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ABSTRACT. We show that solutions to the Ablowitz—Ladik system converge
to solutions of the cubic nonlinear Schrédinger equation for merely L? initial
data. Furthermore, we consider initial data for this lattice model that ex-
cites Fourier modes near both critical points of the discrete dispersion relation
and demonstrate convergence to a decoupled system of nonlinear Schrédinger
equations.

1. INTRODUCTION

The Ablowitz—Ladik system, introduced in [I], describes the evolution of a field
«a : Z — C. Tt comes in two variants, focusing and defocusing. Both may be written
as

(AL) i, = _(O‘n—l - 20, + O‘n—&-l) + @B (an—l + O4n+1)

by adopting the expedient that 3, := @, in the defocusing case and f,, := —a,, in
the focusing case. (This convention will remain in force throughout the paper.)

Ablowitz and Ladik introduced this model as a discrete form of the one-dimensional
cubic Schrodinger equation,

(NLS) 10y = —Avp £ 2[¢|*),

that preserves its complete integrability.

Given this connection, it is quite natural to imagine that solutions of
provide an accurate means of simulating solutions of , at least for slowly-
varying (high-regularity) initial data. Indeed, this intuition is backed up by a
number of studies that we will discuss below. The question at the heart of this
paper, however, is this: to what extent do solutions to and parallel one
another for low-regularity initial data?

We will affirm the intuition laid out above still more strongly than previous
authors by showing convergence for merely L? initial data. This constitutes a
significant expansion of the class of initial data relative to previous investigations
such as [8}[14] which require the initial data to lie in H'. We achieve this through the
introduction of a new method that synthesizes compactness and Strichartz-based
techniques.

As a counter-point to our convergence result, we will also demonstrate a certain
naiveté in the logic enunciated earlier by studying solutions to with initial
data

(1.1) an (0) = hipo(hn) + (=1)"heo(hn),

which combines slowly varying and rapidly oscillating initial data. Here, h is the

length scale associated to the continuum approximation; we are studying the h — 0

limit. Note the prefactor h appearing in (|1.1)); this ensures the balance between
1
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the dispersion and nonlinear effects. It is solely in this regime that one expects a
nonlinear dispersive limit as A — 0. In this regime, the natural time scale is also
stretched — solutions of over the time interval [T, T] correspond to those
of over the longer period [—h 2T, h=2T].

We will show that initial data of the form leads to solutions to a system of
nonlinear Schrédinger equations:

(1.2) 0 =AY 2|07 and  —idp = —Ad+2|¢|° ¢,

in which — and this was a surprise to us — the two frequency components evolve
independently! As we will see, this absence of interactions is only observed asymp-
totically and will be traced to a certain nonresonance in spacetime. In our analysis
of initial data of the form , we will allow data ¢, ¢y that is merely L2, thereby
unifying the two main themes of this paper.

An important phenomenological parallel to our discovery of in the contin-
uum limit of has appeared previously in the link between KdV and the Toda
lattice. In [3, 4] it was demonstrated that the Toda lattice must be modeled by
a pair of KAV equations. We also direct the reader to [18] which considers more
general (non-integrable) lattice models.

Complete integrability of the Toda lattice is at the very heart of the methods
of [3, ], which focus on the description of action-angle variables. This is very dif-
ferent from what we shall be doing; indeed, much of our analysis is based directly
on Strichartz estimates. The complete integrability of does play a small role
in our arguments, namely, in demonstrating equicontinuity. Nevertheless, it is rea-
sonable to imagine that our approach could be expanded to cover non-integrable
lattice approximations to , obtaining equicontinuity via almost conservation
laws and Strichartz estimates. We do not pursue this here because we are specifi-
cally interested in the Ablowitz—Ladik system due to its link to spin chain dynamics.

This link was first discovered in [I1] and is a discrete analogue of the famous
Hasimoto transform linking the continuum Heisenberg model to . Indeed,
our desire to understand the continuum limit of low-regularity solutions to (AL]
is fueled by the long-term goal, elaborated in [2], of constructing dynamics for the
continuum Heisenberg model in its Gibbs state.

Via the discrete Hasimoto transform, the analysis of the spin model in the Gibbs
state is converted to the study of with «,(t) being certain specific (non-
Gaussian) i.i.d. random variables. Such initial data excites Fourier modes through-
out the circle to an equal degree and consequently both terms in may be
considered equally significant. In [2], the first and third author together with An-
gelopoulos constructed global dynamics to for this type of data, and proved
invariance of this white noise measure under the flow. Moreover, the discrete
spin chain model was shown to admit global solutions in the Gibbs state and these
were shown to preserve the Gibbs measure.

In order to rigorously formulate our results, we need to explain how we pass
between functions on the line R and the lattice Z. Clearly, the sampling formula
does not make sense in the L? setting we will be studying; indeed, point
evaluation is not continuous on H*(R) unless s > % The remedy is to perform a
mild smoothing of the continuum initial data before sampling:

(1.3) an(0) = h[P<nto](hn) + (=1)"h[P<n o] (hn).
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Here P<y denotes the sharp projection to frequencies || < N. For concreteness,
we will relate h and N by a power law:

(1.4) N=h"" with 0<y< .

As h — 0,s0 N — oo, thus revealing the full irregularity of the initial data; cf. .

The choice of sharp cutoffs is made for no other reason than expository sim-
plicity. Such multipliers are much less local and are unbounded on ¢*°. Our use
of such cutoffs is indicative of the robustness of our arguments and also saves the
reader from considering a multitude of bump functions concomitant with traditional
Littlewood—Paley theory.

While a signal-processing philosophy would suggest choosing N as the Nyquist
frequency (and no higher), dynamical considerations make N ~ h~1! ill-suited to
the problem at hand. The principal obstruction appears at the linear level: The
dispersion relation for the discrete Schrédinger equation is w = 2 — 2 cos(#). This
is only approximately quadratic near # = 0 and § = 7 (modulo 27), which are the
only regimes where we may expect Schrodinger—like behavior. Near the inflection
points 6 = +7/2, the discrete model has very weak dispersion. This in turn leads
to a wholly different mKdV-like dynamics with a different characteristic time scale.
Initial data with significant excitation near the inflection points will be treated in
future work.

As the dynamics are nonlinear, the Fourier support of a solution is not
preserved in time; one fully expects excitations to spread from the initial data to
neighborhoods of the inflection points. Nevertheless, we are able to control the
extent of such transfer and so demonstrate that the choice suffices to suppress
these unwanted mKdV dynamics; see Proposition [3.2

Based on our analysis, which we believe gives an accurate estimate of the transfer
of /2 norm to neighborhoods of the inflection points, we would argue that should
one be employing as a numerical scheme for the simulation of NLS (an idea
advocated for in [7], for example), then one should first band-limit the initial data
in the manner indicated by so as to avoid spurious results generated by the
deficiencies of the discrete dispersion relation.

