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Abstract—While machine learning has achieved remarkable
results in a wide variety of domains, the training of models
often requires large datasets that may need to be collected from
different individuals. As sensitive information may be contained
in the individual’s dataset, sharing training data may lead to
severe privacy concerns. Therefore, there is a compelling need
to develop privacy-aware machine learning methods, for which
one effective approach is to leverage the generic framework of
differential privacy. Considering that stochastic gradient descent
(SGD) is one of the most commonly adopted methods for large-
scale machine learning problems, a decentralized differentially
private SGD algorithm is proposed in this work. Particularly, we
focus on SGD without replacement due to its favorable structure
for practical implementation. Both privacy and convergence anal-
ysis are provided for the proposed algorithm. Finally, extensive
experiments are performed to demonstrate the effectiveness of
the proposed method.

I. INTRODUCTION

With the rapid development of wireless sensor networks and
smart devices, it is nowadays becoming easier to collabora-
tively collect data from multiple devices for data process-
ing and analysis. For example, as an important emerging
application, health monitoring systems have drawn a lot of
attention (e.g., see [1] and the references therein). In a health
monitoring system, wearable sensors are used to collect the
patients’ health data, which are later utilized to develop dis-
ease prediction models through machine learning techniques.
Considering the size of the systems and the sensitivity of the
collected data, there is a compelling need to design efficient
decentralized data processing methods. Compared to central-
ized data processing, the decentralized approaches mainly
have two advantages. Firstly, decentralization can offer better
scalability by exploiting local computational resource of the
smart devices. Secondly, considering that data collected from
individuals (e.g., medical and financial records) are sensitive
and private, decentralized processing is able to avoid direct
data sharing between individual devices and the (possibly)
untrusted central node, leading to improved privacy.

Due to its simplicity and scalability, stochastic gradient
descent (SGD) has been extensively studied in the literature
[2]. SGD admits decentralized implementation by allowing the
individuals to compute and share the gradients derived from
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their local training samples, and hence is suitable for various
collaborative learning applications. However, sharing the local
gradients may jeopardize the privacy of the users, since an
adversary may be able to infer the private local data (e.g., the
health information) from the shared gradients [3]. With such
consideration, differential privacy [4] has been incorporated
into SGD to guarantee a quantifiable level of privacy.

Various differentially private SGD algorithms have been
proposed, among which one of the most popular approaches
is adding noise to the gradients in the training process (e.g.,
[S]-[10] and the references therein). Most of the existing
works adopt the commonly used independent and identically
distributed (i.i.d.) sampling method [11], in which the training
examples are sampled in an i.i.d fashion during each training
iteration. Nonetheless, in practical implementations of SGD
algorithms, without-replacement sampling is often easier and
faster, as it allows sequential data access [12]. More specif-
ically, let i; and [n] denote the index of the training sample
used at time ¢ and the whole training dataset, respectively. The
mathematical description for i.i.d. sampling is P(i; = j) =
1/n,¥j € [n]; for without-replacement sampling, it is P(i; =
j) = 1/(n —t+ 1),Vj € [n]/{i1, -+ ,ir—1}. It has been
shown that without-replacement sampling is strictly better than
ii.d. sampling after sufficiently many passes over the dataset
under smoothness and strong convexity assumptions [13].
[14] considers without-replacement sampling for differentially
private SGD. However, it adds noise to the trained models
and assumes that the data is held centrally, which cannot be
generalized to the decentralized setting directly.

With such consideration, in this work, a decentralized
without-replacement sampling SGD algorithm with both pri-
vacy and convergence guarantees are proposed. We consider
a scenario in which multiple nodes with limited numbers
of training samples aim to learn a global model over the
whole dataset (i.e., all the training samples from the nodes). It
is assumed that each node has two models: a local model
that is only available to itself and a global model that is
known to the public. At each iteration, a node decides to
update either the local model or the global model. To fulfill
privacy-aware decentralized SGD, each node adds noise when
it updates the global model. As a result, the global model is not
necessary better than the local model, especially in the high
privacy requirement settings. Therefore, we leverage the deep-
Q learning framework [15] to help determine whether each
node updates the global model or not during each iteration.

