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Abstract— In this paper, we investigate the problem of
time-varying sensor selection for linear time-varying (LTV)
dynamical systems. We develop a framework to design an online
sparse sensor schedule for a given large-scale LTV system with
guaranteed performance bounds using randomized algorithms.
In our online setting, the contribution of each sensor at each
time is calculated on-the-fly, and we immediately decide to keep
the corresponding sensor at each time in the sensor schedule or
discard it without ever retracting these decisions. Furthermore,
we provide new performance guarantees to approximate fully-
sensed LTV systems up to a multiplicative approximation factor
and an additive one by choosing on average a constant number
of active sensors at each time.

I. INTRODUCTION

Given the increase in the availability of high-performance
computing processors, high-capacity storage, and compu-
tationally efficient fast algorithms, control and estimation
of interconnected complex systems increasingly become of
interest to researchers and scientists [1]–[6]. In the past
decade, we accordingly observe the rise of efforts that have
been investigated for the analyse and estimation of complex
networked systems with the broad areas of application such
as smart grids [1], social networks [7], statistical physics
[2], [3], multi-robot systems [4], [8], computational biology
[9], etc. Due to the increasingly large-scale nature of the
problems raised by these complex systems, it is often nec-
essary to estimate the overall state of a given large complex
system using only a small subset of available sensors either
because accruing the individual measurement is expensive,
or processing full-state measurements is impossible due to
the computational constraints.

A few key sensors should be selected carefully and
placed strategically such that we are able to collect the
critical information while managing uncertainties. However,
developing a framework to find this small optimal set of
sensor is an interesting (mostly) unsolved question. In the
most straightforward scenario, obtaining the optimal set of
sensors in a known task with a well-defined cost function
imposes a combinatorial search. Due to the brute-force
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nature of this combinatorial search, it is proven to be NP-
hard and computationally intractable for all but simplest
scenarios [10]. The optimal sensor selection problem has
mostly been addressed by finding the optimal solution set
of the optimization problems built upon some observability
performance measures [11], [12]. The performance measures
for these optimizations generally are a function of Gramian
matrices as it provides a quantitative measure of the energy
required for estimation. The authors of [6], [13] introduce
the notion of systemic metrics for linear dynamical systems.
This class of performance measures is defined such that they
are monotone, convex, and homogeneous with respect to the
Gramian matrix of the system and includes some frequently
used metrics such as determinant or the trace of inverse.

The deterministic and randomized approaches are em-
ployed to design a time-varying sparse actuator scheduling
for linear dynamical systems in [14]. Later in [15], same
authors investigated the problem of designing joint time-
varying sparse sensor and actuator scheduling leveraging
Hankel singular values of the linear system. In both of these
papers, the resulting optimal sparse system is compared to
the fully-actuated/sensed one. In contrast, a swapping regret
minimization algorithm was exploited recently in [13] to
round the continuous solution of the continuous optimization
to obtain a (1 + ε) approximation of the actual optimal
system for all types of systemic metrics. The balanced
model reduction and greedy matrix QR pivoting are used
to select the sensors and actuators to optimize observability
and controllability of the system in [16].

Another similar problem is the problem of finding the
minimal (instead of optimal) set of sensors/actuators such
that the system remains observable/controllable. The Mini-
mal control set problem was studied in [17] and is shown to
be NP-hard. Furthermore, this problem cannot efficiently be
solved or even approximated in polynomial time [18]. Some
other closely related problems are optimal leader selection
and control of the formation in multi-agent systems [19],
[20].

Our contributions: Finding the small representation of
the sensors becomes more challenging when the model of the
system is changing by time, or the t-step observability matrix
is large and cannot be stored and processed in memory. To
tackle these challenges and inspired by a growing body of
work on online algorithms for machine learning and big
data analysis, in this paper, we develop an extremely simple
randomized framework to on-the-fly (online) randomly select
sensors and design a time-varying scheduling. In our setup,
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the rows of observability matrix of a time-varying system,
which are equivalently the contribution of the sensors at the
different times, are receiving one-by-one, and we immedi-
ately decide to keep the sensor at each time in the schedule
or discard it, without ever retracting these decisions. The
proposed randomized framework is truly a Markov chain,
i.e., the probability of choosing a sensor at a time only
depends on the previous sensors in the stream. Moreover,
the framework is clean and intuitive and on average samples
a constant number of active sensors at each time such
that it approximates the fully-sensed LTV systems up to a
multiplicative approximation factor and an additive one in
the systemic measure sense.

To make this manuscript more understandable and due to
the space limitations, some of the proofs are eliminated in
the paper.

