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We prove residual-type a posteriori error estimates in the maximum norm for a linear scalar elliptic
convection—diffusion problem that may be singularly perturbed. Similar error analysis in the energy norm
by Verfiirth indicates that a dual norm of the convective derivative of the error must be added to the
natural energy norm in order for the natural residual estimator to be reliable and efficient. We show that the
situation is similar for the maximum norm. In particular, we define a mesh-dependent weighted seminorm
of the convective error, which functions as a maximum-norm counterpart to the dual norm used in the
energy norm setting. The total error is then defined as the sum of this seminorm, the maximum norm of the
error and data oscillation. The natural maximum norm residual error estimator is shown to be equivalent to
this total error notion, with constant independent of singular perturbation parameters. These estimates are
proved under the assumption that certain natural estimates hold for the Green’s function for the problem
at hand. Numerical experiments confirm that our estimators effectively capture the maximum-norm error
behavior for singularly perturbed problems, and can effectively drive adaptive refinement in order to
capture layer phenomena.
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1. Introduction

Our goal is to prove residual-type a posteriori error estimates in the maximum norm for singularly
perturbed convection—diffusion equations of the form

Lu:= —c¢Au+div(au) + bu = f in £2, u=0 ondf2. (1.1)

Here, 0 < ¢ < 1, 2 is a polyhedral domain in R", n = 2,3, and we assume that a = (a;,...,q,),
b and f are sufficiently smooth on £2, and that |a| > 0, » > 0 and b + %diva > 0 in £2. We make
additional assumptions on the Green’s function of L, which agree with the sharp bounds on the Green’s
function for a particular case of (1.1), rigorously proved in Franz & Kopteva (2011a,b, 2012, 2022).
We emphasize that our estimates are robust with respect to the singular perturbation parameter &, up
to logarithmic terms that typically arise in the context of maximum norm estimates for finite element
methods.
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2 A. DEMLOW ET AL.

A guiding principle of a posteriori error estimation is that estimators should be reliable and efficient
(i.e., provide a posteriori upper and lower bounds) for the error notion under consideration. For
symmetric elliptic problems, residual-type error estimators of the type, we consider here are well known
to be reliable and efficient for energy and a number of L,,-type norms, up to a data oscillation term that is
heuristically of higher order and measures the distance of the right-hand side f to a piecewise polynomial
space. By contrast, for convection—diffusion problems, it is known that standard residual estimators
reliably bound the error in the energy norm defined by IVI? = e ||Vv||%2(9) + ||(b + %diva)l/zvniz(m,
but are not efficient. To be more precise (Verfiirth, 2005), the natural energy-norm residual estimator
then is reliable and efficient up to data oscillation for the error notion [|u—u,, || +lla-V (u—u,)|l,, where
llell, := sup,. HY@2)\(0) %, that is for the sum of the energy norm and a dual norm of the convective

derivative of the error (also to be referred to as the convective error). The dual convective norm is weaker
and thus may be asymptotically negligible, but can also dominate the error as measured in the energy
norm until layers in the solution are sufficiently refined. This framework is explained in Tobiska &
Verfiirth (2015), where residual-type a posteriori error estimates are proved for several stabilized finite
element methods for equations of the type (1.1) (see also Verfiirth, 2005, 2013). Philosophically, we
closely follow this work, but while considering the maximum norm rather than an energy norm.

We begin by proving residual-type estimates in the maximum norm for standard Galerkin finite
element methods without stabilization. Such methods are not necessarily practically relevant in the
convection-dominated regime, but will allow us to establish a suitable theoretical framework before
adding stabilization terms. Next, in order to obtain a reliable and efficient estimator, we add an
elementwise-weighted measure of the convective derivative of the error to our error notion. This
seminorm of the convective error has a similar purpose to the one defined for the energy norm
in Tobiska & Verfiirth (2015), and is similarly independent of the stabilization terms. However, in
contrast to that work, our seminorm is mesh-dependent and is adapted to the particular case of the
maximum norm. A precise definition is given below, but this seminorm behaves similarly to the quantity
|lmin{1, Ehs_lh%} a-V(u—u)l Loo(2) under sufficiently restrictive assumptions. Here, u,, is the finite
element solution, ¢, is a logarithmic factor, depending on ¢ and the minimum mesh diameter, and Ay
is the local mesh size. This quantity typically dominates the original target error notion [ — uyll;_ (o)
when i > &, but becomes relatively negligible when iy < e. This error structure is similar to that
observed in the energy norm case. After considering unstabilized finite element methods, we consider
the effects of several stabilization schemes on our a posteriori estimates, also following the similar
analysis for energy norms outlined in Tobiska & Verfiirth (2015).

As in recent works on maximum-norm a posteriori error estimation (Demlow & Georgoulis, 2012;
Demlow & Kopteva, 2016), we shall rely on the continuous Green’s function for the adjoint problem to
(1.1) in order to represent the error. Estimates for the Green’s function in various norms are essential to
proving sharp a posteriori estimates. The estimates that we need have been established under relatively
restrictive assumptions on §2 and the streamline direction a in Franz & Kopteva (2012). Extension to
more general cases appears to be technically quite challenging, so we shall prove our results under the
assumption that the Green’s function behaves as in Franz & Kopteva (2012), without giving a complete
theoretical picture of the situations for which this assumption is valid.

Finally, we are not aware of previous works on pointwise or maximum-norm a posteriori
error estimation for finite element methods for convection-dominated convection—diffusion equations.
Maximum-norm a posteriori estimates for finite difference methods for one-dimensional convection—
diffusion scalar problems and systems are contained in Kopteva (2001); Linss (2009, 2010). Well-known
a priori maximum-norm analyses of streamline diffusion finite element methods are given in Johnson
et al. (1987); Niijima (1990) for regions away from layers. There is also a considerable literature on
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 3

e-uniform maximum-norm error bounds for finite difference methods on a-priori-chosen layer-adapted
meshes; see, e.g., Kopteva & O’Riordan (2010), (Roos ef al., 2008, §II1.2) and the references therein.
Thus, there is longstanding interest in controlling pointwise errors in the presence of layer phenomena.

An outline of the paper is as follows. In Section 2, we give preliminaries, including the definition
of the unstabilized finite element method and discussion of Green’s functions. In Section 3, we prove
a posteriori error estimates that are reliable and efficient for the sum of the maximum norm, and an
appropriate mesh-dependent seminorm of the error in the convective derivative, up to a data oscillation
term. In Section 4, we consider a few different stabilization schemes and prove that our estimates remain
valid for them under suitable assumptions. Finally, in Section 5, we present numerical experiments that
illustrate the behavior and performance of our estimators in the context of uniform and adaptive mesh
refinement.

2. Preliminaries

In this section, we discuss the analytical framework for our results and also give some finite element
tools.

