
1

Distributed Learning over Networks with
Graph-Attention-Based Personalization

Zhuojun Tian, Zhaoyang Zhang, Senior Member, IEEE, Zhaohui Yang,
Richeng Jin, and Huaiyu Dai, Fellow, IEEE

Abstract—In conventional distributed learning over a network,
multiple agents collaboratively build a common machine learning
model. However, due to the underlying non-i.i.d. data distribution
among agents, the unified learning model becomes inefficient
for each agent to process its locally accessible data. To address
this problem, we propose a graph-attention-based personalized
training algorithm (GATTA) for distributed deep learning. The
GATTA enables each agent to train its local personalized model
while exploiting its correlation with neighboring nodes and
utilizing their useful information for aggregation. In particular,
the personalized model in each agent is composed of a global
part and a node-specific part. By treating each agent as one
node in a graph and the node-specific parameters as its features,
the benefits of the graph attention mechanism can be inherited.
Namely, instead of aggregation based on averaging, it learns
the specific weights for different neighboring nodes without
requiring prior knowledge about the graph structure or the
neighboring nodes’ data distribution. Furthermore, relying on the
weight-learning procedure, we develop a communication-efficient
GATTA by skipping the transmission of information with small
aggregation weights. Additionally, we theoretically analyze the
convergence properties of GATTA for non-convex loss functions.
Numerical results validate the excellent performances of the
proposed algorithms in terms of convergence and communication
cost.

Index Terms—Distributed learning, personalized learning, sta-
tistical heterogeneity, decentralized network.

I. INTRODUCTION

With the rapid development of deep learning as well as
the growing storage and computational capacity of devices,
distributed deep learning has attracted great attention recently.
It can be widely applied in many areas such as cooperative
localization in 5G networks, distributed signal processing
and recommender system. In conventional distributed learning

The conference version of this paper has been accepted by IEEE ICC’23
Workshop on Edge Learning over 5G Mobile Networks and Beyond [1].
The work of Zhuojun Tian and Zhaoyang Zhang was supported in part by
National Natural Science Foundation of China under Grants U20A20158 and
61725104, in part by the National Key R&D Program of China under Grants
2020YFB1807101 and 2018YFB1801104, and in part by Zhejiang Provincial
Key R&D Program under Grant 2023C01021. The work of Richeng Jin was
supported in part by the Zhejiang Provincial Natural Science Foundation of
China under Grant No. LQ23F010021. The work of Huaiyu Dai was supported
in part by the U.S. National Science Foundation under Grant CNS-1824518
and Grant ECCS-2203214. (Corresponding author: Zhaoyang Zhang)

Z. Tian (email: dankotian@zju.edu.cn), Z. Zhang (email:
ning ming@zju.edu.cn), Z. Yang (email: yang zhaohui@zju.edu.cn) and
R. Jin (email: richengjin@zju.edu.cn) are with the College of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China,
and also with Zhejiang Provincial Key Laboratory of Info. Proc., Commun.
& Netw. (IPCAN), Hangzhou 310027, China.

H. Dai (e-mail: huaiyu dai@ncsu.edu) is with the Department of Electrical
and Computer Engineering, NC State University, USA.

procedures, each agent has access to its own training data
and cooperates with others to obtain a common global model.
However, in practical scenarios, the agents distributed in
different geographical locations always have their local partial
view and tend to access data with heterogeneous distributions,
i.e., the data distribution is non-i.i.d. for different agents.
Take the collaborative location problem as an example. The
base stations located in different positions may have diverse
surroundings, leading to different data distributions and pro-
jections from the input such as channel state information (CSI)
to the output user location. In such non-i.i.d. conditions, the
consensus model shared among all agents may have poor
performance for the locally accessible data in each agent. This
problem motivates us to address the challenge of statistical
heterogeneity in distributed learning, through developing the
personalized model for each agent.

In this work, we investigate the decentralized communi-
cation network, which does not require a central server and
is thus more robust by removing the heavy communication
burden concentrated on the central server. In every round of the
decentralized learning, each agent executes a local update of
the model and then shares the updated model with neighboring
nodes for aggregation. A dedicated aggregation procedure is
expected to utilize the effective information from neighboring
nodes, which however is always implicit and difficult to be
explicitly characterized in the non-i.i.d. scenario. Besides, the
well-known decentralized stochastic gradient descent (D-SGD)
[2] aggregates the model parameters through averaging or
weighted averaging, which can lead to performance loss since
this aggregation does not take account of the non-i.i.d. data
distribution. Thus, it is necessary and appealing to conceive an
aggregation procedure for non-i.i.d. conditions in distributed
learning over a network. Moreover, the aggregation procedure
can be utilized to further reduce the communication cost
during the training process.

Recently, we have witnessed significant progress in solving
non-i.i.d. challenges of Federated Learning (FL) [3–20]. FL is
a centralized learning framework [21, 22] requiring a central
server for model aggregation. The experiments and analysis
in [23] show the significant performance degradation of FL
when the local data is non-i.i.d., highlighting the necessity
of personalization. To solve the non-i.i.d. challenges through
personalization techniques, Meta-Learning methods are ap-
plied in FL [3–5]. Smith et.al. [6] applied the multi-task
learning (MTL) to FL and proposed the novel optimization
method called MOCHA to solve the formulated MTL problem.
The authors in [7] addressed the statistical heterogeneity by

2

clustering the agents and using the graph convolution networks
to share knowledge across different clusters. The works in
[8] and [9] apply the structural neural network architecture
which consists of common layers across agents and the agent-
specific layer for personalization. In addition to the non-
i.i.d. challenges, some recent progress has been made on
the communication-efficient implementation of FL in wireless
communication system [24–27], through resource allocation
[24, 25], reducing communication cost per iteration [26] and
accelerating convergence [27].
Different from FL, decentralized learning does not require

a central node to collect and process all agents’ information.
Each agent shares the information with its neighboring nodes
and aggregates the received messages locally, utilizing all
agents’ computational resources and alleviating the commu-
nication burden on the central server. Many recent treatises
have paid attention to decentralized learning [2, 28–32], which
however are all based on the i.i.d. assumption. The authors in
[33–38] considered the condition of non-i.i.d. data distribu-
tion. [33] proposed the Cross-Gradient Aggregation algorithm
(CGA) to solve the statistical heterogeneity problem, which
however takes high communication cost and they still intend
to achieve a consensus model among all agents. The authors
in [35–37] proposed algorithms based on gradient tracking,
where the basic idea is to replace the local gradient with a
tracker of global gradient. On the other hand, the personalized
model has been scarcely exploited in decentralized network.
The personalization techniques for decentralized learning may
have radical differences from those in FL, which need to
take the network topology and local processing ability into
consideration. The authors in [39] leveraged a collaboration
graph to describe the relationships among the users’ tasks,
which is learned alternately with the models. The proposed
algorithm can obtain the personalized model for each agent.
However, the alternate optimization procedure involving the
graph learning may lead to high computation cost. Moreover, it
requires the agents to communicate beyond their current direct
neighbors in the communication network, which is impractical
and may lead to high communication cost.
In this work, the non-i.i.d. challenge, the personalization

needs and the robustness of decentralized network motivate us
to develop personalized decentralized learning algorithm. The
learned model in each agent is expected to perform well w.r.t.
the local data distribution, as is widely considered in prac-
tical scenarios, since the agent usually needs a personalized
model to handle its local accessed data, rather than a poor-
performed common global model. Inspired by the structural
neural network proposed in [8], consisting of a shared data
representation component and a unique head, we apply the
partially-shared local model in each agent. We observe that the
algorithm in [8] trains the unique heads only with local data,
without requiring any information from other agents. However,
the non-i.i.d. data distributed in different agents usually has
certain correlation, which can be exploited and utilized based
on the topological structure formed by the agents.
To achieve this goal, we treat each agent as one node and the

node-specific parameters as its features. We further deal with
the topological structures of the parameters by introducing the

graph neural network (GNN) [40–42]. Numerous advanced
models and architectures have been proposed such as federated
GNN in [42] and minibatch graph convolutional networks [43].
It has also been widely applied in practical problems such
as remote sensing and image processing problems [44–46].
Specifically, the recently proposed graph attention network
(GAT) [47, 48] shows its effectiveness in specifying different
importance for neighboring nodes, which can be utilized in
the aggregation process. Besides, we observe that GAT is a
parallelizable attention process without relying on any prior
knowledge about the whole network, which can be used for
decentralized implementations. Inspired by that, we propose
to leverage the graph attention mechanism for decentralized
learning, so as to pick up the effective information from other
agents. Moreover, the different aggregation weights learned
and assigned to various neighboring nodes can be utilized to
reduce the communication cost, based on which we develop a
communication-efficient training algorithm.

Our contributions can be summarized as follows:

• We propose GATTA to train the personalized model over
network in non-i.i.d. condition, which fuses the graph
attention mechanism into the decentralized learning. By
jointly learning to specify the weights of different neigh-
boring nodes in the training process, GATTA enables each
agent to concentrate on the most relevant information
received from its neighboring nodes.

• Based on the weight-learning mechanism of GATTA, we
further design a communication-efficient GATTA (CE-
GATTA) by skipping the transmission of less impor-
tant information, which is characterized by the learned
weights.

• We theoretically analyze the convergence properties of
the proposed GATTA under given conditions, which pro-
vides a useful analytical approach for personalized learn-
ing. We show its convergence rate is O(1√

K
). Moreover,

the range of the fusion parameter is derived, providing
potential guidance on the parameter selection.

• Numerical experiments validate the superiority of GAT-
TA and CE-GATTA compared with other methods in
different datasets, including label distribution skew as
well as feature distribution skew settings. Moreover, the
results under different communication network topologies
are evaluated and compared to show the effectiveness
of GATTA more comprehensively. Different local neural
network architectures are simulated to show its broad
applicability. The communication cost is also investigated
to show the communication efficiency of CE-GATTA.

The rest of this paper is organized as follows. Section
II describes the system model and the traditional D-SGD
algorithm. In Section III, the partially-shared model among
agents is introduced, based on which we develop the GATTA
and CE-GATTA for personalized distributed learning. Section
IV illustrates the assumptions and the convergence results
of the proposed algorithm, where the range of the fusion
parameter is derived. The simulation results are represented
in Section V, followed by the conclusion in Section VI.