The remainder of this paper is organized as follows. Sec-
tion II reviews preliminaries and notations used in this work.



The problem is formulated and presented in Section III. Sec-
tion IV presents the proposed algorithm, and its effectiveness
is examined through simulations in Section V. Conclusions
and future works are presented in Section VI.

II. PRELIMINARIES AND NOTATIONS

In this section, we start by reviewing some important defini-
tions and existing results.

A. Machine Learning and Stochastic Gradient Descent

Suppose that there is a training data set with n training
instances (i.e., S = {(x1,91), -+, (Tn,yn)}) iid. sampled
from a sample space Z = X x ), where X is a space of
feature vectors and ) is a label space. Let W C R? be a
hypothesis space equipped with the standard inner product
and 2-norm || - ||. The goal is to learn a good prediction
model h(w) € F : X — Y which is parameterized by
w € W. The prediction accuracy is measured by a loss
function f : W x Z — R. Given a hypothesis w € W and
a training sample (x;,y;) € S, we have a loss f(w, (x4, y;)).
SGD [2] is a popular optimization algorithm, which aims to
minimize the empirical risk F(w) = 13" | f(w, (z,3:))
over the training dataset S of n samples and obtain the
optimal hypothesis w* = argmin,, F(w). For simplicity, let
filw) = f(w, (z;,y;)) for fixed S. In each iteration, given a
training sample (x,y;), SGD updates the hypothesis w; by:
Wi+1 = Gft,nt = w¢ — Utvft(wt), (D
in which Vfi(w¢) = V f(wy, (x4, y¢)) is the gradient and 7,
is the learning rate. We will denote GV, ,,, as Gy for ease of
presentation.
In order to perform the convergence analysis later, some
basic properties of loss functions are defined as follows.

Definition 1. Let f : W — R be a function: f is convex if
for any u,v € W, f(u) > f(v) + (Vf(v),u —v); f is L-
Lipschitz if for any u,v € W, ||f(u) — f(v)|| < L||lu — v
[ is ~y-strongly convex if for any u,v € W, f(u) > f(v) +
(Vf(v),u—v)+3%||u—vl||?; [ is p-smooth if for any u,v € W,
Vf(u) - V() < a0l

Example: Logistic Regression. The above three parameters
(L, 7, 1) can be derived by analyzing the specific loss function.
Here, we give an example using the popular L,-regularized
logistic regression model with the Lo regularization parameter
A < 0, which can also be found in [14]. Assuming that each
feature vector is normalized before processing, i.e., ||z|| <1,
the loss function (for Lo-regularized logistic regression model)
on a sample (z,y) with y € {+1, —1} is defined as follows:

Flw, (.9) = In(1 + exp(—y < w,z >)) + 5w’ @

If A > 0, the loss function f(w, (z,y)) is strongly convex.
Suppose the norm of the hypothesis is bounded by R, i.e.,
[|lw|| < R, then it can be proved that L =1+ AR, p =1+ A
and v = A. If A = 0, the loss function is only convex, and we
can deduce that L =y =1 and v = 0.

We now introduce some important properties of gradient
descent updates that will be used in the convergence and
privacy analyses of the proposed algorithm.

>

Definition 2. Let G W — W be an operator that
maps a hypothesis to another hypothesis. G is p-expansive if
supwvu}/%%i,(ﬁ"w < p and o-bounded if sup,||G(w) —
wl|| < o.

Lemma 1. [14] Assume that f is pu-smooth, if f is convex,
then for any n < % Gty is 1-expansive; if f is ~y-strongly
convex, then for n < i Gy is (1 — ny)-expansive.

Lemma 2. Suppose that f is L-Lipschitz, then the gradient
update Gy, is (nL)-bounded.

Lemma 3 (Growth Recursion [16]). Fix any two sequences
of updates G1,--- ,Gr and GY,--- ,Gl.. Fort =1,--- T,
let wo = wj, wy = Gy(wi—1) and w, = Gy(w,_,). Then
[lwo —wp|| =0 and for 0 <t < T
[[we — wi]
pllwe—1 —wi_4||,if Gx = G} is p-expansive.

