effects of prioritization on WM 
performance, typically comparing prioritization via goal-driven atten-
tion and physical salience (Schmidt, Vogel, Woodman, & Luck, 2002; 
Ravizza, Uivlugt & Hazeltine, 2016). These studies, however, were un-
able to isolate whether the observed advantage for prioritized infor-
mation was due to increased selection at encoding and/or the resolution 
of the memory representation. This is because the dependent variable in 
these studies was accuracy, a measure which reflects both factors. To 
test our hypotheses, we used a delayed estimation task (Wilken & Ma, 
2004) for color that allows for estimates of the probability that an item 
enters and is recalled from WM (Ptarget) and the precision of the memory 
representation (κ). We propose that all three methods will increase 
Ptarget, however, precision should be much less affected from physical 
salience or implicit learning. 

In all prioritization conditions, we tested WM for four colors, each 
presented in a different quadrant. Goal-driven attention was directed 
using a central, spatial cue that predicted the location of the color that 
was most likely to be probed. In contrast, a peripheral and non- 
predictive cue appeared in one of the four quadrants in order to cap-
ture attention via a salient onset at that location. Implicit learning was 
manipulated by asking participants to first perform a visual search task 
in which the target was more likely to occur in one quadrant. They then 
performed the same WM task as described above except that no pre-cue 
appeared. If participants have learned to prioritize one quadrant, items 
that appear at that location should be better recalled. Our analyses will 
focus on the difference in performance for prioritized and non- 
prioritized information depending on how information was prioritized. 

Experiment 1 

Methods 

The data, supplemental materials, and scripts are available here: htt 
ps://osf.io/eqvam/. 

Design and Participants. We used a between-subjects design because 
carryover effects have been found in how participants use the cue 
(Prinzmetal et al., 2015); namely, participants are more likely to treat a 
non-predictive cue as predictive. Moreover, implicit learning of the cued 
location might also carry over to the other conditions or be wiped out 
based on selection history in previous conditions. 

Though our primary analysis used Bayesian data analysis methods, 
sample size was determined with a classical power analysis. To do so, an 
effect size (d = .68) was estimated from the main effect of cue validity 
for predictive and non-predictive cues in our previous WM study (Rav-
izza, Uivlugt & Hazeltine, 2016). With this effect size, we estimated that 
a minimum of 19 participants per group would provide a power of .8 to 
detect validity effects at an alpha of .05. Given that an implicit atten-
tional bias in the WM task likely relies upon learning during the search 
task, we doubled the number of participants suggested by this power 
analysis and aimed to recruit 38 per group. All participants provided 
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informed consent and had normal or corrected-to-normal vision. Thirty- 
four (average age = 18.82; 4 M/30F), 31 (average age = 19.29; 13 M/ 
18F), 55 undergraduates (average age = 19.5; 12 M/43F) received 
course credit for their participation in the goal-driven, physical salience, 
and implicit learning conditions, respectively. We excluded three par-
ticipants in the implicit learning condition because they performed > 3 
SDs below the mean accuracy (93.8%; SD = 11%) on the search task, 
detecting only 50–60% of targets. Data from three additional partici-
pants in this condition were lost due to technical failures. Thus, 49 
participants remained in the final sample in the implicit learning 
condition. 

Stimuli. Four colored disks, each subtending .9◦ of visual angle, were 
generated using Matlab (MathWorks, Natick, MA) and MGL (http://gru. 
stanford.edu/mgl) and presented simultaneously at an equal distance 
(2.8◦) from a central fixation cross at the corners of an imaginary square. 
To ensure colors were rendered with equal luminance, the monitors 
were calibrated using an I1 Pro spectrophotometer (Xrite, Grand Rapids, 
MI) with gamma correction. Color coordinates in CIE L*a*b* color space 
were converted to monitor RGB values with a white point measured as 
the display’s white background. We generated a color wheel consisting 
of 180 evenly-spaced hues from a circle in CIE L*a*b color space (radius 
= 79, luminance = 74, a = 25, b = 38). The four colors for each trial 
were chosen at random with the constraint that they were separated by 
at least 25◦ on the color wheel. 