2.1 Notation

We write « >~ g whena < Banda 2 B, and o < B when @ < CB with a generic constant C,
depending on £2, a, b and f, but not on ¢ or the diameters of mesh elements. For ¥ C 2,1 <p < o0
and k > 0, let | - ||p;@ = - ||Lp(% and | - |k’p;@ =- |W£(%, where | - |W1’§(.@) is the standard Sobolev
seminorm with integrability index p and smoothness index k, while -, -) is the L,(£2) inner product.

2.2 Green’s functions

As is standard in the literature on maximum-norm error bounds in FEM, we employ a Green’s function
in order to represent the error pointwise. Let G = G(x, -) be the Green’s function associated with (1.1).
For each fixed x € 2, it satisfies

L*'G=—-eAG—a-VG+bG=8(x—-) in2, G=0 onds, 2.1)

where §(-) is the n-dimensional Dirac §-distribution.
Therefore, the unique solution u of (1.1) allows the representation

u(x) = (G, ), f())- (2.2)
Similarly, any sufficiently smooth v allows the representation
v(x) = &(Vv, VG(x, ) + (div (av) + bv, G(x, -)). (2.3)
Setting v := u,, in (2.3) and then subtracting (2.2), we immediately arrive at the error representation

(u, — w)(x) = &(Vuy,, VG(x, ) + (div(au,) + bu;, — f, G(x,-)). 2.4)

Similar to Demlow & Kopteva (2016), we shall rely on a number of bounds on the Green’s function
in which the dependence on the singular perturbation parameter ¢ is shown explicitly. It is worth noting

€20z 1snBny Q¢ uo Jasn AlIsIsAluUn INRY Sexa] Aq 90£910//1 00PBIp/WNUBWI/SE0L "0 /I0p/aoIie-aoueApe/eulewl/woo dno olwspese//:sdiy Woly pepeojumod



4 A. DEMLOW ET AL.

F1G. 1. Typical anisotropic behaviour of the Green’s function G(x,y;&,n) for problem (1.1) in 2 = (0, 1)2 witha = [—1,0],
b=0,(xy) = (3. ) ande =1073

that Demlow & Kopteva (2016) addressed singularly perturbed equations of reaction—diffusion type, for
which the Green’s function in the unbounded domain is (almost) radially symmetric and exponentially
decaying away from the singular point. By contrast, the Green’s function for the convection—diffusion
problem (1.1) exhibits a much more complex anisotropic structure (see Fig. 1).

We shall require the following bounds on the Green’s function G from (2.1):

1GC, ). + 871Gy .0 S 1 (2.52)
IGOS)1 Bpne S e 'p, (2.5b)
G a1 2\Bepy S € (IR +e/p) + [Inel), (2.5¢)
as well as, occasionally,
la- VG, ). S 1+ [Inel. (2.6)

Here x € £2 and p > 0 are arbitrary, while B(x, p) denotes the ball of radius p centered at x. Note that
(2.6) follows from (2.5). Indeed, [la - VGlIly g )ne2 < 1 follows from (2.5b), while ||a - VGl .0\Be)
is easily bounded using (2.5¢) and (2.5a) combined with the differential equation from (2.1).

In order to gain additional insight into the scaling in the bounds given in (2.5) and (2.6), note that the
1 epGaiE—n=n/e)
4re r

r = (& —x)?+ (& —x,)? + (&5 — x3)2. The scalings observed above may be directly computed
from this function. The free-space fundamental solution for convection-dominated problems in two

fundamental solution on R> with a = [—a,,0,0]is given by Gp3 (x,§) = , where
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 5

space dimensions may also be written down explicitly and scalings computed from it, but the expression
is more complex. Note also that the bounds (2.5) are isotropic, while a sharper bound for the convective
derivative is given in (2.6). This reflects the anisotropic nature of the Green’s function, which can be
explicitly seen in the above expression for Gps.

Note that, although the bounds (2.5) appear as an assumption for our results below, they were
rigourously proved in Franz & Kopteva (2011a, 2012, 2022), and are also shown to be sharp in Franz &
Kopteva (2011b) for a particular case of |a] = |a,| in rectangular and cubic domains. We hypothesize
that similar results would hold on more complicated domains such as those with reentrant corners,
since similar results hold for standard elliptic and singularly perturbed reaction—diffusion problems on
nonconvex as well as convex domains (Demlow & Kopteva, 2016). However, the proof techniques used
for convection—diffusion problems are different than in these other cases. Extension to more complex
domains would be technically challenging, and the form of the results is not completely clear. We also
comment on the assumption |a] > 0 made following (1.1). This condition is needed in the proofs of (2.5)
given in Franz & Kopteva (2011a, 2012, 2022). These proofs are substantially different than those given
for scaled Green’s function estimates for reaction—diffusion problems in Demlow & Kopteva (2016),
and it is not clear how to bridge the gap between these different techniques in order to approach the
case of a convection coefficient a which sometimes vanishes. However, the scaling obtained in (2.5)
for convection—diffusion problems is very similar to that observed for reaction—diffusion problems, so
it seems likely that (2.5) are also valid under a weaker assumption that |a| + b > 0.

2.3 Finite element space

Let 7 be a shape-regular and conforming simplicial partition of §2, with & denoting the set of all interior
(n — 1)-dimensional element faces. Let the finite element space S;, C H(l) (£2) be the set of functions that
are continuous on £2, equal to 0 on 352 and polynomials of degree at most r on each 7 € .7, where
r > 11is a fixed polynomial degree.

Similarly to Demlow & Georgoulis (2012); Demlow & Kopteva (2016), we shall employ the Scott—
Zhang interpolant, denoted G,,, of the Green’s function G(-) := G(x,-) from (2.1) (where x € £2
remains fixed). We let G, lie in the space of continuous piecewise-linear functions with respect to 7.
Then G, € §;, for any r > 1, and it satisfies the local stability and approximation property

G — Gyley .7 Sy FIG] VT e, 0<k<j<2 @2.7)

j,1 07

whenever the right-hand side of (2.7) is defined. Here, i is the diameter of element 7', while w; denotes
the standard patch of elements in .7 touching T (including 7).

3. A posteriori error estimation in the conforming case
3.1 Finite element method and error indicators

Introduce the standard bilinear form associated with (1.1):
Bu,v) := &(Vu, Vv) + (div(au) + bu, v). 3.1
The standard conforming finite element method is then given by:

Find Mh (S Sh . ,@(uh, Vh) = (f, vh) VVh € Sh' (3.2)
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6 A. DEMLOW ET AL.

We emphasize that this basic finite element method is not generally practical in the singularly perturbed
case ¢ < 1 (as unstabilized finite element solutions typically exhibit non-physical oscillations unless
hy/e is sufficiently small). We first study this unstabilized method mainly in order to understand the
structure of the error. Stabilized schemes that are more practically relevant for singularly perturbed
problems are considered below.