For readers with a particular interest in numerical schemes for NLS (rather
than purely (AL)), we note that the inflection-point issue can also be avoided by
combining Fourier truncation of the initial data in concert with a different discrete
model. Two such approaches are discussed in [9, [10]: One may perform Fourier
truncations on the nonlinearity (which preserves the Hamiltonian structure) or one
may introduce a mild form of viscosity at the inflection points to suppress such
unwanted excitations.

To compare the solution of with initial data to that of , we
must (at each moment of time) generate two functions, ¥"(t,2) and ¢"(t,x), on
the real line from the single lattice function a,,(h~2t). To do this, we simply split
the Fourier transform & into two pieces using a sharp cutoff to either semicircle:

) Wh(t,€) = Ah >t hE)X (5.5 (hE),
' S (1,€) = UG he + m)x g,z (RE).
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FIGURE 1. A schematic representation of Theorem [I.1

or equivalently,

(L, x) = h—l/ e’ a(h™t,0) 92,
(1.6) 1o1<3
oM (t,x) = bl / RO a(h=,0) 42
[0—7|<T

One small quibble remains before we may present our main result: Do and
actually admit global solutions? In the case of , the answer is unequiv-
ocally yes: Tsutsumi [20] showed that these equations are globally well-posed on
L?(R). Local well-posedness is shown by contraction mapping in Strichartz spaces;
this is then rendered global using the conservation of the L? norm.

Regarding (AL), we see that local well-posedness in ¢(Z) is trivial: RHS(AL) is
locally Lipschitz! In Section [3] we will show how conservation laws guarantee that
such solutions exist globally, at least for

(L.7) h < ho = min{ 1, gk [I[goll3= + léol3:]) " }-

As we wish to send h — 0 this hypothesis is of no real consequence; it exists solely
to address a singularity in the natural conservation laws (and also the symplectic
structure) in the defocusing case. Indeed, in the defocusing case, it is natural to
regard the phase space as comprised only of maps a : Z — D.

The main result of this paper is the following, which we present schematically in
Figure [T}

Theorem 1.1. Fiz 1y, ¢o € L*(R) and let ¥, ¢ € (C,LEN Lf,loch)(R x R) denote
the unique global solutions of with this initial data.

Given h > 0 satisfying (L.7), let a,(t) be the global solution to with initial
data specified by and and let ", ¢" : R x R — C be the corresponding
spacetime representatives of this solution built via . Then as h — 0,

(1.8) Vit ) 2 Yt e) and "t w) = o[t 7)
in CtL2([-T,T] x R) for any T > 0.

1.1. Outline of the proof. Broadly speaking, our argument is one of compact-
ness/uniqueness: we show that for every sequence of parameters h — 0 there is a
convergent subsequence of discrete solutions (transferred to the line via (1.6)). We
then show that all such subsequential limits are identical because they obey the
same integral equations and those integral equations have unique solutions.
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The integral equations we refer to here are nothing more than the Duhamel
formulas for solutions of ; see and . Naturally, these equations
contain the cubic nonlinearity. This is a problem for initial data that is merely in L2
— cubing an L? function need not yield a distribution. If we cannot even determine
whether or not a Cy L2 function is a solution of , uniqueness becomes hopeless!

The remedy is provided by Strichartz estimates. As shown in [20], solutions with
L?(R) initial data can be constructed via contraction mapping in L¢ , ([T, T] x R);
these solutions are unique in this class and the cubic nonlinearity makes sense
as a spacetime distribution. To exploit this form of uniqueness, we must prove
L¢ ([T, T] x R) bounds for the functions 9", ¢".

As mentioned earlier and thoroughly discussed in [§], the presence of inflection
points in the discrete dispersion relation presents a major obstacle to controlling
the discrete solutions in Strichartz spaces. Our new remedy to this problem is to
begin our analysis by controlling the dynamical redistribution of 2 norm among
frequencies; see Proposition In Proposition (4.4} we show that the frequency
control we achieve is strong enough to recover from the inevitable losses in the
discrete Strichartz estimates originating from the inflection points.

Let us turn now to the question of compactness, which is addressed in Section [5}
see Theorem [5.1] As we review at the beginning of that section, precompactness
rests on three pillars: boundedness, equicontinuity, and tightness. Boundedness is
deduced easily from the conservation laws of 7 specifically, from the analogue
of L? conservation.

There are actually two equicontinuity requirements because we must allow trans-
lations both in space and in time. Equicontinuity in space can also be formulated
as tightness of the Fourier transform; see . In this guise, it is easier to see that
it is amenable to attack via conservation laws and indeed, this is how we prove it.

Both equicontinuity in time and tightness rely on the high-frequency control pro-
vided by equicontinuity in space. Even under the linear flow, high-frequency wave
packets travel very fast, which is antithetical to both tightness and equicontinuity
in time. Of the two, tightness is the more delicate to prove because the natural
microscopic conservation law does not interact well with frequency cutoffs. This is
a peculiarity of not present in or other discrete analogues.

Section [f] is primarily devoted to showing that any subsequential limits of dis-
crete solutions actually solve the Duhamel integral equation. This relies on all of
the preceding. Strichartz control is essential to overcome the cubic power in the
nonlinearity, for example, while equicontinuity in space is needed to replace the
nonlinearity in , which involves values at adjacent lattice points, with a purely
on-site nonlinearity. Perhaps the most surprising element of this analysis is the
fact that the two frequency components " and ¢" of the solution do not interact.
The explanation for this has both algebraic and analytic components. The fact
that the nonlinearity involves adjacent sites produces a key sign change in
which cancels the naive interactions |¢)|?¢ and |¢|?1). However, two prima
face significant interactions remain. We prove that these drop out of the h — 0
limit due to a nonresonance phenomenon — they oscillate in time at a frequency
far removed from that of the linear solutions; see Lemma

At the end of Section [6] we close the paper with a quick review of how these
results complete the proof of Theorem (1.1
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2. PRELIMINARIES

Throughout this paper, C' will denote a constant that does not depend on the
initial data or on h, and which may vary from one line to another. We write A < B
or B 2 A whenever A < CB for some constant C' > 0. We write A ~ B whenever
A< Band B <A

We use L{L" to denote the spacetime norm

Pz = ([ ([ 1# a1 an)™ a)”"

with the usual modifications when ¢ or r is infinity, or when the domain R x R is
replaced by some smaller spacetime region. When ¢ = r we abbreviate L{L" by
L{ .. The discrete version of the spacetime norm L{L!(R x R) is L{{;,(R x Z).