II. PRELIMINARIES AND DEFINITIONS

A. Mathematical Notations

Throughout the paper, the discrete time index is denoted
by k. The sets of real (integer), non-negative real (integer),
and positive real (integer) numbers are represented by R
(Z), R+ (Z+) and R++ (Z++), respectively. The set of
natural numbers {i ∈ Z++ : i ≤ n} is denoted by [n].
Uppercase letters, such as A or B, stand for real-valued
matrices, and lowercase letters denote vectors (e.g., b or c).
For a vector x = [xi] ∈ Rn, diag(x) ∈ Rn×n is the diagonal
matrix with elements of x sitting orderly on its diagonal,
and if X = [xi,j ] ∈ Rn×n is a square matrix, diag(X)
outputs the diagonal elements of X . For a square matrix
X , det(X) and Trace(X) refer to the determinant and the
summation of on-diagonal elements of X , respectively. Sn+
(resp. Sn++) is the positive semi-definite cone (resp. positive
definite cone) of n-by-n matrices. We represent the n-by-n
identity matrix and the n-by-1 vector of all ones by I and 1,
respectively. Notation A � B is equivalent to matrix B −A
being positive semi-definite. The transpose of matrix A is
denoted by A>. Non-bold face letters are used for scalars and
indices (e.g., j) and function names (e.g., f(·)). We denote
the Moore-Penrose pseudoinverse of matrix A by A†, and
(A†)1/2 = A−1/2. Symbol bxc represents the floor function
of real number x ∈ R and it gives as output the greatest
integer less than or equal to x. The L0-norm that counts the
total number of nonzero elements of a vector is referred to
by ‖ · ‖0. Symbol ‖ · ‖1 denotes L1-norm of a vector that
outputs the sum of the absolute values of the entries of the
vector. Moreover, symbol ‖·‖ denotes the Euclidean norm for
vectors and the spectral norm for matrices. m-by-n matrices
of all zeros are represented by 0m×n, and the symbol ⊕
denotes appending the rows of one matrix to another.

B. Linear Systems, Controllability and Observability

We start with a canonical linear, time-varying, discrete-
time dynamics as follows:

x(k + 1) = A(k)x(k) +B(k)u(k), (1)
y(k) = C(k)x(k), (2)

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, C(k) ∈ Rp×n,
and k ∈ Z+. The time-varying state matrix A(k) describes
the underlying structure of the system and the interaction
strength between the agents/states at time instant k, the input
matrix B(k) identifies the nodes controlled by an outside
controller at time k, and the output matrix C(k) shows how
output vector y relates to the state vector again at time step k.
Given the initial condition x(0) = x0 of the state variables
and the input sequence u(k), the goal is to find the state
sequence x(k) as well as the output sequence y(k). Referring
back to (1), we can write

x(1) = A(0)x(0) +B(0)u(0)
x(2) = A(1)x(1) +B(1)u(1)

= A(1)A(0)x(0) +A(1)B(0)u(0) +B(1)u(1)
. . .

x(t) = Φ(t, 0)x(0) +
t−1∑
r=0

Φ(t, r + 1)B(r)u(r)

= Φ(t, 0)x(0) +R(t, 0)U(t, 0), (3)

where Φ(t, r) is the state transition matrix, which relates
the state of the undriven system1 at time t to the state at an
earlier time r, i.e., x(t) = Φ(t, r)x(r) for all t ≥ r. One can
formulate the state transition matrix as

Φ(t, r) =
{
A(t− 1)A(t− 2) · · ·A(r) , t > r ≥ 0
I , t = r

Furthermore,

R(t, 0) = [Φ(t, 1)B(0) | Φ(t, 2)B(1) | · · · | B(t− 1)] , (4)

is the t-step controllability matrix of the time-varying system
(1)-(2), and

U(t, 0) =


u(0)
u(1)
...

u(t− 1)

 .
Let repeat the steps this time for the output equation (2).

Take k = 0, 1, . . . , t− 1 in (2), i.e.,
y(0)
y(1)
y(2)

...
y(t− 1)

 =


C(0)Φ(0, 0)
C(1)Φ(1, 0)
C(2)Φ(2, 0)

...
C(t− 1)Φ(t− 1, 0)

x(0)+


0 0 . . . 0 0

C(1)B(0) 0 . . . 0 0
C(2)Φ(2, 1)B(0) C(2)B(1) . . . 0 0

...
...

...
...

C(t− 1)Φ(t− 1, 1)B(0) C(t− 1)Φ(t− 1, 2)B(1) . . . C(t− 1)B(t− 2) 0

U(t, 0).

(5)

The second term on the right-hand side of (5) is known
(we assume the input sequence u(k) is given); therefore, one
can subtract it from the vector of measurements on the left

1The undriven system is the system (1) when u(k) = 0 for all k ∈ Z.
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to obtain

¯
Y(t, 0) =


C(0)Φ(0, 0)
C(1)Φ(1, 0)
C(2)Φ(2, 0)

...
C(t− 1)Φ(t− 1, 0)

x(0) = O(t, 0)x(0), (6)

where we have made the obvious definitions for
¯
Y(t, 0) and

the t-step observability matrix O(t, 0). We can see that it is
only needed to check the observability when U(t, 0) is zero
based on (6); the effect of a non-zero input is just to change
what

¯
Y(t, 0) is, but in either case

¯
Y(t, 0) is a known vector.