Note that this article significantly extends our previous

3

work [1] in several ways. Firstly, we give the theoretical
analysis of the convergence property, derive the convergence
rate of GATTA and provide the range of the fusion parameter.
Secondly, we extend GATTA to a communication-efficient
variant. Last but not the least, more experiments are conducted
on different local neural network architectures and on the
proposed CE-GATTA. We also compare the proposed methods
with more state-of-the-art approaches on non-i.i.d. data.

II. PRELIMINARY

A. System Model

Consider a multi-agent decentralized communication net-
work, which can be represented by an undirected graph
G = (V, E). In G, V = {1, ..., N} denotes the set of N
distributed agents and E = {εij}i,j∈V represents the set of
communication links between any two adjacent agents. Let Ni

denote the set of all neighboring agents connected with agent
i and we denote the number of agents in Ni by di = |Ni|. The
adjacency matrix of G is denoted by A, where A(i, j) = 1 if
εij ∈ E and A(i, j) = 0 otherwise.
Each agent i ∈ V has access to a local training dataset
Di = {xs,ys}ni

s=1 with the personal data distribution over
some common feature space X and label space Y . ni denotes
the number of training samples in agent i. In the considered
model, the data distributions in different agents are heteroge-
neous, known as non-i.i.d. data. In addition to the cooperative
location problem introduced in Section I, another example is
the distributed natural language processing (NLP) problem,
where each agent has a set of local users, whose distribution
over words or expressions varies from one to another. The non-
i.i.d. problem also arises in a distributed sensing system, where
the agents collaboratively sense some signal. Usually, the
observed signal of each agent has personalized degradation,
noise effects, or variabilities [49].
Let fi denote the loss function corresponding to agent i and

the global loss function of the whole network is:

minF (V) :=
1

N

∑N

i=1
fi(vi), (1)

where vi denotes the model parameters of node i. Particularly,
in a supervised learning setting, fi(vi) stands for the expected
loss over the local data distribution of agent i and is defined
as fi(vi) := EDi [li(vi;xs,ys)], where li(vi;xs,ys) measures
the error in predicting the label ys given the input xs and the
model parameters vi.
Conventional consensus-based methods, such as FL or de-

centralized stochastic gradient descent, aim at minimizing the
global loss function in (1) with consensus constraints v1 =
v2 = · · · = vN . However this approach performs poorly in
the heterogeneous settings and personalized learning tasks due
to different distributions of Di. To this end, the optimization
problem in (1) is proposed without consensus constraints.
Observing (1), it seems that each agent can learn its own model
independently, without communicating with others. However,
in many typical distributed learning settings, the number of
local samples is small and cannot give accurate estimation of
the expectation in fi(vi). Thus, it cannot promise solutions
with small expected risk by training completely locally. In

this sense, the collaboration among agents is necessary and
through exploiting the available information from other agents,
the local models can be well improved.

Before developing our algorithm, we introduce the decen-
tralized stochastic gradient descent training method applied in
distributed learning to achieve consensus among the learning
model of different agents.

B. Decentralized SGD Method

A widely-used method for distributed training is the de-
centralized stochastic gradient descent (D-SGD) [2], which
averages the model parameters from neighboring agents in
each iteration. D-SGD is a simple yet efficient algorithm when
applied to learn a common model for agents. Specifically, in
the k-th round, each agent updates the model parameters vi in
two steps: first carrying out one epoch of local stochastic gradi-
ent descent (SGD) [50] to obtain an intermediate variable and
then aggregating the obtained neighboring agents’ parameters
to complete the update. Here one epoch refers to a few steps
of stochastic gradient descent (SGD), which walks through all
the local training samples. As discussed in the introduction, the
simple mechanism of averaging fails to exploit the correlated
information among them, which may instead lead to worse
performance in the non-i.i.d. case. To this end, we propose
an algorithm in the following section, which can intelligently
aggregate information from neighboring nodes.

III. DISTRIBUTED LEARNING WITH
GRAPH-ATTENTION-BASED PERSONALIZATION

In this section, we develop the graph attention-based per-
sonalized training algorithm for distributed learning over a
network. We first present the partially-shared local model
in each client, and then illustrate the graph attention-based
aggregation procedure, which can learn to exploit the useful
information from other agents. The attention-based distributed
training algorithm GATTA for personalized learning is sum-
marized after that. Thirdly, based on the proposed GATTA, we
develop the communication-efficient GATTA.

A. The Partially-Shared Local Model

We are motivated by the work in [8], which separates the
local deep neural network into the common global layers and
the personalized head unique for each agent. This insight
comes from the traditional machine learning which suggests
that the heterogeneous data may share a global representation
despite having different labels. Inspired by that, we apply the
partially-shared neural network architecture as the local model
in each agent. Specifically, in the local neural network, the
front layers, mapping the input into lower dimensions, are
shared among all agents, while the last one layer performs
as the node-specific part and is unique for each agent (a). The
partially-shared model is shown in Fig. 1.

With the partially-shared model, after one epoch of local
training, each agent transmits the model parameters to its

(a)In this work, we only consider the last one layer as the node-specific
part for DNN. The proposed scheme can be easily generalized to multi-layer
conditions with proper design for other network architectures.

4

Fig. 1: The system model of GATTA: The left side represents the decentralized learning framework, where the partially-shared model is
shown in the gray box. The subscript g indicates the global model part and the subscript ns stands for node-specific layer. The right side
represents the two components of the node-specific parameters.

neighboring agents, including the global ones wi,g as well
as the node-specific ones wi,ns. To achieve the consensus of
the global model, the efficient D-SGD method [2] is applied
to update wi,g in each round. [8] proposed to train the node-
specific parameters only using local data set, without utilizing
information from other agents. However, as mentioned before,
this is inefficient especially in the condition of small number
of training samples. To this end, we design an aggregation
procedure for the node-specific parameters based on the graph
attention mechanism.

B. The Graph Attention-Based Aggregation Method

The Graph Attention Network was first proposed in [47],
which is a novel neural network architecture extending con-
ventional neural networks to deal with graph-structured data. It
can be applied to various tasks in graph domain, such as node
classification and regression. Through utilizing self-attention
layers, GAT can automatically configure different weights for
different neighboring nodes without requiring any pre-defined
weight matrix.
Inspired by this automatic weight configuration mechanism

and the fact that a decentralized communication network
can be viewed as a graph, we propose a graph attention
based network for personalized model aggregation, aiming to
dynamically exploit the effective information from other nodes
to boost the local model. Each agent can be treated as one node
in the graph, while its node-specific parameters are treated as
local features and can be aggregated according to the graph
attention mechanism. It can be implemented in a node-wise
manner, which is suitable for the decentralized architecture.
Following we will talk about how to utilize the graph attention
mechanism in distributed personalized learning over networks.
Consider a node i, representing the agent i, with its node-

specific parameters wi,ns ∈ RF . In the k-th round, after
receiving the neighboring nodes’ parameters in the last round,
the input of the attention mechanism for each node is a set
of node features {w(k−1)

j,ns }j∈Ni∪{i}, consisting of its local
node-specific parameters as well as those from neighboring
nodes. Here the symbol Ni∪{i} denotes the union of Ni

and the local node. A locally shared attention mechanism
ai(·) : RF×RF → R is applied in the concatenation ofw(k−1)

i,ns

and w
(k−1)
j,ns , j ∈ Ni to compute the attention coefficient:

e
(k)
ij = ai(w

(k−1)
i,ns ||w

(k−1)
j,ns), j ∈ Ni, (2)

where || denotes the concatenation operation. The attention
coefficient e(k)ij indicates the importance of node j’s parameters
to node i. A softmax operation is conducted on e

(k)
ij for

coefficient normalization across all neighboring nodes. Thus
we have:

α
(k)
ij = softmaxj(e

(k)
ij) =

exp(e
(k)
ij)∑

l∈Ni
exp(e

(k)
il)

.

In practical implementations, to compute the attention coef-
ficient e(k)ij in (2), the attention mechanism ai(·) is a single
1-dimensional convolution layer, parameterized by the weight
parameters βi ∈ R2F . Applying the activation function σG[·],
the aggregation weights computed by the attention mechanism
can be expressed as:

α
(k)
ij =

exp
(
σG

[
β
(k)
i

T
(w

(k−1)
i,ns ||w

(k−1)
j,ns)

])
∑

l∈Ni
exp

(
σG

[
β
(k)
i

T
(w

(k−1)
i,ns ||w

(k−1)
l,ns)

]) . (3)

Note that the original activation function σG[·] applied in [47]
is LeakyReLU, while ELU is used as the activation function
in our model for the sake of smoothness.

Meanwhile, considering that the aggregation of the neigh-
boring nodes’ parameters may be insufficient, we utilize
another intermediate local update parameter term, denoted by
wi,lu. The aggregation model for the node-specific parameters
can thus be formulated as:

w
(k)
i,ns ← µw

(k)
i,lu︸ ︷︷ ︸

local update

+(1− µ)σ
(∑

j∈Ni

α
(k)
ij w

(k−1)
j,ns

)
︸ ︷︷ ︸

aggregation term

, (4)

where σ is an activation function. Here µ is the fusion
parameter to balance the local update and the aggregation
of parameters from neighboring nodes. We derive the range
of µ in Theorem 2 in the next section, whose lower bound
increases as the degree of non-i.i.d. becomes large. Note that
in (4), the variables updated in the back propagation include
the weight parameters βi in the attention mechanism as well
as the intermediate local update parameters wi,lu.

With the attention-based mechanism, the graph-attention-
based personalized training algorithm for decentralized learn-
ing, termed as GATTA, is summarized as Algorithm 1. Here
Ã denotes the weight matrix for aggregating the global model
parameters.

For a given neural network architecture in each agent, such
as AlexNet, we denote the number of its parameters by Nv =

5

Algorithm 1: Graph-Attention Based Training Algo-
rithm (GATTA)
1 for each node i ∈ V [in parallel] do
2 Initialize all the parameters in the network and set k = 0.
3 Initialize the parameters of neighboring nodes.

4 while not converged do
5 k ← k + 1.
6 for each node i ∈ V [in parallel] do
7 for all local training samples {xs,ys} ∈ Di randomly

do
8 Input the training samples and compute the loss

with the current model parameters.
9 Back propagate the gradients and Update the

model parameters.