Procedure. Goal-driven attention to a location was isolated by 
manipulating the probability that an item at a cued location will have to 
be recalled (Schmidt, Vogel, Woodman, & Luck, 2002; Ravizza, Uivlugt 
& Hazeltine, 2016). A predictive (50% valid), central cue was presented 
consisting of a black fixation cross, subtending .4◦ of visual angle, with 
the lines of one quadrant, chosen randomly, turning white and thick-
ening to indicate the position most likely to be probed (Fig. 1, left). 
Colors at the three uncued locations were equally likely to be probed 
(16.7%). Participants were informed that the cue would often predict 
the location of the probed item so that attention could be deployed in a 
strategic, goal-driven manner. 

To assess the effects of physical salience, a non-predictive (25% 
valid), peripheral cue in the form of a white, circular frame appeared at 
the location of one of the colors, subtending 2◦ of visual angle (Fig. 1, 
center). The prioritized quadrant was chosen at random on each trial. 
The cue did not predict the probed location and participants were told to 
ignore it. Thus, any benefit to the cued item can be attributed to auto-
matic orienting to the cued location. 

The predictive and non-predictive cues appeared for 50 ms followed 
by a 100-ms interval before the test array of four colored disks which 
appeared for 300 ms (Fig. 1); this short cue-to-target interval prevents 
inhibition of return in the physical salience condition but is long enough 
to allow for attentional selection in the goal-driven condition (Klein 
(2000)). The cue was absent in the implicit learning condition and the 
color in each quadrant was equally likely to be probed at recall. 

After a delay of 1 s, memory for the array was tested by presenting a 
probe at the location corresponding to one of the items. Participants 
were asked to click on a color wheel in order to indicate the color of the 
disk at the probed location. The color wheel rotated across trials so that 
participants could not anticipate where colors would appear at recall. 
This ensured that they had to remember the color itself rather than a 
location on the color wheel. A practice block of 5 trials was given before 
the main task. Participants then performed 12 blocks of 48 trials each for 
a total of 576 trials per participant. 

Before performing the color WM task, participants in the implicit 
learning condition searched for a rotated T among Ls (Fig. 1, right), in 
which the target was presented more often in one quadrant than the 
other three (50% vs 16.7%). The prioritized quadrant was counter-
balanced across participants. Stimuli were presented in white font on a 
black background. Twelve stimuli were presented at random locations in 
the display with a minimum spacing of 1.6◦. Three stimuli were pre-
sented in each quadrant and subtended 1.6◦. The display stayed on the 

screen until participants used the mouse to click on the target. There was 
a jittered .6 – 1 s ITI between trials. Participants were not informed 
about the greater target prevalence based on location so that learning 
would be implicit; however, awareness was assessed at the end of the 
WM task. Seven blocks of the search task (36 trials per block) were 
performed after a practice block of 4 trials. 

Data Analyses. Deviations between the original and reported color 
were calculated for each trial. These errors were then fit using a hier-
archical Bayesian framework (Oberauer et al., 2017) applied to the 
three-component Swap Model (Bays, Catalao, & Husain, 2009) (see 
Supplementary data for model fits). This model (Bays, Catalao, & 
Husain, 2009) assumes errors come from a mixture of a uniform distri-
bution, reflecting a guess response when an item is not in memory and a 
Gaussian (von Mises) distribution reflecting mnemonic imprecision 
when an item is in memory. In addition, this model estimates a measure 
of swap rate, the rate at which participants misreported the color of a 
different item than the one that was probed. We estimated the swap rate 
in order to get a purer measure of whether the target was in WM. For 
example, reporting a color from a different location than the one probed 
might appear as a random (guess) response but, instead, the error was 
due to misremembering the location of the color. Given our hypothesis 
that prioritization increases the likelihood that items enter WM, it is 
critical to get as pure a measure as possible of this variable. 