Assumption 1: In this paper, we assume that integer num-
ber t > 0 is the time horizon to control or estimate (also
known as the time-to-control or time-to-estimate).

It is well-known that from a numerical standpoint it is
better to characterize controllability and observability in
terms of the Gramian matrices at time t, defined as follows
for the time-varying system (1)-(2):

W(t, t0 = 0) = R(t, 0)R>(t, 0) =
∑t−1
r=t0 Φ(t, r + 1)B(r)B>(r)Φ>(t, r + 1),

(7)
and

X (t, t0 = 0) = O>(t, 0)O(t, 0) =
∑t−1
r=t0 Φ>(r, t0)C>(r)C(r)Φ(r, t0).

(8)
For notational convenience, we will drop writing t0 in

controllability and observability Gramian matrices and only
write W(t, 0) and X (t, 0). It is worth to highlight that the
dynamics presented in (1)-(2) can be also written in the
following form

x(k + 1) = A(k)x(k) +
∑
i∈[m]

bi(k)ui(k), (9)

y(k) =
∑
j∈[p]

ejc
>
j (k)x(k), (10)

where bi(k)’s are the columns of the time-varying matrix
B(k) ∈ Rn×m, c>j (k)’s are rows of matrix C(k) ∈ Rp×n,
and ej’s are the standard basis for Rp.

Assumption 2: Throughout the paper, we assume that the
system (9)-(10) is an n-state minimal realization (i.e., it is
reachable and observable).

C. Systemic Controllability/Observability Metrics

Similar to the systemic notion introduced in [5], [6], [13],
[14], [21], we define various controllability/observability
metrics. These measures are real-valued operators defined
on the set of all linear dynamical systems derived from (9)-
(10) and quantify various measures of the required energy
in the system. All of the metrics depend on the controllabil-
ity/observability Gramian matrix of the system, which is a
positive definite matrix. Therefore, one can define a systemic
performance measure as an operator on the set of Gramian
matrices of all controllable/observable systems over n agents,
which we represent by Sn++.

Definition 1 (Systemic Performance Measure): A
Gramian-based metric ρ : Sn++ → R+ is systemic if
and only if for all A,B ∈ Sn++, it satisfies: (i) (positively)

Homogeneity criteria: ρ(tA) = t−1ρ(A), for t > 0 2; (ii)
Monotonicity criteria: if B � A, then ρ(B) ≥ ρ(A); (iii)
Convexity criteria: ρ

(
αA+(1−α)B

)
≤ αρ(A)+(1−α)ρ(B),

for all α ∈ [0, 1].
Several comprehensive studies have been done in [5], [14]

on this class of performance metrics for dynamical networks.
It was shown that the set of criteria listed in Definition
1 holds for many popular choices of systemic metric ρ.
However, for the sake of brevity, we do not repeat them
here and refer the interested readers to [14, Table I] and [5,
Table I] for a complete list of systemic measures.

III. ONLINE SPARSE SENSOR SCHEDULE

A. Sparse Sensor Selection Problems

Suppose the linear, time-varying system (9)-(10) is given;
the goal in the sparse sensor selection problem is to design
an sparse sensor outputs schedule such that the observability
performance metrics of the original (fully-sensed) and the
sparse systems are similar in an appropriately defined sense.
Moreover, we try to retain the number of active sensors
much less than fully-sensed system in the resulting schedule.
Particularly, given a canonical linear, discrete-time, time-
varying system (9)-(10) that has p sensors, observability
systemic metric ρ(·) that is aligned with the properties
addressed in Definition 1, and the observability Gramian
matrix X (t, 0) at time t, the goal is to find a sensor schedule
such that the resulting system with the observability Gramian
matrix Xs(t, 0) is well-approximated, i.e.,∣∣∣∣ log ρ(Xs(t, 0))

ρ(X (t, 0))

∣∣∣∣ ≤ ε′, (11)

where ε′ > 0 is the approximation factor.

B. A Weighted Sparse Sensor Schedule

To develop a framework to online sample the sensors,
we first show how a sparse system looks like in terms
of dynamical equations. Then, we show that a weighted
schedule can be obtained if we scale the output signal by
a non-negative factor while keeping the scales bounded.
Indeed, the scaling introduces an extra degree of freedom that
allows us to may obtain a sparser set of outputs. Considering
(10), we define a weighted sensor schedule by S = [sj,k+1]
and scaling sj,k+1 ≥ 0 where j ∈ [p] and k + 1 ∈ [t]. The
resulting output equation with this schedule is

y(k) =
∑
j∈[p]

sj,k+1 · ejc>j (k)x(k), k ∈ Z+, (12)

where sj,k+1 ≥ 0 shows the strength of the j-th sensor output
at time k. Let denote the vectorization of the p-by-t weighted
sensor schedule S by vec(S) and define it as

vec(S) := [s1,1, . . . , sp,1, s1,2, . . . , sp,2, . . . , s1,t, . . . , sp,t]>,
(13)

2A function ρ is (positively) homogeneous if ρ(tA) = t−n · ρ(A), for
t > 0, where n is the degree of homogeneity. However, throughout this
paper, when we say a metric is homogeneous, we mean it is (positively)
homogeneous of degree 1.