The Hilbert-Schmidt norm of a bounded linear operator Q : ¢2(Z) — (2(Z) is
the ¢2 norm of its matrix entries:

1212, == 3" Q.
n,meZ

By the Holder inequality, if Q1,Qs, -+, Q,, with m > 2 are Hilbert—Schmidt oper-
ators, then their product is trace class and

{0 Q- } < T 1205, -
i=1
Our convention for the Fourier transform on the line will be

f(f) = /Rf(z)efixf dx sothat f(z) = /R]?(E)Bizﬁ %7

while in the discrete case we will use

f(@) = Z f(n)e™™  so that f(n) = " f(a)eine %.

neZ
These definitions of the Fourier transform yield the Plancherel identities

T

T ? T = f 2£ 11 n 2= f 2i9.
[l ae= [P & aa Sirok= [ Ifo) &

neZ -
With these conventions, the Poisson summation formula takes the form
> nf(nh)e ™ = 3" f(HEEm) forany  f € .S(R).
nez meZ

Therefore, if supp(f) C [—%,%] and |0] < 7, then

th(nh)e*ine = f(%) .

nez
Consequently, for the initial data (1.3)), we have
(2.1) 6(0,0) = 3 a(0,m)e™"" = Pexdo (7) + Pendo (*57)

ne”Z
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for € [-Z,3%] and 2Nh < 7. In particular, recalling that N = h~7, we have
(2.2)  Jim A7 a(0)]7 = Tim [[P<xtolzz + [|P<ndollzz = l[vollzz + IIgollZ-.
—0 h—0

Lemma 2.1. If f,g € L?(R) satisfy supp(f) C [f%, %] and supp(g) C [f%, %],

then
/f = Z f(nh)g nh

Proof. Expanding fand g with respect to the orthonormal basis {h%e_i"h5 tn e

Z} of L*([- %, %]; %), we obtain

/ fa)g@de = [ Fe)500) % - Z / haemEf(E) 52 / heinhgi) 52
=hanh ) g(nh). O

It is not difficult to upgrade the previous argument to show that f — VAf (nh) is
actually a unitary map — a result known as Shannon’s sampling theorem. For what
follows, we will also need to understand the L? — (P properties of this mapping
(on band limited functions). This was addressed already by Plancherel and Polya
n [15]:

Lemma 2.2. Fiz 1 < p < oo and let f R — C be a Schwartz function with
supp(f) C [—%, %] Then

(2.3) B IFh)pP = [ Ifa) do.

neE”Z

It is well-known that operators defined by sharp (as opposed to smooth) Fourier
cutoffs are LP-bounded for 1 < p < oo; indeed, this follows immediately from the
well-known LP-boundedness of the Hilbert transform,

ﬁ?({) = —isign(¢)f(¢) or equivalently, [Hf](z)=P.V. xf(—ng d?,

which was proved by M. Riesz [16]. In Section 23 of this very same paper, Riesz
considered the discrete Hilbert transform and showed that it is /P-bounded for all
1 < p < oo. It follows that for any arc [a,b] on the circle, the mapping a(f) —
Xa,p) (0)(0) is bounded on (P(Z).

Our next two results concern the linear operator arising in , which transfers
solutions of to functions on R. Specifically, we mean the mapping

s

(2.4) [Re|(z) := h~? /_ ’ —PV. Z sin(gyle = nh)

J:—nh

jus
2

which we will show maps ¢2 to L2. Note that can be rewritten as
9" (t) = Rlon(h%1)] and 9"(t) = e4ih*2t7e[<—1>"an<h-2t>].
Lemma 2.3. The operator R is a bounded operator from (2 (Z) to L2(R) with norm

IRlez 222 @) S h™ 3,
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Proof. The result is an immediate consequence of Lemma [2.1] Indeed,
1 _1 _1
IRellzz = B IRAGMe = b H (@25 < b H s 0

Lemma 2.4. Let ¢ € £2 be a sequence supported in the interval [-h~ L, h=1L].
Then for any L' > 0 we have

(2.5) / dr < Cn
RGN S el

Proof. The result follows immediately from two simple observations:

2sin 1
/ = ’ dx and lcfly Sh72L2cllez. O
|z—nh|>L’ ' n

x —nh S L
As a completely integrable system, (AL) enjoys infinitely many conservation
laws. Of these, we mention just three:

==Y n(1-anf),

nez

H(a) = - Z Byl + ng1Bn +21n (1 - Oénﬂn)a
neZ

— 22111 (1 — Oznﬁn) + 2Re |:Oén+25n - %ai 2_1 - an—i—lanﬂnﬂn—l .

3. CONSERVATION LAWS

Note that H also serves as the Hamiltonian for (AL|) with respect to the Poisson

structure
(PG} =13 (1—anBa) (2295 - 9595 ).
nez

Proposition 3.1. Under the assumption (1.7)), the evolution (AL) with initial data
(1.3) has a global solution in Cyl2%. Moreover,

(3.1) [M(a(®))] = (@)l S klllwollZ: + I@oll72]  uniformly for t € R.

Proof. Local well-posedness in ¢? is guaranteed by Picard’s theorem. Under the
assumption , the quantity M («(t)) is initially well-defined; moreover, it is
conserved by these local solutions. We will show that such solutions can be extended
globally in time by demonstrating the equivalence stated in . The inequality
in then follows from Lemma

From the power series expansion of In, we have

Zu\a )iz

(3:2) [M(a(®)] = la(t)7;

On any time interval where
2
(3.3) la(®)]2 < &,
the series on the right-hand side of (3.2]) converges and yields

[M(a(t)] - la(®)]: | <

2
= 20 Ha(t)”@b
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and consequently,
2
(3.4) 3| M(a(t)] < lla(t)llp < 2[M(a(t))].
By Lemma [2.2] (L.7) guarantees

leollZz < 15

100°

As trajectories are £2-continuous in time, (3.4) and the conservation of mass show

that (3.3)), and so also (3.4)), hold for all time. O

It is elementary to verify that the solutions constructed in Proposition [3.1] also
conserve H and Hs, which are readily seen to be continuous functionals on ¢2. Our
next result demonstrates suppression of the influence of the inflection points +7%
on the solution to for all times.

Proposition 3.2. Let a be the solution to (AL|) with initial data (1.3) and h
satisfying (1.7). For 0 < 0 < 1, let Ps be the sharp Fourier cutoff defined via

(35)  PBsf(0) = xg,(0)f(0) with Gs = {0 € R/27Z : sin?(0) < 6°}.
Then
(3.6) sup |[1 = Pala()|,z <57 (bN +h2) [la(O)]z -

Proof. A straightforward computation reveals that the quadratic part of the con-
served quantity Hs(«) is given by
(3.7) HE (1)) = = / 4sin?(0)a(t, 0)| &,

while the higher order terms can be estimated using Proposition by
2
| (a(t) = HE (a®)| S la@liE + Y @I S la@ll S Alla(0)Z-
£>2

Using the conservation of Hy and recalling (2.1)), we therefore deduce that

s

| asi)iae.of £ 5 [ asut©)[@0.0)F & + hla)

S [(hN)? + h][|a (0|7 -
This completes the proof of the proposition. O

A very similar argument using only the Hamiltonian H (rather than Hs) may
be employed in the case that ¢9 = 0. In contrast to the symbol of the quadratic
part of Hy given in (3.7), the symbol of H? is 45in*(A/2) and so vanishes only at
6 =0 (mod 2m).

A convenient way of understanding the whole family of conservation laws is
through their generating function, which we will discuss next, following the para-
digm set forth in [6].