The hierarchical Bayesian mixture model outputs three parameters: 
the probability that the response comes from any item in the memory set 

Fig. 1. Experimental procedure. Participants performed a working memory 
task with 4 colors. Colors were preceded by a central, predictive cue (left; goal- 
driven condition), a peripheral, non-predictive cue (center; physical salience 
condition), or no-cue (right; past experience condition). In the latter condition, 
participants performed a search task in which the target appeared more 
frequently in one quadrant. At recall, participants clicked on a color wheel to 
indicate the color at the probed location after a 1-second delay. 
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(Pm), precision (κ), and the probability that the response is a feature of 
the target (Pt) (see Supplemental Figs. 1–3 for model fits). From these 
estimates, we derived the probability that the response reflects the color 
of the probed item, or Ptarget, and the probability that colors were 
swapped, Pswap, as follows: 

Ptarget = Pm* Pt  

Pswap = Pm*(1 − Pt)

Given that Pm includes both the probability of a swap and the 
probability of recalling the target, analyses focused on the latter esti-
mates in order to isolate these two sources of error. Guess rates (1-Pm) 
are available as Supplementary Table 1 at https://osf.io/eqvam/. 

Our focus on the Ptarget as an indicator of whether items were encoded 
into and recalled from WM does not imply that encoding is binary. Some 
WM models assume that all items are encoded with greater or lesser 
precision and that participants never “guess” (Bays and Husain, 2008; 
van den Berg et al., 2012; Wilken & Ma, 2004). We and others (Myers 
et al., 2014; Gunseli et al., 2015; Weber, et al., 2016; Pertzov, Manohar, 
Husain, 2017) assume, however, that items may enter WM with such 
low precision that the response is no better than a guess (Donkin et al., 
2013). Moreover, there is a tight correspondence between guess rate and 
participants’ self-reports of guessing (Adams, Vogel, & Awh, 2017). 
Thus, estimating the Ptarget provides a way to assess the likelihood that 
items have been encoded with enough precision that their recall is better 
than a guess. 

We have predicted that precision will show little effect from physical 
salience or implicit learning. Bayesian statistical analyses are, thus, the 
most appropriate to use as we can assess evidence both for and against 
the null hypothesis. For the WM analyses, we report the mean posterior 
value and the 95% Highest Density Interval (HDI) in brackets next to the 
mean to describe the posterior distribution over the parameters in each 
of the prioritization conditions. Values within the HDI are more credible 
(i.e., have higher probability density) than values outside the HDI, and 
the values within the HDI have a total posterior probability of 95%. To 
assess the effect of prioritization on the estimates, we report the differ-
ence between prioritized and non-prioritized trials in terms of the 
parameter value and the corresponding HDI. We also report Bayes 
Factors (BF) to evaluate the strength of evidence for the null hypotheses 
with BFs less than 1 reflecting support for the null hypotheses. BF were 

estimated via the Savage-Dickey approximation method (Wagenmakers, 
Lodewyckx, Kuriyal, & Grasman, 2010). 

To test our hypothesis, we modeled two separate interaction effects 
for each parameter. Each interaction compared prioritization effects (i. 
e., prioritized target – nonprioritized target) from voluntary (goal-driven 
attention) and automatic (physical salience or implicit learning) atten-
tion. We predict an interaction effect in precision in both analyses in 
which precision effects are greater as a result of goal-driven attention 
than either physical salience or implicit learning. In contrast, only main 
effects of prioritization are predicted for Ptarget. While we had no strong 
hypotheses for Pswap, we surmise that deeper processing from goal- 
driven attention may produce a stronger binding between color and 
location and, thus, reduce Pswap compared to physical salience and im-
plicit learning. 

Results and discussion 

Search Task. Before the WM task, participants performed a search 
task in which the target was more likely to appear in one quadrant. 
Search accuracy was high (infrequent: 95.6%; frequent: 96.2%) and did 
not reliably differ between targets at the frequent and infrequent loca-
tions, t(48) = 1.80, p = .078. Target location affected RT, however 
(Fig. 2). A 2 (frequent/infrequent) × 7(block) repeated-measures 
ANOVA produced main effects of location, F(1,48) = 20.79, p < .001, 
η2

p = .30, and block, F(6,288) = 32.36, p < .001, η2
p = .40. Targets at the 

more frequent quadrant were detected faster than those at the infre-
quent locations and participants showed learning over time (Fig. 2). The 
lack of a reliable interaction effect indicated that speed increased simi-
larly at both frequent and infrequent locations, F(6,288) = 2.00, p =
.066, η2

p = .04. 
Using the post-experiment survey data, we coded participants as 

aware of the location contingency if they answered that they noticed the 
target occurred more frequently in one location and they correctly 
identified the frequent quadrant. About 23% (n = 11/49) of participants 
stated they were aware of the frequent target location and correctly 
identified it. Upon running the analyses described above using aware-
ness as a between-subjects factor, we observed that none of the in-
teractions with awareness were significant (all ps > .15; see 
Supplemental Fig. 4). 