We shall use an a posteriori error indicator defined VT € .7 by

Noo(T) := o |[e Ay, — div (auy) — buy, +f| . + Br | [Vi] | o o p (3.3a)
ap = min{l, £,e "%}, By :=min{e'/?, ¢,h;}  in Te T, (3.3b)

where the definition of the logarithmic factor £, := 1 4+ In(2 + eh™") + [Ing|, with h := ming. o Az,
is motivated by the logarithmic factors in (2.5). Here, we also use the standard notation [Vu,] :=
Vthr -nt + Vu, - n~ on a face shared by two elements T*, T~ € .7, with their respective outward
normal unit vectors n and n~.

Following the analytical techniques used in Demlow & Kopteva (2016) to prove similar maximum-
norm a posteriori error estimates for singularly perturbed reaction—diffusion problems, we shall derive
(see Lemma 1) an a posteriori upper bound of the form

- o Sma 7). 34
[|u Mh||oo,9NT€}noo() (3.4

In the reaction—diffusion case, it was also possible to prove the corresponding lower a posteriori
bounds (efficiency estimates) (Demlow & Kopteva, 2016). However, when the convection term div (au)
is present in the equation, one cannot expect to prove a standard lower a posteriori bound of the form
Noo(T) S llu — uyll .oy T 08¢, where osc is a data oscillation term. Numerical experiments outlined
below confirm that such a standard lower bound indeed does not hold. Instead, our efficiency analysis
below reveals that the error bound in (3.4) holds true for the error in a stronger norm, with a certain
seminorm of a- V(u — uy,) added in the left-hand side. Furthermore, we shall show that the latter version
of (3.4), with the error measured in this new stronger norm, is efficient.

3.2 Reliability

LeEMMA 1 Under assumptions (2.5) on G, the error of the computed solution u;, from (3.2) satisfies (3.4)
with the a posteriori error indicators 1., (7) as defined in (3.3).

Proof. To estimate the error at any fixed x € £2, with slight abuse of notation, let G(-) := G(x, -) be the

Green’s function from (2.1). Recall the error representation (2.4) and subtract (3.2) with v, :== G, € §,,.
Then, with the notation g := G — G, one gets

(uy, — u)(x) = &(Vuy,, Vg) + (div(au,) + bu;, — f, g). 3.5

Next, a standard integration by parts in each 7' € .7 yields

(u, —w)(x) = (—eApuy, + div(au,) + bu;, — f, g) + % Z / e[Vu,]g. (3.6)
FerJoTog
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 7

A comparison of (3.6) and the desired estimate (3.3), (3.4) shows that it suffices to prove that

I+1:= |az'el, .o+ D eBr ' el or S 1. (3.7)
TeT

When estimating / and /I, we shall, to a degree, follow Demlow & Kopteva (2016, §3.2). A special
treatment will be required for the elements in %, := {T € 7 : oy N B(x,chy) # ¥}, where Tj) > x.
By shape regularity, we may choose ¢ > 0 sufficiently small so that the number of these elements is
uniformly bounded, and thus, by shape regularity, hy ~ hy, VT € 7

For I, by (3.3b), note that a;;' =~ 1 + ¢, 'ehy%, while for g¢ = G — G, in view of (2.7), one has
gl .7 < min{lIGlly ,» A7 VGl ys H2IGla 4, ) Hence,

—1 —1 -1
I= oz g”l;Q S Gl + 4, | 1Glo 0\ chyy) + Z h7 IIVGlly ., | S 1, (3.8)
TeS

where o is understood as an elementwise-defined piecewise-constant weight. Here, we used the bound
(2.5a) for ||G|l; ., and then (2.5¢) for |G|, ; . 2\B(xchry)* For each T € .7}, we employed (2.5b) with the

ball B(x, E’hT) D wy, with a sufficiently large constant C depending only on the shape regularity of .7.

For I, we employ a scaled trace theorem in the form ||g|l; .57 < Vgl 7+ h;l liglly .- Combining
this with (2.7) yields [Igll;.o7 < min{|[VGIl\ o, h7|Gly) 0, ). Note also that 7' ~ e=1/2 + ¢, ;"
so e Pagli2 g 8E;]h; I Combining these observations, one gets

1 5e'21VGl g + 66, [ 1Gh1.0\80ehr) + 2, 7 IVGllwy | S 1.
Te

Compared with the above estimation of I, we additionally used £!/2|| VG| 1.0 < 1, in view of (2.5a).
This completes the proof of (3.7). ]

REMARK 1 (Nonhomogeneous Dirichlet and Neumann boundary conditions). If u = g and u;, = g,
on 952, then (3.4) holds with an additional term [|g — gl (55 added to the right-hand side assuming
sufficient regularity of g. In particular, denoting e = u — uy,, lete = ¢;,, + e, withe; = g — g, on 02,
satisfying £(Ve,, Vv)+((div (ae;)+b,v)) = 0,v € H}(£2). Then leglloo:2 < 18—8pll oo .52 bY the weak
maximum principle, and one can show in a manner similar to above that ||e;,, [l . S maxpe g Moo (T).
The case of Neumann boundary conditions is less clear. We are unaware of a posteriori maximum
norm bounds in the literature for Neumann boundary conditions even for symmetric or non-singularly
perturbed problems. Some initial groundwork for the present singularly perturbed convection—diffusion
case is contained in Franz & Kopteva (2022), where Green’s functions estimates are proved assuming
homogeneous Neumann conditions along the characteristic boundaries.

3.3 Efficiency of the volume residual

We start with the volume residual term in (3.3). The following notation will be used. In §2, let e := u—u,,,
and then define the residual

R;, = —eAuy, + div(auy) + bu;, — f inany T € 7. 3.9
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8 A. DEMLOW ET AL.

Additionally, for any T € 7, let R, 1 be the L, projection of R, over T onto the space of polynomials

n+1

P"~1(T) of degree r — 1. Also, using the barycentric coordinates {A;};Z, associated with T, define a

1
standard bubble function by := [ 22.

LeEmMA 2 For any u;, € S, inany T € .7, one has

/le/fa-Ve +aplRy — Ryrlloor-  (3.10)
T

arlRylloo . S Lhllell oo .7 + o sup
YeP (D¢l r=1

Proof. For the bubble function by = H"H 22, standard arguments show that 1R, 71l oo 7Ry 71 . T <
||Rh,T”%-T < fTbTR (Verfiirth, 2013, §1.3.4). Next, for the function wy := bTRhT||RhT||1 T €

P2+ +1(T), note that both wy and Vwy vanish on 9T, while hZ||[Awrll,.; < lwrllip S L
Additionally, one gets |[R), 7lloo.7 S [7 WrR), 7> which yields

IRl oo 7 S /TWTRh + IR, — Ryrlloo.7 3.11)

Here, R;, = e Ae — div (ae) — be in terms of e = u — u,,, so integrating by parts twice the term with A,
one gets

/ wrR;, = / wr(eAe — div (ae) — be)
T T

= /T(sAwT — (diva + b)wT)e — /TwTa - Ve. (3.12)

Note that [[eAwy — (diva + D)wrll; .7 S sh +1Sa Eh Also, with ¥ := R, 7/|IR), 7l .7, One
has wy = by in the final term of (3.12), Where Y € P~V and ||y .7 = L. It remains to combine
these two observations with (3.11) and (3.12), both multiplied by o O

REMARK 2 Instead of arguing as in (3.12), one could integrate the convection term by parts in order
ol —1
to obtain | — [, wydiv(ae)| = | [rea- Vwy| S Vwrllyrlleloo.r S by llelloo 7 Note that by ap =

mln{hT S hre™ 1Y, which is not bounded by £ puntil ipe™ I < 1. This argument does not yield a suitable
efficiency result, thus the need for the additional term in (3.10).