For z € C with |z| > 1, we define

(3.8) Az o) = Z %tr{(/\r)[}
=1
where

Az;a) == (S — 27171 [(z;a) :=pB(z—8)7 1,
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and S denotes the shift operator on £2(Z) given by (S[f]) = fai1.

In view of these definitions of A and I', we see that has the form of a power
series in o and &. The convergence of this series will be addressed in Proposition|3.3]
In understanding what the conservation of A expresses about solutions to 7 it
is useful to compute the quadratic term A2 exactly:

T la@)  do
L 22e10 —1 27"

Al (z ) = tr{AT'} = :I:/

Although this quantity is not coercive, one may remedy this by taking linear com-
binations with M. The particular linear combination that will be useful to us is

(3.9) G(kh;a) =+ M («) F tanh(2kh) Re [A(e"“h; a) + A(ie™"; a)} ,

2
64""L+1

which has quadratic part

B in%(0)|a(0))>  do
(3.10) G (sh; ) :/ | s;n (9) |a( ?|2 @
_r sinh*(2kh) + sin”(9) 27

Proposition 3.3. Let o be the solution to with initial data and h
satisfying (1.7). Then there ezists ko > 0 depending only on %oz and ||dol 2
so that for all t € R and all k > ko, the series defining G(kh; a(t)) converges and
is independent of t. Moreover,

(3.11) |Gshsa(t) = G2 (sh; ()| < sinh ™" (k) [ (O)]1f
with an tmplicit constant independent of h and t.

Proof. Tt was observed in [0, Lemma 5.2] that A and I" are Hilbert—Schmidt oper-
ators with

(3.12) Az |2, = 25l and D)2, = il

Moreover, by [0, Theorem 5.1], A(z; «) converges and is conserved under the (AL)
flow provided that

mglalz <1
Combining this (3.2)), (3.8), and Proposition we may estimate

LHSBII) < tanh(2xh) > H{|A(e™; a(t))|5, [T (s a(t))]]5,

>2
PR 4 c K 4
+ tanh(2xh) Z 71| Ge h, oz(t))Hj2 T (e h, oz(t))Hj2
£>2
¢
+ ﬁ Z % ||04(t)||§3
£>2
rh L
< tanh(2h) 3 (s ()% )+ oy (1) < RESETD),
>2

provided x > kg for some ko depending only on the L2 norms of ¢g, 1. [
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4. STRICHARTZ ESTIMATES

Our main goal in this section is to prove certain Strichartz estimates for a, ¥",
and ¢" that are uniform in the parameter h. We start by recording the Strichartz
estimates for the continuum and discrete Schrédinger propagators.

Proposition 4.1 (Strichartz estimates for ¢'*2; [5]). Let (¢,7) and (§,7) be two
pairs satisfying

quaqﬂz22 and %—F%:%:%_A'_

S

If ¥ is a solution to the Schridinger equation
10 = A+ F
with initial data 1o € L2(R), then

191 Lo pr mxry S Yol g2 my + HF”L;?'L;/(MR) :

x

As shown in [I9, Theorem 3|, Strichartz estimates for the discrete Schrodinger
propagator €24, where A4 denotes the discrete Laplacian

[Ada]n = Qp-1— 2an + Un+t1,

can be derived via the same techniques used in the continuum case, [I2]. As the
discrete dispersion relation has inflection points (unlike in the continuum case), the
estimates are more closely related to those familiar from the Airy propagator:

Proposition 4.2 (Strichartz estimates for e'*24; [19]). Let (q,7) and (§,7) be two
pairs satisfying

+ 35 <

o=

~ = 1 1 1
Q7T7an227 E+§Sg7 and

=
il

If « is a solution to the discrete Schrodinger equation
10, = —(Aqa)n, + F,
with initial data g € 2(Z), then
HO‘HL?Z;(]RXZ) S ||0‘0||[;’L(Z) + HFHL‘?@L’(RXZ)'

However, if we project to frequencies away from the inflection points, we recover
the same dispersive decay we find in the continuum. Consequently, we have

Proposition 4.3 (Frequency-localized Strichartz estimates for e'*24). Let (¢,r)
and (q,7) be two pairs satisfying

q, 7,4, 7> 2 and %+%:l:

5 +

SUIM
=

The solution to the discrete Schrodinger equation
10y, = —(Aqa), + F
with initial data og € (2(Z) satisfies
[PallLagr wxzy S 1Paollez 7y + ||PF||L§’e;§/(sz)’
where P = P% is the projection operator defined in Proposition .

Our main result in this section is the following:
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Proposition 4.4. Let a be the solution to (AL|) with initial data (1.3) and h
satisfying (1.7). Then for any T > 0 we have

(4.1) Ha||L?Z§L([7h*2T,h*2T]><Z) + ||a||L;¥€%°([—h*2T7h*2T]><Z) St ||a0||egy )

where the implicit constant is independent of h. Consequently,
h h . .
Hw ||L?‘m([—T,T]><]R) + H¢ Hng [T, T]xR) Srl uniformly in h,

where Y" and ¢" are as defined in (1.5).
Proof. First note that by Hélder’s inequality and Proposition [3.1}

HaHL?E?L([fh*?T,h*?T]><Z) + ||a||L§£$L°([7h*2T,h*2T]><Z)
< (h*T)s lall oo ez mxz) + (h2T)7 lloll o ez (Rxz)
(4.2) S [(72T)8 + (h2T) 3] a(0) ez

In order to eliminate the dependence on h in the inequality above, we will run a
bootstrap argument combined with Strichartz estimates.
Let P = P, and P = Ps denote the sharp Fourier cutoffs introduced in (13.5))-

Writing F(a) for the nonlinearity in (AL) and exploiting that P[F(Pa)] = F(Pa),
we obtain the following Duhamel representation of the solution:

a(t) = etBan(0) — i/ ei(tfr)AdF(a(T)) dr

0

t
— 134 Pa(0) + ¢*34(1 — P)a(0) — i / Pelt=D34F (Pa(r)) dr
0

i / it [F(a(r) = F(Pa(r) | ar.
0

With a view to closing a bootstrap argument, we will estimate these terms on
the time interval [—h 2Ty, h=2Tp] with Ty < T, which may later be chosen small.
(Recall that T was arbitrarily large.) For two of the terms, the presence of P
allows us to employ Proposition [.3] and so treat both spacetime norms of interest
simultaneously. First,

(4.3) |44 Pa(0) Wses anaese S 1Pa(0)lez < fl(0)]lez

Secondly, using Proposition [3.1] we have

t
/ Igei(t_T)AdF(Pa(T)) dr
0

<
Lesnriee ||F(Pa) HL? o

1
_ 3 2
S (h QTO)2 ”O‘HL;X‘Z% ||01||Lfé91
1
_ 3 2
(1.4) < (h7210)* [a(O)llz Nl 2 -

Turning to the remaining terms in the Duhamel expansion, we first narrow our
focus to just the LSS norm. By Propositions and

\ eitda(] — ﬁ)a(@)} eitda(] — 15)01(0)‘

( ﬁsu( P)a(0) ]2
To) s (Nh + h2) a(0) .