We found variability in learning with some participants showing 

0
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Block

infrequent location

frequent location

Fig. 2. Search task results from Experiment 1. Reaction time in the search task for targets presented in the frequent (light gray) and infrequent (dark gray) locations 
across blocks. Error bars indicate standard errors of the mean. Only participants in the implicit learning (no cue) condition performed this task. 
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better learning for the frequent location and others showing better 
learning for infrequent locations. This variability may affect whether an 
attentional bias is observed in the WM task. To account for this, the 
learning effect in the search task was quantified by subtracting RT in the 
final two blocks from RT in the first two blocks for both frequent and 
infrequent conditions. We then subtracted the learning effect for infre-
quent items from the frequent items to get a measure of the differential 
learning based on location. This measure was then entered as a predictor 
of each of the three parameters in the model estimating the effects of 
implicit learning. The degree of learning during search, however, did not 
improve the fit of the model (DIC = 4.9905e + 04 vs. 4.9839e + 04) nor 
were any of the coefficients on the search term credibly different from 0. 
Thus, we opted for the model that did not account for learning of the 
target location. 

Ptarget. As expected, all three modes of prioritization increased the 
probability that an item was encoded and recalled from WM (see Fig. 3 
and Table 1). There was decisive evidence that prioritization improved 
Ptarget as the result of goal-driven attention, Ptarget-diff = .48 [.27-.71], 
BF10 > 100 and physical salience Ptarget-diff = .13 [.06-.20], BF10 > 100. 
There was also substantial support that implicit learning increased the 
probability of encoding and recalling the target from WM, Ptarget-diff = .03 
[.01-.05], BF10 = 5.98. 

There was a decisive interaction effect when comparing prioritiza-
tion differences from goal-driven attention and physical salience, Ptarget- 

interaction = .17 [.06-.29], BF10 > 100. As can be observed from Fig. 3, this 
interaction effect was driven by a difference for non-prioritized infor-
mation; namely, there was strong evidence that non-prioritized infor-
mation was more likely to enter and be recalled from WM in the physical 
salience condition than the goal-driven attention condition, Ptarget-non-
prioritized = .31 [.07 - .57], BF10 = 32.03. There was little evidence for a 
difference between the goal-driven attention and physical salience 
condition in the probability of recall of the prioritized item, Ptarget-priori-
tized = -.04 [-.13 - .05], BF10 = .66. Thus, non-prioritized items were 
much more likely to be forgotten in the goal-driven attention condition, 
whereas prioritized items were encoded and recalled to a similar extent 
for goal-driven and salience-based prioritization. 

The interaction between the goal-driven attention and implicit 
learning conditions was also decisive, Ptarget-interaction = .23 [.12-.34], 
BF10 > 100. This was due both to a greater likelihood of recalling the 
non-prioritized targets, Ptarget-nonprioritized = -.32 [-.55 - -.09], BF10 =
12.42, and a lower likelihood of recalling prioritized targets, Ptarget- 
prioritized = .13 [.06 - .21], BF10 = 12.01, in the implicit learning condition 
compared to the goal-driven attention condition. Thus, implicit learning 
was a strong determinant of whether a target entered and could be 
recalled from WM, but the effect was weaker compared to goal-driven 
attention. 

κ (memory precision). Goal-driven attention, κdiff = 3.6 [2.7–4.6], 
BF10 > 100, and physical salience, κdiff = 1.6 [.8–2.4], BF10 > 100, had 
decisive effects on the precision of prioritized and non-prioritized rep-
resentations (see Fig. 2 and Table 1). We observed substantial evidence 
for the predicted interaction effect between goal-driven and physical 
salience conditions, κinteraction = 1.0 [.4–1.6], BF10 = 7.69. There was 
more evidence that the interaction was driven by greater precision of 
prioritized items, κprioritized = -1.9 [-4.3. - .57], BF10 = 1.8, than non- 
prioritized items, κnon-prioritized = .13 [-1.8–2.0], BF10 = .42. 

