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Abstract. We show that solutions to the Ablowitz–Ladik system converge

to solutions of the cubic nonlinear Schrödinger equation for merely L2 initial

data. Furthermore, we consider initial data for this lattice model that ex-
cites Fourier modes near both critical points of the discrete dispersion relation

and demonstrate convergence to a decoupled system of nonlinear Schrödinger

equations.

1. Introduction

The Ablowitz–Ladik system, introduced in [1], describes the evolution of a field
α : Z → C. It comes in two variants, focusing and defocusing. Both may be written
as

i∂tαn = −
(
αn−1 − 2αn + αn+1

)
+ αnβn

(
αn−1 + αn+1

)
(AL)

by adopting the expedient that βn := αn in the defocusing case and βn := −αn in
the focusing case. (This convention will remain in force throughout the paper.)

Ablowitz and Ladik introduced this model as a discrete form of the one-dimensional
cubic Schrödinger equation,

i∂tψ = −∆ψ ± 2|ψ|2ψ,(NLS)

that preserves its complete integrability.
Given this connection, it is quite natural to imagine that solutions of (AL)

provide an accurate means of simulating solutions of (NLS), at least for slowly-
varying (high-regularity) initial data. Indeed, this intuition is backed up by a
number of studies that we will discuss below. The question at the heart of this
paper, however, is this: to what extent do solutions to (AL) and (NLS) parallel one
another for low-regularity initial data?

We will affirm the intuition laid out above still more strongly than previous
authors by showing convergence for merely L2 initial data. This constitutes a
significant expansion of the class of initial data relative to previous investigations
such as [8, 14] which require the initial data to lie inH1. We achieve this through the
introduction of a new method that synthesizes compactness and Strichartz-based
techniques.

As a counter-point to our convergence result, we will also demonstrate a certain
naiveté in the logic enunciated earlier by studying solutions to (AL) with initial
data

αn(0) = hψ0(hn) + (−1)nhϕ0(hn),(1.1)

which combines slowly varying and rapidly oscillating initial data. Here, h is the
length scale associated to the continuum approximation; we are studying the h→ 0
limit. Note the prefactor h appearing in (1.1); this ensures the balance between
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the dispersion and nonlinear effects. It is solely in this regime that one expects a
nonlinear dispersive limit as h → 0. In this regime, the natural time scale is also
stretched — solutions of (NLS) over the time interval [−T, T ] correspond to those
of (AL) over the longer period [−h−2T, h−2T ].

We will show that initial data of the form (1.1) leads to solutions to a system of
nonlinear Schrödinger equations:

i∂tψ = −∆ψ ± 2 |ψ|2 ψ and − i∂tϕ = −∆ϕ± 2 |ϕ|2 ϕ,(1.2)

in which — and this was a surprise to us — the two frequency components evolve
independently! As we will see, this absence of interactions is only observed asymp-
totically and will be traced to a certain nonresonance in spacetime. In our analysis
of initial data of the form (1.1), we will allow data ϕ0, ψ0 that is merely L2, thereby
unifying the two main themes of this paper.

An important phenomenological parallel to our discovery of (1.2) in the contin-
uum limit of (AL) has appeared previously in the link between KdV and the Toda
lattice. In [3, 4] it was demonstrated that the Toda lattice must be modeled by
a pair of KdV equations. We also direct the reader to [18] which considers more
general (non-integrable) lattice models.

Complete integrability of the Toda lattice is at the very heart of the methods
of [3, 4], which focus on the description of action-angle variables. This is very dif-
ferent from what we shall be doing; indeed, much of our analysis is based directly
on Strichartz estimates. The complete integrability of (AL) does play a small role
in our arguments, namely, in demonstrating equicontinuity. Nevertheless, it is rea-
sonable to imagine that our approach could be expanded to cover non-integrable
lattice approximations to (NLS), obtaining equicontinuity via almost conservation
laws and Strichartz estimates. We do not pursue this here because we are specifi-
cally interested in the Ablowitz–Ladik system due to its link to spin chain dynamics.

This link was first discovered in [11] and is a discrete analogue of the famous
Hasimoto transform linking the continuum Heisenberg model to (NLS). Indeed,
our desire to understand the continuum limit of low-regularity solutions to (AL)
is fueled by the long-term goal, elaborated in [2], of constructing dynamics for the
continuum Heisenberg model in its Gibbs state.

Via the discrete Hasimoto transform, the analysis of the spin model in the Gibbs
state is converted to the study of (AL) with αn(t) being certain specific (non-
Gaussian) i.i.d. random variables. Such initial data excites Fourier modes through-
out the circle to an equal degree and consequently both terms in (1.1) may be
considered equally significant. In [2], the first and third author together with An-
gelopoulos constructed global dynamics to (AL) for this type of data, and proved
invariance of this white noise measure under the (AL) flow. Moreover, the discrete
spin chain model was shown to admit global solutions in the Gibbs state and these
were shown to preserve the Gibbs measure.

In order to rigorously formulate our results, we need to explain how we pass
between functions on the line R and the lattice Z. Clearly, the sampling formula
(1.1) does not make sense in the L2 setting we will be studying; indeed, point
evaluation is not continuous on Hs(R) unless s > 1

2 . The remedy is to perform a
mild smoothing of the continuum initial data before sampling:

αn(0) = h[P≤Nψ0](hn) + (−1)nh[P≤Nϕ0](hn).(1.3)
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Here P≤N denotes the sharp projection to frequencies |ξ| ≤ N . For concreteness,
we will relate h and N by a power law:

N = h−γ with 0 < γ ≤ 13
18 .(1.4)

As h→ 0, so N → ∞, thus revealing the full irregularity of the initial data; cf. (2.2).
The choice of sharp cutoffs is made for no other reason than expository sim-

plicity. Such multipliers are much less local and are unbounded on ℓ∞. Our use
of such cutoffs is indicative of the robustness of our arguments and also saves the
reader from considering a multitude of bump functions concomitant with traditional
Littlewood–Paley theory.

While a signal-processing philosophy would suggest choosing N as the Nyquist
frequency (and no higher), dynamical considerations make N ≈ h−1 ill-suited to
the problem at hand. The principal obstruction appears at the linear level: The
dispersion relation for the discrete Schrödinger equation is ω = 2 − 2 cos(θ). This
is only approximately quadratic near θ = 0 and θ = π (modulo 2π), which are the
only regimes where we may expect Schrödinger–like behavior. Near the inflection
points θ = ±π/2, the discrete model has very weak dispersion. This in turn leads
to a wholly different mKdV-like dynamics with a different characteristic time scale.
Initial data with significant excitation near the inflection points will be treated in
future work.

As the (AL) dynamics are nonlinear, the Fourier support of a solution is not
preserved in time; one fully expects excitations to spread from the initial data to
neighborhoods of the inflection points. Nevertheless, we are able to control the
extent of such transfer and so demonstrate that the choice (1.4) suffices to suppress
these unwanted mKdV dynamics; see Proposition 3.2.

Based on our analysis, which we believe gives an accurate estimate of the transfer
of ℓ2 norm to neighborhoods of the inflection points, we would argue that should
one be employing (AL) as a numerical scheme for the simulation of NLS (an idea
advocated for in [7], for example), then one should first band-limit the initial data
in the manner indicated by (1.4) so as to avoid spurious results generated by the
deficiencies of the discrete dispersion relation.

For readers with a particular interest in numerical schemes for NLS (rather
than purely (AL)), we note that the inflection-point issue can also be avoided by
combining Fourier truncation of the initial data in concert with a different discrete
model. Two such approaches are discussed in [9, 10]: One may perform Fourier
truncations on the nonlinearity (which preserves the Hamiltonian structure) or one
may introduce a mild form of viscosity at the inflection points to suppress such
unwanted excitations.

To compare the solution of (AL) with initial data (1.3) to that of (1.2), we
must (at each moment of time) generate two functions, ψh(t, x) and ϕh(t, x), on
the real line from the single lattice function αn(h

−2t). To do this, we simply split
the Fourier transform α̂ into two pieces using a sharp cutoff to either semicircle:

ψ̂h(t, ξ) = α̂(h−2t, hξ)χ(−π
2 ,π2 )(hξ),

ϕ̂h(t, ξ) = e4ih
−2tα̂(h−2t, hξ + π)χ(−π

2 ,π2 )(hξ).
(1.5)
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[
ψ0, ϕ0

] (1.3)
→→

(1.2)

↓↓

αn(0)

(AL)

↓↓[
ψ, ϕ

]
(t)

[
ψh, ϕh

]
(t)

(1.8)
←← αn(t)

(1.6)
←←

Figure 1. A schematic representation of Theorem 1.1.

or equivalently,

ψh(t, x) = h−1

∫
|θ|<π

2

ei
x
h θ α̂(h−2t, θ) dθ2π ,

ϕh(t, x) = h−1e4ih
−2t

∫
|θ−π|<π

2

ei
x
h (θ−π) α̂(h−2t, θ) dθ2π .

(1.6)

One small quibble remains before we may present our main result: Do (AL) and
(1.2) actually admit global solutions? In the case of (1.2), the answer is unequiv-
ocally yes: Tsutsumi [20] showed that these equations are globally well-posed on
L2(R). Local well-posedness is shown by contraction mapping in Strichartz spaces;
this is then rendered global using the conservation of the L2 norm.