< (h™2Ty) s

~

LY, Ly

Z/\ A

(4.5)
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Proceeding in a parallel fashion, we find

‘ / " eit-mAs [F(a(m) = F(Pa(r) | dr
0

/t =024 [F(a(r)) - F(Pa(r))| dr

0

L?e?l

S (W)

L9es
g(h—QTO)%s||F(a)—F(Pa)|| o o

LEeR

W2T0)||(1 = Phal o ol Zges

ool

11
B2T) B (VA + 1) a(0) 2 llagge
(4.6) N (fszo)ﬁ (Nh+h2)h2 [[[¢ollz2 + [l @l 2] ||01||ig‘eg :
The last step here was an application of (3.1]).
Combining (4.3) through (4.6)), recalling that N < h’%, and using Proposi-
tion we deduce that
||O‘HL’§€§L([—h*2To,h*2TO]><Z)
N 11 u 9
S (1 + Tolg) ||O‘(O)||ea +hTe (To2 + Tols) ”O‘HL?Z?‘L([—h—QTO,h—QTO]><Z) )
where the implicit constant depends only on vy and ¢¢. Taking Ty sufficiently
small, a bootstrap argument yields
Ha”L?Z?L([—h*QTO,h*?TO}><Z) S ||04(0)H53L :
Note that (4.2) guarantees that the quantity being bootstrapped is initially finite.
Iterating this argument (1 + 1) many times, we conclude that
(4.7) el Loge

ton

In particular, in view of Lemma [2.2] and Proposition [3.1] this yields

[—h=2Th—2T)xZ) ST ”O‘(O)H@%'

||¢h||L6 (= TT]xR)+H¢ HL6 (=T T]xR) ~ Shos ||0‘||L61£5 (=h-2T,h-2T)x2) ST 1.

We turn now to the L}L2® norm, which we will treat using and so not
need to argue via bootstrap. Henceforth, all norms will be taken over the full time
interval [—~h=2T, h=2T).

Mimicking , we find

eita(] — ﬁ)a(O)‘ < (h2T) %

2

eitda(] — ﬁ)a(O)‘

Lieee

tn

L§ege
(h=2T)7% ||(1 — P)a(0) ]2
(h™2T)7= (Nh + h#)||a(0)]|z -

AN N

(4.8)
Likewise, paralleling (4.6]), we find

\ / 0= [F(a(r) - F(Pa(r)] dr

0

Liez
/ =84 P (a(r)) ~ F(Pa(r) | dr
0

< (0T || F(a) = F(Pa)| g o

< (h™2Ty) e

Lese
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— 23 1 1
(4.9) < (h2To) B (Nh + h¥) b [|[o] 22 + l|éollz2] ol g -
Combining (£.3), @), @.8), @.9), [@.7), and the fact that N < h~18 yields

”a”L‘t‘Z;L'O([—h*2T,h*2T]><Z) St lle(0)[lez

and so completes the proof of the proposition. ([l

5. PRECOMPACTNESS IN C; L2
This section is dedicated to the proof of the following precompactness result:

Theorem 5.1. Let a be the solution to with initial data and h satisfying
and let Y™ and ¢" be as in . ForT > 0 fixed, the two families of functions
U = {wh(t,x) :0< h < ho} and ® = {¢h(t,x) :0<h < ho} are precompact in
C([-T.T}; L;(R)).

By a generalization of the Arzela—Ascoli theorem due to M. Riesz [I7], precom-
pactness of the two families will follow once we establish uniform boundedness,
equicontinuity, and tightness properties. Specifically, we will demonstrate:

Uniform boundedness: there exists C' > 0 such that
5.1 swp [ Ol raqoraie + 16" Olleaor ] < O
0<h<ho

Equicontinuity: for any £ > 0, there exists § > 0 so that whenever |s| + |y| < 0,
(52) (Wt +s,x+y) =" ()2 + 0"+ s, +y) = "t 2) |2 < e
uniformly for ¢ € [-T,T] (with ¢t + s € [-T,T]) and for 0 < h < hy.

Tightness: for any € > 0, there exists R > 0 such that

(5.3) sup sup / |1ph(t,x)‘2 + ’(ﬁh(t, a:)|2 dr < e.
0<h<ho |t|<T J|z|>R
As h s (", ¢") defines a continuous mapping from (0, ko) to C([—T,T]; L2(R)),
these three conditions automatically hold on any interval of the form [hq, ho]. Cor-
respondingly, it suffices to prove and only for 0 < h < hy where h; may
depend on ¢.
Combining Lemma 2.2 and Proposition [3.1] we find

0™ ()] Lo 2 (= m)xR) + 16" ()| oo 22 (=7, 1) xR)

_1
Sh72lallps e (—h-21h-21x2) S 1)

uniformly for 0 < h < hg, which settles (5.1)).

We turn now to the equicontinuity property, starting with equicontinuity in the
spatial variable. By the uniform boundedness property (5.1)) and Plancherel, this is
equivalent to tightness on the Fourier side, that is, for any € > 0 there exists Kk > 0
such that
(5.4) \S|1ipT ||P|§|zn¢h(t)||L§ + ||P|£|Zm¢h(t)”L§ <e

t|<
uniformly for 0 < h < hyg.
A straightforward computation using (L.5) shows that for kh < 7 we have

~r7 — 2
I1Pets" Ol + |Pesnd (Ol = [ a2 h)f* 4
wh<|h&|<m—kh
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<% sin®(6) [a(h—2¢.6)|* dp
—h Kh<|0|<m—rh sinh?(2kh)+sin?(0) 2w
CGP (khya(h™?t))

for a universal constant C' > 0 and G!? as defined in (3.10)). Using Proposition
followed by (2.1) and Proposition we may thus estimate

s (1Pt D132 + | Pigond" O113:
t|<

IN

S h7H G (kh, (0)) + sinh ™" (kh) | (0)172 ]

N 2
sin“(h - - _
S [N sinhQ(th)(-&-gi)nQ(hg) [W}O(g)‘z + |¢0(£)‘2] df + K !

S P> vm olliz + 1Pii> vm dollZz + 57 [IlvollZz + lloll7z] +x7

Choosing k = k(e) sufficiently large we can guarantee that holds whenever
0 < h < hy for hy = hy(e). Note that the restriction 0 < h < h; ensures that kh <
5, which allowed for the computations above. Recall that spatial equicontinuity in
the regime h € [hq, ho] is a consequence of the compactness of the interval [hy, ho]
and the continuity of the mapping h +— (", ¢").