There was only anecdotal support for an effect of implicit learning on 
precision, κdiff = .7 [.1–1.3], BF10 = 1.41. The decisive support for an 
interaction effect between goal-driven attention and implicit learning, 
κinteraction = 1.5 [.9–2.0], BF10 > 100, indicates only anecdotal evidence 
for a difference in the precision of non-prioritized items between the 
goal-driven attention and implicit learning conditions, κnon-prioritized =
.62 [-.75–2.0], BF10 = 1.00 whereas there was decisive support that the 
precision of prioritized items was greater in the goal-driven attention 
condition compared to the implicit learning condition κprioritized = 3.59 
[1.8 – 5.4], BF10 > .100. 

Pswap. Swap errors of prioritized items were reduced compared to 
non-prioritized items by both goal-driven attention Pswap-diff = .31 [.10- 
.53], BF10 > 100 and physical salience, Pswap-diff = .11 [.04-.18], BF10 >
100, and there was only anecdotal evidence for an interaction effect, 
Pswap-interaction = .10 [-.01 - .22], BF10 = 1.12. This may be due to ceiling 
effects for prioritized items. 

Implicit learning had no effect on the swap rate Pswap-diff = 0.00 [-.02 
- .02], BF10 = .09. The decisive interaction effect, Pswap-interaction = .15 
[-.05-.27], BF10 > 100, indicated that goal-driven attention had a much 
stronger effect on the swap rate than implicit learning. 

Summary. The results of Experiment 1 were generally supportive of 
our hypotheses that learning through experience primarily affects the 
probability that information is encoded and recalled rather than the 
quality of the representation, whereas goal-driven attention affects both 
processes. We predicted, however, that an effect on precision would only 
be observed in the goal-driven attention condition and this was not the 
case. Decisive evidence was obtained for physical salience improving 
both the probability of encoding and recall and precision. The effect in 
precision for salient locations might be a byproduct of the advantage it 
has at encoding. Colors at the salient location may be drawn into the 
FOA first and, given the short delay of 1 s, there may not be enough time 
to bring other locations into the FOA. With more time, the salience 
advantage may dissipate given that it is not beneficial to keep the salient 
item in the FOA. In Experiment 2, we test this hypothesis by doubling the 
delay period and observing whether there is a reliable effect of salience 
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Fig. 3. Experiment 1 results. Parameter estimates of a) Ptarget, b) kappa, and c) 
Pswap as a function of goal-driven attention (blue), physical salience (red), and 
implicit learning (green). Error bars indicate 95% HDI. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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on precision. 

Experiment 2 

In Experiment 2, we investigate whether lengthening the delay will 
abolish the salience effect on precision. In contrast, we predict that a 
significant effect should remain for prioritization through goal-driven 
attention. 

Participants. Thirty-nine undergraduates (4 M/35F) with an average 
age of 18.74 years and 35 undergraduates (12 M/23F) with an average 
age of 19.71 received course credit for their participation in physical 
salience and goal-driven conditions, respectively. All participants pro-
vided informed consent and had normal or corrected-to-normal vision. 
Two participants were excluded in the salience condition for technical 
failures that resulted in the loss of their data. A participant in the goal- 
driven condition was excluded for failing to follow instructions and 
aborting 1/6 of their trials without choosing a color. This left 37 and 34 
participants in the salience and goal-driven condition, respectively. 

Stimuli. The stimuli were identical to Experiment 1. 
Procedure and Analyses. The procedure and analyses were the same as 

Experiment 1 except the delay was extended from 1 s to 2 s. 