It is convenient to denote the seminorm of a - Ve present in (3.10) by

la-Vel,.r:=ar sup / brya-Ve VT e 7. (3.13)
YeP I Dllyllyr=1 VT
CorOLLARY 1 For any u;, € S, inany T € .7, one has
otT||Rh||OO TS €h||e||oo T +la- Ve|* T +aT||Rh Rh,T”oo;T’ (3.14)
2 Vel,.r < Gllelloor + 7Ry lloo - (3.15)
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 9

Proof. The first assertion (3.14) is equivalent to (3.10). To prove the second, note that (3.12), as well
as most estimates in the proof of Lemma 2 that involve wy = by, also hold true for a more general
wr = by with an arbitrary 1// € P~ 1(T) such that ||y || 1.7 = L. The only exceptions are (3.11) and
the related bound [|R, 7lloo.7 < [ WrR), 7» Which are no longer true. Instead, we shall now employ
| fT wrR,| S IR, oo .7- Hence, from (3.12) with this more general wy, one gets the following version of

(3.10):
/ wrRy |,
T

and then the desired (3.15). [l

bryra-Ve
T

S Eh”e”oo;T + oy

REMARK 3 One can extend the above Lemma 2 and Corollary 1 for a slightly simpler bubble function
by = H”+1 A; (instead of by = H"H A2). Note that in this case, (3.12) will additionally involve
J: o7 €eVwy, - n, so the proof will be slightly more involved.

3.4  Efficiency of the jump residual

Now we turn to the jump residual term in (3.3), for which following Demlow & Kopteva (2016), we
modify the standard edge residual efficiency proof by employing subscale mesh elements when s, does
not resolve /e.

The following notation will be used. For an interior face E € &, shared by T* and T~ in 7,
construct two, not necessarily shape-regular, sub-simplices T;:t C T% that share the entire face E and
satisfy

|TE| = hglEl, g = min{e'/2 | THE, 1 T71E ™} ~ min{e!/2, ).

To be more specific, unless TE T*, one may impose that the vertex of T opposite to E lies on
the corresponding median line in 7. The simplices TjE do not necessarily satlsfy either a minimum
or maximum angle condition, so it is necessary to take extra care in our arguments below at a couple
of points.

Next let {Ai}”‘Irl be the barycentric coordinates in TjE Assume that AT i1z = 0so that {Af}?’zl are
the barycentric coordinates associated with the vertices of E. For the tangential gradient along E, we
have |VEA;—L| < |diam E|~' < h7!, whereas in the direction perpendicular to E the height of the triangle

is 2izE and so |0g1 )Lii| < izgl with constant, depending on the shape regularity of 7. Finally, define a
standard face bubble by := []i_, ()»l.i)2 on Tf, and the seminorm

la- Vel,.p = sup ht (3.16)

E
peP1(E):lglh =1

/ arbgppa-Vel.
THUT,

Here, inside the volume integral, ¢ € P"~!(E) is understood as extended to R” such that it remains
constant in the direction normal to E.
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10 A. DEMLOW ET AL.

LEMMA 3 Let u, € S,,. For any interior face E = 97" N 37T, shared by 7" and 7~ in 7, with
Bg :=min{e'/2, ¢, hyi, L,hp—} > Brs, one has

B | [Vuy] Hoo £ S hllelloo.r+ur- +1a- Vel g + llogpRyll oo .r+ur-- (3.17)

Proof. Set J, = [Vu,] € P*~1(E), for which standard arguments show that ”Jh”oo AT S
05 < Jg bEJ2 (Verfiirth, 2013, §1.3.4). So using the function wy := bgJ,llJ,lI7} € PLE),
one gets [/l .5 S < rJpwg. Note that J,, as a polynomial function on E, can be extended to the entire
(n—1)- dimensional plane that contains E. Next, extend it to R" by letting J;, remain constant in the
direction normal to E. This extends wy, to T4 U Ty, with both wy and Vwy, vanishing on BT \E. Note
also that (as elaborated in Remark 4 below)

gl Awgly g S wgly e She hp|[Vwel|, xS 1 (3.18)

A version of (3.12) (taking into account, when carrying out the integration by parts twice, that wy and
Vwg, do not vanish on E) yields

/ wgR), = / (eAwg — (diva + b)wg)e — / wga - Ve
THUT, THUuT, THUT,
— / e(Jywg + [Vwgle), (3.19)
E

where we used [Ve] = —[Vu,,] = —J, on E. Next, recalling that ||/, [|o,.p < fE J,wg, and also (3.18),

one gets
wga- Ve
/T+UT* £
E E

MultiplyAthis bY s_lﬁE eind note that, in view of sz < €12, one has aizgl + sz < 282131, SO
8‘1,BE(shgl +hp) S ,BEhEl < €. Also, for each T = T+, with oy = min{l, £,e~ 12}, note that
Brhy < minfe, €,h2} = eay yields e~ Bz < hig'ag. So

eyl e < (Shgl + hg)llell oo rvor- + + hellRpll oo .7+ ur-

Belilloo & S Cullell oo rrur- + Iz + llor Ry ll oo 7+ ur--

/+ ~arwga- Ve
THUT;

It remains to note that wy, = by, where ¢ := Jh||Jh||]__lE satisfies |lgglly .z = 1. O

CoROLLARY 2 Under the conditions of Lemma 3, one has
Be| [V, Hoo £ S billelloo rrur- +1a- Vel g + llapRy oo 47— (3.20)

2 Vel S Cllelooirur + Bel [Vl iz + lerRilloo rovr—- (32D
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 11

Proof. The first assertion (3.20) is equivalent to (3.17). For the second (similarly to the proof of
Corollary 1), we note that (3.19), as well as most evaluations in the proof of Lemma 3, holds true

for a more general wy := bp with an arbitrary ¢ € P—1(E) subject to [l¢ll;.; = 1. The main
exception is |J,lloo.z S [ JpwE. Which is no longer true, and instead of which we now employ
e el < WWhlloo.£» which yields (3.21). O

REMARK 4 ((3.18) on anisotropic elements). Consider a less standard (3.18) for Tg (as T is similar).
If }AzE = |TT||E|"}, then Tg = T is shape-regular with izE 2 hpt, so (3.18) is standard. Otherwise,
ie., if hy < |TH||E|"", set @ := hg/{|T*||E|™'} = hy/hy+ and define an affine transformation from
the shape-regular T to the anisotropic Tg by

Here, P, and 130 are the vertices in 71 and Tg opposite to E, while 1 is the barycentric coordinate
in T associated with P,,. As |T2f| = 6|T*|, the Jacobian determinant of this transformation equals 6.
Additionally, in the shape-regular 7t one has |V ~ h;l and |Py — Py| < hpy, so all elements in the
transformation matrix are < 1. Now, by Cramer’s rule, all entries of the inverse transformation matrix

are < 07!, so for a generic v, one gets [Vivl S 6! |V, v|, which yields (3.18) after application of a
standard inverse inequality for shape-regular elements.