6020

Authorized licensed use limited to: Northeastern University. Downloaded on August 30,2023 at 19:53:47 UTC from IEEE Xplore.  Restrictions apply. 



where vec(S) is the tp-by-1 column vector obtained by
stacking the columns of the schedule S on top of one another.
Using this vectorization notation, the observability Gramian
matrix (8) at time t for the sparse system (12) can be
reformulated as

Xs(t, 0) = (Λs · O(t, 0))> (Λs · O(t, 0))︸ ︷︷ ︸
:= Os(t,0)

= O>(t, 0) Λ2
s O(t, 0), (14)

where the sparsification matrix Λs := diag(vec(S)) and
Os(t, 0) is the t-step sparse observability matrix.

Our goal is to decrease the number of active sensors on
average d, where

d := 1
t
· ‖vec(S)‖0, (15)

such that the observability Gramian of the fully-sensed and
the sparse system are close. One might show that obtaining
this approximate sparse system needs horizon length that is
potentially longer than the dimension of the state.

Definition 2 ((ε, δ, d)-approximation): Given a time hori-
zon t ≥ n, system (12) with a sparse weighted sensor
schedule S is (ε, δ, d)-approximation of system (10), if and
only if

(1− ε)X (t, 0)− δI � Xs(t, 0) � (1 + ε)X (t, 0) + δI, (16)

where X (t, 0) and Xs(t, 0) are the observability Gramian
matrices for the fully-sensed and sparse system defined in
(8) and (14), respectively. Parameter d as defined in (15) is
the average number of active sensors, and finally ε ∈ (0, 1)
and δ > 0 are the approximation factor and the additive
approximation factor, respectively. Succinctly, Xs(t, 0) ≈ε,δ
X (t, 0) denotes the same condition.

We note that a closely related approximation notation was
developed in [14] for static time-invariant networks. It is
called (ε, d)-approximation and formulated as

(1− ε)X (t, 0) � Xs(t, 0) � (1 + ε)X (t, 0), (17)

and addressed succinctly as Xs(t, 0) ≈ε X (t, 0) here. One
might find out that once δ = 0, both (ε, δ, d) and (ε, d)
approximations are same.

Remark 1: When ε is small enough 3, we can elaborate
(17) to show that the (ε, d)-approximation system is in
fact a well-approximated system. Identically, if Xs(t, 0) ≈ε
X (t, 0), then ∣∣∣∣ log ρ(Xs(t, 0))

ρ(X (t, 0))

∣∣∣∣ ≤ ε, (18)

where ρ(·) is some observability systemic measure. To obtain
(18), we utilize the facts that e−β is almost 1−β when β is
appropriately small, and 1+β ≤ eβ for all β ∈ R. Similarly,
we can show if Xs(t, 0) ≈ε,δ X (t, 0), then∣∣∣∣ log ρ(Xs(t, 0) + λI)

ρ(X (t, 0) + λI)

∣∣∣∣ ≤ ε, (19)

3This condition almost holds in this paper since we will assume ε ∈
(0, 1).

where λ := δ/ε.
Proposition 1: Taking the additive approximation factor

δ = ε·σ2
min(O(t, 0)) reduces (ε, δ, d)-approximation to (ε, d)-

approximation, where σmin(O(t, 0)) denotes the minimum
singular value of the observability matrix O(t, 0) as defined
in (6).

Proposition 1 requires some estimate of σmin(O(t, 0))
beforehand which is not available in an online setup.

In the next section, we try to formulate the online problem
and establish a bridge between prior solved problems and the
new online problem to put forward a solution to on-the-fly
design a sensor schedule.

C. Online Problem

We begin with formally define some concepts that we
will frequently use in this paper. We will later use these
definitions to formulate our online problem. Then, we close
this section by revisiting prior work and discussing some
new results.

Online setting: For system (9)-(10), the observability
matrix can be rewritten in the more expanded form as

O(t, 0) =



c>1 (0)Φ(0, 0)
...

c>p (0)Φ(0, 0)
c>1 (1)Φ(1, 0)

...
c>p (1)Φ(1, 0)

...
c>1 (t− 1)Φ(t− 1, 0)

...
c>p (t− 1)Φ(t− 1, 0)



C(0)Φ(0, 0)

C(1)Φ(1, 0)

C(t− 1)Φ(t− 1, 0)

(20)
where each row of this matrix can be interpreted as the
contribution of a sensor at a time in the observability
Gramian matrix. More precisely, each row of this matrix
is constructed by the j-th sensor of the sensor set of time
k, or equivalently c>j (k), where j ∈ [p] and k + 1 ∈ [t].
Furthermore, the additional term Φ(k, 0) in each row only
transfers the state at time k to the initial state x(0). In an
online setting, the observability matrix O(t, 0) is not given
to us in advance, and instead, we are receiving the rows
(sensor contributions) of this matrix one-by-one. Each time
a row arrives, we decide irrevocably whether to keep its
corresponding sensor in our schedule or discard it, without
ever retracting these decisions.