. : . 3)
< S min(p, 1)||w—1 — wi_4|| + 20y, if Gy is

p-expansive; Gy and G, are o-bounded.

B. Differential Privacy

In this subsection, we start by reviewing the definition of dif-
ferential privacy, and then introduce the Gaussian mechanism
that ensures (e, §)-differential privacy.

Definition 3. A (randomized) algorithm A is said to be (¢, 0)-
differentially private if for any neighboring datasets S, S’, and
any event E C Range(A), Pr[A(S) € E] < efPr[A(Y’) €
E] + 4, in which Range(A) is the codomain that consists of
all the possible outputs of A.

Theorem 1. [17] Let q be a deterministic query that maps
a dataset to a vector in R, For ¢ > 2In(1.25/6), adding
Gaussian noise sampled according to

N(0,0%);0 > 22210 @)

ensures (€, 0)-differential privacy foree € (0,1), in which
As(q) = mazs~s||q(S) — q(S”)|| is the Lo-sensitivity.

III. PROBLEM FORMULATION

In this work, a network consisting of M computational nodes
is considered. Each node in the network has a local dataset
of 77 training samples, and the set of all the training samples
from all the nodes in the network form the global training
dataset. The goal of the nodes is to collaboratively learn
a hypothesis w that minimizes the empirical risk F(w) =
L3 f(w, (@,:)) over the whole training dataset. It is
assumed that each node stores two models: a local model
(i.e., a local hypothesis w?”) that is only known to itself and
a global model (i.e., a global hypothesis w®) that is shared
among all the nodes in the network. All the nodes know the
index of the last node that updates the global model and are
able to contact it directly. At each iteration, a node randomly
samples a mini-batch of training examples from its own local
dataset without replacement and determines whether to use
and update the global model or not. If a node decides not
to update the global model, it simply updates its own local



model; otherwise, it first contacts the last node that has updated
the global model and fetches the latest global model. Then it
updates the global model using its local model and training
samples through the SGD method. Since the global model is
publicly known, one can infer the training sample (z,y) in (2)
given the loss function f, previous global model w; and the
updated global model w1, which leads to privacy concerns
and deters the nodes from collaborating. Therefore, each node
will add noise to the gradients for privacy preservation.

When the nodes update the global model, they need to
contact the other nodes to obtain the latest global model, which
induces communication overhead and latency during message
passing. Moreover, adding noise may also induce accuracy
degradation. Since each node will also learn a local model
that is updated without privacy concerns, the local model may
sometimes be better than the global model, especially when
the privacy requirement is high (i.e., small €). In this sense,
each node has to learn a control policy to determine whether
to update the global model or not at each iteration.

IV. DEEP-Q LEARNING BASED COLLABORATIVE
DECENTRALIZED DIFFERENTIALLY PRIVATE SGD

In this section, a deep-Q learning based collaborative training
scheme is proposed. More specifically, the model learning
process is modeled as a Markov Decision Process (MDP)
[18], in which the collaborative nodes are the agents, the
current local models and the loss are the states, and the action
for each node is whether updating the global model or not.
Reinforcement learning (RL) based methods are commonly
used to solve such MDP problems in practice due to two
advantages: 1) RL methods do not require prior knowledge of
the underlying system dynamics, and 2) the designer is free to
choose reward metrics that best match the desired controller
performance [19]. There have been some works that employ
RL as the controller of optimization algorithms. For example,
[20] uses RL to determine the step size of neural network
training. Inspired by the success of deep RL methods [15],
a deep-Q network is adopted to control the behavior (i.e.,
updating the local model or the global model) of the nodes.'