3.5 Seminorms of the convective derivative and overall efficiency result

Combining the definition of 1, (7T) in (3.3) with (3.14) and (3.20) yields in summary that

< . .
N () S eh”e”oo;a)r + T/InCa(f)(T la Vel*;T’ + gé%XT la V€|*;E + osc(arRy,, wr), (3.22)

where

OSC((XTRh, CL)T) = ]{/ncaa))(T “aT/(Rh — Rh,T’)”OO;T” (323)

Recall that here we used the elementwise seminorm definitions (3.13) and (3.16):

/le/fa~Ve
T

/ arbppa- Ve
THUT,

These are seminorms because it is possible that a- Ve s 0 is orthogonal to P"+2+1 5 bryr, bpp over the
relevant volumes. We now define the following related global seminorm of the convective derivative:

5

la- Vel .r:=ar sup
YelP = (DYl r=1

la- Vel .p:= sup hgl
QP E):llpll1 =1

a-Vel|, ;= max |a-Ve|, . +max|a- Ve|, 5. 3.24
| |>{< TC,7| |*,T Ecgl |*,E ( )
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12 A. DEMLOW ET AL.

From (3.22) and (3.23), one immediately gets the global estimate

max 1o (1) 5 Gyllelloo; + 1 Vel, + ose(arRy, 2).
€.

On the other hand, combining (3.4) with (3.15) and (3.21), one gets |a - Ve|, S {llell.o +
maxy. g Ny (1), and then

-1
lell s + 6 la - Vel, < max . (7).

Combining these relationships with osc(arR;,, T) < n,,(T), we have proved the following for the
standard conforming finite element method.

THEOREM 1 Under assumptions (2.5) on G, the error of the computed solution u;, from (3.2) satisfies
It =t logso + &5 - V= )], + oselarR), 2) < max . (T)
Syl — Uplloo .2 + 12 V(W —up)l, + osclarRy, §2). (3.25)

Thus, while our original intention was to bound || — u ||, .- the estimator that we have naturally
derived is not efficient for this norm. Deriving an upper bound for 7, instead requires inclusion of the
||, seminorm. Recall also that a similar situation is observed when bounding energy norms in singularly
perturbed convection—diffusion problems, where a dual norm of the convective derivative plays a similar
role in the analysis (Tobiska & Verfiirth, 2015). Our numerical experiments below also highlight the
importance of the | - |, seminorm in a posteriori analysis for convection—diffusion problems.

We finish this section with a further discussion of the | - |, seminorm, as its definition involves
multiple terms and its meaning may not be intuitively clear at first glance. Consider first the simpler
norm

la- Vel,, := llapa- Vel .0, (3.26)

of the convective derivative, where o = min{l, Khe’lh%} < 1 is understood as an elementwise-
defined piecewise-constant weight. The above definitions easily yield that |a- Vv|,_ < |a- Vv],,. Thus,
our estimator measures the error in a mesh-dependent norm that lies between |l¢|| ., and el .o +
lara- Vel .o The | - |, norm is still mesh-dependent, but gives a more transparent measure of the
convective derivative of the error. It is not generally true that |a- Vv|,, < |a- Vv|,. Itis straightforward
to instead prove that ar||P,_ (@ - Ve)|l .7 <la- Vel, .7 and thus that

(3.27)

|a- Vel,, < max|a-Ve|,.r+ maxay|la-Ve—P,_;(@-Ve)l .7
sk TeT B Teo T r—1 oo;T

where P,_ is the L, projection onto the elementwise polynomials of degree r— 1. Thus, the *-seminorm
bounds the **-norm only up to an oscillation term. In fact, |a - Vu|,, and hence |a - Ve|,, may even
be unbounded in cases where |a - Vu|, and |a - Ve|, are finite. In particular, |a - Vu|,, < oo requires
a-Vu € L, whereas |a - Vu|, < oo requires only a - Vu € L;. The latter is true, but not the former,
for example, when £2 is a nonconvex polygonal domain and thus Vu is unbounded at reentrant corners.

In the latter case, a minor modification of | - |, by inclusion of an appropriate local bubble again results
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 13

in a finite quantity. It is also possible to define other norms between | - |, and | - | . In doing so, there
appears to be a tradeoff between simplicity and transparency on the one hand and fidelity to actual
estimator behavior on the other, with no obvious choice doing an outstanding job at both of these tasks.

In spite of its drawbacks, the ** norm is easily understood as an elementwise-weighted norm of the
error, tracks the x-seminorm closely in some situations and provides clear insight into the convergence
behavior of the % seminorm. To illustrate the latter point, assume momentarily for simplicity that the
mesh is quasi-uniform with diameter &, ignore logarithmic factors and assume that 4> < . Then |a -

2 .
Vel,, >~ h?||a Vel .- Now, as h — 0 and h Se, wegetla- Ve, < hla- Vel .- Typically,
the maximum norm converges with one power of 4 faster than the W;O norm, so we may roughly expect
|a- Vel,, to be equivalent to [e| .o When h = ¢, and for the latter to dominate the former as h/e — 0.

Alternatively, we may integrate by parts (3.13) and (3.16) to obtain
la-Vel, < mag(oeTh;I + oy mine!/2, hT}—l) lellos .7
TeJ ’

<y -1 a2
<ge rTIéa};(mm{s ,hT}) el oo - (3.28)

Here, we also used ay < Ehe_l min{e, h%}. We thus see that up to log factors, |a - Ve|, < lell oo .

when /i, < ¢ (as the latter also implies h; < &!/?). In addition, \||2\|V e_';; — 0as maxyc o hy — 0.1In

other words, the extended norm in (3.25) is dominated by the maximum norm over areas of £2 where
the local mesh size resolves ¢. If the problem is not singularly perturbed (i.e., € ~ 1), then this heuristic
is valid on any mesh.

Both of the preceding analyses indicate that |a - Ve|, may play an important role in understanding
the behavior of the maximum-norm error estimator maxy. o 7, () when hy > &, but diminishes in
importance relative to ||u — uy || o . and maxyc 7 14, (T) as hy resolves e. We verify this behavior in
our numerical experiments below, and additionally provide a computational comparison between | - |,
and | - |,,.

4. A posteriori error estimation for stabilized methods

In this section, we explore stabilization schemes and their effects on the above a posteriori error
estimates. Stabilized methods frequently have the form: find u;, € S, such that

%(uh,vh) + S?(Mh, Vh) = 0“, Vh> Vvh (S] S/’L’ (41)

where the stabilization term is described using S : S, x S, — R.