Regarding (AL), we see that local well-posedness in ℓ2(Z) is trivial: RHS(AL) is
locally Lipschitz! In Section 3 we will show how conservation laws guarantee that
such solutions exist globally, at least for

h ≤ h0 := min
{
1, 1

100

[
∥ψ0∥2L2 + ∥ϕ0∥2L2

]−1
}
.(1.7)

As we wish to send h→ 0 this hypothesis is of no real consequence; it exists solely
to address a singularity in the natural conservation laws (and also the symplectic
structure) in the defocusing case. Indeed, in the defocusing case, it is natural to
regard the phase space as comprised only of maps α : Z → D.

The main result of this paper is the following, which we present schematically in
Figure 1:

Theorem 1.1. Fix ψ0, ϕ0 ∈ L2(R) and let ψ, ϕ ∈ (CtL
2
x ∩L6

t,locL
6
x)(R×R) denote

the unique global solutions of (1.2) with this initial data.
Given h > 0 satisfying (1.7), let αn(t) be the global solution to (AL) with initial

data specified by (1.3) and (1.4) and let ψh, ϕh : R × R → C be the corresponding
spacetime representatives of this solution built via (1.6). Then as h→ 0,

ψh(t, x) → ψ(t, x) and ϕh(t, x) → ϕ(t, x)(1.8)

in CtL
2
x([−T, T ]× R) for any T > 0.

1.1. Outline of the proof. Broadly speaking, our argument is one of compact-
ness/uniqueness: we show that for every sequence of parameters h → 0 there is a
convergent subsequence of discrete solutions (transferred to the line via (1.6)). We
then show that all such subsequential limits are identical because they obey the
same integral equations and those integral equations have unique solutions.
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The integral equations we refer to here are nothing more than the Duhamel
formulas for solutions of (1.2); see (6.2) and (6.3). Naturally, these equations
contain the cubic nonlinearity. This is a problem for initial data that is merely in L2

— cubing an L2 function need not yield a distribution. If we cannot even determine
whether or not a CtL

2
x function is a solution of (NLS), uniqueness becomes hopeless!

The remedy is provided by Strichartz estimates. As shown in [20], solutions with
L2(R) initial data can be constructed via contraction mapping in L6

t,x([−T, T ]×R);
these solutions are unique in this class and the cubic nonlinearity makes sense
as a spacetime distribution. To exploit this form of uniqueness, we must prove
L6
t,x([−T, T ]× R) bounds for the functions ψh, ϕh.
As mentioned earlier and thoroughly discussed in [8], the presence of inflection

points in the discrete dispersion relation presents a major obstacle to controlling
the discrete solutions in Strichartz spaces. Our new remedy to this problem is to
begin our analysis by controlling the dynamical redistribution of ℓ2 norm among
frequencies; see Proposition 3.2. In Proposition 4.4, we show that the frequency
control we achieve is strong enough to recover from the inevitable losses in the
discrete Strichartz estimates originating from the inflection points.

Let us turn now to the question of compactness, which is addressed in Section 5;
see Theorem 5.1. As we review at the beginning of that section, precompactness
rests on three pillars: boundedness, equicontinuity, and tightness. Boundedness is
deduced easily from the conservation laws of (AL), specifically, from the analogue
of L2 conservation.

There are actually two equicontinuity requirements because we must allow trans-
lations both in space and in time. Equicontinuity in space can also be formulated
as tightness of the Fourier transform; see (5.4). In this guise, it is easier to see that
it is amenable to attack via conservation laws and indeed, this is how we prove it.

Both equicontinuity in time and tightness rely on the high-frequency control pro-
vided by equicontinuity in space. Even under the linear flow, high-frequency wave
packets travel very fast, which is antithetical to both tightness and equicontinuity
in time. Of the two, tightness is the more delicate to prove because the natural
microscopic conservation law does not interact well with frequency cutoffs. This is
a peculiarity of (AL) not present in (NLS) or other discrete analogues.

Section 6 is primarily devoted to showing that any subsequential limits of dis-
crete solutions actually solve the Duhamel integral equation. This relies on all of
the preceding. Strichartz control is essential to overcome the cubic power in the
nonlinearity, for example, while equicontinuity in space is needed to replace the
nonlinearity in (AL), which involves values at adjacent lattice points, with a purely
on-site nonlinearity. Perhaps the most surprising element of this analysis is the
fact that the two frequency components ψh and ϕh of the solution do not interact.
The explanation for this has both algebraic and analytic components. The fact
that the (AL) nonlinearity involves adjacent sites produces a key sign change in
(6.11) which cancels the naive interactions |ψ|2ϕ and |ϕ|2ψ. However, two prima
face significant interactions remain. We prove that these drop out of the h → 0
limit due to a nonresonance phenomenon — they oscillate in time at a frequency
far removed from that of the linear solutions; see Lemma 6.4.

At the end of Section 6, we close the paper with a quick review of how these
results complete the proof of Theorem 1.1.
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2. Preliminaries

Throughout this paper, C will denote a constant that does not depend on the
initial data or on h, and which may vary from one line to another. We write A ≲ B
or B ≳ A whenever A ≤ CB for some constant C > 0. We write A ≃ B whenever
A ≲ B and B ≲ A.

We use Lq
tL

r
x to denote the spacetime norm

∥F∥Lq
tL

r
x(R×R) :=

(∫
R

(∫
R
|F (t, x)|r dx

)q/r

dt
)1/q

,

with the usual modifications when q or r is infinity, or when the domain R × R is
replaced by some smaller spacetime region. When q = r we abbreviate Lq

tL
r
x by

Lq
t,x. The discrete version of the spacetime norm Lq

tL
r
x(R× R) is Lq

t ℓ
r
n(R× Z).

The Hilbert–Schmidt norm of a bounded linear operator Ω : ℓ2n(Z) → ℓ2n(Z) is
the ℓ2 norm of its matrix entries:

∥Ω∥2I2
:=

∑
n,m∈Z

⏐⏐Ωnm

⏐⏐2.
By the Hölder inequality, if Ω1,Ω2, · · · ,Ωm with m ≥ 2 are Hilbert–Schmidt oper-
ators, then their product is trace class and⏐⏐tr{Ω1Ω2 · · ·Ωm

}⏐⏐ ≤ m∏
i=1

∥Ωi∥I2
.

Our convention for the Fourier transform on the line will be

f̂(ξ) =

∫
R
f(x)e−ixξ dx so that f(x) =

∫
R
f̂(ξ)eixξ dξ

2π ,

while in the discrete case we will use

f̂(θ) =
∑
n∈Z

f(n)e−inθ so that f(n) =

∫ π

−π

f̂(θ)einθ dθ
2π .

These definitions of the Fourier transform yield the Plancherel identities∫
R

⏐⏐f(x)⏐⏐2 dx =

∫
R

⏐⏐f̂(ξ)⏐⏐2 dξ
2π and

∑
n∈Z

|f(n)|2 =

∫ π

−π

|f̂(θ)|2 dθ
2π .

With these conventions, the Poisson summation formula takes the form∑
n∈Z

hf(nh)e−inθ =
∑
m∈Z

f̂
(
θ+2πm

h

)
for any f ∈ S (R).

Therefore, if supp(f̂ ) ⊂
[
−π

h ,
π
h

]
and |θ| ≤ π, then∑

n∈Z
hf(nh)e−inθ = f̂

(
θ
h

)
.

Consequently, for the initial data (1.3), we have

α̂(0, θ) =
∑
n∈Z

α(0, n)e−inθ = P̂≤Nψ0

(
θ
h

)
+ P̂≤Nϕ0

(
θ−π
h

)
(2.1)
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for θ ∈ [−π
2 ,

3π
2 ] and 2Nh < π. In particular, recalling that N = h−γ , we have

lim
h→0

h−1∥α(0)∥2ℓ2 = lim
h→0

∥P≤Nψ0∥2L2 + ∥P≤Nϕ0∥2L2 = ∥ψ0∥2L2 + ∥ϕ0∥2L2 .(2.2)

Lemma 2.1. If f, g ∈ L2(R) satisfy supp(f̂ ) ⊆
[
−π

h ,
π
h

]
and supp(ĝ) ⊆

[
−π

h ,
π
h

]
,

then ∫
f(x) g(x) dx = h

∑
n

f(nh) g(nh).

Proof. Expanding f̂ and ĝ with respect to the orthonormal basis {h 1
2 e−inhξ : n ∈

Z} of L2([−π
h ,

π
h ];

dξ
2π ), we obtain∫

f(x) g(x) dx =

∫ π
h

−π
h

f̂(ξ) ĝ(ξ) dξ
2π =

∑
n

∫
h

1
2 einhξ f̂(ξ) dξ

2π

∫
h

1
2 einhη ĝ(η) dη

2π

= h
∑
n

f(nh) g(nh). □

It is not difficult to upgrade the previous argument to show that f ↦→
√
hf(nh) is

actually a unitary map — a result known as Shannon’s sampling theorem. For what
follows, we will also need to understand the Lp

x → ℓpn properties of this mapping
(on band limited functions). This was addressed already by Plancherel and Polya
in [15]:

Lemma 2.2. Fix 1 < p < ∞ and let f : R → C be a Schwartz function with

supp(f̂ ) ⊆
[
−π

h ,
π
h

]
. Then

h
∑
n∈Z

|f(nh)|p ≃
∫
R
|f(x)|p dx.(2.3)

It is well-known that operators defined by sharp (as opposed to smooth) Fourier
cutoffs are Lp-bounded for 1 < p < ∞; indeed, this follows immediately from the
well-known Lp-boundedness of the Hilbert transform,

Ĥf(ξ) = −i sign(ξ)f̂(ξ) or equivalently, [Hf ](x) = P.V.