The deep-Q learning algorithm is presented in Algorithm
2, in which the nodes act as the agents, and the states of
the environment are defined by the local models. There are
two possible actions for each node: updating the local model
or the global model. The basic idea of deep-Q learning is
to approximate the action-value (Q) function in traditional
Q-learning by a deep neural network. Since RL is known
to be unstable when a nonlinear function approximator (i.e.,
neural network) is used to represent the Q-function, similar
to [15], two neural networks are created for each node. The
first network 6, includes all the updates in the training while
the second (target) network 6’ retrieves the Q values and is
periodically updated to imitate the first network. Experience
replay is also adopted. After each action, the experience

IThe deep-Q based method is our first attempt to explore the possibility
of using RL as a controller to guide the learning process of the collaborative
nodes. The optimization of the controller remains an interesting future work.

Algorithm 1 Deep-Q Learning based Collaborative Decentral-
ized Differentially Private SGD

1. Require: initial vector wél, S ,ng,wOG , size of local

mini-batch b, number of nodes M, total number of training
data samples n, number of iterations 7.

2. fort=0,1,---,T do

3. for local nodes m:

4. if update, run Algorithm 2 and obtain action aj’ €
{Local, Global}

o If Local, obtain the mini-batch D,,(t), compute the
gradient V fp (wf™) and update its weights thJ;"l =
N

« If Global, fetch the w;” from the latest global model, ob-
tain the mini-batch D, (), and compute V fp_ 1) (w§’),
add noise V; to the gradient and then update w;’, ; and
thfl according to the following rule

G wf +wpm

wiiy = = =0 (Y, 0 (wf) + N0, (5)
wir = wi . (6)
5. end if
6. end for
7.end for

(transition) is stored in the replay memory as a tuple of
(state, action, reward, nextstate). During each iteration, a
random mini-batch of transitions is sampled and used to
update 6;. For each transition (s;,a}",rj,s;+1), the target
network is used to compute the approximated target value
y; = 1; + YpQ Mmaxy Qm(sj+1, a’,0"). Based on the current
network 6, and the state s;, the action a}” is determined.

To this end, a Deep-Q learning based collaborative differen-
tially private SGD algorithm (i.e., Algorithm 1) is proposed.
For node m, given the training samples sample;* and the
current local model wim at time ¢, it obtains the current state
sy = [wh™, f(wE™, sample})] and determines to update the
global model or the local model via the deep-Q network.
After updating the local (or global) model, the updated loss
f (wiil, sample") is used to update the deep-Q network.

Note that in Algorithm 1, the privacy concern only ex-
ists when the nodes update the global model. In (5), there
are two terms that may lead to privacy leakage: thm and
Vb, ) (w§). Suppose that the latest time that node m
updates the global model is t—j—1 and therefore w{“_”} =w j
is publicly known, we have the following Lemma.

Lemma 4. Suppose that the loss function f is L-Lipschitz,
convex and p-smooth, let D, (t — j : t) & {D,(t —
j)v T >Dm(t)}7 D;n(t_j : t) = {Dvln(t_j)v T 7D;n(t)} be
two neighboring datasets differing at only one sample located

in the i-th mini-batch. For Algorithm 1 with r]tL”‘ < i,Vt,
we have
27]]57”11

!
Supo(t—j:t)ND;n(t—j:t)||wt+1 - wt+1|| < kéfﬁ?t] b

®)



Algorithm 2 Deep-Q Learning Algorithm for node m with
input sample;® and th""
1. Require: replay memory RM,,, action-value function
Q. with weights 0;, target action-value function (,, with
weights ', the previous action of the node al™,, the
previous loss fi_1.
2. Given the training sample sample]®, set the current
state s; = [wX™, f(wF™ sample™)] and the previous state
si1 = [wEm, flwym, sample™ )], Set the reward as
r_1 = —f(wk™, samplel™ ).
3. Store transition (st_l,at_l,rt_l,st) in RM,,.
4. Sample random mini-batch of transitions from RM,,.
{rj, if terminates at step j + 1.
Set y; =

rj + YpQ Mmax, Qm(sj+1, a, Hl), otherwise,

(N

in which yp is the discounting factor. Perform a gradient

descent step on (y; — @Qm(s;,a;,60:)) wrt the network

parameter 6;. In addition, reset Qm = @, every C steps.