10 Obtain w
(k− 1

2
)

i,g , w(k)
i,lu, β

(k)
i after the local SGD.

11 Calculate the node-specific parameters w(k)
i,ns

according to (4).
12 Transmit the model parameters w

(k− 1
2
)

i,g and w
(k)
i,ns to

the neighboring nodes.
13 for each node i ∈ V [in parallel] do
14 Update the global model parameters

w
(k)
i,g ←

∑
j∈Ni∪{i} Ã(i, j) ·w

(k− 1
2
)

j,g .

Nwg +Nwlu, where Nwg and Nwlu represent the number of
parameters in the global model part and node-specific part.
Then in one iteration, the number of parameters to be updated
in D-SGD is Nv for one agent. The number in D-SGD with
gradient tracking (GT-DSGD) [35] is 2Nv . For GATTA, the
parameters to be updated include wi,g , wi,lu and βi, thus the
total number is Nv + 2Nwlu. Since the node-specific layer
takes a small part in the neural network, we have Nv ≤ Nv +
2Nwlu ≤ 2Nv .

C. Communication-Efficient GATTA for Distributed Learning

In the training process of GATTA, each agent adaptively
decides how to fuse the node-specific parameters from its
neighboring nodes through learning the aggregation weights.
For each node, different neighboring nodes with various data
distribution may have different impact on it, leading to diverse
weights, especially in label distribution condition [18]. Then
it naturally comes to us that in the training process, each
node can stop receiving node-specific parameters from those
neighboring nodes which have little positive impact on it with
small weights. To better illustrate this, we plot Fig. 2 following
the same setting as the first experiment in Section V. We
take an arbitrary node for representation and show the learned
weights of its selected 5 different neighboring nodes.
It can be observed that with the iteration going on, the

weights of some neighboring nodes reduce to small values,
which means those nodes have little positive impact on the
local one. Motivated by this observation, we further design
a communication-efficient GATTA (CE-GATTA). Specifically,
we set the weight threshold τi. When the learned weight of
j-th neighboring nodes is less than τi, i.e., αij < τi, the j-th
neighboring node stops to transfer its node-specific parameters

Fig. 2: Different neighboring nodes’ weights

to node i. The aggregation model can thus be reformulated as:

w
(k)
i,ns ← µw

(k)
i,lu + (1− µ)σ

(∑
j∈N (k)

c,i

α
(k)
ij w

(k−1)
j,ns

)
, (5)

where N (k)
c,i denotes the set of the selected neighboring nodes

which need to transfer their node-specific parameters in the
k-th iteration. Note that those neighboring nodes outside Nc,i

only stop transmitting their node-specific parameters, rather
than stopping transmitting the global model’s parameters. This
may lead to higher communication cost per epoch compared
with totally stopping the communication from this node.
However, it is necessary to share the global model part so
as to guarantee convergence rate with the information from
other nodes.

Since the aggregation weight of the removed information is
small, such reduction of communication may have little impact
on the convergence performance of the algorithm compared
with original GATTA. Moreover, the whole information still
flows over the connected communication network and CE-
GATTA can adjust the aggregation weights to better fuse
the information, as also indicated by experimental results.
Consequently, under the proper choice of τi, CE-GATTA may
have similar performance w.r.t. convergence rate and resultant
accuracy compared with the original GATTA. Experimental
results in Section V show a much faster convergence rate
of GATTA compared with D-SGD. Thus, through reducing
the communication per iteration as well as reducing the total
communication rounds, the communication cost of the system
can be highly saved. The communication-efficient GATTA can
be summarized as Algorithm 2.

Note that the amount of communication cost saved by CE-
GATTA is relevant to the value of the threshold τi. When
τi is relatively small, the number of removed communication
nodes is small and has little impact on the convergence curve.
However, when τi becomes large enough, the convergence
curve of CE-GATTA may become lossy and it takes more
iterations to aggregate the information so as to achieve the
same accuracy as GATTA. Consequently, the total communi-
cation cost maybe not necessarily saved. In this sense, there
exists a trade-off between the number of iterations and the
communication cost saved in each iteration, which is deter-
mined by τi and eventually affects the overall communication

6

cost. On the other hand, the performance of CE-GATTA
maybe also influenced by the non-i.i.d. properties of the data
distribution. For example, for the feature distribution skew
condition in Section V, the learnt aggregation weight has small
divergence among neighboring nodes, where the effect of CE-
GATTA is weakened. In contrast, the divergence of the learnt
weights in label distribution skew is large as shown in Fig.
2, and CE-GATTA has remarkable performance on saving the
communication cost.

Algorithm 2: Communication-Efficient GATTA (CE-
GATTA)
1 for each node i ∈ V [in parallel] do
2 Initialize all the parameters in the network and set k = 0,

Nc,i = Ni.
3 Initialize the parameters of neighboring nodes.

4 while not converged do
5 k ← k + 1.
6 for each node i ∈ V [in parallel] do
7 for all local training samples {xs,ys} ∈ Di randomly

(a) do
8 Input the training samples and compute the loss

with the current model parameters.
9 Back propagate the gradients and Update the

model parameters.

10 Obtain w
(k− 1

2
)

i,g , w(k)
i,lu, β

(k)
i after the local SGD and

Calculate {α(k)
ij }, j ∈ Nc,i according to (3).

11 Calculate the node-specific parameters w(k)
i,ns

according to (5).
12 For all α(k)

ij < τi, remove j from N (k−1)
c,i and get

N (k)
c,i .

13 If N (k)
c,i = ∅, then N (k)

c,i ← N
(k−1)
c,i .

14 Inform those neighboring nodes outside N (k)
c,i to stop

transmitting wj,ns.
15 Transmit the model parameters w

(k− 1
2
)

i,g to all
neighboring nodes.

16 Transmit w(k)
i,ns to the needed neighboring nodes.

17 for each node i ∈ V [in parallel] do
18 Update the global model parameters

w
(k)
i,g ←

∑
j∈Ni∪{i} Ã(i, j)w

(k− 1
2
)

j,g .

IV. THEORETICAL RESULTS

We denote the updatable parameters of the local neural
network in node i by vi, which is the concatenation of the
global parameters wi,g , the local update parameters wi,lu, and
the attention parameters βi. In the k-th round, the update rules
of the parameters can be written as follows:

w
(k− 1

2)
i,g = w

(k−1)
i,g − η

T−1∑
t=0

g
(k−1)
i,g,t = w

(k−1)
i,g − η∆

(k−1)
i,g , (6)

w
(k)
i,g =

∑
j∈Ni∪{i}

Ã(i, j)w(k− 1
2)

j,g , (7)

w
(k)
i,lu = w

(k−1)
i,lu − η

T−1∑
t=0

g
(k−1)
i,lu,t = w

(k−1)
i,lu − η∆

(k−1)
i,lu , (8)

β
(k)
i = β

(k−1)
i − η

T−1∑
t=0

g
(k−1)
i,b,t = β

(k−1)
i − η∆

(k−1)
i,b , (9)

where η denotes the learning rate at the k-th communication
round and T is the number of stochastic gradient descent
(SGD) steps in one epoch. After the k-th communication
round, g(k)i,g,t denotes the gradient w.r.t. the global parameters
wi,g in the t-th SGD step. Likewise, the subscript lu in (8)
and b in (9) respectively represents wi,lu and βi. ∆ denotes
the accumulated gradients after one epoch of SGD. Define
the gradient of the local objective w.r.t. any parameter w as
∇fi(w), then we have g

(k)
i,g,t = ∇fi(w(k)

i,g,t, ξi,t), where ξi,t
denotes the data samples in the t-th SGD step. In the k-th
iteration, we define the averaged global parameters among
agents as w̄(k)

g . Meanwhile, we use the matrix Wg to represent
the matrix form of the global parameters for all agents, i.e.,
Wg = [w1,g,w2,g, ...,wN,g], where wi,g is a column vector
here. Likewise, the matrix form of ∆i,g for all agents can be
denoted by Ξg , [∆1,g, ...,∆N,g]. To this end, based on the
update rule in (6) and (7), we can obtain the following update
rule in matrix form.

W(k)
g = (W(k−1)

g − ηΞ(k−1)
g)Ã. (10)

Before presenting our theoretical findings, we make the
following assumptions, where the expectations are taken over
the randomness in stochastic gradients.

Assumption 1. (Spectral Gap) The aggregation weight matrix
Ã for the global model parameters is a symmetric doubly
stochastic matrix. Denote its eigenvalues by 1 = |λ1| >
|λ2| ≥ · · · ≥ |λN | ≥ 0. We further assume the spectral gap
1− ρ ∈ (0, 1], where ρ = |λ2| ∈ (0, 1].

Assumption 2. (Smoothness) The local objective functions fi
are L-smooth for the parameters vi of each node i ∈ V , i.e.,

fi(vi) ≤ fi(v
′
i) +∇fi(v′

i)
T (vi − v′

i) +
L

2
∥vi − v′

i∥22. (11)

Assumption 3. (Unbiased Local Gradient Estimator) For
each node i ∈ V and wi ∈ {wi,g,wi,lu,βi}, the local
gradient estimator is unbiased, i.e., E[gi,t] = ∇fi(wi,t), in
the t-th gradient descent step.

Assumption 4. (Bounded Local Variance) There exist s-
calar χ > 0 such that for each node i ∈ V and wi ∈
{wi,g,wi,lu,βi}, the variance of local gradient estimator is
bounded by E[∥gi,t −∇fi(wi,t)∥] ≤ χ.