∫
f(y)

x− y

dy

π
,

which was proved by M. Riesz [16]. In Section 23 of this very same paper, Riesz
considered the discrete Hilbert transform and showed that it is ℓp-bounded for all
1 < p < ∞. It follows that for any arc [a, b] on the circle, the mapping α̂(θ) ↦→
χ[a,b](θ)α̂(θ) is bounded on ℓp(Z).

Our next two results concern the linear operator arising in (1.6), which transfers
solutions of (AL) to functions on R. Specifically, we mean the mapping

[Rc](x) := h−1

∫ π
2

−π
2

ei
x
h θ ĉ(θ) dθ2π = P.V.

∑
n

sin( π
2h [x− nh])

π(x− nh)
cn(2.4)

which we will show maps ℓ2n to L2
x. Note that (1.6) can be rewritten as

ψh(t) = R[αn(h
−2t)] and ϕh(t) = e4ih

−2tR[(−1)nαn(h
−2t)].

Lemma 2.3. The operator R is a bounded operator from ℓ2n(Z) to L2
x(R) with norm

∥R∥ℓ2n(Z)→L2
x(R) ≲ h−

1
2 .
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Proof. The result is an immediate consequence of Lemma 2.1. Indeed,

∥Rc∥L2
x
= h

1
2 ∥[Rc](nh)∥ℓ2n = h−

1
2 ∥ĉ∥L2([−π

2 ,π2 ]) ≤ h−
1
2 ∥c∥ℓ2n . □

Lemma 2.4. Let c ∈ ℓ2n be a sequence supported in the interval [−h−1L, h−1L].
Then for any L′ > 0 we have∫

|x|>L+L′

⏐⏐[Rc](x)⏐⏐2 dx ≲
L

hL′ ∥cn∥
2
ℓ2n
.(2.5)

Proof. The result follows immediately from two simple observations:∫
|x−nh|>L′

⏐⏐⏐2 sin( π
2h [x− nh])

x− nh

⏐⏐⏐2 dx ≲
1

L′ and ∥c∥ℓ1n ≲ h−
1
2L

1
2 ∥c∥ℓ2n . □

3. Conservation Laws

As a completely integrable system, (AL) enjoys infinitely many conservation
laws. Of these, we mention just three:

M(α) = −
∑
n∈Z

ln
(
1− αnβn

)
,

H(α) = −
∑
n∈Z

αnβn+1 + αn+1βn + 2 ln
(
1− αnβn

)
,

H2(α) = −
∑
n

2 ln
(
1− αnβn

)
+ 2Re

[
αn+2βn − 1

2α
2
nβ

2
n−1 − αn+1αnβnβn−1

]
.

Note that H also serves as the Hamiltonian for (AL) with respect to the Poisson
structure {

F,G
}
:= 1

i

∑
n∈Z

(
1− αnβn

) (
∂F
∂αn

∂G
∂βn

− ∂F
∂βn

∂G
∂αn

)
.

Proposition 3.1. Under the assumption (1.7), the evolution (AL) with initial data
(1.3) has a global solution in Ctℓ

2
n. Moreover,⏐⏐M(α(t))

⏐⏐ ≃ ∥α(t)∥2ℓ2n ≲ h
[
∥ψ0∥2L2 + ∥ϕ0∥2L2

]
uniformly for t ∈ R.(3.1)

Proof. Local well-posedness in ℓ2 is guaranteed by Picard’s theorem. Under the
assumption (1.7), the quantity M(α(t)) is initially well-defined; moreover, it is
conserved by these local solutions. We will show that such solutions can be extended
globally in time by demonstrating the equivalence stated in (3.1). The inequality
in (3.1) then follows from Lemma 2.2.

From the power series expansion of ln, we have⏐⏐⏐⏐⏐M(α(t))
⏐⏐− ∥α(t)∥2ℓ2n

⏐⏐⏐ ≤ ∞∑
ℓ=2

1
ℓ ∥α(t)∥

2ℓ
ℓ2n
.(3.2)

On any time interval where

∥α(t)∥2ℓ2n ≤ 1
20 ,(3.3)

the series on the right-hand side of (3.2) converges and yields⏐⏐⏐⏐⏐M(α(t))
⏐⏐− ∥α(t)∥2ℓ2n

⏐⏐⏐ ≤ 1
20 ∥α(t)∥

2
ℓ2n
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and consequently,

1
2

⏐⏐M(α(t))
⏐⏐ ≤ ∥α(t)∥2ℓ2n ≤ 2

⏐⏐M(α(t))
⏐⏐.(3.4)

By Lemma 2.2, (1.7) guarantees

∥α0∥2ℓ2n ≤ 1
100 .

As trajectories are ℓ2n-continuous in time, (3.4) and the conservation of mass show
that (3.3), and so also (3.4), hold for all time. □

It is elementary to verify that the solutions constructed in Proposition 3.1 also
conserve H and H2, which are readily seen to be continuous functionals on ℓ2n. Our
next result demonstrates suppression of the influence of the inflection points ±π

2
on the solution to (AL) for all times.

Proposition 3.2. Let α be the solution to (AL) with initial data (1.3) and h
satisfying (1.7). For 0 < δ < 1, let Pδ be the sharp Fourier cutoff defined via

P̂δf(θ) = χGδ
(θ)f̂(θ) with Gδ =

{
θ ∈ R/2πZ : sin2(θ) < δ2

}
.(3.5)

Then

sup
t

[1− Pδ]α(t)

ℓ2n

≲ δ−1
(
hN + h

1
2

)
∥α(0)∥ℓ2n .(3.6)

Proof. A straightforward computation reveals that the quadratic part of the con-
served quantity H2(α) is given by

H
[2]
2

(
α(t)

)
= ±

∫ π

−π

4 sin2(θ)|α̂(t, θ)|2 dθ
2π ,(3.7)

while the higher order terms can be estimated using Proposition 3.1 by⏐⏐⏐H2

(
α(t)

)
−H

[2]
2

(
α(t)

)⏐⏐⏐ ≲ ∥α(t)∥4ℓ2n +
∑
ℓ≥2

∥α(t)∥2ℓℓ2n ≲ ∥α(t)∥4ℓ2n ≲ h∥α(0)∥2ℓ2n .

Using the conservation of H2 and recalling (2.1), we therefore deduce that∫ π

−π

4 sin2(θ)|α̂(t, θ)|2 dθ
2π ≲

∫ π

−π

4 sin2(θ)|α̂(0, θ)|2 dθ
2π + h∥α(0)∥2ℓ2n

≲ [(hN)2 + h]∥α(0)∥2ℓ2n .
This completes the proof of the proposition. □

A very similar argument using only the Hamiltonian H (rather than H2) may
be employed in the case that ϕ0 ≡ 0. In contrast to the symbol of the quadratic
part of H2 given in (3.7), the symbol of H [2] is 4 sin2(θ/2) and so vanishes only at
θ = 0 (mod 2π).

A convenient way of understanding the whole family of conservation laws is
through their generating function, which we will discuss next, following the para-
digm set forth in [6].

For z ∈ C with |z| > 1, we define

A(z;α) :=

∞∑
ℓ=1

(−1)ℓ+1

ℓ tr
{
(ΛΓ)ℓ

}
(3.8)

where

Λ(z;α) := α(S − z−1)−1, Γ(z;α) := β(z − S)−1,



10 ROWAN KILLIP, ZHIMENG OUYANG, MONICA VISAN, AND LEI WU

and S denotes the shift operator on ℓ2(Z) given by
(
S[f ]

)
n
= fn+1.

In view of these definitions of Λ and Γ, we see that (3.8) has the form of a power
series in α and ᾱ. The convergence of this series will be addressed in Proposition 3.3.
In understanding what the conservation of A expresses about solutions to (AL), it
is useful to compute the quadratic term A[2] exactly:

A[2](z;α) = tr
{
ΛΓ

}
= ±

∫ π

−π

|α̂(θ)|2

z2e−iθ − 1

dθ

2π
.

Although this quantity is not coercive, one may remedy this by taking linear com-
binations with M . The particular linear combination that will be useful to us is

G(κh;α) = ± 2
e4κh+1

M(α)∓ tanh(2κh)Re
[
A(eκh;α) +A(ieκh;α)

]
,(3.9)

which has quadratic part

G[2](κh;α) =

∫ π

−π

sin2(θ) |α̂(θ)|2

sinh2(2κh) + sin2(θ)

dθ

2π
.(3.10)

Proposition 3.3. Let α be the solution to (AL) with initial data (1.3) and h
satisfying (1.7). Then there exists κ0 > 0 depending only on ∥ψ0∥L2

x
and ∥ϕ0∥L2

x

so that for all t ∈ R and all κ ≥ κ0, the series defining G(κh;α(t)) converges and
is independent of t. Moreover,⏐⏐⏐G(κh;α(t))−G[2](κh;α(t))

⏐⏐⏐ ≲ sinh−1(κh)∥α(0)∥4ℓ2n ,(3.11)

with an implicit constant independent of h and t.