5. With probability pegpi- select a random action aj”,

otherwise select a” = arg maz,Q(st, a, 0;).

6. Feed a}* to Algorithm 1.

Proof. See Appendix A. O

Theorem 2. Suppose that the loss function f is L-Lipschitz,
convex and p-smooth, if the noise term nth Ny is sampled
according to (4), with Ay(q) = ||wiy1 —wy || which is given
by Lemma 4, then Algorithm 1 is (¢, 0)-differentially private.

Proof. See Appendix B. O

The following theorem shows the convergence rate of Al-
gorithm 1 for convex loss function f.

Theorem 3. Suppose that the hypothesis space VW has diam-
eter R, the loss function f is convex and L-Lipschitz on W,
and ||V fi(w)||*> < B%Vw,i. Let pt ™ and ptLG denote the
probabilities (given by the Deep-Q learning algorithm) that
node m chooses to update the local model and global model,
respectively. Then for any 1 < T < 2, if we run Algorithm 1
for T iterations with step size ntL’" =1, we have

T
Bl S Fobpwb» + plguf) - Fw)]

T T
1 1 §
gpng[TZF( )]+ pLaE[— ZF F(w")
t=1 t:l
M +1)R? 41n(1.25/8)nL? Dy P1.C
(M+1) +nB? + n( 22)77 2 |t,G|
4Tn b%e T
N 2(2 + 12v2)RL [\/bT N 2 ]
3 n V4 vn—0oT)’
)

in whicLh F(:) = L3 f(-) is the empirical risk, and
> [Pi & | is the expected total number of time instances
that the nodes update the global model.

Proof. Please see Appendix C in [21]. O

Remark 1. By properly selecting the step size n (e.g.,
7N o \}), the convergence rate is E[~ Zthl F(py Lol 4
pfgwtc) — F(w")] < O(ﬁ) In addition, according to
the definition of w*, E[x ZtT:1 F(w&)] — F(w*) > 0 and
therefore pp'y [E[3: Yoi_, F(w™)] = F(w*)] < O(J=). As
a result, there exists a positive constant pTL’”:" < ptL 7LVt m
such that E[+ Zt L Fwf™)] = F(w*) < O(=mt—=), which

indicates the convergence of the local models

'nn n \/’

For the convergence rate of Algorithm 1 with A-strongly
convex loss function f, we add the following assumption.

Assumption 1. At each time instance 0 < t < T, each node
updates once (either the local model or the global model).

Theorem 4. Suppose that the loss function f is y-strongly
convex and L-Lipschitz, and ||V fi(w)||* < B2, Vw,i. For

any 1 < T < iz, if we run Algorithm 1 for T iter-

ations with step size given by ntL = avt,Vm in which
a= mln{pt L7pt G ,Pth,ptLg} > 0, we have
M
Lo, * *
> Elllwgy — w'lP] + EflJwg, —w*||?]
m=1 (10)
2 2 MIL21n(1:25
SO(MB M B?logt n(=; ))
at abt a?b%e3t
Proof. Please see Appendix D in [21] O

Remark 2. Note that the parameter a may depend on the
exploration rate pegpir in the deep-Q learning algorithm,
which is initialized to be large and then annealed down to
a small constant (e.g., 0.1). In particular, since there is a
probability of pezpir With which a node will randomly select
an action, we have I]*Tpl <a<l1l-— pquz

V. SIMULATION RESULTS

This section presents simulation results to evaluate the effec-
tiveness of the proposed algorithms. In particular, two widely
used public datasets are considered: Covertype and MNIST.
MNIST is a computer vision dataset which consists of 70,000
28 x 28 pixel images of handwritten digits from O to 9 while
Covertype is a larger dataset with 581,012 data points and a
dimension of 54. Without loss of generality, we reduce the data
samples in MNIST to 50 dimensions with principal component
analysis (PCA) [22] in our simulation. In addition, the data of
both datasets are normalized and projected on the surface of
the unit ball before training. For the Deep-Q network, we build
a 3-layer fully connected deep neural network for each node
and choose the parameters according to [15]. The input layer
consists of d + 2 neurons, where d is the dimension of the
training samples; the hidden layer consists of 128 neurons
and the output layer consists of 2 neurons. The activation
functions of all the three layers are linear and the weights are
initialized by performing Xavier initialization in Tensorflow.
The exploration rate ey, is set to 1 in the beginning and then



