
Concept Gradient: Concept-based Interpretation
Without Linear Assumption

Andrew Bai
Department of Computer Science

University of California, Los Angeles
andrewbai@cs.ucla.edu

Chih-Kuan Yeh
Department of Computer Science

Carnegie Mellon University
cjyeh@cs.cmu.edu

Pradeep Ravikumar
Department of Computer Science

Carnegie Mellon University
pradeepr@cs.cmu.edu

Neil Y. C. Lin
Department of Bioengineering

University of California, Los Angeles
neillin@g.ucla.edu

Cho-Jui Hsieh
Department of Computer Science

University of California, Los Angeles
chohsieh@cs.ucla.edu

Abstract

Concept-based interpretations of black-box models are often more intuitive for
humans to understand. The most widely adopted approach for concept-based
interpretation is Concept Activation Vector (CAV). CAV relies on learning a linear
relation between some latent representation of a given model and concepts. The
linear separability is usually implicitly assumed but does not hold true in general.
In this work, we started from the original intent of concept-based interpretation and
proposed Concept Gradient (CG), extending concept-based interpretation beyond
linear concept functions. We showed that for a general (potentially non-linear)
concept, we can mathematically evaluate how a small change of concept affecting
the model’s prediction, which leads to an extension of gradient-based interpretation
to the concept space. We demonstrated empirically that CG outperforms CAV in
both toy examples and real world datasets.

1 Introduction

Explaining the prediction mechanism of machine learning models is important, not only for debugging
and gaining trust, but also for humans to learn and actively interact with them. Many feature
attribution methods have been developed to attribute importance to input features for the prediction
of a model [38, 47]. However, input feature attribution may not be ideal in the case where the
input features themselves are not intuitive for humans to understand. It is then desirable to generate
explanations with human-understandable concepts instead, motivating the need of concept based
explanation. For instance, to understand a machine learning model that takes microscopy images as
input and predicts the underlying gene expression, attributing importance to high-level concepts such
as morphological features of cells explains the predictions better than to raw pixel values.

The most common approach for concept-based interpretation is Concept Activation Vector (CAV) [23].
CAV represents a concept with a vector in some layer of the target model and evaluates the sensitivity
of the target model’s gradient in the concept vector’s direction. Many followup works are based
on CAV and share the same fundamental assumption that concepts can be represented as a linear

Preprint. Under review.

ar
X

iv
:2

20
8.

14
96

6v
1

 [c
s.L

G
]

31
 A

ug
 2

02
2

function in some layer of the target model [14, 35]. However, this assumption generally does not hold,
and such restriction limits the application of concept-based attribution to relative simple concepts.

In this paper, we rethink the problem of concept-based explanation and tackle the fundamental linearly
separability issue. One perspective of model interpretation is to measure how small perturbations to a
feature affect the prediction, which can be measured by the input gradients in typical feature-based
explanations. A question naturally arises: is it possible to extend the notion of gradient to the concept
space? If so, non-linear concepts can be easily handled without additional assumptions. In this paper,
we answer this question in affirmative and provide a simple formulation of Concept Gradient (CG),
which measures the how small changes of concept affects the model’s prediction mathematically. If a
unique function from concept to prediction exists, CG exactly recovers the gradient. Otherwise, CG
captures the gradient from prediction to concept through the minimal input subspace, sufficient for
capturing concept information. Given any model f and (potentially non-linear) concept g, CG simply
computes the gradient to linearize both functions at individual input points to capture local linear
behavior of the joint function. We discovered that when the concept function is linear, CG recovers
CAV (with a slightly different scaling factor), which explains why CAV works well in linearly
separable cases. The derivation and formulation of CG also provides the insight for understanding
how concept functions and models interact locally. Empirically, we verified the correctness of CG on
toy examples when the gradient (from model prediction to concept) can be obtained in closed forms.
Furthermore, we showed in real world datasets that the linear separability assumption of CAV does
not always hold and CG outperforms CAV by a large margin. The best recall@30 of CG is higher
than the best of CAV by 6%. CG is also less sensitive to layer selection and the average recall@30
over layers of CG outperforms CAV by 30%.

2 Preliminaries
Problem definition In this paper we use f : Rd → Rk to denote the machine learning model
to be explained, x ∈ Rd to denote input, and y ∈ Rk to denote the label. For an input sample
x̂ ∈ Rd, concept-based explanation aims to explain the prediction f(x̂) based on a set of m concepts
{c1, . . . , cm}. In particular, the goal is to reveal how important is each concept to the prediction.
Concepts can be given in different ways, but in the most general forms, we can consider concepts
as functions mapping from the input space to the concept space, denoted as gi : Rd → R for each
concept i. The function can be explicit or implicit. For example, morphological features such as cell
perimeter and circularity can be given as explicit functions designed by domain experts. On the other
hand, many concept-based explanations in the literature consider concepts given as a set of examples,
which are finite observations from the underlying concept function. We further assume f and g are
differentiable which follows the standard assumption of gradient-based explanation methods.