In order to develop a posteriori error estimates for stabilized schemes of the form (4.1), we imitate
the proof of Lemma 1 and use the Green’s function G(:) := G(x,-) and its interpolant G, € S,. We
again recall the error representation (2.4) and subtract (4.1) with v, := G, € S,. Then, with the notation
g := G — Gy, one gets

(), — u)(x) = &(Vuy, Vg) + (div(au,) + buy, — f, g8) — S5 (uy, Gp),
i.e., compared with (3.5), we have an additional term S 4 (u;,, G;,). Lemma 1 for this case then reads as

lu —uyll 0.0 S max no (T) + sup |S 7 (uy, Gl 4.2)
TeT xe
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14 A. DEMLOW ET AL.

Bounds for the last term depend on the stabilization method; we explore some options below. We also
note that there is a large literature on stabilization methods that we do not explore here. We shall
somewhat follow Tobiska & Verfiirth (2015) in our presentation (where a similar analysis is carried
out for the energy norm) and refer to that work for more discussion. Hence, our exploration of this topic
is cursory and focused only on effects on maximum-norm a posteriori error estimation. In particular, we
establish that the a posteriori error estimation framework described above remains valid for a number
of stabilized methods.

4.1 Streamline diffusion method

The streamline diffusion method is a residual-based method introduced in Hughes & Brooks (1979) (see
also Roos er al., 2008, §I11.3.2.1, and the references therein). Here the stabilization term has the form

S Qv = D 5T/ R,a- Vv, (4.3)
TeT T
where R, = —sAu,, + div(ay;,) + bu;, — f is the elementwise residual from (3.9). Here, 6; > Ois a

user-chosen parameter. Note one standard choice (Brooks & Hughes, 1982; John & Knobloch, 2007)
S = hTa;l E(%PeT), £(s) := coth(s) — s~! ~ min{l, s}, ar = llall .7» “4.4)

where we used the local Péclet number Pey := s‘laThT. Note also that the above 8, as well as many
other standard choices, satisfies the hypothesis of Corollary 3 below.

LEMMA 4 Suppose G satisfies (2.5), and G, € S}, is its interpolant from (2.7). Then, for (4.3), one gets

5.7y G| < max {yrd7lIRylloe 7} vy = min {aTh}l, 6,1+ aTe_lhT)] . (4.5)

CoROLLARY 3 Suppose that i, satisfies (4.1), (4.3) with 6; < hy min{a;l, e_lhT} VT € 7. Then,
under the conditions of Lemma 4, one has |S & (1, G;)| S maxyc o ., (T) for any x € £2, and, hence,
the error bound (3.4).

Proof. In view of (4.2), it suffices to establish the desired bound on S 4 (u;,,G;). For the latter, a
comparison of (4.5) with (3.3) shows that it suffices to prove that y;8; < op = min{l, Eha_lh%}.
From y; < arphy' combined with 87 < hpap', one immediately gets y;6; < 1, so it remains to
prove that we also have y;8; < €,6'h3. The latter follows by combining y; < €,(1 + age™'hy) =~
¢, max{1, ape~"hy} with 8; < hpay! min{1, ape~'hy) (in view of min{1, s} max{l,s} = sVs). O

Proof of Lemma 4. A comparison of the desired bound (4.5) with (4.3) shows that it suffices to
prove that

I = Z Iy = Z yrla- VGl o S 1.
TeT TeT
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 15

Note that here )/T_l ~ hTat;l + E;l min{1, sh;la;l}. Hence, a calculation using G, = G — (G — Gy,)
leads to

I Shellaz'a- VG| + 6 a- VGl + €, ehr ar'a - V(G = Gy 4

Here |a;1a| < 1. Additionally, for the first term, an inverse inequality applied elementwise yields
hrllVGylly .7 S NGl < IGH, > Where we also used (2.7). For the final term, (2.7) implies ||V (G —
Gl .1 < min {||VG||1 o hT||D2G|| 1 :wr}' Combining these observations, one now gets

I S UGl @ + 6 1a- VGl g+ 6 e [ 1Gh1 @y + 2 7' 1VGll10y |-
TeS

where we again used 7y > x and J) = {T € 7 : wp N B(x,chy)) # ¥}. Most ingredients of the

right-hand side have been estimated in (3.8). The remaining E;l la- VGl . is estimated using (2.6),
which yields the desired bound I* < 1. (Note that (2.6) follows from (2.5).)

4.2 Continuous interior penalty stabilization

We next let u;, satisfy (4.1) with the stabilizing term (Douglas & Dupont, 1976; Burman & Hansbo,
2004) (see also Roos er al., 2008, §111.3.3.2, Tobiska & Verfiirth, 2015, §2.2.4 and the references therein)

S7(w,vy) = D 1p /E [a- Vu,][a- Vv,]. (4.6)

Ee&

Here, we used the standard notation [-], which, for a generic scalar function v, is defined by [v] := [vng]
onany E € & using any fixed normal unit vector n; to E. A user-chosen parameter 7 typically satisfies

1 S h. 4.7)

Following the analysis in Tobiska & Verfiirth (2015, Lemma 2.6), we restrict our consideration to
the case of P! elements and, thus, get the following result.

LEmMMA 5 Suppose that u, satisfies (4.1), (4.6), (4.7) with the space S, of P! elements, and that the
functions a, diva, b and f in (1.1) are continuous in £2. Suppose also that G satisfies (2.5), and G, € S,
is its interpolant from (2.7). Then, for (4.6), one gets |S o (u;,, G,)| S Maxyc g 14, (T) for any x € £2,
and, hence, the error bound (3.4).

Proof. In view of (4.2), it suffices to establish the desired bound on S5 (u;,,G,). As we consider
the case of P! elements, eAuy, = 0 elementwise for any u, € S,. Hence, the residual becomes
R, = div(au,) + bu, — f, while, in view of the continuity of a, diva, b and f, one then gets
[a- Vu,] = [R,]- Hence, (4.6) leads to

IS 7 (u),, G| S T rTnea};{arlthlloo;T} = Z O‘;lh%” [a-VG,] ||1;aT’
TeT
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16 A. DEMLOW ET AL.

where we also used that iy >~ hy for any shape-regular T sharing a face E. As ar||R|lo.7 < 100 (T)
(in view of (3.3)), it remains to show that I** < 1.