Proof. It was observed in [6, Lemma 5.2] that Λ and Γ are Hilbert–Schmidt oper-
ators with Λ(z;α)2

I2
= |z|2

|z|2−1∥α∥
2
ℓ2n

and
Γ(z;α)2

I2
= 1

|z|2−1∥α∥
2
ℓ2n
.(3.12)

Moreover, by [6, Theorem 5.1], A(z;α) converges and is conserved under the (AL)
flow provided that

|z|
|z|2−1∥α∥

2
ℓ2n
< 1.

Combining this (3.2), (3.8), and Proposition 3.1, we may estimate

LHS(3.11) ≤ tanh(2κh)
∑
ℓ≥2

1
ℓ

Λ(eκh;α(t))ℓ
I2

Γ(eκh;α(t))ℓ
I2

+ tanh(2κh)
∑
ℓ≥2

1
ℓ

Λ(ieκh;α(t))ℓ
I2

Γ(ieκh;α(t))ℓ
I2

+ 2
e4κh+1

∑
ℓ≥2

1
ℓ ∥α(t)∥

2ℓ
ℓ2n

≤ tanh(2κh)
∑
ℓ≥2

(
eκh

e2κh−1
∥α(t)∥2ℓ2n

)ℓ

+ 1
cosh(2κh)∥α(t)∥

4
ℓ2n

≲ RHS(3.11),

provided κ ≥ κ0 for some κ0 depending only on the L2
x norms of ϕ0, ψ0. □
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4. Strichartz Estimates

Our main goal in this section is to prove certain Strichartz estimates for α, ψh,
and ϕh that are uniform in the parameter h. We start by recording the Strichartz
estimates for the continuum and discrete Schrödinger propagators.

Proposition 4.1 (Strichartz estimates for eit∆; [5]). Let (q, r) and (q̃, r̃) be two
pairs satisfying

q, r, q̃, r̃ ≥ 2 and 2
q + 1

r = 1
2 = 2

q̃ + 1
r̃ .

If ψ is a solution to the Schrödinger equation

i∂tψ = −∆ψ + F

with initial data ψ0 ∈ L2
x(R), then

∥ψ∥Lq
tL

r
x(R×R) ≲ ∥ψ0∥L2

x(R)
+ ∥F∥

Lq̃′
t Lr̃′

x (R×R) .

As shown in [19, Theorem 3], Strichartz estimates for the discrete Schrödinger
propagator eit∆d , where ∆d denotes the discrete Laplacian

[∆dα]n = αn−1 − 2αn + αn+1,

can be derived via the same techniques used in the continuum case, [12]. As the
discrete dispersion relation has inflection points (unlike in the continuum case), the
estimates are more closely related to those familiar from the Airy propagator:

Proposition 4.2 (Strichartz estimates for eit∆d ; [19]). Let (q, r) and (q̃, r̃) be two
pairs satisfying

q, r, q̃, r̃ ≥ 2, 1
q + 1

3r ≤ 1
6 , and 1

q̃ + 1
3r̃ ≤ 1

6 .

If α is a solution to the discrete Schrödinger equation

i∂tαn = −(∆dα)n + Fn

with initial data α0 ∈ ℓ2n(Z), then

∥α∥Lq
t ℓ

r
n(R×Z) ≲ ∥α0∥ℓ2n(Z) +

F
Lq̃′

t ℓr̃′n (R×Z).

However, if we project to frequencies away from the inflection points, we recover
the same dispersive decay we find in the continuum. Consequently, we have

Proposition 4.3 (Frequency-localized Strichartz estimates for eit∆d). Let (q, r)
and (q̃, r̃) be two pairs satisfying

q, r, q̃, r̃ ≥ 2 and 2
q + 1

r = 1
2 = 2

q̃ + 1
r̃ .

The solution to the discrete Schrödinger equation

i∂tαn = −(∆dα)n + Fn

with initial data α0 ∈ ℓ2n(Z) satisfies

∥Pα∥Lq
t ℓ

r
n(R×Z) ≲ ∥Pα0∥ℓ2n(Z) +

PF
Lq̃′

t ℓr̃′n (R×Z),

where P = P 3
4
is the projection operator defined in Proposition 3.2.

Our main result in this section is the following:
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Proposition 4.4. Let α be the solution to (AL) with initial data (1.3) and h
satisfying (1.7). Then for any T > 0 we have

∥α∥L6
t ℓ

6
n([−h−2T,h−2T ]×Z) + ∥α∥L4

t ℓ
∞
n ([−h−2T,h−2T ]×Z) ≲T ∥α0∥ℓ2n ,(4.1)

where the implicit constant is independent of h. Consequently,ψh

L6

t,x([−T,T ]×R) +
ϕh

L6
t,x([−T,T ]×R) ≲T 1 uniformly in h,

where ψh and ϕh are as defined in (1.5).

Proof. First note that by Hölder’s inequality and Proposition 3.1,

∥α∥L6
t ℓ

6
n([−h−2T,h−2T ]×Z) + ∥α∥L4

t ℓ
∞
n ([−h−2T,h−2T ]×Z)

≲ (h−2T )
1
6 ∥α∥L∞

t ℓ2n(R×Z) + (h−2T )
1
4 ∥α∥L∞

t ℓ2n(R×Z)

≲
[
(h−2T )

1
6 + (h−2T )

1
4

]
∥α(0)∥ℓ2n .(4.2)

In order to eliminate the dependence on h in the inequality above, we will run a
bootstrap argument combined with Strichartz estimates.

Let P = P 1
100

and P̃ = P 3
4
denote the sharp Fourier cutoffs introduced in (3.5).

Writing F (α) for the nonlinearity in (AL) and exploiting that P̃ [F (Pα)] = F (Pα),
we obtain the following Duhamel representation of the solution:

α(t) = eit∆dα(0)− i

∫ t

0

ei(t−τ)∆dF
(
α(τ)

)
dτ

= eit∆d P̃α(0) + eit∆d(1− P̃ )α(0)− i

∫ t

0

P̃ ei(t−τ)∆dF
(
Pα(τ)

)
dτ

− i

∫ t

0

ei(t−τ)∆d

[
F
(
α(τ)

)
− F

(
Pα(τ)

)]
dτ.

With a view to closing a bootstrap argument, we will estimate these terms on
the time interval [−h−2T0, h

−2T0] with T0 ≤ T , which may later be chosen small.

(Recall that T was arbitrarily large.) For two of the terms, the presence of P̃
allows us to employ Proposition 4.3 and so treat both spacetime norms of interest
simultaneously. First,eit∆d P̃α(0)


L6

t ℓ
6
n∩L4

t ℓ
∞
n

≲ ∥P̃α(0)∥ℓ2n ≲ ∥α(0)∥ℓ2n .(4.3)

Secondly, using Proposition 3.1, we have∫ t

0

P̃ ei(t−τ)∆dF
(
Pα(τ)

)
dτ


L6

t ℓ
6
n∩L4

t ℓ
∞
n

≲
F (Pα)

L
6
5
t ℓ

6
5
n

≲
(
h−2T0

) 1
2 ∥α∥L∞

t ℓ2n
∥α∥2L6

t ℓ
6
n

≲
(
h−2T0

) 1
2 ∥α(0)∥ℓ2n ∥α∥2L6

t ℓ
6
n
.(4.4)

Turning to the remaining terms in the Duhamel expansion, we first narrow our
focus to just the L6

t ℓ
6
n norm. By Propositions 4.2 and 3.2,eit∆d(1− P̃ )α(0)


L6

t ℓ
6
n

≲ (h−2T0)
1
18

eit∆d(1− P̃ )α(0)

L9

t ℓ
6
n

≲ (h−2T0)
1
18 ∥(1− P̃ )α(0)∥ℓ2n

≲ (h−2T0)
1
18

(
Nh+ h

1
2

)
∥α(0)∥ℓ2n .(4.5)
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Proceeding in a parallel fashion, we find∫ t

0

ei(t−τ)∆d

[
F
(
α(τ)

)
− F

(
Pα(τ)

)]
dτ


L6

t ℓ
6
n

≲ (h−2T0)
1
18

∫ t

0

ei(t−τ)∆d

[
F
(
α(τ)

)
− F

(
Pα(τ)

)]
dτ


L9

t ℓ
6
n

≲ (h−2T0)
1
18

F (α)− F (Pα)

L

9
8
t ℓ

6
5
n

≲ (h−2T0)
11
18

(I − P )α

L∞

t ℓ2n
∥α∥2L6

t ℓ
6
n

≲ (h−2T0)
11
18

(
Nh+ h

1
2

)
∥α(0)∥ℓ2n ∥α∥2L6

t ℓ
6
n

≲ (h−2T0)
11
18

(
Nh+ h

1
2

)
h

1
2

[
∥ψ0∥L2 + ∥ϕ0∥L2

]
∥α∥2L6

t ℓ
6
n
.(4.6)

The last step here was an application of (3.1).

Combining (4.3) through (4.6), recalling that N ≤ h−
7
9 , and using Proposi-

tion 3.1, we deduce that

∥α∥L6
t ℓ

6
n([−h−2T0,h−2T0]×Z)

≲
(
1 + T

1
18
0

)
∥α(0)∥ℓ2n + h−

1
2

(
T

1
2
0 + T

11
18
0

)
∥α∥2L6

t ℓ
6
n([−h−2T0,h−2T0]×Z) ,

where the implicit constant depends only on ψ0 and ϕ0. Taking T0 sufficiently
small, a bootstrap argument yields

∥α∥L6
t ℓ

6
n([−h−2T0,h−2T0]×Z) ≲ ∥α(0)∥ℓ2n .