Assumption 5. (Degree of Non-i.i.d.) There exists scalar κ ≥
0 for each node i ∈ V such that for the global parameters,

1

N

∑
i∈V

E
∥∥∥∇fi(wg)−

1

N

∑
j∈V

∇fj(wg)
∥∥∥ ≤ κ. (12)

Assumption 6. (Bounded Gradients) There exists scalar
G > 0 such that for each node i ∈ V and any wi ∈
{wi,lu,βi,wi,ns},

∥∇fi(wi)∥22 ≤ G. (13)

Further, the gradients of the activation functions satisfy

∥σ′∥22 ≤ 1. (14)

7

Among all assumptions, Assumption 2 for the local objec-
tive function is standard, which also restricts the activation
functions to be smooth. The commonly used activation func-
tions such as ELU, sigmoid and Tanh all satisfy this assump-
tion. Assumption 5 limits the non-i.i.d. degree through the
gradients of the global parameters wg . Assumptions 1-5 are
commonly used and can be widely found in [2, 5, 17, 30, 50–
52]. We further make Assumption 6 to simplify the analysis
in Theorem 2, where equation (14) can be easily satisfied by
most common activation functions including ELU, sigmoid
and Tanh.
Here one key difference of our analysis from others in

standard D-SGD is that we take the node-specific param-
eters into consideration. Specifically, in our analysis, the
performance is evaluated under the averaged global model
parameters among agents w̄g , together with the personalized
individual parameters including local update parameters wi,lu

and attention parameters βi. This is rational because the
parameters in the global model part are updated following the
standard D-SGD to achieve consensus among agents, while
the other parameters are updated locally with personalization.
The performance of D-SGD has been analyzed in [2, 30] based
on averaged parameters. Different from them, we additionally
consider the node-specific model part and combine these two
kinds of parameters. Given the above assumptions, we have
the following lemmas, where the expectation is over the local
data samples.

Lemma 1. Denote the variable value of wi in the t-th SGD
step by wi,t. Under Assumption 4, we have

E[∥∆(k)
i ∥

2
2] ≤ T · χ2 + E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2], (15)

for all wi ∈ {wi,g,wi,lu,βi}, and ∆i ∈ {∆i,g,∆i,lu,∆i,b}
respectively.

Lemma 2. For any learning rate satisfying η < 1
4TL , we have

the following results:

E[∥wi,t −wi∥22] ≤ 4Tη2χ2 + 16T 2η2∥∇fi(wi)∥22. (16)

Lemma 3. For any i ∈ V , wi ∈ {wi,lu,βi} and ∆i ∈
{∆i,lu,∆i,b} respectively, we have

E
[
− η∇fi(w(k−1)

i)T∆
(k−1)
i +

1

2
η2L∥∆(k−1)

i ∥22
]

≤ −cTη∥∇fi(w(k−1)
i)∥22 +

η2TL

2
(1 + 4ηTL)χ2,

(17)

where c is a constant satisfying 0 < c < 1
2 − 8η2T 2L2.

Lemma 4. For the global parameters wg , we have

E
∥∥∥∇F (w̄(k)

g)−∇F (w(k)
g)

∥∥∥2
2
≤ L2

N

∑
i∈V

E∥w̄(k)
g −w

(k)
i,g ∥

2
2,

(18)
where ∇F (w̄

(k)
g) , 1

N

∑
i∈V ∇fi(w̄

(k)
g) and ∇F (w

(k)
g) ,

1
N

∑
i∈V ∇fi(w

(k)
i,g)

Lemma 5. For the averaged global parameters w̄g , we have

w̄(k)
g − w̄(k−1)

g = − η

N

∑
i∈V

∆
(k−1)
i,g , −η∆̄(k−1)

g .

The proofs of the Lemmas can be found in Appendix A. As
we talked before, the performance is measured under averaged
w̄g and individual wi,lu, βi. Thus we define the partially-
shared parameters in agent i as ṽi, which is the concatenation
of w̄g , wi,lu and βi. Additionally, we define the concatenation
of individual parameters wi,lu, βi as vi,ns and ∇F (vns) ,
1
N

∑
i∈V ∇fi(vi,ns). The product of multiple weight matrices

for global parameters is denoted by ¯̄As,k−1 =
∏k−1

l=s Ã. Q =
1
N 1N1TN and ρs,k−1 = ∥ ¯̄As,k−1 − Q∥. Additionally, we also
make the following definitions.

AK =
1

K

K∑
k=1

k−1∑
s=1

ρ2s,k−1, BK =
1

K

K∑
k=1

(k−1∑
s=1

ρs,k−1

)2

,

CK = max
s∈[K−1]

K∑
k=s+1

ρs,k−1

(k−1∑
l=1

ρl,k−1

)
.

Then based on the lemmas and definitions above, we give
the convergence property of the proposed GATTA method as
Theorem 1 and Corollary 1.

Theorem 1. Provided that η < min{ 1
24TL ,

1
32TL

√
CK
}, under

Assumptions 1-5 made above, the iterates of GATTA algorithm
satisfy the following inequality:

min
k∈[K]

E
[
∥∇F (v(k)

ns)
∥∥2
2
+ ∥∇F (w̄(k)

g)∥22
]
≤ F0 − F∗

cTKη
+Φ,

where F0 denotes initial value of the objective F (Ṽ) and F∗
denotes its optimal value.

Φ =
1

c

{
ηL(1 + 4ηTL)χ2+

1

N

[
ηL(4κ2T + χ2) + 6Tη2χ2L2

]
+

64η2TL2(AKχ2 +BKT (κ2 + Tη2χ2L2))
}
,

c is a constant satisfying 0 < c < 1
2 − 8η2T 2L2, and

AK , BK , CK are defined as above.

Its proof can be found in Appendix B. Based on Theorem
1, we have the following convergence rate for GATTA as
Corollary 1.

Corollary 1. Let the learning rate η = m√
K
, where m is

a constant such that η < min{ 1
24TL ,

1
32TL

√
CK
}, then the

convergence rate for GATTA is O(1√
K
).

Finally, we provide the limited range of the fusion parameter
µ in (4) as the following Theorem 2. We denote µ by µ

(k)
i to

associate with a specific node i in the k-th round for better
clarification.

Theorem 2. Denote the gradient value of σG(xj) by σ′
G,j ,

where xj , β
(k−1)
i

T
(w

(k−1)
i,ns ||w

(k−1)
j,ns). Define

D
(k)
i ,[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
·
[∑
j∈Ni

∑
l∈Ni\{j}

∥∥σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)

− σ′
G,l · (w

(k−1)
i,ns ||w

(k−1)
l,ns)

∥∥2
2

]
.

8

Then to satisfy Assumption 6, the value of the fusion parameter
µ
(k)
i in the k-th round for node i ∈ V should be constrained

in
1− 1√

di(di − 1)D
(k)
i

≤ µ
(k)
i ≤ 1. (19)

Remark 1. As the number of neighboring nodes di becomes
larger, the lower bound of µ(k)

i increases. Moreover, the value
of D

(k)
i reflects the degree of non-i.i.d. of the neighboring

nodes to some extent. If xj ≥ 0 is satisfied for all j ∈ Ni,
D

(k)
i can be further simplified into the following expression:

D
(k)
i =

[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×[∑

j∈Ni

∑
l∈Ni\{j}

∥w(k−1)
j,ns −w

(k−1)
l,ns ∥

2
2

]
. (20)

It can be observed that when the parameters of neighboring
nodes are closer, which indicates that the non-i.i.d. degree
is smaller, the lower bound of µ(k)

i reduces. This is rational
since a small value of µ

(k)
i represents more impact of the

aggregation term under smaller non-i.i.d. degree.

Theorem 2 provides the lower bound of the fusion pa-
rameter, below which the convergence of GATTA cannot be
guaranteed. We refer the readers to Appendix C for detailed
proof. In the practical implementations, we do not focus on the
fusion parameter design for each single node. For the sake of
simplicity, we denote the fusion parameter for all the nodes by
µ as applied in (4) and choose its value through experiments.

V. NUMERICAL EXPERIMENTS

In this section, we numerically evaluate the performance
of our proposed algorithms under non-i.i.d. conditions. In
particular, we consider a multi-agent communication network
with N nodes, whose topology is generated randomly using
the Erdos Renyi random graph model, with the connectivity
probability equal to p. If not specified, we apply the widely-
used AlexNet architecture in each agent, which is a repre-
sentative DNN and CNN architecture. The node-specific layer
gets its parameters according to (4) or (5), including weights
and biases. Meanwhile, to make the loss function smooth, we
apply ELU as the activation functions for the whole network.
The performance is evaluated on the image classification

problem. To validate the algorithm more comprehensively, we
simulate on two different settings of non-i.i.d.: label distri-
bution skew [18] and feature distribution skew [16]. For the
label distribution skew, we consider the 10-class classification
problem over CIFAR-10 [53] and randomly choose ci labels
assigned for each agent, which reflects the non-i.i.d. data dis-
tribution. The training samples corresponding to the same label
are averaged and randomly assigned to the agents. The testing
samples are assigned to agents corresponding to their local
label distributions. Note that the number of training samples
with respect to one label is averaged among agents with that
label. Meanwhile, for a general and comprehensive evaluation
of the learned model, the testing samples are assigned to agents
with all of them corresponding to the local label distribution.

For the feature distribution skew, we consider the 62-class
classification problem over FEMNIST [54], which contains
images of different characters written by different writers. We
randomly assign ei different writers with their written charac-
ters for each agent and use 75% of them for training, 25% for
testing. The performance metric is the average of the testing
accuracy among the agents. We compare the proposed GATTA
and CE-GATTA with three baseline methods: centralized FL
[21], D-SGD [2] as well as independent learning in each agent
(IL). For all distributed learning methods, agents exchange
messages after one epoch of local training.

A. Evaluation of convergence on the Different Datasets

Label Distribution Skew. We first show the results on
the CIFAR-10 dataset under different numbers of local labels
ci = 3, 4, 5 and different numbers of local training samples
ni. The communication network is generated randomly with
N = 100 and p = 0.6. In each agent, the local neural network
is made of two 5 × 5 convolutional layers, each followed
by a 3 × 3 max pooling layer with stride 2, and three fully
connected layers. The last fully-connected layer is the node-
specific layer. For all the algorithms, the local optimizer is
RMSProp [55]. The learning rate of IL is set to η = 0.01,
while for others η = 0.001. All of the learning rates are tuned
from {0.1, 0.01, 0.001, 0.0001} and we set µ = 0.9 through
experiments. The threshold for CE-GATTA is set to τi =

1
4di

.
The results are shown in Figure 3.

As shown in Fig. 3, in the label skew condition, GATTA
and CE-GATTA outperform the baseline methods in both
convergence rate as well as resultant accuracy. Here FL and
D-SGD shows similar results due to the average and consensus
procedure. Also, theorem in [2] proves the same convergence
rate of the centralized and decentralized method. Secondly,
comparing the results under different ci, it can be observed
that the superiority of GATTA over FL and D-SGD is more
pronounced under smaller ci. This is because a smaller ci
indicates less relativity among agents and the personalization
technique is more effective. Meanwhile, the independent learn-
ing method IL performs best in ci = 3.