For simplicity we represent all gi together as a joint function g : Rd → Rm mapping input to an
m-dimensional concept space. We denote a vector in the concept space as c ∈ Rm and ĉ = g(x̂) is
the concept vector for a given instance. For each concept function gi, we can define a local concept
relevance score Rx̂(i, j) to represent how concept ĉi affects target class prediction ŷj = fj(x̂).
Further, by aggregating over all the input instances {x1, · · · , xn}, we can define a global concept
relevance score R(i, j) to represent how a concept gi affects the target class prediction yj . The
goal is to calculate concept relevance scores such that the scores reflect the true underlying concept
importance, possibly aligned with human intuition.

Recap of Concept Activation Vector (CAV) Concept activation vector is a concept-based inter-
pretation method proposed by Kim, et al. [23]. The idea is to represent a concept with a (concept
activation) vector and evaluate the alignment between the input gradients of target model and the
vector. In order for the concept to be represented well by a vector, the concept labels must be linearly
separable in the space where the vector is lies. The authors implicitly assumed that there exists a
layer in the target model where concept labels can be linearly separated.

Let vc denote the concept activation vector associated with concept c. The authors defines the
conceptual sensitivity score to measure concept importance

Sf (x) := ∇f(x) · (vc/‖vc‖). (1)

The main caveat with the conceptual sensitivity scores is the underlying concept function is not
guaranteed to lie in the linear subspace of some neural activation space. Attempting to fit the concept
function with a linear model likely leads to poor results for non-trivial concepts, leading to inaccurate
conceptual sensitivity scores.

2

3 Proposed method

3.1 Definition of Concept Gradient (CG)

We assume x is the input instance, y = f(x) is the k-dimensional model output and c = g(x) is
the m-dimensional concepts. For standard feature-based explanation, which aims to measure the
important of each input dimension of x, gradient-based methods have been widely used. The gradient
map∇f(x) measures how small changes on each input dimension affects the output and serves as
the foundation of many existing explanation methods [1, 37, 38]. This paper is the first formally
extending the notion of gradient to concept-based explanation, and by doing so we enable explanation
of any general nonlinear concept. We define the Concept Gradient (CG) to measure how small
perturbations on each concept affects the label prediction:

(General version of CG) CG(x) := ∇g(x)†∇f(x). (2)

In practice, CG can be easily computed by fine-tuning the original target model on the concept
labels to create a non-linear concept model (see more in Section 4.2). Note that when computing the
gradient of a multivariate function such as f , we follow the convention that∇f(x) ∈ Rd×k where the
(∇f(x))ij =

∂fj(x)
∂xi

. And∇g(x)† ∈ Rm×d is the pseudo-inverse of∇g(x). CG(x) will thus be an
m× k matrix and its (i, j) element measures the contribution of concept i to label j. Pseudo-inverse
is a generalized version of matrix inversion—when the inverse does not exist, it forms the (unique)
inverse mapping from the column space to the row space of the original matrix, while leaving all the
other spaces untouched. Assume the Singular Value Decomposition (SVD) of ∇g(x) is UgΣgV

T
g ,

then ∇g(x)† is defined as VgΣ†gUg where Σ†g is formed from Σg by taking the inverse of all the
non-zero elements and leaving all the zeros alone.

Similar to CAV, CG can be computed at any layer of a neural network by setting x as the neurons in a
particular layer. We will discuss a guideline for layer selection in Section 3.5.

Before formally deriving CG, we use a few special cases to illustrate the method. First, for the case
when x, y and c are all scalars (k = m = d = 1), there exists a function mapping c to y locally
around a particular ĉ = g(x̂) as long as g′(x̂) 6= 0. Basic on calculus, under this condition in 1D case
we have dc

dx = 1/(dx
dc) at x̂, so concept gradient exactly recovers dy

dc :

dy

dc

∣∣∣
c=ĉ

=
dy

dx

∣∣∣
x=x̂
· dx
dc

∣∣∣
c=ĉ

=
dy

dx

∣∣∣
x=x̂

(
dc

dx

∣∣∣
x=x̂

)−1 = f ′(x̂) · 1

g′(x̂)
= CG(x̂). (3)

This can be easily extended to the case when m = d and∇g(x̂) is invertible. In this case, there exists
an unique function g−1(c) mapping c to x locally around ĉ, and by the chain rule we show CG(x̂) is
equivalent to the derivative of y with respect to c:

∂y

∂c

∣∣∣
c=ĉ

=
∂f(g−1(c))

∂c

∣∣∣
c=ĉ

= ∇g−1(ĉ)∇f(g−1(ĉ)) = (∇g(ĉ))−1∇f(x̂) = CG(x̂).