Note that (4.2) guarantees that the quantity being bootstrapped is initially finite.
Iterating this argument (1 + T

T0
) many times, we conclude that

∥α∥L6
t ℓ

6
n([−h−2T,h−2T ]×Z) ≲T ∥α(0)∥ℓ2n .(4.7)

In particular, in view of Lemma 2.2 and Proposition 3.1, this yieldsψh

L6

t,x([−T,T ]×R) +
ϕh

L6
t,x([−T,T ]×R) ≲ h−

1
2 ∥α∥L6

t ℓ
6
n([−h−2T,h−2T ]×Z) ≲T 1.

We turn now to the L4
tL

∞
x norm, which we will treat using (4.7) and so not

need to argue via bootstrap. Henceforth, all norms will be taken over the full time
interval [−h−2T, h−2T ].

Mimicking (4.5), we findeit∆d(1− P̃ )α(0)

L4

t ℓ
∞
n

≲ (h−2T )
1
12

eit∆d(1− P̃ )α(0)

L6

t ℓ
∞
n

≲ (h−2T )
1
12 ∥(1− P̃ )α(0)∥ℓ2n

≲ (h−2T )
1
12

(
Nh+ h

1
2

)
∥α(0)∥ℓ2n .(4.8)

Likewise, paralleling (4.6), we find∫ t

0

ei(t−τ)∆d

[
F
(
α(τ)

)
− F

(
Pα(τ)

)]
dτ


L4

t ℓ
∞
n

≲ (h−2T0)
1
12

∫ t

0

ei(t−τ)∆d

[
F
(
α(τ)

)
− F

(
Pα(τ)

)]
dτ


L6

t ℓ
∞
n

≲ (h−2T0)
1
12

F (α)− F (Pα)

L

9
8
t ℓ

6
5
n
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≲ (h−2T0)
23
36

(
Nh+ h

1
2

)
h

1
2

[
∥ψ0∥L2 + ∥ϕ0∥L2

]
∥α∥2L6

t ℓ
6
n
.(4.9)

Combining (4.3), (4.4), (4.8), (4.9), (4.7), and the fact that N ≲ h−
13
18 yields

∥α∥L4
t ℓ

∞
n ([−h−2T,h−2T ]×Z) ≲T ∥α(0)∥ℓ2n

and so completes the proof of the proposition. □

5. Precompactness in CtL
2
x

This section is dedicated to the proof of the following precompactness result:

Theorem 5.1. Let α be the solution to (AL) with initial data (1.3) and h satisfying
(1.7) and let ψh and ϕh be as in (1.5). For T > 0 fixed, the two families of functions
Ψ =

{
ψh(t, x) : 0 < h ≤ h0

}
and Φ =

{
ϕh(t, x) : 0 < h ≤ h0

}
are precompact in

C([−T, T ];L2
x(R)).

By a generalization of the Arzelà–Ascoli theorem due to M. Riesz [17], precom-
pactness of the two families will follow once we establish uniform boundedness,
equicontinuity, and tightness properties. Specifically, we will demonstrate:

Uniform boundedness: there exists C > 0 such that

sup
0<h≤h0

[
∥ψh(t)∥L∞

t L2
x([−T,T ]×R) + ∥ϕh(t)∥L∞

t L2
x([−T,T ]×R)

]
≤ C.(5.1)

Equicontinuity : for any ε > 0, there exists δ > 0 so that whenever |s|+ |y| < δ,

∥ψh(t+ s, x+ y)− ψh(t, x)∥L2
x
+ ∥ϕh(t+ s, x+ y)− ϕh(t, x)∥L2

x
< ε(5.2)

uniformly for t ∈ [−T, T ] (with t+ s ∈ [−T, T ]) and for 0 < h ≤ h0.

Tightness: for any ε > 0, there exists R > 0 such that

sup
0<h≤h0

sup
|t|≤T

∫
|x|≥R

⏐⏐ψh(t, x)
⏐⏐2 + ⏐⏐ϕh(t, x)⏐⏐2 dx < ε.(5.3)

As h ↦→ (ψh, ϕh) defines a continuous mapping from (0, h0] to C([−T, T ];L2
x(R)),

these three conditions automatically hold on any interval of the form [h1, h0]. Cor-
respondingly, it suffices to prove (5.2) and (5.3) only for 0 < h ≤ h1 where h1 may
depend on ε.

Combining Lemma 2.2 and Proposition 3.1, we find

∥ψh(t)∥L∞
t L2

x([−T,T ]×R) + ∥ϕh(t)∥L∞
t L2

x([−T,T ]×R)

≲ h−
1
2 ∥α∥L∞

t ℓ2n([−h−2T,h−2T ]×Z) ≲ 1,

uniformly for 0 < h ≤ h0, which settles (5.1).
We turn now to the equicontinuity property, starting with equicontinuity in the

spatial variable. By the uniform boundedness property (5.1) and Plancherel, this is
equivalent to tightness on the Fourier side, that is, for any ε > 0 there exists κ > 0
such that

sup
|t|≤T

∥P|ξ|≥κψ
h(t)∥L2

x
+ ∥P|ξ|≥κϕ

h(t)∥L2
x
< ε(5.4)

uniformly for 0 < h ≤ h0.
A straightforward computation using (1.5) shows that for κh < π

2 we have

∥P|ξ|≥κψ
h(t)∥2L2

x
+ ∥P|ξ|≥κϕ

h(t)∥2L2
x
=

∫
κh≤|hξ|≤π−κh

⏐⏐α̂(h−2t, hξ)
⏐⏐2 dξ

2π
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≤ C
h

∫
κh≤|θ|≤π−κh

sin2(θ) |α̂(h−2t,θ)|2
sinh2(2κh)+sin2(θ)

dθ
2π

≤ C
hG

[2]
(
κh;α(h−2t)

)
for a universal constant C > 0 and G[2] as defined in (3.10). Using Proposition 3.3
followed by (2.1) and Proposition 3.1, we may thus estimate

sup
|t|≤T

[
∥P|ξ|≥κψ

h(t)∥2L2
x
+ ∥P|ξ|≥κϕ

h(t)∥2L2
x

]
≲ h−1

[
G[2]

(
κh, α(0)

)
+ sinh−1(κh)∥α(0)∥4ℓ2n

]
≲

∫ N

−N

sin2(hξ)
sinh2(2κh)+sin2(hξ)

[
|ψ̂0(ξ)|2 + |ϕ̂0(ξ)|2

]
dξ + κ−1

≲ ∥P|ξ|≥
√
κ ψ0∥2L2

x
+ ∥P|ξ|≥

√
κ ϕ0∥2L2

x
+ κ−1

[
∥ψ0∥2L2

x
+ ∥ϕ0∥2L2

x

]
+ κ−1.

Choosing κ = κ(ε) sufficiently large we can guarantee that (5.4) holds whenever
0 < h < h1 for h1 = h1(ε). Note that the restriction 0 < h < h1 ensures that κh <
π
2 , which allowed for the computations above. Recall that spatial equicontinuity in
the regime h ∈ [h1, h0] is a consequence of the compactness of the interval [h1, h0]
and the continuity of the mapping h ↦→ (ψh, ϕh).

We now turn to the second half of (5.2), namely, equicontinuity in the time
variable. By (1.5) and Plancherel,ψh(t+ s)− ψh(t)

2
L2

x
= 1

h

P|θ|<π
2

[
α
(
h−2(t+ s)

)
− α

(
h−2t

)]2
ℓ2n
,ϕh(t+ s)− ϕh(t)

2
L2

x
= 1

h

P|θ−π|<π
2

[
e4ih

−2sα
(
h−2(t+ s)

)
− α

(
h−2t

)]2
ℓ2n
.

To estimate the right-hand sides above, we will rely on Duhamel’s formula

α
(
h−2(t+ s)

)
= eih

−2s∆dα
(
h−2t

)
− i

∫ h−2(t+s)

h−2t

ei[h
−2(t+s)−τ ]∆dF

(
α(τ)

)
dτ.

Using Plancherel and evaluating the contributions of the regions |θ| < κh and
κh < |θ| < π

2 separately, we findP|θ|<π
2

[
eih

−2s∆dα
(
h−2t

)
− α

(
h−2t

)]2
ℓ2n

=

∫
|θ|<π

2

⏐⏐e−4ih−2s sin2( θ
2 ) − 1

⏐⏐2⏐⏐α̂(h−2t, θ
)⏐⏐2 dθ

2π

≲ κ4|s|2
α(h−2t

)2
ℓ2n

+ h
P|ξ|≥κψ

h(t)
2
L2

x
.