Moreover, the communication-efficient implementation of
GATTA shows almost the same convergence property as
original GATTA. This is resulted from that the information
transmission CE-GATTA removed is redundant or useless,
and has little impact on the performance of the algorithm. In
this way, the reduction of communication is effective without
increasing the iteration number.

Feature Distribution Skew. We next evaluate the perfor-
mance in feature distribution skew condition through assigning
different writers in FEMNIST for different agents. The number
of writers in each agent is set to ei = 2, 4, 6 respectively. The
local network is made of two 3× 3 convolutional layers, each
followed by a 2× 2 max pooling layer with stride 2, and two
fully connected layers, the last one of which serves as the
node-specific layer. We set η = 0.01 for all the algorithms, as
tuned from {0.1, 0.01, 0.001, 0.0001}, and µ = 0.7, τi = 1/di.
The results are shown in Figure 4. As shown in Fig. 4, in the
feature skew condition, GATTA and CE-GATTA also show

9

Fig. 3: Convergence behaviours for CIFAR-10 under various ci

Fig. 4: Convergence behaviours for FEMNIST under various ei

good performance compared with the other methods. It can
be observed that the convergence rate of proposed algorithms
is much faster than FL and D-SGD, indicating that the the
proposed methods can quickly and effectively capture the
useful information from other agents. Also, as ei reduces,
indicating a larger degree of non-i.i.d., the GATTA shows
significant accuracy performance compared with other baseline
methods, highlighting the effectiveness of proposed algorithms
in the non-i.i.d. conditions.
In both Fig. 3 and 4, there exists a similar and inspiring trend

that the superiority of GATTA and CE-GATTA, over FL and
D-SGD, is higher under smaller number of labels or writers
in each agent. To shed more light on its inherent reasons, we
provide the following Remark 2.

Remark 2. The local number of labels (ci) or writers (ei)
affects the non-i.i.d. degree among nodes, which becomes
higher when ci or ei decreases. When the non-i.i.d. degree
becomes higher, the correlation among nodes reduces, leading
to a worse performance of consensus learning methods such
as FL or D-SGD and a higher superiority of personalized
GATTA/CE-GATTA. On the contrary, when ci or ei increases,
the correlation among nodes becomes larger, where a consen-
sus model may adapt more on local data distribution and the
superiority of GATTA/CE-GATTA becomes smaller.

B. Evaluation of accuracy On Different Network Topologies

We investigate the performance of the algorithms under dif-
ferent network topologies. Specifically, we use FEMNIST for
validation and set ei = 2. The results under different numbers
of agents as well as different probabilities of connectivity are

evaluated. We set η = 0.01 (except for the ring topology),
µ = 0.7, τi = 1/di and the maximum number of rounds is
800. The results are first compared under fixed N = 100 and
different probabilities of connectivity p = 0.05, 0.2. Then, we
fix p = 0.2 and set N = 50, 150. We also consider a more
extreme condition of a ring communication network topology
with N = 50 nodes, where η = 0.008. We additionally
compare the algorithms with four different state-of-the-art
methods as follows:

• The first one is the method in [8] generalized in decentral-
ized network, which we term as RepDL. In RepDL, each
agent aggregate the parameters in the global component
while updating the node-specific parameters only with
local dataset. The comparison with RepDL can shows the
effectiveness of the graph-based aggregation procedure.
Its learning rate is η = 0.01.

• The second procedure is the traditional D-SGD following
fine-tuning on different nodes for personalization, termed
as DSGD-FT. Such idea has achieved good performance
in federated learning. Its learning rate is η = 0.01.

• The third method is the D2 training algorithm proposed
in [34], whose learning rate is η = 0.1.

• The last method is the GT-DSGD algorithm in [35],
where the decaying step-size ηk = 1.0

10+
√
k

are adopted
and the Metropolis rule is applied to define the weight
matrix as suggested by [37].

αij =


1/max{di, dj} if j ∈ Ni,

1−
∑

l∈Ni

αil if j = i,

0 otherwise.

10

The communication networks are generated randomly using
the Erdos Renyi model and the testing accuracy results are
averaged over 5 trails as reported in Table I, along with the
95% confidence intervals. As shown in Table I, the proposed
algorithms have the best performance among all algorithms,
even under the sparse connectivity p = 0.05 and extreme con-
dition of ring communication network. Moreover, the resultant
accuracy of CE-GATTA is similar to that of GATTA. This is
because of the mechanism of CE-GATTA, which can learn and
adjust to fuse the information from the selected nodes. And
such fusion may utilize the whole information flowing over
the communication network. D2 algorithm fails to converge
when N = 100, p = 0.05, N = 50, p = 0.2 and in the ring
topology.

C. Generalization to Other DNN Architecture

In this subsection, we simulate the proposed GATTA on
other kinds of local neural network architecture. Different
from the AlexNet above, we apply ResNet-18 [56] for CIFAR-
10 and MLP for FEMNIST. Specifically, in ResNet-18, each
convolutional layer is followed by a batch-normalization layer,
whose shift and scale are trainable parameters. The MLP is a
784− 400− 100− 62 architecture with three fully connected
(FC) layers, and each of the first two FC layers is followed by
a batch-normalization layer. The learning rate is 0.001 for all
methods on ResNet-18, and 0.1 for all approaches on MLP.
In both networks, the last fully-connected layer is treated as
the node-specific layer for GATTA. Moreover, we compare the
results with another method proposed in [19], where the batch-
normalization layers are not averaged in the training process
and only trained with local data. We name it as BN-DSGD.
The other settings are same as those in Section V-A and we
set ci = 3 for CIFAR-10, ei = 2 for FEMNIST. The results
in ResNet-18 and MLP are shown in Fig. 5 and 6.

Fig. 5: Convergence behaviors for CIFAR-10 on ResNet-18

In Fig. 5, GATTA and BN-DSGD share similar perfor-
mance, while in Fig. 6, GATTA outperforms BN-DSGD. Note
that BN-DSGD requires the network architecture having the
batch-normalization layer and its performance highly relies
on the number of local data samples training the batch-
normalization layers. Meanwhile, the results validate the ef-
ficiency and superiority of the proposed GATTA on different
local DNN architectures.

Fig. 6: Convergence behaviors for FEMNIST on MLP

D. Evaluation of Communication Cost

In this part, we evaluate the communication cost of CE-
GATTA and compare with the traditional D-SGD method.
Note that here we focus on the decentralized communication
network topology without a fusion center, so we do not
conduct FL for comparison. Specifically, we measure the com-
munication cost by the total number of parameters transmitted.
The algorithms stop when they achieve the accuracy require-
ments (0.79%, 0.75%, 0.72% for ci = 3, 4, 5 respectively) or
the maximum iteration number. The setting of the simulation
is the same as the label skew condition in Section V-A. We
first show the reduction of communication cost with epoch
in Fig. 7, where the BaseLine refers to the methods of D-
SGD or GATTA, which transmits all the parameters to all
the neighboring nodes. From Fig. 7, it can be observed that
as the iteration goes on, the communication cost of CE-
GATTA per epoch reduces by stopping the transmission of
less important parameters. Moreover, when the learning of
the weight specification comes to converge, the condition of
ci = 3 takes the least communication cost. It is rational since
a smaller ci indicates less relativity among agents and there
can be more ineffective information stopped to be transmitted.

Fig. 7: The reduced communication cost with epoch

Then we show the results of total communication cost in
Table. II. It can be observed that compared with traditional
D-SGD, CE-GATTA largely reduces the communication cost
resulted from the faster convergence rate and less information
transmission per epoch.

In the following, we focus on the performance of CE-
GATTA under different threshold τi. As we talked in Section

11

TABLE I: Comparison of average testing accuracy under different network topologies.

Algorithms
Network Parameters

N = 100, p = 0.05 N = 100, p = 0.2 N = 50, p = 0.2 N = 150, p = 0.2 N = 50, ring

FL 67.39± 0.13% 67.44± 0.15% 67.20± 0.16% 67.40± 0.14% 67.15± 0.14%

D-SGD 65.91± 0.27% 66.08± 0.16% 66.33± 0.25% 66.21± 0.21% 66.26± 0.20%

IL 65.49± 0.06% 65.53± 0.05% 65.07± 0.09% 65.14± 0.05% 65.06± 0.10%

RepDL 66.93± 0.10% 66.85± 0.13% 66.40± 0.21% 66.54± 0.19% 66.41± 0.06%

DSGD-FT 71.02± 0.12% 72.46± 0.10% 70.92± 0.17% 70.95± 0.15% 72.24± 0.20%

D2 − 73.92± 0.30% − 72.95± 0.21% −
GT-DSGD 69.79± 0.11% 72.57± 0.16% 71.27± 0.39% 72.34± 0.35% 73.28± 0.21%

GATTA 78.78± 0.21% 78.81± 0.23% 78.90± 0.15% 79.03± 0.20% 77.10± 0.27%

CE-GATTA 78.70± 0.20% 78.67± 0.25% 79.04± 0.17% 79.05± 0.23% 76.92± 0.28%

TABLE II: Comparison of communication cost

ci = 3 ci = 4 ci = 5

D-SGD 4.0204× 1012 4.0204× 1012 4.0204× 1012

CE-GATTA 1.6076× 1012 1.6578× 1012 1.6580× 1012

Reduction 60.0% 58.8% 58.8%

III-C, when the threshold is small or the number of epochs
is large, there exists little difference of the resultant accuracy
over different τi. To better show the difference and reveal the
trade-off, we choose τi with relatively large values, where
τi = 1/di, 2/di, 3/di, 4/di. And the total communication
cost is calculated until the accuracy achieves 78%. Then we
present the following Table III to show the comparison of
communication cost.

TABLE III: Comparison of communication cost (×1012)

τi = 1/4di τi = 1/di τi = 2/di τi = 3/di τi = 4/di

1.0553 1.0347 1.2353 1.2055 1.2657

It can be observed that the communication cost does not
necessarily become smaller with the increasing τi, due to a
larger number of epochs to achieve the required accuracy.
Consequently, there exists a best choice of the threshold for
CE-GATTA saving the communication cost most.