Results and discussion 

Ptarget. Both forms of prioritization improved the probability of 
recalling the target from WM (Fig. 4a). There was decisive evidence that 
prioritization improved Ptarget as the result of goal-driven attention, 
Ptarget-diff = .22 [.11-.37], BF10 > 100 and substantial evidence for an 
effect of physical salience Ptarget-diff = .04 [.01-.07], BF10 = 9.85. There 
was decisive evidence for an interaction, Ptarget-interaction = .17 [.06-.29], 
BF10 > 100, but only anecdotal evidence that the larger effect of goal- 
driven attention was due to greater probability of recall for cued 
colors Ptarget-prioritized = -.08 [-.17 - .01], BF10 = 2.08 or lower probability 
of recall for uncued colors, Ptarget-nonprioritized = .10 [-.06 - .28], BF10 =
1.74. 

κ (memory precision). As we predicted, there was more evidence for 
the null hypothesis that physical salience had no effect on precision, κdiff 
= .40 [-.33–1.13], BF10 = .28, when the delay was lengthened (Fig. 4b). 
In contrast, substantial evidence was observed that precision was better 
for stimuli prioritized through goal-driven attention, κdiff = 1.04 
[.30–1.80], BF10 = 7.13, even with a longer delay. Unlike Experiment 1, 
there was no evidence for an interaction, κinteraction = -.64 [-1.7 - .40], 
BF10 = .09, however, we note that the cuing effect was reduced in 
Experiment 2 in both conditions and the ability to detect this effect may 
be reduced. 

Pswap. Decisive evidence was observed that goal-driven attention 
lowered the probability of swapping the location of the target and 
another stimulus, Pswap-diff = -.13 [-.30-.02], BF10 > 100 (Fig. 4c). There 
was more support for the null hypothesis in the case of the effects of 
physical salience, Pswap-diff = .004 [-.02-.02], BF10 = .11, however. There 
was substantial evidence for an interaction effect, Pswap-interaction = .13 
[.01 - .27], BF10 = 4.14. This interaction was driven by a difference in 
Pswap in cued trials, Pswap-prioritized = .08 [.03 - .13], BF10 < 100, whereas 
swap rate in the non-prioritized trials were equivalent, Pswap-nonprioritized 
= -.05 [-.21 - .08], BF10=.76. 

Summary. Despite the longer delay, prioritization effects were still 
observed on the probability of encoding and recalling the target for both 

physical salience and goal-driven attention. The improvement in preci-
sion from physical salience in Experiment 1 was not observed when the 
delay was lengthened, although it remained present as a result of goal- 
driven attention. This result lends credence to our hypothesis that the 
effects of physical salience on precision are transient and, when given 
enough time, dissipate because there is no reason to keep physically 
salient stimuli in the FOA. 

General discussion 

In this study, WM performance was enhanced in different ways 
depending on how information was prioritized. We proposed that pri-
oritization through goal-driven attention increases the likelihood that 
items enter WM and then helps generate and maintain a high-quality 
representation until recall. Accordingly, we found that goal-driven 
attention increased both the likelihood of recall and the precision of 

Table 1 
Parameter estimates for Ptarget, κ, and Pswap in prioritized and non-prioritized trials.   

Ptarget κ Pswap  

Prioritized Non-prioritized Prioritized Non-prioritized Prioritized Non-prioritized 

Goal-driven .80[.75-.85] .33[.10–54] 11.6[10.0–13.2] 8.0[6.8–9.1] 0[0.0–0.0] .31[.10-.53] 
Physical salience .77[.69-.83] .63[.51-.75] 9.7[7.0–11.6] 8.1[6.6–9.6] .04[0-.08] .15[.05-.27] 
Implicit Learning .67[.61-.73] .64[.58-.70] 8.0[7.2–8.9] 7.4[6.7–8.1] .08[.04-.12] .08[.05-.12]  
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Fig. 4. Experiment 2 results. Parameter estimates of a) Ptarget, b) kappa, and c) 
Pswap as a function of goal-driven attention (blue) and physical salience (red). 
Error bars indicate 95% HDI. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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the prioritized item. We also proposed that physical salience and im-
plicit learning should benefit WM primarily by increasing the proba-
bility of encoding and recall with a negligible effect on precision. The 
data strongly support this hypothesis for the effects of prioritization 
through implicit learning; that is, there was more evidence to support 
that implicit learning improved the probability of recall rather than 
affecting precision. In contrast, physical salience had an effect both on 
the probability of recall and the precision of the representation in 
Experiment 1. This advantage in precision, however, was weaker 
compared to goal-driven attention and dissipated with a longer delay 
suggesting that it was a transient effect due to enhanced selection at 
encoding. 