In view of Proposition 3.1 and (5.4), we may choose κ = κ(ε) sufficiently large,
followed by δ = δ(ε) sufficiently small to guarantee thatP|θ|<π

2

[
eih

−2s∆dα
(
h−2t

)
− α

(
h−2t

)]2
ℓ2n

≤ ε2h
10 for all |s| ≤ δ.(5.5)

Arguing similarly, we findP|θ−π|<π
2

[
e4ih

−2s+ih−2s∆dα
(
h−2t

)
− α

(
h−2t

)]2
ℓ2n

=

∫
|θ|<π

2

⏐⏐e4ih−2s sin2( θ+π
2 ) − 1

⏐⏐2⏐⏐α̂(h−2t, θ + π
)⏐⏐2 dθ

2π

≲ κ4|s|2
α(h−2t

)2
ℓ2n

+ h
P|ξ|≥κϕ

h(t)
2
L2

x
≤ ε2h

10(5.6)
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for κ = κ(ε) sufficiently large and |s| ≤ δ = δ(ε).
It remains to estimate the contribution of the nonlinearity. To this end, let

P = P 1
100

and P̃ = P 3
4
denote the sharp Fourier cutoffs introduced in (3.5). We

will again use that P̃ [F (Pα)] = F (Pα) to estimate the contribution of F (Pα)
using the frequency-localized Strichartz estimates of Proposition 4.3, followed by
Propositions 3.1 and 4.4:∫ h−2(t+s)

h−2t

ei[h
−2(t+s)−τ ]∆dF

(
Pα(τ)

)
dτ

2
ℓ2n

≲
F (Pα)2

L
6
5
t ℓ

6
5
n ([−h−2t,h−2(t+s)]×Z)

≲ h−2|s| ∥α∥4L6
t ℓ

6
n([−h−2T,h−2T ]×Z) ∥α∥

2
L∞

t ℓ2n([−h−2T,h−2T ]×Z) ≲T h|s| ≤ ε2h
10 ,(5.7)

provided δ = δ(ε, T ) is chosen sufficiently small.
Finally we estimate the contribution of F (α)−F (Pα) using the discrete Strichartz

estimates from Proposition 4.2, followed by Propositions 4.4 and 3.2:∫ h−2(t+s)

h−2t

ei[h
−2(t+s)−τ ]∆d

(
F (α)− F (Pα)

)
dτ

2
ℓ2n

≲
F (α)− F (Pα)

2
L

9
8
t ℓ

6
5
n ([−h−2t,h−2(t+s)]×Z)

≲
(
h−2|s|

) 10
9 ∥α∥4L6

t ℓ
6
n([−h−2T,h−2T ]×Z)

(I − P )α
2
L∞

t ℓ2n([−h−2T,h−2T ]×Z)

≲T

(
h−2|s|

) 10
9
(
Nh+ h

1
2

)2 ∥α0∥6ℓ2n ≤ ε2h
10 ,(5.8)

since N ≤ h−
8
9 and δ = δ(ε, T ) is chosen sufficiently small.

Collecting (5.5) through (5.8), we conclude that for all |s| ≤ δ = δ(ε, T ),

∥ψh(t+ s)− ψh(t)∥L2
x
+ ∥ϕh(t+ s)− ϕh(t)∥L2

x
< ε,(5.9)

uniformly for t ∈ [−T, T ] (with t+ s ∈ [−T, T ]) and for 0 < h ≤ h0. This expresses
equicontinuity in the time variable and combined with (5.4) settles (5.2).

Lastly, we will demonstrate the tightness property (5.3). To this end, let χ(x)
be a smooth cutoff function satisfying

χ(x) =

{
1 : |x| ≤ 1

0 : |x| ≥ 2

from which we build a cutoff function to large n on the lattice via φR(n) := 1 −
χ(nh/R) for some R ≥ 1 to be chosen later.

We will also be localizing in frequency: We define P : ℓ2n → ℓ2n via

P̂α(θ) =
[
χ
(

θ
κh

)
+ χ

(
θ−π
κh

)]
α̂(θ) where −π

2 ≤ θ < 3π
2 and κh < π

4 .(5.10)

By Schur’s test, we obtain the commutator bound[P,φR]

ℓ2n→ℓ2n

≲ 1
κR .(5.11)

We will prove tightness of the orbit of the solution to (AL). Specifically, we will
show that for any ε > 0 there exists R ≥ 1 such that

sup
|t|≤h−2T

φRα(t)
2
ℓ2n
< εh(5.12)
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uniformly for 0 < h ≤ h0. The tightness of αn(t) transfers to ψh and ϕh as a
consequence of Lemmas 2.3 and 2.4.

By the equicontinuity in the space variable (5.4), we have(1− P )α(t)
2
ℓ2n
< ε4h uniformly for |t| ≤ h−2T and 0 < h ≤ h0,(5.13)

provided κ ≥ 1 is chosen sufficiently large depending only on ε. To maintain the
condition κh < π

4 from (5.10), we will restrict attention to 0 < h < h1 = h1(ε) and
prove (5.12) in this regime. Recall that tightness in the regime h ∈ [h1, h0] is an
immediate consequence of the compactness of the interval [h1, h0] and the continuity
of the mapping h ↦→ α with α being the solution to (AL) with initial data as in (1.3).

In view of (5.13) and the preceding discussion, (5.12) will thus follow from the
statement that for any ε > 0 there exists R ≥ 1 such that

sup
|t|≤h−2T

φRPα(t)
2
ℓ2n
< εh uniformly for 0 < h < h1.(5.14)

From (AL) we have

∂t
φRPα(t)

2
ℓ2n

= −2 Im
∑
n

φ2
R(n)Pαn(t) · P

{
(∆dα)n(t)− Fn[α(t)]

}
.(5.15)

To control the contribution of the quadratic term above we rewrite

2 Im
∑
n

φ2
R(n)Pβn(t) · (∆dPα)n(t)

= 2 Im
∑
n

φ2
R(n)Pβn(t) · Pαn+1(t)− 2 Im

∑
n

φ2
R(n)Pαn(t) · Pβn−1(t)

= 2 Im
∑
n

[
φ2
R(n)− φ2

R(n+ 1)
]
Pβn(t) · Pαn+1(t)

= Im
∑
n

[
φ2
R(n)− φ2

R(n+ 1)
]
Pβn(t) · P

[
αn+1(t)− αn−1(t)

]
+ Im

∑
n

[
2φ2

R(n)− φ2
R(n+ 1)− φ2

R(n− 1)
]
Pβn(t) · Pαn−1(t).

By Plancherel, (5.10), and Proposition 3.1,P [αn+1(t)− αn−1(t)
]

ℓ2n
≲

[χ( θ
κh

)
+ χ

(
θ−π
κh

)]
(eiθ − e−iθ)α̂(t, θ)


L2

θ

≲ κh ∥α(t)∥ℓ2n ≲ κh ∥α(0)∥ℓ2n .

Thus, using Proposition 3.1 we may estimate⏐⏐⏐2 Im∑
n

φ2
R(n)Pβn(t) · (∆dPα)n(t)

⏐⏐⏐
≲ κh

φ2
R(n)− φ2

R(n+ 1)

ℓ∞n

∥α(0)∥2ℓ2n
+
2φ2

R(n)− φ2
R(n+ 1)− φ2

R(n− 1)

ℓ∞n

∥α(0)∥2ℓ2n
≲

(
κh2

R + h2

R2

)
∥α(0)∥2ℓ2n .(5.16)

We turn now to the contribution of the nonlinearity and decompose α = Pα +
(1−P )α. The contribution of the nonlinearity containing (1−P )α can be estimated
using (5.13), as follows:⏐⏐⏐Im∑

n

φ2
R(n)Pβn(t) · P

{
(1− P )αn(t) · βn(t)

[
αn+1(t) + αn−1(t)

]}⏐⏐⏐
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≲ ∥(1− P )α(t)∥ℓ2n∥α(t)∥
3
ℓ6n

≲ ε2h
1
2 ∥α(t)∥3ℓ6n .(5.17)

Using (5.11) and Proposition 3.1, we bound the contribution of the remaining term
via⏐⏐⏐Im∑

n

φ2
R(n)Pβn(t) · P

{
Pαn(t) · βn(t)

[
αn+1(t) + αn−1(t)

]}⏐⏐⏐
≲

φRPα(t)
2
ℓ2n
∥α(t)∥2ℓ∞n +

φRPα(t)

ℓ2n

[P,φR]

ℓ2n→ℓ2n

∥α(t)∥3ℓ6n

≲
φRPα(t)

2
ℓ2n
∥α(t)∥2ℓ∞n + h

1
2

κR∥α(t)∥3ℓ6n .(5.18)

Combining (5.15) through (5.18), we find that for κh < π
4 with κ ≥ 1 large

depending only on ε,

∂t
φRPα(t)

2
ℓ2n

≲ κh2

R ∥α(0)∥2ℓ2n +
(
ε2 + 1

κR

)
h

1
2 ∥α(t)∥3ℓ6n +

φRPα(t)
2
ℓ2n
∥α(t)∥2ℓ∞n .

By Gronwall and Propositions 4.4 and 3.1, this yields

sup
|t|≤h−2T

φRPα(t)
2
ℓ2n

≲
[φRPα(0)

2
ℓ2n

+ κh2

R ∥α(0)∥2ℓ2nh
−2T +

(
ε2 + 1

κR

)
h

1
2 ∥α∥3L6

t ℓ
6
n
(h−2T )

1
2

]
× exp

{
C∥α∥2L4

t ℓ
∞
n
(h−2T )

1
2

}
≲T

φRPα(0)
2
ℓ2n

+ κT
R h+

(
ε2 + 1

κR

)
T

1
2h,

where all spacetime norms are over [−h−2T, h−2T ] × Z. The right-hand side here
can be made smaller than εh by first choosing κ large (to ensure (5.13)) and then
choosing R sufficiently large. Note that by Lemma 2.2, monotone convergence, and
the L2-boundedness of the Hardy–Littlewood maximal operator M, we have

lim sup
R→∞

h−1
φRPα(0)

2
ℓ2n

≲ lim sup
R→∞

[1− χ( x
R )][Mψ0 +Mϕ0]


L2 = 0.