VI. CONCLUSION

We considered the statistical heterogeneous problem in the
decentralized deep learning and proposed a graph-attention-
based personalization method called GATTA. The GATTA
enables each agent to adaptively utilize the information from
neighboring agents. This can be implemented through learning
specify weights for different neighboring agents in the train-
ing process, based on which we designed a communication-
efficient GATTA. We also derived the theoretical convergence
properties of GATTA and provided the range of the fusion
parameter. Finally, we compared the performances of the
proposed algorithms with other distributed learning algorith-
m under different datasets, non-i.i.d. settings, and network

topologies. The experiment results validated the superiority
of the proposed algorithms over conventional schemes.

The algorithm with rigorous theoretical guarantees provides
a broad impact on improving the local learning quality for
applications that deploy decentralized learning. Although the
local personalized model and the experiments are based on
deep neural networks, the proposed graph-attention-based per-
sonalization technique could be generalized to other learning
networks with proper design. Thus, one of our future research-
ing topics is to generalize the personalized model into other
neural networks. Another important issue is the theoretical
convergence analysis of CE-GATTA, which could shed more
light on its overall performance w.r.t. communication and
computation costs. Additionally, it is promising to apply
the proposed algorithm to practical wireless communication
problems, such as collaborative location for multiple base
stations.

APPENDIX

A. Proof of the Lemmas

The proof of Lemma 1 is as follows.
Proof:

E[∥∆(k)
i ∥

2
2] = E[∥

T∑
t=0

g
(k)
i,t ∥

2
2]

(a)
= E[∥

T−1∑
t=0

(g
(k)
i,t −∇fi(w

(k)
i,t))∥

2
2] + E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2]

(b)

≤ T · χ2 + E[∥
T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2], (21)

where (a) follows from the fact that E[∥x∥22] = E[∥x −
E[x]∥22]+∥E[x]∥22 and (b) follows from the unbiased estimator.

The proof of Lemma 2 is as follows, which is similar to
that of Lemma 2 in [51].

Proof: We have that

E[∥(w(k)
i,t −w

(k)
i)∥22] = E[∥(w(k)

i,t−1 −w
(k)
i)− ηg

(k)
i,t−1∥

2
2]

= E[∥(w(k)
i,t−1 −w

(k)
i)− η(g

(k)
i,t−1 −∇fi(w

(k)
i,t−1)

12

+∇fi(w(k)
i,t−1)−∇fi(w

(k)
i) +∇fi(w(k)

i))∥22]
(a)

≤ E[∥(w(k)
i,t−1 −w

(k)
i)− η(∇fi(w(k)

i,t−1)−∇fi(w
(k)
i)

+∇fi(w(k)
i))∥22] + E[∥η(g(k)i,t−1 −∇fi(w

(k)
i,t−1)∥

2
2]

(b)

≤ (1 +
1

2T − 1
)E[∥w(k)

i,t−1 −w
(k)
i ∥

2
2]

+ (1 + 2T − 1)E[∥η(∇fi(w(k)
i,t−1)−∇fi(w

(k)
i)

+∇fi(w(k)
i))∥22] + E[∥η(g(k)i,t−1 −∇fi(w

(k)
i,t−1)∥

2
2]

≤ (1 +
1

2T − 1
)E[∥w(k)

i,t−1 −w
(k)
i ∥

2
2] (22)

+ 4TE[∥η(∇fi(w(k)
i,t−1)−∇fi(w

(k)
i))∥22]

+ 4TE[∥η∇fi(w(k)
i))∥22] + E[∥η(g(k)i,t−1 −∇fi(w

(k)
i,t−1)∥

2
2]

≤ (1 +
1

2T − 1
+ 4Tη2L2)E[∥w(k)

i,t−1 −w
(k)
i ∥

2
2]

+ 4TE[∥η∇fi(w(k)
i))∥22] + η2χ2

(c)

≤ (1 +
1

T − 1
)E[∥w(k)

i,t−1 −w
(k)
i ∥

2
2]

+ 4TE[∥η∇fi(w(k)
i))∥22] + η2χ2,

where (a) follows from Assumption 3 that g(k)i,t−1 is an unbiased
estimation of ∇fi(w(k)

i,t−1). (b) follows from (x+ y)2 ≤ (1 +
1
K)x2 + (1 +K)y2 and (c) follows from η < 1

24TL .
Unrolling the recursion, we get

E[∥(w(k)
i,t −w

(k)
i)∥22] ≤ (23)

t−1∑
p=0

(1 +
1

T − 1
)p
[
η2χ2 + 4TE[∥η∇fi(w(k)

i))∥22]
]

≤ (T − 1)× [(1 +
1

T − 1
)T − 1]×

[
η2χ2 + 4TE[∥η∇fi(w(k)

i))∥22]
]

≤ 4Tη2χ2 + 16T 2η2E[∥∇fi(w(k)
i))∥22],

where the last inequality follows from (1 + 1
T−1)

T ≤ 5 for
T > 1.
The proof is Lemma 3 is as follows.
Proof: Provided that η ≤ 1

24TL , we have

− E[η∇fi(w(k)
i)T∆

(k)
i] = −ηE < ∇fi(w(k)

i),
T−1∑
t=0

g
(k)
i,t >

= −ηE < ∇fi(w(k)
i),

T−1∑
t=0

∇fi(w(k)
i,t) >

(a)

≤ −Tη

2
∥∇fi(w(k)

i)∥22 −
η

2T
E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2]

+
η

2

T−1∑
t=0

E[∥(∇fi(w(k)
i,t)−∇fi(w

(k)
i))∥22]

(b)

≤ −Tη

2
∥∇fi(w(k)

i)∥22 −
η

2T
E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2]

+
L2η

2

T−1∑
t=0

E[∥(w(k)
i,t −w

(k)
i)∥22]

(c)

≤ −Tη

2
∥∇fi(w(k)

i)∥22 −
η

2T
E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2]

+
L2ηT

2
[4Tη2χ2 + 16T 2η2∥∇fi(w(k)

i)∥22]

= −Tη(1
2
− 8η2T 2L2)∥∇fi(w(k)

i)∥22 + 2η3T 2L2χ2

− η

2T
E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2], (24)

where (a) follows from ∥
∑n

i=1 ai∥22 ≤ n
∑n

i=1 ∥ai∥22, (b)
follows from Assumption 2 and (c) follows from Lemma 2.
Then according to Lemma 1, we have

E
[
− η∇fi(w(k)

i)T∆i +
1

2
η2L∥∆(k)

i ∥
2
2

]
(25)

≤ −Tη(1
2
− 8η2T 2L2)∥∇fi(w(k)

i)∥22 + 2η3T 2L2χ2

+
1

2
η2LTχ2 + (

η2L

2
− η

2T
)E[∥

T−1∑
t=0

∇fi(w(k)
i,t)∥

2
2]

(a)

≤ −Tη(1
2
− 8η2T 2L2)∥∇fi(w(k)

i)∥22 +
η2TL

2
(1 + 4ηTL)χ2,

where (a) follows from η < 1
24TL < 1

TL .
The proof of Lemma 4 is as follows.
Proof:

E
∥∥∥ 1

N

∑
i∈V

∇fi(w̄(k)
g)− 1

N

∑
i∈V

∇fi(w(k)
i,g)

∥∥∥2
2

=
1

N2
E
∥∥∥∑

i∈V

[
∇fi(w̄(k)

g)−∇fi(w(k)
i,g)

]∥∥∥2
2

≤ L2

N

∑
i∈V

E∥w̄(k)
g −w

(k)
i,g ∥

2
2,

where the last inequality follows from the L-smoothness of
the local functions.

The proof of Lemma 5 is as follows.
Proof:

w̄(k)
g − w̄(k−1)

g =
1

N
W(k)

g 1N −
1

N
(W(k−1)

g)1N

=
1

N
(W(k−1)

g − ηΞ(k−1)
g)Ã1N −

1

N
(W(k−1)

g)1N

= − η

N
ΞgÃ1N = − η

N

∑
i∈V

∆
(k−1)
i,g . (26)

where the last equality follows from Assumption 1 that Ã is
a symmetric doubly stochastic.

B. Proof of Theorem 1

Proof: The proof is inspired by the analysis in SGD
method as in [50] and D-SGD method as in [30]. We treat the
parameters wi,lu,βi and w̄g respectively so as to correspond
to their update rules.

Without loss of generality, we consider one specific node
i in the following proof. According to the smoothness of the
local objective function, we have

fi(ṽ
(k)
i)− fi(ṽ

(k−1)
i) ≤ (27)

13

∇fi(ṽ(k−1)
i)T (ṽ

(k)
i − ṽ

(k−1)
i) +

L

2
∥ṽ(k)

i − ṽ
(k−1)
i ∥22

(a)
= ∇fi(w(k−1)

i,lu)T (w
(k)
i,lu −w

(k−1)
i,lu) +

L

2
∥w(k)

i,lu −w
(k−1)
i,lu ∥22

+∇fi(β(k−1)
i)T (β

(k)
i − β

(k−1)
i) +

L

2
∥β(k)

i − β
(k−1)
i ∥22

+∇fi(w̄(k−1)
g)T (w̄(k)

g − w̄(k−1)
g) +

L

2
∥w̄(k)

g − w̄(k−1)
g ∥22,

where (a) follows from the definition that ṽi is the concatena-
tion of the averaged w̄g and individual wi,lu, βi. According
to (8) and (9), the first four terms in the right side of (27) is
equal to

− η∇fi(w(k−1)
i,lu)T∆

(k−1)
i,lu +

1

2
η2L∥∆(k−1)

i,lu ∥22

− η∇fi(β(k−1)
i)T∆

(k−1)
i,b +

1

2
η2L∥∆(k−1)

i,b ∥22.
(28)

Take the expectation of (27) on the both sides, we have

E
[
fi(ṽ

(k)
i)− fi(ṽ

(k−1)
i)

]
≤ (29)

E
[
− η∇fi(w(k−1)

i,lu)T∆
(k−1)
i,lu − η∇fi(β(k−1)

i)T∆
(k−1)
i,b

+
1

2
η2L∥∆(k−1)

i,lu ∥22 +
1

2
η2L∥∆(k−1)

i,b ∥22
]

+ E
[
∇fi(w̄(k−1)

g)T (w̄(k)
g − w̄(k−1)

g)
]

+
L

2
E
[
∥w̄(k)

g − w̄(k−1)
g ∥22

]
.