We now turn to the second half of , namely, equicontinuity in the time
variable. By and Plancherel,

[0" ¢+ 5) = w052 = EPor<s [a(h7 @ +9) —a(h0)]|[,.
8"t +5) = 0" W2 = £ Po-mi<z [ Pa(n2 0 +5) —a(h720)] [z

|| L2 h 2 2

To estimate the right-hand sides above, we will rely on Duhamel’s formula
o h=2(t+s) o
a(h*2(t + s)) =¢ih 2SAda(h*zt) — i/ el 2(t+8)7T]AdF(a(T)) dr.
h=2t
Using Plancherel and evaluating the contributions of the regions || < kh and

kh < |0] < 5 separately, we find

| Pojeg [ (h?) — a(h=*1)] [,

= [ e a2 &2
1ol<%

2

< A sPlla(h20) [ + bl Be=st 0] 12

In view of Proposition and (5.4), we may choose k = k(e) sufficiently large,
followed by ¢ = §(e) sufficiently small to guarantee that

(5.5) HP|9‘<% [eihiQSAda(h_zt) - a(h_zt)] HEQ < 812—(? for all |s] < 4.

Arguing similarly, we find

[Plo—ri<g [t 5B 0 (h=2) — a(h=2)]||7,
:/ |e4ih*2ssin2(9+7") . 1}2|a(h’2t,0 +7r)|2 %
16]<%

(5.6) S wsPlla(h72t) |7 + | Plezns” @72 < 52
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for k = k() sufficiently large and |s| < § = d(e).
It remains to estimate the contribution of the nonlinearity. To this end, let
P=P 1 and P = P% denote the sharp Fourier cutoffs introduced in (3.5). We

will again use that P[F(Pa)] = F(Pa) to estimate the contribution of F(Pa)
using the frequency-localized Strichartz estimates of Proposition followed by

Propositions [3.1] and 1.4}
h=2(t+s ) 2

[ sty
=

< 1FC Pa\

Lgé 5 ([—h=2t,h=2(t+s)]x Z)

_9 2 2h
(5.7) SRS ||a||L?£g([—h*2T,h*2T]><Z) ||a||Lt‘?°£%([—h*2T,h*2T]><Z) Srohls| < 5

provided 6 = §(e,T) is chosen sufficiently small.
Finally we estimate the contribution of F'(a))—F(P«) using the discrete Strichartz
estimates from Proposition [4.2] followed by Propositions [£.4] and [3.2}

t+s) 2
H / *(t+9)=718a(F() — F(Pa)) dr
h—2t £

n

S |[F(a) = F(Pa) HL8e5([ h=2t,h=2(t+5)] X Z)

2
S ( s |) ||04HL6156([ h=2T,h—2T]xZ) H (I - P)aHL?li([—h*2T,h*2T]><Z)
(5.8) Sr (s I) (Nh+h2) oz < =k,

since N < h~9 and 6 = 6(e,T) is chosen sufficiently small.
Collecting (5.5]) through (5.8)), we conclude that for all |s| < § = (e, T),

(5.9) [ " (t + 8) — " ()|l r2 + 19" (¢ + 5) — " (B)l| 22 < e,

uniformly for ¢ € [T, T] (with t + s € [-T,T]) and for 0 < h < hg. This expresses

equicontinuity in the time variable and combined with (5.4) settles (5.2)).
Lastly, we will demonstrate the tightness property (5.3)). To this end, let x(x)

be a smooth cutoff function satisfying
1 ]zl <1

T) =
x(@) {O Dz > 2

from which we build a cutoff function to large n on the lattice via pgr(n) := 1 —
x(nh/R) for some R > 1 to be chosen later.
We will also be localizing in frequency: We define P : ¢2 — (2 via

(5.10)  Pa(8) = [x(:%) + x(%E)]a(d) where —T <6 < 3 and xh < I.
By Schur’s test, we obtain the commutator bound
(.11 0P el < 2

We will prove tightness of the orbit of the solution to (AL|). Specifically, we will
show that for any € > 0 there exists R > 1 such that

(5.12) sup ngRoz HEQ <eh
[t|<h—2T n
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uniformly for 0 < h < hg. The tightness of a,,(t) transfers to ¥ and ¢" as a
consequence of Lemmas 2.3 and [2.4]
By the equicontinuity in the space variable (5.4)), we have

(5.13) H(l — P)af(t < e*h  uniformly for [t] < h=2T and 0 < h < hy,

2
ez
provided x > 1 is chosen sufficiently large depending only on €. To maintain the
condition kh < § from , we will restrict attention to 0 < h < hy = hy(e) and
prove in this regime. Recall that tightness in the regime h € [hy, ho] is an
immediate consequence of the compactness of the interval [h1, hg| and the continuity
of the mapping h — a with « being the solution to (AL|) with initial data as in .

In view of and the preceding discussion, will thus follow from the
statement that for any ¢ > 0 there exists R > 1 such that

(5.14) sup ngRPa(t)ng < eh uniformly for 0 < h < h;.
lt|<h—2T "
From (AL} we have

(5.15) atHQDRPa(t)H[Z— QImZgoR JPay(t) - P{(Aaa)n(t) — Fula(t)]}.

To control the contribution of the quadratlc term above we rewrite

2ImZ</JR JPBA(t) - (AaPa)n(t)
—2ImZ<pR )PBn(t) - Pouy1(t —2ImZ<pR )Pau,(t) - PBu_1(t)
_ QImZ ¢r(n) = oR(n+ 1] PB,(t) - Pani(t)
= Imz PR(n) = ¢h(n + D] PBu(t) - Plomi(t) — ana(t)]
+ Imz 20%(n) — p(n +1) = ph(n = )] PB,(t) - Par1(t).

By Plancherel, , and Proposition
[P [ems1(t) = an-a@®)]ll2 S [ ( )+x( )] —em)a(t, 0)]]
S shlla®llz < whlleO)] -

Thus, using Proposition [3.1] we may estimate
210 >k () PBa(t) - (AaPa)n(?)]

S whlleh(n) = ok (n+1)|| Nl (O) 17
+[|26%(n) = PR(n+1) = gh(n = 1)|] |0 (0) 2
(5.16) < (S + 2 [[a(0)]2 -

We turn now to the contribution of the nonlinearity and decompose @ = Pa +
(1—P)a. The contribution of the nonlinearity containing (1— P)« can be estimated

using , as follows:
10 S 3 (0) P (1) - P{(1 = P)aan(t) - Bu(t) [an 1(8) + a1 (1)}
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(5.17) S - Pya@lle () S k3 a0l

Using (5.11]) and Proposition we bound the contribution of the remaining term
via

10 37 ) PB(6) - P{Pan(®)- Bul®) [ansa() + ca-s(D)] }

< llerPa)|, 0@l + lerPa(t)] ;| orll, o o)
1
(5.18) < lerPa@®)|fs: la(®) I3 + &l

Combining (5.15) through (5.18), we find that for kh < 7 with & > 1 large
depending only on ¢,

2 _ 2 1 2
ol erPa(t)|,, < a0z + (e* + J7)h2 la®)zg + [[erPa(t)|], a7
By Gronwall and Propositions [£.4] and this yields

sup || orPa(t)|[%,
lt|<h-2T n

< [llenPa(O)|ff, + S Na(O)E A>T + (2 + )bt al g (h>T)}]
X exp{cuaniw(h*%)%}
St [lerPa(0)5, + 5Fh+ (€2 + 25) T2 h,

where all spacetime norms are over [—h~2T, h=2T] x Z. The right-hand side here
can be made smaller than eh by first choosing « large (to ensure ) and then
choosing R sufficiently large. Note that by Lemma [2.2] monotone convergence, and
the L2-boundedness of the Hardy-Littlewood maximal operator M, we have

lim sup h_lH(pRPOZ(O)HZQ < limsupH[l — x(5)][Mvho + Mgy]
R—o0 " R—00

This completes the proof of (5.14) and so that of (5.12).