This completes the proof of (5.14) and so that of (5.12).

6. Convergence of the flows

As a consequence of Theorem 5.1, every sequence hn → 0 admits a subsequence
hnj

→ 0 such that (ψhnj , ϕhnj ) converges in C([−T, T ];L2
x(R)) to some (ψ, ϕ). As

a first step toward proving Theorem 1.1, we will show that all such subsequential
limits are solutions to (1.2) with initial data (ψ0, ϕ0) and satisfy certain spacetime
bounds. For notational simplicity, we will omit the subscripts on h in what follows.

Proposition 6.1. Let α be the solution to (AL) with initial data (1.3) and h
satisfying (1.7) and let ψh and ϕh be as in (1.5). Let ψ, ϕ ∈ C([−T, T ];L2

x(R))
so that

ψh → ψ and ϕh → ϕ in C([−T, T ];L2
x(R))(6.1)

along some sequence of h → 0. Then ψ, ϕ ∈ L6
t,x([−T, T ]× R) and for any |t| ≤ T

we have

ψ(t) = eit∆ψ0 ∓ 2i

∫ t

0

ei(t−s)∆ |ψ(s)|2 ψ(s) ds,(6.2)

ϕ(t) = e−it∆ϕ0 ± 2i

∫ t

0

e−i(t−s)∆ |ϕ(s)|2 ϕ(s) ds.(6.3)
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Proof. As ψh and ϕh converge in C([−T, T ];L2
x(R)), they converge distributionally

on [−T, T ];×R. Consequently, by Proposition 4.4, ψ and ϕ satisfy

∥ψ∥L6
t,x([−T,T ]×R) + ∥ϕ∥L6

t,x([−T,T ]×R) ≲T 1.(6.4)

To prove (6.2) and (6.3), our starting point is the Duhamel formula satisfied by
the solution α of (AL): for any |t| ≤ T ,

αn

(
h−2t

)
= eih

−2t∆dαn(0)− i
h2

∫ t

0

eih
−2(t−s)∆dFn

(
α(h−2s)

)
ds.(6.5)

We reconstitute ψh(t, x) and ϕh(t, x) from the left-hand side above using (1.6).
Employing the notation introduced in (2.4) we may write

ψh(t) = R
[
αn(h

−2t)
]

and ϕh(t) = e4ih
−2tR[(−1)nαn(h

−2t)].

Given the hypothesis (6.1), it thus suffices to prove that

lim
h→0

R
[
RHS(6.5)

]
= RHS(6.2) in C([−T, T ];L2

x(R))(6.6)

and

lim
h→0

e4ih
−2tR

[
(−1)nRHS(6.5)

]
= RHS(6.3) in C([−T, T ];L2

x(R)).(6.7)

We first address the convergence of the linear terms on the left-hand sides of
(6.6) and (6.7).

Lemma 6.2. Under the hypotheses of Proposition 6.1, we have

lim
h→0

R[
eih

−2t∆dαn(0)
]
− eit∆ψ0


L∞

t L2
x([−T,T ]×R)

= 0,

lim
h→0

e4ih−2tR
[
(−1)neih

−2t∆dαn(0)
]
− e−it∆ϕ0


L∞

t L2
x([−T,T ]×R)

= 0.

Proof. Performing the change of variables θ = hξ and using Plancherel and (2.1),
we estimateR[

eih
−2t∆dαn(0)

]
− eit∆ψ0


L∞

t L2
x([−T,T ]×R)

≤
∫ [

exp
{
ixξ − i

4 sin2(hξ
2 )

h2 t
}
− exp

{
ixξ − it|ξ|2

}]
P̂≤Nψ0(ξ)

dξ
2π


L∞

t L2
x([−T,T ]×R)

+
eit∆ψ0 − eit∆P≤Nψ0


L∞

t L2
x([−T,T ]×R)

≲
[exp{it|ξ|2 − i

4 sin2(hξ
2 )

h2 t
}
− 1

]
P̂≤Nψ0(ξ)


L∞

t L2
ξ([−T,T ]×R)

+
P̂≥Nψ0


L2

ξ

.

The first claim now follows from the dominated convergence theorem, recalling that
N = h−γ . The second claim is proved analogously. □

We now turn to the convergence of the nonlinear terms on the left-hand sides of
(6.6) and (6.7). We will only present the details for (6.6); the treatment of (6.7) is
analogous. To complete the proof of (6.2), we must show that

lim
h→0

R
[

i
h2

∫ t

0

eih
−2(t−s)∆dFn

(
α(h−2s)

)
ds
]
= ±2i

∫ t

0

ei(t−s)∆ |ψ(s)|2 ψ(s) ds(6.8)

in C([−T, T ];L2
x(R)). Recall that by Lemma 2.3, we have ∥R∥ℓ2n(Z)→L2

x(R) ≲ h−
1
2 .
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In view of (1.5),

αn(h
−2t) = h

[
ψh(t, nh) + (−1)ne−4ih−2tϕh(t, nh)

]
.(6.9)

Employing the sharp Fourier cutoff Ph to |ξ| < h−
1
2 , we define

ψ̃h = Phψ
h and ϕ̃h = Phϕ

h

and then

α̃n(h
−2t) = h

[
ψ̃h(t, nh) + (−1)ne−4ih−2tϕ̃h(t, nh)

]
.(6.10)

We will show that as h→ 0, the nonlinearity in (AL) can be replaced by an on-site
nonlinearity based solely on this more narrowly Fourier localized sequence. One
reason for introducing this additional localization is to ensure that Lemma 2.2 may
be applied to such nonlinear functions.

Lemma 6.3. Adopting the notation

F̃n(t) = ±2h
⏐⏐α̃n(h

−2t)
⏐⏐2[ψ̃h(t, nh)− (−1)ne−4ih−2tϕ̃h(t, nh)

]
(6.11)

(notice the sign flip relative to (6.10)), we haveF (α(h−2t)
)
− F̃ (t)


L1

t ℓ
2
n([−T,T ]×Z)

= o
(
h

5
2

)
as h→ 0.

In particular,

lim
h→0

R[
i
h2

∫ t

0

eih
−2(t−s)∆d

[
F
(
α(h−2s)

)
− F̃ (s)

]
ds
]

L∞
t L2

x([−T,T ]×R)
= 0.

Proof. In view of (6.9), Lemma 2.2, and Theorem 5.1 (specifically (5.4)), we may
estimateαn(h

−2t)− α̃n(h
−2t)


L∞

t ℓ2n([−T,T ]×Z)

≤ h
(1− Ph)ψ

h(t, nh)

L∞

t ℓ2n([−T,T ]×Z) + h
(1− Ph)ϕ

h(t, nh)

L∞

t ℓ2n([−T,T ]×Z)

≲ h
1
2

(1− Ph)ψ
h(t)


L∞

t L2
x([−T,T ]×R) + h

1
2

(1− Ph)ϕ
h(t)


L∞

t L2
x([−T,T ]×R)

= o
(
h

1
2

)
as h→ 0.

Consequently, by Proposition 4.4, we getF (α(h−2t)
)
− F

(
α̃(h−2t)

)
L1

t ℓ
2
n([−T,T ]×Z)

≲
α(h−2t)

2
L4

t ℓ
∞
n ([−T,T ]×Z)

αn(h
−2t)− α̃n(h

−2t)

L∞

t ℓ2n([−T,T ]×Z)

= o
(
h

5
2

)
as h→ 0.(6.12)

To continue, we use Lemma 2.2 and Theorem 5.1 to estimate[α̃n−1(h
−2t) + α̃n+1(h

−2t)]− 2h
[
ψ̃h(t, nh)− (−1)ne−4ih−2tϕ̃h(t, nh)

]
L∞

t ℓ2n

≤ 2h
ψ̃h(t, (n+ 1)h)− ψ̃h(t, nh)


L∞

t ℓ2n
+ 2h

ϕ̃h(t, (n+ 1)h)− ϕ̃h(t, nh)

L∞

t ℓ2n

≤ 2h
ψh(t, (n+ 1)h)− ψh(t, nh)


L∞

t ℓ2n
+ 2h

ϕh(t, (n+ 1)h)− ϕh(t, nh)

L∞

t ℓ2n

≲ h
1
2

ψh(t, ·+ h)− ψh(t)

L∞

t L2
x
+ h

1
2

ϕh(t, ·+ h)− ϕh(t)

L∞

t L2
x
= o

(
h

1
2

)
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as h→ 0. Consequently, using Proposition 4.4 as in (6.12), we obtainF (α̃(h−2t)
)
− F̃ (t)


L1

t ℓ
2
n([−T,T ]×Z)

= o
(
h

5
2

)
as h→ 0.(6.13)

Combining (6.12) and (6.13) settles the lemma. □

Expanding out the definition, we have

F̃n(t) = 2h3
⏐⏐ψ̃h(t, nh)

⏐⏐2ψ̃h(t, nh)− 2h3e−8ih−2t(ϕ̃h(t, nh))2ψ̃h(t, nh)

− 2(−1)nh3e−4ih−2t
[⏐⏐ϕ̃h(t, nh)⏐⏐2ϕ̃h(t, nh)− e8ih

−2t(ψ̃h(t, nh))2ϕ̃h(t, nh)
]
.