Covertype Dataset Strongly Convex
par—

Covertype Dataset Convex

°
«

Accuracy

Accuracy
o
2

o

4

—e— Non-private

—=— DP-Fully collaborative

—+— DP-Deep-Q

—4— DP-SGD-With Replacement
)

—e— Non-private
0.3 —=— DP-Fully collaborative

—— DP-Deep-Q 03
—— DP-SGD-With Replacement
]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
B £

Fig. 1. Covertype Dataset (C) Fig. 2. Covertype Dataset (SC)

annealed down to 0.1 within 53 steps. The Adam optimizer
is used to train the Deep-Q neural network with a learning
rate of ypg = 0.01; the mini-batch size and the size of the
replay memory D,,, are set to 10 and 20, respectively. In the
simulation, the MNIST dataset is divided into a training subset
of 60,000 samples and a testing subset of 10,000 samples
while the Covertype dataset is divided into a training subset of
464,809 samples and a testing subset of 116,202 samples. Each
node randomly draws 7 samples from the training subset as
its local training dataset. We build “one vs. all” multi-class
logistic regression models for both datasets.> Then the nodes
run the proposed algorithms (one pass over their local training
dataset) to train the models, followed by the testing.

A. The Impact of Privacy Requirement

In this subsection, we investigate the impact of privacy re-
quirement on the accuracy of the proposed algorithm. It is
assumed that there are 10 collaborative nodes with 60,000
training samples for both datasets. The privacy parameter 9 is
set to # We set 7, = 0.1 for the convex case. For the strongly
convex case, the regularization parameter and the diameter of
weights w is set to A = 0.0001 and R = 1/, respectively.
The mini-batch size is set to b = 50.

Figure 1 and Figure 2 show the classification accuracy of the
proposed algorithm for the Covertype dataset in the convex and
strongly convex scenarios, in which “C” and “SC” stand for
“convex” and “strongly convex”, respectively. More specifi-
cally, the simulation results of four scenarios are presented: the
fully collaborative and noiseless case (denoted as “Noiseless”);
the differentially private and fully collaborative case (i.e., the
nodes update the global model with probability 1, denoted as
“DP-Fully collaborative”); the differentially private and Deep-
Q learning based algorithm (i.e., Algorithm 1, denoted as “DP-
Deep-Q”); the baseline DP-SGD algorithm that adopts the i.i.d
sampling strategy (denoted as “DP-SGD-With Replacement”).
For “DP-SGD-With Replacement”, we select a node to update
a global model uniformly at random during each iteration.
Each iteration is ensured to be (£, g) differentially private and
the nodes stop updating the global model once their privacy
budgets are depleted (i.e., the training samples have been
visited 5 times). In addition, we use the same learning rate as
that in [6] and set 7, = it It can be observed that Algorithm
1 outperforms both “DP-Fully collaborative” and “DP-SGD-
With Replacement”. While “DP-Fully collaborative” gives

2This means that 10 (7) binary models (one for each digit) are constructed
and the output with the highest confidence is chosen as the prediction for the
MNIST (Covertype) dataset.
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TABLE I
THE ACCURACY OF PROPOSED ALGORITHMS FOR COVERTYPE DATASET

Number of nodes 1 5 10 20
Noiseless (C) 56.24% 61.90% 62.83% 64.10%
Fully Collaborative (C) 54.21% 58.63% 59.82% 60.22%
Algorithm 1 (C) - 59.22% 60.65% 61.23%
Noiseless (SC) 62.79% 65.31% 65.96% 66.04%
Fully Collaborative (SC) | 50.60% 52.60% 55.24% 57.73%
Algorithm 1 (SC) - 59.27% 61.34% 62.37%