The effects of prioritization on memory encoding 

Prioritization increased the likelihood that items entered and were 
recalled from WM regardless of the manner in which priority was set. 
This supports our idea that all ways of setting priority involve an initial 
orienting to the prioritized location that facilitates the encoding of the 
item (Bays & Husain, 2008; Prinzmetal, Ha, & Khani, 2010; Umemoto 
et al., 2010). Implicit learning, however, had a more modest effect on 
recall than goal-driven attention, which may be due to variability in 
learning the prioritized location in the search task. While adding search 
time to the model did not account for variance in WM performance, 
other factors such as individual differences in the time for implicit 
learning to be extinguished might contribute to lower prioritization 
effects. 

The primary difference, however, between goal-driven attention and 
the more automatic forms of prioritization was in the probability of 
recalling non-prioritized targets. Goal-driven attention resulted in a 
lower likelihood that non-prioritized items would be encoded and 
recalled from WM but did not confer an equivalent advantage for 
prioritized items compared to the advantage from physical salience. This 
result is similar to others showing better performance for non-prioritized 
items when priority is determined by physical salience rather than goal- 
driven attention (Ravizza, Uivlugt & Hazeltine, 2016; Schmidt et al., 
2002). It is possible that participants overused the predictive cue as a 
strategy to reduce WM load by ignoring the other colors in order to do 
well on most trials. Alternatively, or additionally, it may be that the 
strong effect on precision from goal-driven attention necessitates longer 
or deeper processing that, in turn, might take away resources from 
encoding non-prioritized items. 

The effects of prioritization on memory precision 

Neither physical salience nor implicit learning increased precision 
for prioritized items as strongly as goal-driven attention. This finding is 
consistent with perceptual and neural studies finding an advantage to 
the speed of orienting to prioritized information regardless of how it is 
prioritized while additional effects, reflective of deeper processing, are 
only observed for goal-driven attention (Bachman et al., 2020; Dugué 
et al., 2020; Prinzmetal, McCool, & Park, 2005). In addition to deeper or 
longer processing at encoding, physical salience and implicit learning 
may also confer less advantage on the precision of prioritized items 
because of the effortful nature of maintaining WM representations; that 
is, when items are not relevant to the goal of the task, more effort to 
maintain those items over others in WM is not expended. Regardless of 
the reason, these data suggest that differences in the quality of the 
representation rather than the likelihood of encoding and recall are 
primarily responsible for the weaker prioritization effects observed in 
WM accuracy from physical salience (Schmidt, Vogel, Woodman, & 
Luck, 2002; Berryhill et al., 2012; Ravizza, Uivlugt & Hazeltine, 2016) 
and implicit learning (Jiang et al. (2015)) compared to goal-driven 
attention. 

In this study, physical salience did not maintain precision to the same 
degree as goal-driven attention, despite their equivalent effects on the 

likelihood of encoding and recalling the target. The result is consistent 
with another study showing that parametric changes of physical salience 
modulated the probability that an item was in memory but not estimates 
of precision (Constant & Liesefeld, 2021). We found a transient effect of 
salience on precision when time to recall is short, which may be due to 
bottom-up attention involuntarily placing the cued item in the FOA. 
With a relatively short delay, such as the one used in Experiment 1, the 
FOA may not have time to alternate to representations at the other lo-
cations. Indeed, no effect of physical salience on precision was observed 
for a longer delay in Experiment 2. 

There was only anecdotal evidence for an effect of implicit learning 
on precision even when the memory delay was short. This difference 
between the effects of salience and implicit learning on precision may be 
due to a physical cue indicating which quadrant is prioritized. This cue 
captured attention in an exogenous manner whereas the effects of im-
plicit learning require directing internal attention. Weaker effects in the 
implicit learning condition are consistent with studies finding greater 
effects on performance from external attention than internal attention 
(Fang, Ravizza, & Liu, 2019; Myers et al., 2015). 