The pseudo-inverse in (2) extends this derivation to the general case when m, d are in arbitrary
dimensions, and we will formally derive it in Section 3.4.

3.2 CG for a single concept

In previous concept attribution methods such as CAV, a canonical setting is to measure the importance
of a single concept. Here we try to simplify CG in this setting when concepts are scalars and discuss
the relationship with CAV.

When m = 1, ∇g(x) is a d× 1 vector and by the definition of pseudo-inverse,∇g(x)† = ∇g(x)T

‖∇g(x)‖2 ,
which leads to the following simplified concept gradient when explaining a single concept:

(Single-concept CG) CG(x) =

(
1

‖∇g(x)‖2
∇g(x)T

)
∇f(x) =

1

‖∇g(x)‖2
∇g(x)T∇f(x). (4)

In this case, CG is simply a normalized version of the inner product between the gradient of concept
(∇g(x)) and the gradient of prediction model (∇f(x)). This is the main formulation we are going
to use in practice, since we found applying CG to each concept individually will match better with
human perception, as will be discussed in Section 3.3.

3

In the special case when g(x) = vC is a linear function (the assumption of CAV), we have CG(x) =
vTC∇f(x)/‖vC‖2, which is almost identical to conceptual sensitivity score in Eq 1 except a slightly
different normalization term where CAV normalizes the inner product by 1/‖vC‖. Furthermore, the
sign of CG and CAV will be identical which explains why CAV is capable of retrieving important
concepts under the linearly separable case.

Here we use a simple example to demonstrate that the normalization term could be important in some
special cases. Consider f as the following network with two-dimensional input [x0, x1]:

y = 0.1z0 + z1,

[
z0
z1

]
=

[
100 0
0 1

] [
h0
h1

]
,

[
h0
h1

]
=

[
0.01 0

0 1

] [
x0
x1

]
,

and c0 = x0, c1 = x1. Then we know since y = 0.1z0 + z1 = 0.1x0 + x1, the contribution of c1
should be 10 times larger than c0. In fact, dy

dc0
= 0.1, dy

dc1
= 1 and it’s easy to verify that CG will

correctly obtain the gradient no matter which layer is chosen for computing (4). However, the results
will be wrong when a different normalization term is used when computing concept explanation on
the hidden layer h. Since c0 = 100h0, c1 = h1, y = 10h0 + h1, we have

For concept c0: v =
dc0
dh

= [100, 0]T , u =
dy

dh
= [10, 1], vTu/‖v‖ = 10, vTu/‖v‖2 = 0.1

For concept c1: v =
dc1
dh

= [0, 1]T ,
dy

dh
= [10, 1], vTu/‖v‖ = 1, vTu/‖v‖2 = 1.

Therefore, the normalization term used in CAV (in red color) will lead to a conclusion that c0 > c1,
while CG (in blue color) will correctly get the actual gradient and conclude c1 > c0. This is mainly
because CG is formally derived from the actual gradient, as we will discuss below. In contrast, CAV
is based on the intuition of “gradient sensitivity” and not the exact chain-rule gradient, so is subject
to per-dimension scaling.

Although the normalization term can be important in some special cases, in practice we do not find
the attribution results to be much different with different normalization terms, probably because
such extreme per-dimensional scaling rarely happens in well-trained neural networks. We compared
different methods of calculating CG (including different normalization schemes) empirically in
Section 4.2. Thus, in practice if the concept can be accurately modeled by a linear function, CAV is
capable of retrieving the concept gradient. However, in general the linear separability assumption
does not hold and CG can handle any nonlinear concept.

3.3 Should we explain multiple concepts jointly or individually?

When attributing the prediction to multiple concepts, our flexible framework enables two options: 1)
treating each concept independently using single-concept attribution formulation (4) 2) Combining
all the concepts together into c ∈ Rm and run CG. Intuitively, option 2 takes the correlations between
concepts into account while option 1 does not. When both concept A and B are important for
prediction but concept A is slightly more important than concept B, option 1 will identify both of
them to be important while option 2 may attribute the prediction to concept B only. For example,
when y = x0 + x1, c0 = x0, c1 = x0 + 0.1x1, option 1 will identify both concepts to be important,
while option 2 will produce negative score for c0. Details can be found in the appendix. We further
compared these two options on real datasets. The results are presented in Section 4.2. We verified that
empirically applying pseudo-inverse individually for each concept is better aligned with the attributes
labeled by human.