By looking at the Fourier supports, we see that only the top row of terms contributes
to the left-hand side of (6.6) and the second row contributes only to that of (6.7).

Our next result shows how the temporal non-resonance of the unexpected terms

in the expansion for F̃n (namely those involving both ψ̃h and ϕ̃h) cause them to
drop out in the limit h→ 0.

Lemma 6.4. Let En denote a cubic polynomial in ψ̃h(nh), ϕ̃h(nh), and their com-
plex conjugates and let m be a non-zero integer. Then∫ t

0

eih
−2(t−s)∆deimh−2sEn(s) ds


L∞

t ℓ2n([−T,T ]×Z)
= o

(
h−

1
2

)
as h→ 0.

In particular,

lim
h→0

R[
i
h2

∫ t

0

eih
−2(t−s)∆deimh−2sh3En(s) ds

]
L∞

t L2
x([−T,T ]×R)

= 0.

Proof. We decompose∫ t

0

eih
−2(t−s)∆deimh−2sEn(s) ds

= 1
2

∫ t

0

eih
−2(t−s)∆deimh−2sEn(s) ds− 1

2

∫ t

0

eih
−2(t−s)∆deimh−2(s+πh2

m )En(s) ds

= 1
2

∫ t

0

eimh−2s+ih−2(t−s)∆d
[
1− ei

π
m∆d

]
En(s) ds

+ 1
2

∫ t

0

eih
−2(t+πh2

m −s)∆deimh−2s
[
En(s)− En

(
s− πh2

m

)]
ds

+ 1
2

∫ πh2

m

0

eih
−2(t+πh2

m −s)∆deimh−2sEn
(
s− πh2

m

)
ds

− 1
2

∫ t+πh2

m

t

eih
−2(t+πh2

m −s)∆deimh−2sEn
(
s− πh2

m

)
ds.

Using the discrete Strichartz inequality Proposition 4.2 followed by Lemma 2.2
and Proposition 4.4, we estimate the contribution of the last two terms in our
decomposition by(

πh2

m

) 1
2 ∥En∥L2

t ℓ
2
n([−T,T ]×Z) ≲ h

[
∥ψ̃h(nh)∥3L6

t ℓ
6
n([−T,T ]×Z) + ∥ϕ̃h(nh)∥3L6

t ℓ
6
n([−T,T ]×Z)

]
≲ h

1
2

[
∥ψ̃h∥3L6

t,x([−T,T ]×R) + ∥ϕ̃h∥3L6
t,x([−T,T ]×R)

]
≲ h

1
2 ,

which is acceptable.
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In view of the Fourier localization imposed on the functions ψ̃h and ϕ̃h, we

have supp(Ên) ⊂ [−3h
1
2 , 3h

1
2 ]. Thus, estimating as above, we may bound the

contribution of the first term in our decomposition by∫ t

0

eimh−2s+ih−2(t−s)∆d
[
1− ei

π
m∆d

]
En(s) ds


L∞

t ℓ2n([−T,T ]×Z)

≲
[1− ei

π
m∆d

]
En


L1

t ℓ
2
n([−T,T ]×Z) ≲ h∥En


L1

t ℓ
2
n([−T,T ]×Z) ≲ h

1
2 ,

which is acceptable.
This leaves us to estimate the second term in our decomposition, which represents

the central question at hand. The key idea here is to exploit the equicontinuity in

time of the functions ψ̃h and ϕ̃h proved in Theorem 5.1. As supp(Ên) ⊂ [−3h
1
2 , 3h

1
2 ],

we may employ the frequency-localized Strichartz estimates from Proposition 4.3
and scaling to estimate∫ t

0

eih
−2(t+πh2

m −s)∆deimh−2s
[
En(s)− En

(
s− πh2

m

)]
ds

L∞

t ℓ2n

≲ h
1
3

En(s)− En
(
s− πh2

m

)
L

6
5
t ℓ

6
5
n ([−T,T ]×Z)

≲ T
1
2h−

1
2

[
∥ψh∥2L6

t,x([−T,T ]×R) + ∥ϕh∥2L6
t,x([−T,T ]×R)

]
×
[ψh − ψh

(
· − πh2

m

)
L∞

t L2
x([−T,T ]×R) +

ϕh − ϕh
(
· − πh2

m

)
L∞

t L2
x([−T,T ]×R)

]
= o

(
h−

1
2

)
as h→ 0

where we used Lemma 2.2, Proposition 4.4, and Theorem 5.1 in the last two lines.
This completes the proof of the lemma. □

We finally consider the main contribution to the left-hand side of (6.8).

Lemma 6.5. We have

lim
h→0

R
[

1
h2

∫ t

0

eih
−2(t−s)∆d2h3

(
|ψ̃h|2ψ̃h

)
(s, nh) ds

]
= 2

∫ t

0

ei(t−s)∆ |ψ(s)|2 ψ(s) ds

in C([−T, T ];L2
x(R)).

Proof. Combining hypothesis (6.1) and Lemmas 6.2 through 6.4, we know that
the term on the left-hand side above converges in C([−T, T ];L2

x(R)). Thus, it
suffices to identify its limit via duality. Let f ∈ S(R) be L2-normalized and satisfy

f̂ ∈ C∞
c (R). Note that for h sufficiently small we have supp f̂ ⊆ {ξ : |hξ| < π

2 }.
Thus, we may use Plancherel to compute⟨
R
[

1
h2

∫ t

0

eih
−2(t−s)∆d2h3

(
|ψ̃h|2ψ̃h

)
(s, nh) ds

]
, f

⟩
= 2h

∫ t

0

⟨ ˆ|ψ̃h|2ψ̃h(s, hξ), exp
{
i
4 sin2(hξ

2 )

h2 (t− s)
}
f̂(ξ)

⟩
ds

= 2h

∫ t

0

∑
n

(
|ψ̃h|2ψ̃h

)
(s, nh)

[
e−i(t−s)∆f

]
(nh) ds

+ 2h

∫ t

0

∑
n

(
|ψ̃h|2ψ̃h

)
(s, nh)

∫
einhξ

[
ei

4 sin2(hξ
2 )

h2 (t−s) − ei|ξ|
2(t−s)

]
f̂(ξ) dξ ds.
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Using Plancherel, Lemma 2.2, and Proposition 4.4 together with the dominated
convergence theorem, we may bound the second summand above by

h

∫ t

0

(|ψ̃h|2ψ̃h
)
(s, nh)


ℓ2n
h−

1
2

[ei[ξ2− 4 sin2(hξ
2 )

h2 ](t−s) − 1
]
f̂

L2

ξ

ds

≲ T
1
2 ∥ψ̃h∥3L6

t,x([−T,T ]×R) o(1) = o(1) as h→ 0.

Noting that the Fourier support of |ψ̃h|2ψ̃h is contained in [−3h−
1
2 , 3h−

1
2 ] and

invoking Lemma 2.1, we see that the first summand equals

2

∫ t

0

∫ (
|ψ̃h|2ψ̃h

)
(s, x)

[
e−i(t−s)∆f

]
(x) dx ds = 2

∫ t

0

⟨
ei(t−s)∆

(
|ψ̃h|2ψ̃h

)
(s), f

⟩
ds.

That this converges to the desired limit as h→ 0 follows readily from the Strichartz
inequality Proposition 4.1, hypothesis (6.1), Theorem 5.1, Proposition 4.4 and (6.4):∫ t

0

⟨
ei(t−s)∆

[
|ψ̃h|2ψ̃h − |ψ|2ψ

]
(s), f

⟩
ds

L∞

t ([−T,T ])

≲ T
1
2 ∥ψ̃h − ψ∥L∞

t L2
x

[
∥ψ̃h∥2L6

t,x
+ ∥ψ∥2L6

t,x

]
∥f∥L2

x

≲T ∥ψh − ψ∥L∞
t L2

x
+ ∥P

|ξ|≥h− 1
2
ψh∥L∞

t L2
x
= o(1) as h→ 0,

where all spacetime norms are taken over [−T, T ]× R. □

The proof of Proposition 6.1 is now complete. Indeed, Lemmas 6.2 though 6.5
show that ψ satisfies (6.2). The proof that ϕ satisfies (6.3) follows from parallel
arguments. □

We are finally ready to prove our main result:

Proof of Theorem 1.1. As noted at the beginning of this section, Theorem 5.1 guar-
antees that every sequence h → 0 admits a subsequence so that both ψh and ϕh

converge in C([−T, T ];L2
x(R)). By Proposition 6.1, the limiting functions lie in L6

t,x

and solve the integral equations (6.2) and (6.3).
These integral equations admit only one solution in CtL

2
x∩L6

t,x as is easily shown
by contraction mapping using the estimates recalled in Proposition 4.1. Originating
in [20], this is now the textbook approach to the construction of solutions to (1.2).

As all subsequential limits agree, it follows that the original sequences ψh and
ϕh converge as h → 0 without passing to subsequences at all. Moreover, as noted
above, the resulting limits are the unique solutions to the evolutions (1.2) with
initial data ψ0, ϕ0. □
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