The effects of prioritization on memory swap 

Swap rate also differed based on how information was prioritized. 
Both goal-driven attention and physical salience lowered swap errors to 
an equivalent degree in Experiment 1, although no effect was observed 
for physical salience in Experiment 2. Note, however, that swap errors 
were so low for prioritized items that it is difficult to interpret whether 
or not goal-driven attention might have a larger effect on reducing swap 
errors than physical salience. Implicit learning, however, had no effect 
on the swap rate which, again, might be due to the lack of a physically 
present location cue. Such a location cue might induce greater binding of 
the color to the location in the goal-driven and physical salience 
conditions. 

Relation to other studies 

This is the first study to investigate how implicit learning of statis-
tical regularities improves WM performance by directly estimating the 
probability of target encoding and precision. Our results are consistent 
with a previous study in which participants detected changes in a 
memory array that were either large (e.g., rectangle → circle) or small 
(e.g., oval1 → oval2) (Umemoto, Scolari, Vogel, & Awh, 2010). The 
results of that study showed that implicit learning improved the detec-
tion of large changes of the memory array, but that there was no benefit 
in the detection of small changes. These results are consistent with our 
findings as the detection of big changes was thought to reflect the ex-
istence of the object in WM whereas small changes indicated quality of 
the representation (Umemoto, Scolari, Vogel, & Awh, 2010). 

While there are a handful of studies investigating the effects of im-
plicit learning of statistical regularizes on WM (Olson, Jiang, & Moore, 
2005; Umemoto, Scolari, Vogel, & Awh, 2010; Won & Leber, 2017), ours 
is one of the few to investigate the transfer of prioritization to an un-
related WM task. Indeed, one study failed to find transfer from implicit 
learning in a search task to a memory task (Addleman, Tao, Remington, 
& Jiang, 2018). Addleman, et al. (2018) suggest that that transfer only 
occurs when two tasks require attention to be moved in the same 
habitual way. It may be that our search and WM tasks were similar 
enough to promote transfer. For example, targets in the search task were 
more likely to be in one quadrant and participants had to move their 
attention from one quadrant to another if the target was not in the 
frequent location. Similarly, participants were asked to encode the 
colors in all four quadrants of our WM task and, so, must move attention 
from one quadrant to another in an attempt to memorize the array. In 
the study in which there was no transfer (Addleman, Tao, Remington, & 
Jiang, 2018), search targets were superimposed on background scenes in 
each quadrant and the memory for these scenes was later probed. The 
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memory array was displayed throughout a block of several search trials 
so that participants were not necessarily moving attention between 
scenes. As suggested by Addleman, et al. (2018), it may be that the key 
determinant of transfer is the similarity in attentional habits between 
tasks. 

Previous investigations of prioritization in WM have targeted 
filtering, with some information allowed into WM while other infor-
mation excluded in an all-or-none fashion (Dube, Emrich, & Al-Aidroos, 
2017). Consider a situation, however, in which you are introduced to a 
new group of co-workers and are told beforehand that you will be 
working closely with one of them. In this case, you should prioritize the 
future co-worker’s name above the others while trying to remember the 
others’ names as well as you possibly can. A strength of this study is that 
it focuses on situations in which all information must be remembered, 
but some information is more important. This allowed us to study the 
process of setting priority independently from processes used to ignore 
or remove information from WM. 

Conclusions 

In sum, our predictions about how different modes of prioritizing 
information affect WM were generally supported. Physical salience, 
implicit learning, and goal-driven attention all improved the likelihood 
of an item entering and being recalled from WM, but the latter was the 
best method of ensuring a high-quality representation. While goal- 
driven attention and physical salience have been extensively studied, 
the current study is the first to test predictions derived from a mecha-
nistic framework of how WM performance depends upon the manner of 
prioritization. Moreover, this study expands upon previous results by 
investigating for the first time how prioritization due to implicit learning 
of statistical regularities affects WM performance. Our results suggest 
that implicit learning is more similar to prioritization through physical 
salience than goal-driven attention. Overall, our results contribute to a 
more mechanistic understanding of the interaction between attentional 
selection and working memory. 
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