Although the online setting just discussed requires to
receive the rows one-by-one, in a real system, we outright
get access to a bunch of rows each time that the time instant
k is increased by one. In the other words, at time instant
k = 0, the entire of output matrix C(0) is available to us.
Right after the time step has changed to 1, the entire matrix
C(1)Φ(1, 0) becomes available. One can observe that the
same story repeats each time that the time step changes.
However, this property arising from the nature of the system
does not affect what we define as Online Setting (we still
can assume that the rows arrive one at a time).
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Recently, randomized algorithms have achieved a lot of
successes in the theoretical computer science in subset
selection and similar problems. For example, probabilistic
method was employed by Marcus, Spielman, and Srivastava
to propose a solution to the so-called Kadison-Singer (KS)
conjecture [22]. Getting inspired by the solution of KS,
authors of [14] proposed a framework to randomly select
actuators to construct a sparse schedule for a linear, time-
invariant, discrete-time systems. Similar to us, their goal was
picking a fairly small number of actuators at each time such
that the controllability systemic measures of the original and
sparse system are close in some sense. Since the entire of
the controllability/observability matrix for the time-invariant
system is available at time step t if we know the matrices of
the system, i.e., A, B and C, the whole of the controllability
matrix was used to obtain the sampling probabilities for the
columns of the controllability matrix (inputs’ contributions),
and then the columns (actuators at different times) were
randomly picked using this probability distribution to design
the scheduling in their work.
Note: Since in the rest of this paper, we will frequently
address the rows of the observability matrix, we use o>i to
denote the i-th row c>j (k)Φ(k, 0) where i = kp+ j, j ∈ [p],
and k+ 1 ∈ [t]. In the time-invariant system, Φ(k, 0) is Ak,
and the letter k representing the time instant in the output
matrices will be dropped.

In general, a sampling scheme for randomly selecting actu-
ators/sensors is formulated and formalized as the following.
Since the focus of this paper is on sensor scheduling, we
state the scheme accordingly. However, one can write the
dual scheme for the actuator setup.
Sampling Scheme: For any set of sampling probabilities
p1, p2, . . . , ptp include the i-th row, o>i , in the sparse ob-
servability matrix Os(t, 0) with probability pi and re-weight
the row by 1/√pi, then

E[O>s (t, 0)Os(t, 0)︸ ︷︷ ︸
Xs(t,0)

] =
tp∑
i=1

pi ·
( 1
pi
oio
>
i

)

=
tp∑
i=1

oio
>
i = O>(t, 0)O(t, 0)︸ ︷︷ ︸

X (t,0)

. (21)

To obtain good concentration in the sparse observability
Gramian matrix, we need to select more unique rows with
the higher probabilities. Thus, the sensor sampling problem
reduces to this simple question that how to measure the
uniqueness of different rows in the observability matrix.

In [14, Theorem 2], the leverage scores of the columns
of the controllability matrix are used as the measure of
uniqueness of the columns to construct a sparse weighted
actuator schedule for the time-invariant systems. Leveraging
this uniqueness definition, it was shown that randomly select-
ing on average d = 9c2n logn

tε2 actuators at each time results
in a sparse schedule with controllability Gramian matrix
Ws(t, 0) such that Ws(t, 0) ≈ε W(t, 0), where W(t, 0) is
the controllability of the fully-actuated system. Constant c in

their algorithm was supposed same as the constant c in [23,
Theorem 3.1]. The leverage score (which is same as effective
resistance in the algebraic graph theory [24]) is defined as
follows.

Definition 3 (Leverage Score, τ ): The leverage score of
the i-th row of matrix Q ∈ Rr×n is the solution of the
following optimization problem

τi = τ(q>i ) = minimize
w∈Rr

‖w‖2

subject to Q>w = qi
(22)

where q>i is the i-th row of matrix Q. τi measures how
important qi is in composing range of Q>.

Remark 2: At most, τi is one, since we can simply choose
w to be the i-th basis vector in Rr. Moreover, τi is less than
one when other rows approximately align with q>i or when
‖qi‖ is small.

Proposition 2: For all matrices Q ∈ Rr×n and i ∈ [r],
leverage score τ(q>i ) is the smallest α such that:

qiq
>
i � α ·Q>Q. (23)

Optimization (22) is a least norm optimization. It is easy
to show that when Q is a full-row rank matrix, its unique
optimal solution can be obtained by introducing Lagrange
multipliers and is in the form of ŵ = Q(Q>Q)−1qi.
Therefore, τi = ‖ŵ‖2 = q>i (Q>Q)−1qi. When Q is not
a full-rank matrix, τi = q>i (Q>Q)†qi.