TABLE 11
THE ACCURACY OF PROPOSED ALGORITHMS FOR MNIST DATASET
Number of nodes 1 5 10 20
Noiseless (C) 77.74% 85.49% 86.83% 87.69%
Fully Collaborative (C) 63.86% 74.04% 76.80% 78.17%
Algorithm 1 (C) - 79.87% 80.52% 81.93%
Noiseless (SC) 84.80% 88.51% 88.76% 88.96%
Fully Collaborative (SC) | 55.04% 65.63% 68.00% 73.9%
Algorithm 1 (SC) - 75.39% 80.93% 82.97%

higher accuracy than “DP-SGD-With Replacement”, another
improvement of up to 10% in accuracy can be achieved by
using the Deep-Q learning based algorithm in both convex
and strongly convex scenarios. Similar results are observed
on the MNIST dataset in Figure 3 and Figure 4.

B. The Impact of the Number of Participating Nodes

In this subsection, we investigate the impact of the number
of participating nodes. In particular, it is assumed that each
node has 60,000 training samples for both datasets. Table I
and Table II show the accuracy of the proposed algorithms in
different scenarios for the Covertype dataset and the MNIST
dataset with e = 1, respectively. It can be observed that as
the number of participating nodes grows, the accuracy for
both “DP-Fully collaborative” and Algorithm 1 increases since
there are more training samples in total which can reduce
the impact of the noise added at each iteration. In addition,
Algorithm 1 is always better than “DP-Fully collaborative”
and as the number of collaborative nodes grows, they are
expected to approach the performance of the noiseless case.
In the simulated scenarios, the accuracy degradation induced
by privacy is within 6% and 4% for Algorithm 1 when there
are 20 collaborative nodes for the MNIST dataset and the
Covertype dataset, respectively.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, the scenario in which multiple nodes (with
limited training samples) collaboratively learn a global model



is studied. A decentralized differentially private without-
replacement SGD algorithm is proposed, and both privacy and
convergence analysis are provided. Extensive simulations are
conducted to demonstrate the effectiveness of the proposed
algorithm. Since we only consider the cases in which the
objective functions are convex, differentially private non-
convex optimization problems remain our future work.

APPENDIX A
PROOF OF LEMMA 4

Proof. Since node m updates the global model at time t—j—1,
(5) can be written as follows:
o W wr =30 20V fo, - (W)
Wiy = 2
=1V [, 0 (wf) + N,
in which Dy, (t — k) is empty (i.e., Vfp, (t—k) (wfm) = 0) if
node m does not update its local model at time ¢ — k either.
Since Dy, (t—j : t) and D) (t—j : t) differ at only the i —th
mini-batch, there are two possible cases.
case 1: (: = t) In this case, we have

(1)

s —wi |l = 07" IV o, ) (W) = V iy, 0 (i)
an
< 2n; L,
- b
12)
case 2: (i € [t — 7,t)) In this case,
' Ly,
HWEH - wﬁl” = §||th - Wy (13)

in which thm and th " are the local models of node m after
j updates using the local mini-batches D,,,(t —j : t — 1) and
D! (t —j : t — 1), respectively. According to Lemma 1-3,
when f;’s are convex, we have

’
||w£7n _ w}fm <

r . /
legin1_wkln1||a if Dp(k—1)=D,,(k—1).
L L, dnm L
Jwy ™ — w™ [+ =5
As a result,

if Dy (k —1) # D! (k —1).

1 I L, 277]5777,11
7 m m < . 14
2Hwt w, || < ker[rtl%}j(,t) 0 (14)

Combining (12) and (14), we have
’ 277LmL
G G k

llwiy — w4 || < kefﬁﬁ);t] — (15)
O

APPENDIX B
PROOF OF THEOREM 2

Proof. Combing Lemma 4 and Theorem 1, it follows that each
update step in Algorithm 1 is (¢, §)-differentially private. Since
each mini-batch is only visited once, Algorithm 1 is also (¢, 0)-
differentially private over the whole dataset. O
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