For the latter, first, note that an inverse inequality yields h% H VG, || 13T < hiT|Gh |10y forj=0,1,
while (2.7) implies |Gy; ;.7 S IGl; 1 .- On the other hand, [VG, ] = —[Vg], where g = G — G, s0 a
standard scaled trace inequality yields || [Vg] H LaT S I1D%¢ll, wp T h;l V&l .y for which (2.7) gives

1w
I1D?gll 17+ h}l IVelly.r S IGlo, .oy~ Combining these observations, one gets

a6yl 4 S min{||G||1 - 171Gl 1 0p 2 131G, ;w,T}, (4.8)

where 7. denotes the patch of elements in .7 touching w; (including those in w;). Finally, combining
the definition of /** with (4.8) and ;' = 1 4 ¢; 'eh;%, one gets

1" S Gl + 6 "e(1G12vsceimy) + 2 17 IVG1uy )
TeZ

where .7 := (T € .7 : 0} N B(x, chy,) # ¥}, with T, > x. Now, the desired bound /** < 1 is obtained
similarly to (3.8). O

4.3 Local projection stabilization

In this section, we shall discuss local projection stabilization methods (and, very briefly, somewhat
related subgrid-scale schemes). We shall see that for such methods one can choose the Green’s function
interpolant G, € S, such that § 5 (1, G;,) = 0 in (4.2), which immediately yields the a posteriori error
(3.4) and, hence, a more general (3.25).

We shall mainly focus on local projection stabilization methods of the form (4.1)—see, e.g. (Roos
et al., 2008, §II1.3.3.1), (Tobiska & Verfiirth, 2015, §2.2.2) for further details and the references
therein—with the stabilizing term

Me M

This stabilizing term uses fluctuations of the convective derivatives computed using the fluctuation
operator k;, := I — 7;,, where 7, is a projection onto an appropriate discontinuous finite element space
related to an auxiliary partition .# of §2. The approximation a,, of a is assumed constant in each
M € . A user-chosen parameter 8, in (4.9) typically satisfies

—1
8y = Iy lall oy

Both .# = .7 (one-level approach) and .7 generated by a single-level refinement of each element in
A (two-level approach) have been introduced in the literature (Becker & Braack, 2001, 2004; Matthies
et al., 2007). This can be implemented in various ways. To be more precise, it will be convenient to
denote by S} the set of functions that are continuous on £2, equal to 0 on 32, and polynomials of degree
at most r on each T € .7, where r > 1 is a fixed polynomial degree. An analogous set of functions
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 17

relative to the partition .# will be denoted S, With this notation, we assume that the finite element
space S, and the fluctuation operator k;, satisfy

St CS,CS8; forsome r>1,  «,(Vvy) =0 Yvy €S (4.10)

The above assumption on «;, is satisfied if 7, v in each M € .# is defined as the L, projection of v onto
P9(M) for some g > 0. In the two-level case, one may set S, := S; and g := r — 1. In the one-level case
M = T, for some g > 0, the space SZH can be enriched by appropriate bubble basis functions, so one
gets (4.10) with r := g + n + 1. For example, if ¢ = 0, one may employ S, = S}l @ span{b; : T € T},
where by = H;’illkie P"+1(T) is the bubble function associated with T, so (4.10) is satisfied with
r=n+1.

For both one-level and two-level approaches under the general assumption (4.10), we get the
following result.

LEMMA 6 Suppose that u;, satisfies (4.1), (4.9) under assumption (4.10). Then, under the conditions
(2.5) on G, the error of the computed solution u,, satisfies (3.25), i.e., Theorem 1 remains valid for this
method.

Proof. In view of (4.10), one has u;, € §j, so the efficiency results of §§3.3-3.4 apply immediately.
Hence, to establish (3.25), it suffices to prove (3.4).

Next, construct the interpolant G, € S }1 cSs }11 of G exactly as described in §2.3, only relative to the
partition .#. Then the bounds (2.7) hold true, only with w; now denoting the patch of elements in .#
touching M O T (which also includes this M). With this tweak in the notation, the estimates in §3.2
remain valid, so Lemma 1 for this case again reads as (4.2). Finally, G, € S}i combined with (4.10)
yields S 5 (u;,, G;,) = 0, which, combined with (4.2), gives the desired (3.4). [l

Note that Lemma 6 also remains valid for a version of (4.9) with the fluctuations of the full gradient,
i.e., with «;,(ay, - V---) replaced by «;(V ---) (as in this case we again enjoy S 5 (u;,, G;,) = 0 for
G, € Sh).

In addition, the above argument may be applied to subgrid-scale methods, in which gradients
of fluctuations are used instead of fluctuations of gradients as in (4.9) for local projection methods
(Guermond, 1999, 2001); see also, e.g. (Matthies et al., 2007, §5), (Roos et al., 2008, §1V.4.5), (Tobiska
& Verfiirth, 2015, §2.2.3). For example, one may replace the terms of type «x,(a;, - V---) in (4.9)
by a,, - V(k;, - - ) (or the full-gradient version V(kj,---)). A typical fluctuation operator k, satisfies
kerk;, 2 S} (so k,G,, = 0), in which case we again get Lemma 6.

4.4 Concluding remarks on stabilized methods

Above, we have established that the introduction of a variety of stabilization techniques does not affect
the ability to bound |ju — uy|l;_ () using our residual estimator, although the form of the proof depends
on the particular stabilization technique. The rest of our arguments concerning the seminorm |a - Ve|,
and efficiency of our estimators are generally not affected by the introduction of stabilization, since they
do not use Galerkin orthogonality in their proof. The only exception comes in the choice of r used to
define oscillation and | - |, which, as noted in the preceding subsection, may require a little bit of care
when employing projection methods with bubble functions in the definition of S,. We summarize these
findings below.
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18 A. DEMLOW ET AL.

THEOREM 2 Consider streamline diffusion stabilization under the assumptions of Corollary 3, contin-
uous interior penalty stabilization under the assumptions of Lemma 5, or local projection stabilization
under the assumptions of Lemma 6. Under these conditions and the assumptions of Theorem 1, the
conclusions of Theorem 1 remain valid. That is, the estimator maxy, 5 14, (7) is reliable and efficient
for the error notion [|u — u|l .o + |a- V(u — up)l, + osc(ayRy, §2) up to factors of £,.

5. Numerical experiments

In this section, we present numerical experiments that illustrate the practical behavior of the error
estimators and indicators defined above. All computations were carried out in MATLAB using suitably
modified routines from the adaptive finite element library iFEM Chen (2009).

In all cases, we took §2 to be the unit square (0, 1) x (0, 1) and the coefficients a = [0, 1] and b = 1.
We computed using affine Lagrange elements and either uniform or adaptive refinement. In the case of
adaptive refinement, we used a modified maximum strategy in the standard solve — estimate —
mark — refine loop. Let n,, = maxy. 5 1., (T) be the overall error estimator, and fix a (small)
positive integer K,,,,.. An element T € .7 is bisected K, times if . (T) > 0.57,, K,,,, — 1 times if

ax* max ax
0.51, > n5o(T) = 0251, etc. K, can be varied based on the degree of singular perturbation, with
K .« = 4 being used in the experiments below. This scheme helped to prevent too few elements being

refined at each iteration of the adaptive procedure, and thus too many iterations from occurring. It also
aided in more efficient resolution of boundary and interior layers since elements with large indicators
are subdivided multiple times in each adaptive step.
Unknown constants appear in our error estimators and must be fixed. In our experiments, we chose
the definition
h2
Moo (T) = min | 1, 0.01251{,1?7 IRZ I cr)

+ min [/e, 0.03¢,7] | [V ]| o7

Experiments were conducted using either an unstabilized scheme or streamline diffusion stabilization
with the parameter chosen as in (4.4).