6. CONVERGENCE OF THE FLOWS

|L2 =0.

As a consequence of Theorem every sequence h,, — 0 admits a subsequence
hy; — 0 such that ("3, @) converges in C([=T,T); L2(R)) to some (), ). As
a first step toward proving Theorem [I.1] we will show that all such subsequential
limits are solutions to (|1.2)) with initial data (1o, ¢g) and satisfy certain spacetime
bounds. For notational simplicity, we will omit the subscripts on h in what follows.

Proposition 6.1. Let « be the solution to (AL) with initial data (1.3) and h
satisfying (L.7) and let ¥" and ¢" be as in (1.5). Let v,¢ € C([-T,T]; L2(R))
so that

(6.1) "= and ¢" — ¢ in C([-T,TJ; LA(R))
along some sequence of h — 0. Then ¢, ¢ € LY ([=T,T] x R) and for any |t| < T

we have

(6.2) P(t) = By T 2i / =9 |4y(5) 2 p(s) dis,

0

t
(6.3) B(t) = ey + 2 / I8 5(5) 2 6(5) ds.
0
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Proof. As ¢ and ¢" converge in C([-T,T]; L2(R)), they converge distributionally
n [—T,T]; xR. Consequently, by Proposition 1 and ¢ satisfy
(6.4) 1¥lls , (—rmyx) + 19lls  ((-77)xR) ST 1.
To prove (6.2)) and (6.3)), our starting point is the Duhamel formula satisfied by
the solution a of (AL): for any |¢t| < T,
t
(6.5) o, (h7%t) = eih_QtAdan(O) - ﬁ/ eh =9 (a(h™25)) ds.
0

We reconstitute ¥"(t,x) and ¢"(¢,z) from the left-hand side above using (1.6).
Employing the notation introduced in (2.4) we may write

Y (t) = Rlan(h2t)] and  ¢"(t) = " IR[(—1)"an (h21)].
Given the hypothesis , it thus suffices to prove that
(6.6) Jim R[RHS(6.5)] = RHS(6.2) in C([-T,T); Li(R))
and

(6.7) lim AMTIIR[(-1)"RHS(6:5)] = RHS(63)  in C([~T, T); L2(R)).

We first address the convergence of the linear terms on the left-hand sides of
and (6.7).

Lemma 6.2. Under the hypotheses of Proposition we have
i H ih=2tAq _
Jim Re o, (0)]

L°°L2( —T,T|xR) -

li H 4ih72tR 1" ih™2tAq 2(0)] — _ltA H =0
5o 11 [(=1)"e o (0)] b L L2([~T.T)xR)

Proof. Performing the change of variables § = h{ and using Plancherel and (2.1)),
we estimate

HR [eih*%Ad an(O)} _ it

L L2([-T,T]xR)

H / exp mgﬂ“mz(hg)t}*eXp{méﬂtm H Pentole) 5

L L2([-T,T)xR)

+ ’ ety — el P§N1/10

L L2([-T,T]xR)

< [[exo{itter? - 12520} — 1) Aot + 1P ol -

L L([-T,T]xR)
The first claim now follows from the dominated convergence theorem, recalling that

N = h™7. The second claim is proved analogously. ]

We now turn to the convergence of the nonlinear terms on the left-hand sides of

and (6.7). We will only present the details for ; the treatment of is
analogous. To complete the proof of (6.2)), we must show that

t
(6.8) ]}L%R[h—/ el =D (a(h25)) ds] :|:21/0 =8 |y ()2 () ds

0

N|=

in C([-T,T]; L2(R)). Recall that by Lemmaﬁ7 we have ||R||¢z z)r2@®) Sh™2.
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In view of (L.5),
(6.9) an(h™2t) = W[ (t,nh) + (=1)"e ™1tk (¢ ).

Employing the sharp Fourier cutoff P, to €] < h™2, we define
W' =Pt and ¢t = ot
and then
(6.10) Gn(h=2t) = h[P"(t,nh) + (—1)"e~ "G (¢, nh)].

We will show that as i — 0, the nonlinearity in can be replaced by an on-site
nonlinearity based solely on this more narrowly Fourier localized sequence. One
reason for introducing this additional localization is to ensure that Lemma [2.2] may
be applied to such nonlinear functions.

Lemma 6.3. Adopting the notation
(6.11) Fo(t) = 42h|a, (h20)|*[0" (t,nh) — (=1)"e 5" "1 gh (¢, nh)]
(notice the sign flip relative to ), we have

HF(a(h_Qt)) - ﬁ(t)‘

In particular,

lim HR{ﬁ /Oteih_Q(ts)Ad {F(a(hiQS)) - ﬁ'(s)} ds]

h—0

Proof. In view of (6.9), Lemma and Theorem [5.1] (specifically (5.4))), we may

estimate

fo

zo(h ) as h — 0.

L1z ([-TTIxZ)

L@ L2([-T,T]xR)

[Jown (h72t) — an(h_2t>’|Lgoeg([—T,T]xZ)

<hf(1- Ph)d]h(t’nh)HL;’CZ%([—T,T]xZ) +h[|(1 - Py)¢" (t,nh) HL:"Z%’L([ T,T|xZ)

< h H(l - Ph)wh(t)HLfoLi([—T,T]xR) + h? ||(1 - Ph)¢h(t)||L§°L§([—T,T]><R)
=o(hZ) ash—0.

Consequently, by Proposition we get

|Fla(h=20) = F(a(n=2)|

S [la(h™?

Lie2([-T,T|xZ)

(h™2%t) — ap(h™2

2
t)HLﬂ;?([—T,T]xZ)Ha" t)HLt“’Z%’L([—T,T]xZ)

(6.12) =o(h?) ash—0.
To continue, we use Lemma [2.2] and Theorem [5.1] to estimate
||[&n_1(h*2t)+&n+1(h 26)] = 2h["(t,nh) — (—1)"e "GN (¢, nh) M e
< 2|9 (¢, (n + 1)h) — " (t, nh) HLW + 2h||¢" (t, (n+ 1)h )—¢h(t,nh)|\LM
< 2[|Y"(t. (D) = ()| ey + 20]|" (1 (14 D) = 8 ()| ey

SPA 4 1) =V Ol gy + A" e+ B) = " (D) ey = o(B?)
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as h — 0. Consequently, using Proposition [4.4] as in (6.12)), we obtain
(6.13) HF(&(h*Qt)) - ﬁ(t)j —o(h%) ash—0.