Although the dual algorithm as of [14] can be utilized to
sample sensors in the time and place (sample rows of the
observability matrix O(t, 0)) with probability proportional
to their leverage score to obtain a (ε, d)-approximation of
the fully-sensed system with high probability, computation of
the exact leverage scores is too expensive (it requires solving
systems in O>(t, 0)O(t, 0) if it computed naively). However,
in the following theorem, we will show that sampling with
some overestimate approximations of the leverage score also
suffices to obtain (ε, d)-approximation of the system.

Note that τ(O(t, 0)) is the vector of the diagonal elemets
of the projection matrix O(t, 0)X †(t, 0)O>(t, 0), and τi =
τ(O(t, 0))(i).

Theorem 1 (Overestimates (ε, d)-approximation): Given
an approximation factor ε ∈ (0, 1), time horizon t ≥ n, and
the dynamics (10), let u = [ui] be a vector of leverage score
overestimates of the rows of the observability matrix, i.e.,
ui ≥ τ(O(t, 0))(i) for all i ∈ [tp], c > 3 be a fixed constant,
and the diagonal elements of the sparsification matrix Λs be
Λs(i, i) = 1√

pi
with probability pi = min(c ·ui · logn/ε2, 1)

and zero otherwise, then this sparsification matrix Λs
produces scheduling S which is (ε, d)-approximation of (10)
with probability at least 1−n1−c/3, and the average number
of active sensors at each time d is at most c ·‖u‖1 · logn/tε2.

Applying the generalization of the Chernoff bound for
matrices (which is a variant of [25, Corollary 5.2]) to the
sequences of matrices defined as Mi = oio

>
i

pi
, together with

the result of Proposition 2 will give the proof.
Theorem 1 shows that to obtain a (ε, d)-approximation of

the fully-sensed system, having a rough overestimate of the
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leverage scores of the rows of the observability matrix would
be sufficient. However, the results of this theorem can not
be simply modify and extend to the restrictive settings such
as the semi-streaming setting or online setting because the
entire observability matrix is needed beforehand to obtain
the rough overestimations.

In the restrictive settings, however, the simple natural idea
is just relying on the partial data that have already collected
to approximate the leverage scores. Kelner et al. in [26]
exploit similar idea to obtain a spectral approximation of
a graph in the semi-streaming setting. Their idea was natural
and conceptually simple. Their algorithm receives rows of
the vertex edge incidence matrix (edges) one-by-one. The
algorithm then rejects each row (edge) with the probability
depending on it’s leverage score with respect to the rows
(edges) seen so far. The problem is the more rows are
received, the better estimates can be obtained for the leverage
scores of the previously sampled rows. This is more or less
clear form the definition of leverage score (22), but it was
proven rigorously in [27, Theorem 11]. Kelner et al. also
adjusted their algorithm accordingly to skirt this problem. In
summary, their final algorithm performs as this: as the rows
of the vertex edge incidence matrix arrive, they are added to a
small set of previously sampled rows called sparsifier set (the
initial sparsifier set is sampled from the vertex edge incidence
matrix of the initial graph by using the sampling procedure
of [24]). Whenever the sparsifier set becomes too big (too big
here means bigger than the storage space Õ(n) where n is the
number of columns of the vertex edge incidence matrix), it
gets resparsified again. To skirt the problem addressed earlier,
the algorithm considers not only the rows added but also the
rows already exist in the sparsifier set in the resparsification
steps.

However, the probability of sampling a row does not only
depend on earlier rows in the stream due to pruning steps.
Authors of [28] address this and state that this difficult
dependency issue seems to break the argument in [26] where
they claim that the distribution of their algorithm is same as
the distribution of one round sampling by leverage scores.
Therefore, one may not ensure that a spectral approximation
is obtained. Later in [29], authors add an extra challenge in
analyzing the pruning routines. They declare these depen-
dencies also prevent using matrix concentration inequalities.
They then resolve both of these issues by proposing an
algorithm that only relies on the sampling probabilities
computed based on the current graph.

Although the algorithms proposed in [29] can be reformed
and then employed for the purpose of our online sensor
scheduling, we prefer to break this dependency issues by
doing online sampling. That is, when we see a row (sensor’s
contribution), we either sample it or do not, and we never
update our decision. In this way, our algorithm is truly
a Markov chain—i.e., sampling o>i only depends on the
choices for o>j with j < i, and not for o>j with j ≥ i. We add
a small coefficient of identity matrix to the process to make

sure that the online sampling probabilities are bounded4. We
will show that the whole process allows us to rigorously
argue that a sparse schedule with guaranteed performance
bounds is obtained. We then reform all will be discussed
to an online sensor scheduling framework that results in a
(ε, δ, d)-approximation of the fully-sensed dynamics (10).

D. Main Online Sampling Result

In this section, we adapt the so-called ridge leverage score
to achieve (ε, δ, d)-approximation. We show how using ridge
leverage score allows for online sampling and consequently
avoids the resparsification routines. Thus, the sampling prob-
ability of a sensor only depends on the previous sensors in
the stream. Ridge leverage score was previously introduced
for approximate kernel ridge regression [30], and it has been
used as the sampling probabilities in the context of spectral
approximation and online sampling [28], [31] and iteratively
computing regular leverage scores [32]. We extend their
applicability to online sensor scheduling.