5.1 Experiment 1: smooth solution

In this experiment, we consider a simple smooth solution
uy (x,y) = sin(wx) sin(wy).

No stabilization was used. Our goal here is to illustrate and compare the convergence orders of the
a posteriori error estimator maxr¢ 7 7o, (7), the target error norm |lu — uyll;_ () and the convective
error |a - V(u — u;,)|,. We thus take a uniform series of mesh refinements, and carry out convergence
studies with e = 3 x 1073 and ¢ = 107>, Results are displayed in Fig. 2. In both cases, we observe that
lu — uyll; () converges with order DOF —1 = O(h?), and with the same order of magnitude observed
in each case. When & = 3 x 1073, we observe a preasymptotic regime in which the error estimator and
convective error |a - V(u — u,)|, both converge with order DOF =312 = p3 Ash sufficiently resolves
&, the estimator instead tracks the error [lu — [l @) with order DOF~!, while the convective error
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FiG. 2. Smooth solution #1 and uniform refinement, standard Galerkin method without stabilization, ¢ = 3 x 1073 (left) and
e = 1077 (right).

measured in the s-seminorm continues to decrease with order DOF~3/2. In all regimes, this illustrates
that maxyc 7 Noo (1) = lu—upll; (o)+1a-V(u—u,)|, (up to data oscillation, which here is bounded by
the latter two terms). In addition, it highlights two different dominant convergence rates for the estimator.
A third initial regime of O(DOF~1/2) = O(h) convergence for the estimator and |a - V(u — up)l, is
illustrated in the right plot in Fig. 2, where ¢ = 107°.

Understanding these convergence regimes is easiest when considering the *x-seminorm |a - V(u —

2
uy) | = SUP7c o Min (1, 0.0125¢,, h?T) la - Vell,,.7» which closely tracks the * seminorm in this case.

2
We may expect [|a- V(u—w)ll,_ ) = O(h) = O(DOF~1/2). Initially, min(1, eh’g) =1,s0]a-V(u—

)| = O(h) also. When h%ﬁh < /€, then we have |a - V(u — ) e S hlﬁ, leading to the increased
rate of convergence observed in Fig. 2.

REMARK 5 In Fig. 2, we observe that |lu — ull; (o) converges with optimal rate O(DOF ~1) from
essentially the first mesh refinement. This implies that oscillations often associated with unstabilized
solution of singularly perturbed problems are not present here. This was confirmed by viewing plots
of the discrete solution. Lack of instability in the discrete solution may be due to symmetries in the
test solution, which in 1D examples has been observed to lead to similar unexpectedly good results
for unstabilized methods (Kopteva, 1993, Chap. 4). Although numerical stability is uncharacteristically
good for this example, it is nonetheless useful as it allows for clear exposition of the properties of our
estimator relative to the target error notion ||u — up,|| ., and seminorm |a - V(u — uy,)|,.

5.2 Experiment 2: outflow boundary layer
In this subsection, we consider the outflow boundary layer solution

e (-0/e _ g1/

”2()6,)’) = )C(l —)C) y—- 1— 67]/8
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FiG. 3. Outflow boundary layer solution up with ¢ = 1073 and streamline diffusion stabilization. Uniform and adaptive
refinement (left), and with oscillation displayed (right).
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FI1G. 4. Outflow boundary layer solution u, with ¢ = 10~* (left); interior layer solution u3 with ¢ = 1073 (right), streamline
diffusion stabilization with adaptive refinement.

This solution exhibits a strong layer at y = 1 of width O(¢) and corresponding maximum solution
gradient size O(¢~!). In this experiment and in all of the displayed adaptive experiments involving
layers, we employed streamline diffusion stabilization.

In the left plot in Fig. 3, we illustrate the advantage of adaptive versus uniform refinement with
e = 107> Uniform refinement leads to essentially no decrease in the target norm |ju — Ul (22)- but
some decrease in the x-seminorm and estimator. Adaptive refinement yields little initial decrease in the
maximum error, but optimal O(DOF~") decrease begins with a little over 10° degrees of freedom. The
s-seminorm and estimator decrease with order DOF~! for most of the convergence history.
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In the right plot of Fig. 3, we include data oscillation in the plot in order to illustrate that the | - |-
seminorm is an essential part of the error notion measured by maxyc 7 1 (r)- In particular, we see that
maxye 7 Noo (1) = |a-Vel, > lu—uyllo .o +maxye 7 arlR, —R), 7l & .7 for much of the convergence
history, confirming that the estimator is reliable, but not efficient when measuring only the sum of the
maximum error and data oscillation.

5.3 Experiment 3: interior layer, | - |, versus | - |, error measure

Here, in addition to the outflow boundary layer problem considered above, we also consider the simple
interior layer solution (Ern & Stephansen, 2008)

uz(x,y) = 2x(1 —x)y(1 —y) (1 — tanh[(.5 — x)/\/g]) .

Note that the interior layer solution possesses milder layer behavior than does the outflow layer.

We shall now use these two tests—see Fig. 4—not only to illustrate the performance of our estimator,
but to also follow up on the theoretical comparison of | - |, versus | - |, in Section 3.5. Recall the
definitions (3.24) and (3.26) of the * and **-(semi)norms, and that the *-seminorm accurately reflects
estimator behavior, but may not be intuitive while the %% norm has a more concrete form, but may
overestimate the *-seminorm. In some cases of interest, the * and *% (semi) norms of the convective
error are nonetheless very close in size. To illustrate this fact and the inequality (3.27), we compare
behavior of the outflow boundary layer problem and the simple interior layer solution. In the left plot in
Fig. 4, we take ¢ = 10~ in the outflow boundary layer problem. This yields |a - V (u — )|y ™ el
while |a - V(u — up,)|, is much smaller. We see that the quantity max;. & ozT||P0(a * Voo closely
tracks |a - Ve|,, while max;. 5 ay[a- Ve — PO(a - Ve)| . closely tracks |a - Ve|,; cf. (3.27). Also,
heavy refinement is required before oscillation in V(u — u;,) is resolved, and the * and ** quantities
become more or less equivalent. In the right plot, we consider the interior layer problem with ¢ =
1073, Here, the % and #x (semi)norms of the convective error are essentially equivalent throughout the
convergence history. These experiments confirm that, while the ** seminorm lends some intuition to
the error behavior, the * norm most accurately captures the error dynamics.

We also emphasize that in all of our experiments, the estimator max;. 4 1,,(7T) in fact closely
tracked the total error ||u — u|| Lo(2) T |a- V(u — uy,)l, as predicted. Elementwise, oscillation of the
residual R, appeared not to dominate the other terms in the total error in all cases.
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