We now focus on the right side of (29). Under Lemma 3, the
first expectation term can be bounded by

E
[
− η∇fi(w(k−1)

i,lu)T∆
(k−1)
i,lu − η∇fi(β(k−1)

i)T∆
(k−1)
i,b

+
1

2
η2L∥∆(k−1)

i,lu ∥22 +
1

2
η2L∥∆(k−1)

i,b ∥22
]

(30)

≤ −cTη(∥∇fi(w(k−1)
i,lu)∥22 + ∥∇fi(β

(k−1)
i)∥22)

+ η2TL(1 + 4ηTL)χ2.

We add both sides of (29) from i = 1 to i = N , and derive
the results by N, then we have

1

N

∑
i∈V

E
[
fi(ṽ

(k)
i)− fi(ṽ

(k−1)
i)

]
≤ −cTη

N

∑
i∈V

(∥∇fi(w(k−1)
i,lu)∥22 + ∥∇fi(β

(k−1)
i)∥22)

+ η2TL(1 + 4ηTL)χ2

+ E
[1
N

∑
i∈V

∇fi(w̄(k−1)
g)T (w̄(k)

g − w̄(k−1)
g)

]
+

L

2
E
[
∥w̄(k)

g − w̄(k−1)
g ∥22

]
. (31)

When Assumption 2-4 and 6 hold, then the last two terms
in (31) can be bounded by

E
[1
N

∑
i∈V

∇fi(w̄(k−1)
g)T (w̄(k)

g − w̄(k−1)
g)

]
+

L

2
E
[
∥w̄(k)

g − w̄(k−1)
g ∥22

]
(a)
= −ηE

[
∇F (w̄(k−1)

g)T ∆̄(k−1)
g

]
+

Lη2

2
E∥∆̄(k−1)

g ∥22

= −ηE
[
∇F (w̄(k−1)

g)T (∆̄(k−1)
g −

T−1∑
t=0

∇F (w
(k−1)
g,t))

]
− ηE

[
∇F (w̄(k−1)

g)T
T−1∑
t=0

∇F (w
(k−1)
g,t)

]
+

Lη2

2
E∥∆̄(k−1)

g −
T−1∑
t=0

∇F (w
(k−1)
g,t) +

T−1∑
t=0

∇F (w
(k−1)
g,t)∥22

(b)

≤ −ηT

2
E∥∇F (w̄(k−1)

g)∥22 −
ηT

2
(
1

6
− LTη)E∥∇F (w(k−1)

g)∥22

+
4ηTL2

3N

∑
i∈V

E∥w̄(k−1)
g −w

(k−1)
i,g ∥22

+
1

N

[
Tη2L(4κ2T + χ2) + 6T 2η3χ2L2

]
, (32)

where (a) follows from the definition ∇F (w̄g) ,
1
N

∑
i∈V ∇fi(w̄g) and Lemma 5. The derivation of (b) deals

with
∑T−1

t=0 ∇F (w
(k−1)
g,t) by subtracting and then adding

T∇F (w
(k−1)
g). It also requires η < 1

24TL . Its detailed deriva-
tion is omitted here.

Define ¯̄As,k−1 =
∏k−1

l=s Ã, Q = 1
N 1N1TN and ρs,k−1 =

∥ ¯̄As,k−1 −Q∥. Then based on Lemma 2-6 in [30], when the
learning rate is sufficiently small such that η < 1

24TL and
η < 1

32TL
√
CK

, following some derivations under multiple
steps of SGD and the adjustment of Lemma 2-6 in [30], we
could also derive that

1

N

∑
i∈V

K∑
k=1

E∥w̄(k−1)
g −w

(k−1)
i,g ∥22

≤
[
AKχ2 +BKT (κ2 + Tη2χ2L2)+ (33)

CKT

K

K∑
k=1

E
∥∥∇F (w(k−1)

g)
∥∥2
2

]
× 24η2TK

1− 48η2L2T 2CK
,

where AK , BK , CK are defined as follows.

AK =
1

K

K∑
k=1

k−1∑
s=1

ρ2s,k−1, BK =
1

K

K∑
k=1

(k−1∑
s=1

ρs,k−1

)2

,

CK = max
s∈[K−1]

K∑
k=s+1

ρs,k−1

(k−1∑
l=1

ρl,k−1

)
,

Recall the definition of the global objective function as (1),
we have F (Ṽ (k)) = 1

N

∑
i∈V fi(ṽ

(k)
i) and the left side of

(31) is equal to F (Ṽ (k)) − F (Ṽ (0)). Then we add both the
right side and left side of (31) from k = 1 to K, we could
derive the following expression.

E[F (Ṽ (K))− F (Ṽ (0))]

≤ −cTη

N

∑
i∈V

K−1∑
k=0

∥∇fi(v(k)
i,ns)∥

2
2 − cTη

K−1∑
k=0

∥∇F (w̄(k)
g)∥22

− ηT

2
(
1

6
− LTη − 128η2T 2L2CK)

K−1∑
k=0

E∥∇F (w(k)
g)∥22

+ η2TLK(1 + 4ηTL)χ2

+
1

N

[
Tη2LK(4κ2T + χ2) + 6T 2η3χ2L2K

]

14

+ 64η3T 2L2K(AKχ2 +BKT (κ2 + Tη2χ2L2)). (34)

requiring the learning rate satisfies 1− 48η2L2T 2CK ≥ 1
2 . If

we constrain η < 1
24TL and η < 1

32TL
√
CK

, we have

1

6
− LTη − 128η2T 2L2CK > 0,

and we can derive that

E
[
F (Ṽ (K))− F (Ṽ (0))

]
(35)

≤ −cTη

N

∑
i∈V

K−1∑
k=0

[
∥∇fi(v(k)

i,ns)∥
2
2 + ∥∇F (w̄(k)

g)∥22
]
+ E.

Here

E = η2TLK(1 + 4ηTL)χ2

+
1

N

[
Tη2LK(4κ2T + χ2) + 6T 2η3χ2L2K

]
+ 64η3T 2L2K(AKχ2 +BKT (κ2 + Tη2χ2L2)).

We also have

− 1

N

∑
i∈V
∥∇fi(v(k)

i,ns)∥
2
2 ≤ −

∥∥ 1

N

∑
i∈V
∇fi(v(k)

i,ns)
∥∥2
2

= −
∥∥∇F (v(k)

ns)
∥∥2
2
.

Rearrange the terms in (35), we can derive

1

K

∑K−1

k=0
×E

[
∥∇F (v(k)

ns)∥22 + ∥∇F (w̄(k)
g)∥22

]
≤

E
[
F (Ṽ (0))− F (Ṽ (K))

]
cTKη

+
E

cTKη
,

which implies that

min
k∈[K]

E
[
∥∇F (v(k)

ns)∥22 + ∥∇F (w̄(k)
g)∥22

]
≤ F0 − F∗

cTKη
+Φ,

(36)
where

Φ =
1

c

{
ηL(1 + 4ηTL)χ2

+
1

N

[
ηL(4κ2T + χ2) + 6Tη2χ2L2

]
+ 64η2TL2(AKχ2 +BKT (κ2 + Tη2χ2L2))

}
.

This completes the proof.

C. Proof of Theorem 2

Proof: In Theorem 2, we derive the appropriate range of
the fusion parameter µ so as to sufficiently satisfy Assumption
6. We first derive the expression of ∇fi(wi,lu) and the
expression of ∇fi(βi). According to the aggregation model
(4) and the gradient back propagation, we can derive that
∇fi(wi,lu) = µ∇fi(wi,ns). Then we have

∥∇fi(wi,lu)∥22 = µ2 × ∥∇fi(wi,ns)∥22. (37)

According to Assumption 6, we have ∥∇fi(wi,lu)∥22 ≤ G and
∥∇fi(wi,ns)∥22 ≤ G. Then it can be derived that 0 ≤ µ ≤ 1.
Following we derive the lower bound of µ in the k-th round

for node i, which we denote by µ
(k)
i for better clarification.

For simplicity, we denote the gradient value of σG(xj) by

σ′
G,j , where xj , β

(k−1)
i

T
(w

(k−1)
i,ns ||w

(k−1)
j,ns). And we denote

fe(j) = exp(σG,j) for node i. Likewise, the gradient value of
σ is denoted by σ′. In this paper, σG is the ELU activation
function. Then it can be derived that the gradient’s value at
the β

(k−1)
i is:

∇fi(β(k−1)
i) = ∇fi(w(k−1)

i,ns)× (1− µ
(k)
i)σ′T[∑

j∈Ni
fe(j)

]2×∑
j∈Ni

∑
l∈Ni\{j}

{
w

(k−1)
j,ns × fe(j)× fe(l)× (38)

[
σ′T
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′T

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]}
.

The detailed derivation is omitted here for simplicity. Take the
ℓ2 norm on both sides of (38) and it can be derived that

∥∇fi(β(k−1)
i)∥22 = (1− µ

(k)
i)2∥∇fi(w(k−1)

i,ns)∥22× (39)

∥σ′∥22[∑
j∈Ni

fe(j)
]4 ∥∥∥ ∑

j∈Ni

∑
l∈Ni\{j}

{
w

(k−1)
j,ns × fe(j)× fe(l)×

[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]}∥∥∥2
2
.