In the ridge leverage scores, we are interested in comput-
ing the leverage scores for Q>Q+λI instead of Q>Q, where
λ > 0 is some small number. In the literature of machine
learning these quantities are also called λ-ridge leverage
scores and defined as the following [33]:

τλi := q>i (Q>Q+ λI)−1qi, (24)

for the i-th row, q>i , of matrix Q ∈ Rr×n.
One might simply update Theorem 1 for λ-ridge leverage

scores to obtain (ε, δ, d)-approximation of dynamics (10). Let
us state it formally in the following theorem.

Theorem 2 (Overestimates (ε, δ, d)-approximation):
Given an approximation factor ε ∈ (0, 1), additive
approximation factor δ > 0, λ := δ/ε, time horizon
t ≥ n, and the dynamics (10), let L = [`i] be a vector
of λ-ridge leverage score overestimates of the rows of the
observability matrix, i.e., `i ≥ o>i (X (t, 0) + λI)−1oi for
all i ∈ [tp], c > 3 be a fixed constant, and the diagonal
elements of the sparsification matrix Λs be Λs(i, i) = 1√

pi

with probability pi := min(c · `i · logn/ε2, 1) and zero
otherwise, then this sparsification matrix Λs produces
scheduling S which is (ε, δ, d)-approximation of (10), i.e.,
Xs(t, 0) = O>(t, 0)Λ2

sO(t, 0) ≈ε,δ X (t, 0), with probability
at least 1− n1−c/3. Moreover, the average number of active
sensors at each time d is at most c · ‖L‖1 · logn/tε2.

Proof: Theorem 1 says that if we sample the rows
of the observability matrix with probabilities proportional to
their overestimates leverage score the (ε, d)-approximation is
obtained with high probability, or the following holds

(1− ε)O>(t, 0)O(t, 0) � O>s (t, 0)Os(t, 0) � (1 + ε)O>(t, 0)O(t, 0).

We define Oλ(t, 0) := O(t, 0) ⊕
√
λ · I , so

Oλ>(t, 0)Oλ(t, 0) = O>(t, 0)O(t, 0) + λI . Then, if we
sample the rows of matrix Oλ(t, 0) with their leverage

4If we do not add the identity matrix, we might take n samples.
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scores, we get

(1−ε)(X (t, 0)+λI) � Xs(t, 0)+λI � (1+ε)(X (t, 0)+λI).
(25)

One can observe that the rows of matrix
√
λ·I are all sampled

since their leverage scores are one. Finally, moving λI from
the middle side, combining the similar terms, and putting
λ = δ/ε give us the theorem.

Although Theorem 2 shows that the slightly different
performance bounds will be obtained by utilizing λ-ridge
leverage scores, it can not be applied yet because firstly,
we still do not know how the overestimates of the λ-ridge
leverage scores can be computed, and secondly, the sum of
these overestimate scores ‖L‖1 is unknown. We will take
care of these questions one-by-one and show that how the
solutions proposed put forward a framework to design an
online scheduling of the sensors.

The current definition of λ-ridge leverage scores stated
in (24) can not be employed in an online setting to obtain
even the exact values of these scores, since the entire of the
observability matrix is not given to us in advance, and their
rows are streamed in one at a time. To align this definition
with our online goal, we update and redefine it in an online
fashion.

Definition 4 (Online λ-ridge leverage score, τλi ): Let
Oi−1(t, 0) for i ∈ [tp] be the fraction of the observability
matrix that includes it’s first i− 1 rows, then we define the
online λ-ridge leverage score as

τλi := min(o>i (Xi−1(t, 0) + λI)−1oi, 1), (26)

where Xi−1(t, 0) = O>i−1(t, 0)Oi−1(t, 0) is the observability
Gramian matrix of i − 1 rows seen thus far, and o>i is the
i-th row of the observability matrix O(t, 0). It is worth to
highlight that the time and place of the corresponding sensor
just received by the i-th row o>i are the respective pair
(k, j) = (b ipc, i − p × b ipc), where p is the total number
of sensors at each time.

The following lemma shows that this online notation of
λ-ridge leverage score is exactly what we need to find the
overestimates.

Lemma 1: Online λ-ridge leverage scores τλi , overesti-
mate the regular λ-ridge leverage scores τλi for all i =
1, . . . , tp, i.e.,

τλi ≥ τλi . (27)
The proof is omitted due to space limitations. Lemma

1 provides us with the overestimates, so we only need to
approximate the sum of the overestimate scores to apply
Theorem 2 in the online setting. Lemma 2 gives us this
approximation and bounds this sum. To prove this lemma, we
relied on two pieces of math machinery; the relation between
the determinant of a matrix and its rank-one perturbation5,
and what upper bound is for det(Q>Q).