L2 ([—T,T|xZ)
Combining and settles the lemma. [l
Expanding out the definition, we have
Fo(t) = 20307 (¢, nh) |4 (8, nh) — 213" H(G (&, nh)) 2" (¢, nh)
= 2(=1) e |G (1, ) PG (1 mh) — €S (2, mR)) 2 (8 ) |.

By looking at the Fourier supports, we see that only the top row of terms contributes
to the left-hand side of and the second row contributes only to that of .

Our next result shows how the temporal non-resonance of the unexpected terms
in the expansion for ﬁn (namely those involving both @Zh and 5’1) cause them to
drop out in the limit h — 0.

Lemma 6.4. Let &, denote a cubic polynomial in zzh(nh), gh(nh), and their com-
plex conjugates and let m be a non-zero integer. Then

t
H/ eih72(t75)Adeimh’2s€n(s) ds‘
0

In particular,

t
hmHR{ﬁ/ eih72(t—s)Adeimh72sh3€n(s) ds”
0

h—0

= o(hié) as h — 0.
L2 02 ([T, T)XZ)

L L2([-T,TIxR)

Proof. We decompose

t
/ 6'h_2(tfs)Ad6imh_2sgn(S) ds

t o a2
— %/0 elh 2(t— s)Ad imh~ gn(S)dS—%/O elh Z(t—s)Adelmh 2(s+#)gn(3) ds

N[

t
/ 61'mh 8+ih_2(t75)Ad [1 6 m Ad]g (S) ds
0

+ %/ elh72(t+%—s)Adeimh728 [gn(s) . gn(s . ﬂ?hz)} ds
0

) xh2 _ B 2
+ %/ elh (t+ =L S)Adelmh Sgn (S _ wh )dS
0

7285,1 (s — Lhz) ds.

Using the discrete Strichartz inequality Proposition [£.2] followed by Lemma [2.2]
and Proposition we estimate the contribution of the last two terms in our
decomposition by

(=) nlraea

tn

[Hw (nh) ||L626 [-7,7)xz) T ||¢h(nh)||%§£g([—T,T]xZ)]
l “h 1
2 [[|¢" ||L5 L(-r.rixr) T 1@ ||igz rrixm)) S h,

[=T,T|XZ) S
Sh

which is acceptable.
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In view of the Fourier localization imposed on the functions ¢" and ¢", we

have supp(a) C [~3hz,3hz]. Thus, estimating as above, we may bound the
contribution of the first term in our decomposition by

t
H/ pimh ™ 2s+ih ™2 (t—5)Aq [1—em2]E,(s) ds‘
0

S —etm]

LEo02 ([-T,T)XZ)

1
5nHLle2([ ryxzy ~ MlEn ||L1e2 (_T1)xz) S P2
which is acceptable.

This leaves us to estimate the second term in our decomposition, which represents
the central question at hand. The key idea here is to exploit the equicontinuity in
time of the functions 1" and ¢" proved in Theorem Assupp(&,) C [—Sh% , Sh%],

we may employ the frequency-localized Strichartz estimates from Proposition [-3]
and scaling to estimate

H/Ot Gih~? b (8, (s) — En (s — T2)] dSH
S hE|En(s) — En(s — 2|

m

Lyotg,

6 6
L7 63 ([-T,T|xZ)

1. _ 1
ST WMy oy + 19" 13e (-1

X [Hwh o 1/’ ( o 7rﬁhZ)||L<t>CLgn([—7“,T]xR) + H‘bh o ¢h(' o 7rhQ)HLoom([ T,T]xR)
= a(h*%) ash—0

where we used Lemma [2.2] Proposition [£.4] and Theorem [5.1]in the last two lines.
This completes the proof of the lemma. O

We finally consider the main contribution to the left-hand side of .
Lemma 6.5. We have

t o t )
Jim R | /0 B3 (MRG0 (5, mb) ds| = 2 /O % y(s) | (s) ds
in C([~T,T; LZ(R)).

Proof. Combining hypothesis (6.1) and Lemmas through we know that
the term on the left-hand side above converges in C([-T,T]; L%(R)). Thus, it

suffices to identify its limit via duality. Let f € S(R) be L2-normalized and satisfy

f € C>(R). Note that for h sufficiently small we have supp f C {¢ : |hé] < oh
Thus, we may use Plancherel to compute

<R [% /t =) Dagy3 (1R 20 (s, nh) ds} ’ f>

0
= on [ (R 6.00) {1 1 - )} o)) s
=2h /0 Z(|{/Zh|2$h)(s,nh) [e=i(t=9)A f](nh) ds

4 31112( hey

+2h/ Z (1" 24") (s nh)/ mhi[ (1=s) _ gilel( }f(g)dfds.
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Using Plancherel, Lemma [2.2] and Proposition [£.4] together with the dominated
convergence theorem, we may bound the second summand above by
4sin? (L& 4sin” (%) )

h/OtH(|{/5h|2{p“h)(s,nh)||€%h | et Tm I m’ ds

Lo~
ST ||¢h||igd([,T’T]XR) o(1)=0(1) ash — 0.

Noting that the Fourier support of [)"|2" is contained in [-3h~%,3h %] and
invoking Lemma [2.1] we see that the first summand equals

/ / (15" 23" (s, 2) [T f] () dar ds = 2 / (93 (T2 (s), £) ds.

That this converges to the desired limit as h — 0 follows readily from the Strichartz

inequality Proposition[4.1] hypothesis (6.1)), Theorem|[5.1] Proposition[4.4)and (6.4)):
¢
i(t—$)AT) Th|2Th 1.2 d H
e s), s
| [ eonpapa - wpeln sl

L~
ST = Yllogrz [19"175 + 0075 JIIf 122
S vt = ¢llper: + HP‘QZh—%?ﬁ 2oz = o(1) ash—0,

where all spacetime norms are taken over [—T,T] x R. O

The proof of Proposition [6.1] is now complete. Indeed, Lemmas [6.2] though [6.5]
show that v satisfies (6.2)). The proof that ¢ satisfies (6.3)) follows from parallel
arguments. O

We are finally ready to prove our main result:

Proof of Theorem[I.1. As noted at the beginning of this section, Theorem [5.1] guar-
antees that every sequence h — 0 admits a subsequence so that both " and ¢"
converge in C([-T,T]; L2(R)). By Proposition 1} the limiting functions lie in LY ,
and solve the integral equations (6.2)) and ( .

These integral equations admit only one solution in C;L2NLY , as is easily shown
by contraction mapping using the estimates recalled in Proposition[d.1] Originating
in [20], this is now the textbook approach to the construction of solutions to (1.2]).

As all subsequential limits agree, it follows that the original sequences " and
" converge as h — 0 without passing to subsequences at all. Moreover, as noted
above, the resulting limits are the unique solutions to the evolutions with
initial data g, ¢g. O
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