Denote

fG ,
∥∥∥ ∑

j∈Ni

∑
l∈Ni\{j}

{
w

(k−1)
j,ns fe(j)fe(l)

×
[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]}∥∥∥2
2

=
∥∥∥ ∑

j∈Ni

w
(k−1)
j,ns

∑
l∈Ni\{j}

{
fe(j)fe(l)×

[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]}∥∥∥2
2

(a)

≤ di
∑
j∈Ni

∥∥∥w(k−1)
j,ns

∑
l∈Ni\{j}

fe(j)fe(l)×

[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]∥∥∥2
2

(b)

≤ di

[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×
[∑
j∈Ni

∥∥∥ ∑
l∈Ni\{j}

fe(j)fe(l)×

[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]∥∥∥2
2

]
(c)

≤ di(di − 1)
[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×
[∑
j∈Ni

∑
l∈Ni\{j}

∥∥∥fe(j)fe(l)
×
[
σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− σ′

G,l · (w
(k−1)
i,ns ||w

(k−1)
l,ns)

]∥∥∥2
2

]
(d)

≤ di(di − 1)
[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×

[∑
j∈Ni

∑
l∈Ni\{j}

∥∥∥fe(j)fe(l)∥∥∥2
2

]
×
[∑
j∈Ni

∑
l∈Ni\{j}

∥∥∥σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)−

σ′
G,l · (w

(k−1)
i,ns ||w

(k−1)
l,ns)

∥∥∥2
2

]
,

where (a) and (c) follows from ∥
∑n

i=1 ai∥22 ≤ n
∑n

i=1 ∥ai∥22,
(b) and (d) follows from

∑
i ∥ai∥22∥bi∥22 ≤

15

∑
i ∥ai∥22

∑
i ∥bi∥22.

With ∥∇fi(wi,ns)∥22 ≤ G according to Assumption 6,
∥σ′∥22 ≤ 1 according to (14) in Assumption 6 and

0 ≤
[∑

j∈Ni

∑
l∈Ni\{j}[fe(j)fe(l)]

2

(
∑

m∈Ni
fe(m))4

]
≤ 1, (40)

then we have that

∥∇fi(β(k−1)
i)∥22 ≤ (1− µ

(k)
i)2Gdi(di − 1)

[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×[∑

j∈Ni

∑
l∈Ni\{j}

∥∥∥σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)−

σ′
G,l · (w

(k−1)
i,ns ||w

(k−1)
l,ns)

∥∥∥2
2

]
. (41)

We denote the last two terms by

D
(k)
i ,

[∑
j∈Ni

∥∥w(k−1)
j,ns ∥

2
2

]
×[∑

j∈Ni

∑
l∈Ni\{j}

∥∥∥σ′
G,j · (w

(k−1)
i,ns ||w

(k−1)
j,ns)− (42)

σ′
G,l · (w

(k−1)
i,ns ||w

(k−1)
l,ns)

∥∥∥2
2

]
.

Then it sufficiently satisfies Assumption 6 if (1 −
µ
(k)
i)2Gdi(di − 1)D

(k)
i ≤ G, following which we can derive

the lower bound of µ for node i in the k-th round as

µ
(k)
i ≥ 1− 1√

di(di − 1)D
(k)
i

. (43)

REFERENCES

[1] Z. Tian, Z. Zhang, and R. Jin, “Graph-Attention-Based Decentralized
Edge Learning for Non-IID Data,” accepted to appear in IEEE ICC’23
Workshop.

[2] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case study
for decentralized parallel stochastic gradient descent,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), pp. 5330–5340, 2017.

[3] Y. Jiang, J. Konečný, K. Rush, and S. Kannan, “Improving federat-
ed learning personalization via model agnostic meta learning,” arxiv:
1909.12488, 2019.

[4] M. Khodak, M. Balcan, and A. Talwalkar, “Adaptive gradient-based meta-
learning methods,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), pp.
5915–5926, 2019.

[5] A. Fallah, A. Mokhtari, and A. E. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), pp. 3557–
3568, 2020.

[6] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task
learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), pp. 4424–4434,
2017.

[7] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodola, and B. Ca-
puto, “Cluster-driven graph federated learning over multiple domains.” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) Workshops, pp.
2743–2752, 2021.

[8] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared
representations for personalized federated learning,” in Proc. 38th Int.
Conf. Mach. Learning, Virtual Event, pp. 2089–2099, 2021.

[9] S. Nikoloutsopoulos, I. Koutsopoulos, and M. K. Titsias, “Personal-
ized federated learning with exact stochastic gradient descent,” arxiv:
2202.09848, 2022.

[10] K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and
D. Ramage, “Federated evaluation of on-device personalization,” arxiv:
1910.10252, 2019.

[11] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization
techniques for federated learning,” arxiv: 2003.08673, 2020.

[12] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning
by local adaptation,” arxiv: 2002.04758, 2020.

[13] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” arxiv: 2002.05516, 2020.

[14] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” arxiv: 2003.13461, 2020.

[15] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approach-
es for personalization with applications to federated learning,” arxiv:
2002.10619, 2020.

[16] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), pp. 19586–19597, 2020.

[17] C. T. Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with moreau envelopes,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
pp. 21394–21405, 2020.

[18] X. Li and D. Zhan, “Fedrs: Federated learning with restricted softmax
for label distribution non-iid data,” in Proc. 27th ACM Conf. Knowledge
Discovery and Data Mining (KDD), pp. 995–1005, 2021.

[19] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated
Learning on Non-IID Features via Local Batch Normalization,” in Int.
Conf. Learning Representations, 2021.

[20] F. Sattler, S. Wiedemann, K.-R. Mller and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,” in IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400-3413, Sep. 2020.

[21] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat., pp. 1273–1282, 2017.

[22] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, 2020.

[23] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with Non-IID data,” arXiv preprint arXiv: 1806.00582, 2018.

[24] C. Shen, J. Xu, S. Zheng and X. Chen, “Resource rationing for wireless
federated learning: Concept, benefits, and challenges,” IEEE Commun.
Mag., vol. 59, no. 5, pp. 82–87, 2021.

[25] S. Luo, X. Chen, Q. Wu, et. al., “HFEL: Joint Edge Association
and Resource Allocation for Cost-Efficient Hierarchical Federated Edge
Learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6535–
6548, 2020.

[26] G. Zhu, Y. Du, D. Gndz, and K. Huang “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” IEEE Trans. Wireless Commun., 2020.

[27] M. Chen, H. V.Poor, W. Saad, and S. Cui “Convergence Time Opti-
mization for Federated Learning Over Wireless Networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2457–2471, 2021.

[28] S. Scardapane, D. Wang, and M. Panella, “A decentralized training
algorithm for echo state networks in distributed big data applications,”
Neural Networks, vol. 78, pp. 65–74, 2016.

[29] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning
in fixed topology networks,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), pp. 5904–5914, 2017.

[30] X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication-efficient local
decentralized SGD methods,” arxiv: 1910.09126, 2019.

[31] A. Balu, Z. Jiang, S. Y. Tan, C. Hegde, Y. M. Lee, and S. Sarkar,
“Decentralized deep learning using momentum-accelerated consensus,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2021.

[32] W. Liu, L. Chen, and W. Zhang, “Decentralized federated learning:
Balancing communication and computing costs,” IEEE Trans. Signal and
Inform. Process. over Networks, vol. 8, pp. 131–143, 2022.

[33] Y. Esfandiari, S. Y. Tan, Z. Jiang, A. Balu, E. Herron, C. Hegde, and
S. Sarkar, “Cross-Gradient Aggregation for Decentralized Learning from
Non-IID Data,” in Proc. 38th Int. Conf. Mach. Learning, 2021.

[34] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in arxiv: 1803.07068, 2018.

[35] R. Xin, U. A. Khan and S. Kar, “An Improved Convergence Analysis
for Decentralized Online Stochastic Non-Convex Optimization,” in IEEE
Trans. Signal Process., vol. 69, pp. 1842–1858, 2021.

[36] J. Zhang, and K. You, “Decentralized stochastic gradient tracking for
empirical risk minimization,” arxiv: 1909.02712, 2019.

[37] S. Pu, and A. Nedi, “Distributed stochastic gradient tracking methods.”
in Math. Program., vol. 187, pp. 409–457, 2021.

[38] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. 35th Int. Conf. Mach.
Learning, 2018.

16

[39] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint
learning of personalized models and collaboration graphs,” in Proc. Int.
Conf. Artif. Intell. Stat., 2020.

[40] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Networks Learn. Syst, 2019.

[41] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[42] C. Meng, S. Rambhatla, and Y. Liu, “Cross-node federated graph neural
network for spatio-temporal data modeling,” in Proc. 27th ACM Conf.
Knowledge Discovery and Data Mining (KDD), 2021.

[43] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza and J. Chanussot, “Graph
Convolutional Networks for Hyperspectral Image Classification,” in IEEE
Trans. Geosci. and Remote Sens., vol. 59, no. 7, pp. 5966-5978, July 2021.

[44] D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, “Learning to
propagate labels on graphs: An iterative multitask regression framework
for semi-supervised hyperspectral dimensionality reduction,” in ISPRS J.
Photogramm. Remote Sens., vol. 158, pp. 35-49, 2019.

[45] D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, “Learnable
manifold alignment (LeMA): A semi-supervised cross-modality learning
framework for land cover and land use classification,” in ISPRS J.
Photogramm. Remote Sens., vol. 147, pp. 193-205, 2019.

[46] K. Yan, M. Zhou, L. Liu, C. Xie, and D. Hong, “When Pansharpening
Meets Graph Convolution Network and Knowledge Distillation,,” in IEEE
Trans. Geosci. and Remote Sens., vol. 60, pp. 1-15, 2022.

[47] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learning
Representations, 2018.

[48] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchical
graph attention network,” in Proc. 34th Conf. Artificial Intell. (AAAI),
2020. arxiv:

[49] D. Hong, N. Yokoya, J. Chanussot and X. X. Zhu, “An Augmented
Linear Mixing Model to Address Spectral Variability for Hyperspectral
Unmixing,” in IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938,
2019.

[50] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[51] H. Yang, M. Fang and J. Liu, “Achieving Linear Speedup with Partial
Worker Participation in Non-IID Federated Learning,” in Proc. 9th Int.
Conf. Learning Representations, 2021.

[52] Z. Tian, Z. Zhang, J. Wang, X. Chen, W. Wang, and H. Dai, “Distributed
admm with synergetic communication and computation,” in IEEE Trans.
Commun., vol. 69, no. 1, pp. 501–517, 2021.

[53] A. Krizhevsky, G. Hinton, et.al., “Learning Multiple Layers of Features
from Tiny Images,”2009

[54] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith,
and A. Talwalkar, “LEAF: A benchmark for federated settings,” arxiv:
1812.01097, 2018.

[55] T. Tieleman and G. Hinton, “Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural networks for machine
learning, Lecture 6.5-RMSProp.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2016.