Lemma 2: Let L = [`i] be a vector of λ-ridge leverage
score overestimates obtained by calculating online λ-ridge
leverage scores τλi for the rows of the observability matrix,

5This relation is proposed in [34, Lemma 1.1].

according to Lemma 1, τλi = `i ≥ o>i (X (t, 0)+λI)−1oi for
i ∈ [tp], then ‖L‖1 =

∑
i∈[tp] `i ≤ 2n log(1+‖O(t, 0)‖2/λ).

Finally, in the last theorem of this paper, we show how we
can design a sampling strategy that utilizes the online λ-ridge
leverage scores to on-the-fly construct a sensor scheduling
S that results in rigorous guarantees on the the quality of
(ε, δ, d)-approximation of the dynamics (10).

Theorem 3 (Online sampling): Assume dynamics (10),
time horizon t ≥ n, approximation factor ε ∈ (0, 1), additive
approximation factor δ > 0, and a fixed positive constant
c are given. Then, Algorithm 1 produces scheduling (12)
that at most contains on average (2cn/tε2) · logn · log(ε ·
λmax(X (t, 0))/δ+ 1) active sensors at each time and results
in (ε, δ, d)-approximation of (10) with probability at least
1− n−c/3.

Proof: This theorem is just the combination of the
results presented in Theorem 2, Lemma 1, and Lemma 2.

Algorithm 1 OnTheFly-Schedule({o>i }
tp
i=1,ε,δ,c)

Input: The stream of rows {o>i }
tp
i=1 of the observability

matrix defined in (20), the approximation factor ε ∈
(0, 1), the additive approximation factor δ > 0, and the
fixed positive constant c.

Output: Weighted sensor schedule S such that ‖vec(S)‖0 =
O(n logn · log(ε · λmax(X (t, 0))/δ)/ε2).

1: Initialization: vec(S) = 0tp×1;
2: λ := δ/ε;
3: X0(t, 0) = 0n×n;
4: O0(t, 0) = [];
5: for i = 1 to tp do
6: τλi := min(o>i (Xi−1(t, 0) + λI)−1oi, 1);
7: pi := min(c · τλi · logn/ε2, 1);

8: vec(S)(i) =
{

1/√pi with probability pi,
0 otherwise;

9: Oi(t, 0) =
[
Oi−1(t, 0)

o>i

]
;

10: Xi(t, 0) = O>i (t, 0)Oi(t, 0);
11: end for
12: return S.

By performing online sampling, Algorithm 1 avoids prun-
ing routines of [26]. Therefore, it circumvents the depen-
dency issues since the sampling probability of a sensor
only depends on earlier sensors in the stream. However, we
will lose the chance of getting fewer sensors similar to the
streaming setup described in [26]. Additionally, we must add
λI to the process to ensure that the sampling probabilities
are bounded in the online setting. This modification adds an
additive approximation factor δ to the performance guarantee
and changes the entire system’s observability status. This
change can be better observed and explained in terms of
observability ellipsoid. The controllability/observability el-
lipsoids are generally used to illustrate which states are easy
to control/observe and which ones are harder.

Definition 5 (Observability ellipsoid): An intuitive way
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to define the observability ellipsoid is {z | ‖O(t, 0)z‖ ≤ 1}
where z = x(0) ∈ Rn is the initial conditions, or the
observability ellipsoid is the set of (initial) states that lead
to measurements inside a unit ball. One may obtain the
equivalent representation as {z | z>X (t, 0)z ≤ 1}. However,
the major axis of this ellipsoid represents the direction that
is most difficult to observe. To be consistent with the name,
we prefer to define the observability ellipsoid as

εo = {z | z>X−1(t, 0)z ≤ 1}.
This definition has the desired interpretation: longer axes
correspond to the directions that are easier to observe.
Since X (t, 0) is a positive definite matrix (it is assumed
to be observable), the observability ellipsoid has principal
axes corresponding to its eigenvectors, and the length of
each principal axis is the square root of the corresponding
eigenvalue.

Appending
√
λI to the observability matrix in Theorem 2

changes the observability Gramian matrix to X (t, 0) + λI .
Based on the observability ellipsoid’s discussion, one can
conclude that adding λI to the observability Gramian matrix
X (t, 0) increases the area of the ellipsoid and thus the
observability because it increases each eigenvalue of the
observability Gramian matrix X (t, 0) by λ. One may also
infer that it corresponds to soft-thresholding the eigenvalues
of the Gramian matrix, so that eigenvalues below λ are
partially ignored.

IV. CONCLUDING REMARKS

In this paper, inspired by a growing body of work on
online algorithms for machine learning and big data analysis,
we developed an extremely simple framework to on-the-
fly randomly select on average a constant number of active
sensors to approximate certain observability measures. In the
proposed algorithm, each row of the observability matrix of
a given large-scale LTV system arrives one-by-one, and we
irrevocably decide whether to keep the corresponding sensor
at each time in the sensor scheduling or not. The selected
sensor is added by assigning a weight to the schedule, and
does not discard or re-weight later. Our framework is simple
and intuitive, and it represents new theoretical properties of
the leverage score. Similar results can be developed for the
actuator selection problem.

REFERENCES
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