3.4 Deriving CG

Here we derive CG in the general case when∇g(x) is not invertible. For simplicity, we assume∇g(x)
has full column rank, which implies g is surjective (this is always true when m = 1). Otherwise we
can directly constraint c within the row space of∇g(x) and the arguments below will still go through.

Our goal is to construct a mapping from c to x and analyze the gradient. However, there are infinite
many functions from c to x that can locally inverse g(x) since the dimension of concept (m) could be
much smaller than input dimension d. Despite infinite number of choices, we show the gradient of
such function always follows a particular form:
Theorem 1. Consider a particular point x̂ with ĉ = g(x̂). Let h : Rm → Rd be a smooth and
differentiable function mapping c to x and satisfy g(h(c)) = c locally within the ε-ball around ĉ, then

4

the gradient of h will take the form of

∇h(ĉ) = ∇g(x̂)† +G⊥, (5)

where any row vector of G⊥ belongs to null(∇g(x0)T) (null space of∇g(x0)T).

The proof of the theorem is deferred to the appendix. Intuitively, this implies the gradient of h will
take a particular form in the space of∇g(x)T while being arbitrary in its null space since any change
in the null space cannot locally affect c. We can verify that g(x) is locally unchanged in the null
space of∇g(x)T , as

g(x+G⊥) ≈ g(x) +∇g(x)TG⊥ = g(x).

This is saying there are multiple choices in ∆x to achieve the same affect on c, since any additional
perturbation in null(∇g(x)T) won’t make any change to c locally. For example, when we want to
change the concept of “color” in an image by ∆x, we can have ∆x only including the minimal
change (e.g., only changing the color), or have ∆x including change of color and any arbitrary change
to another orthogonal factor (e.g., shape). For concept-based attribution, it is natural to consider the
minimal space of x that can cover c, which corresponds to setting G⊥ as 0 in (6).

If we pick such h then ∇h(ĉ) = ∇g(x̂)†, so we can represent y as a function of c locally by
y = p(c) := f(h(c)) near ĉ. By chain rule we then have

∇p(ĉ) = ∇h(ĉ)∇f(x̂) = ∇g(x̂)†∇f(x̂) = CG(x̂).

In summary, although there are infinitely many functions from c to y since the input space has larger
dimension than the concept space, if we consider a subspace in x such that change of x will affect c
(locally) and ignore the orthogonal space that is irrelevant to c, then any function mapping from c to
y through this space will have gradient equal to Concept Gradient defined in (2).

3.5 Layer selection

The representation of input x is relevant to CG, as the information contained differs between
representations. Similar to CAV, CG faces the challenge of properly selecting a layer to perform
calculation. For a feed-forward neural network model, information irrelevant to the target task is
removed when propagating through the layers. Let us denote the representation of x in the lth layer of
the target model f as xfl . We hypothesized that the optimal layer l∗ for performing CG is where the
representation xfl∗ contains minimally necessary and sufficient information to predict concept labels.
Let H denote information entropy and I denote mutual information. Here we overload X and C to
denote input and concept random variables.

l∗ = arg min
l

H(Xfl |C) subject to I(Xfl ; C) = I(X ; C).

Since H(Xfl |C) = H(Xfl) − I(Xfl ; C) and H(Xfl) ≥ H(Xfl+1
), l∗ corresponds to the latest

layer in f where Xfl can predict C. Intuitively, the representation of xfl needs to contain sufficient
information to correctly predict concepts to ensure the concept gradients∇g(x) are accurate. On the
other hand, if there is redundant information in xfl that can be utilized to predict the target y and
concept c, then g may not rely on the same information as f , which causes misalignment in gradients
∇g(x) and ∇f(x) leading to underestimation of concept importance.

The algorithm for selecting the optimal layer to perform CG is simple. The model g is initialized
with weights from f and all the weights are initially frozen. Starting from the last layer, we unfreeze
the layer weights and finetune g to predict concepts. We train until the model converges and evaluate
the concept prediction accuracy on a holdout validation set. The next step is to unfreeze the previous
layer and repeat the whole process until the concept prediction accuracy saturates and no longer
improves as more layers are unfrozen. We have then found the optimal layer for CG as well as the
concept model g.

4 Experimental Results
We started out with a synthetic example to demonstrate that the linear separability assumption does
not hold even in simple cases and CG is superior to CAV. We then benchmarked CG on real world
datasets with ground-truth concept labels to show that CG outperforms CAV in accurately attributing
concept importance and show some qualitative results.

5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

c0

x0 = 0.0033

CAV(net.0)
CAV(net.2)
CAV(net.4)
CG
gt

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

c1

x0 = 0.0033

CAV(net.0)
CAV(net.2)
CAV(net.4)
CG
gt

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

c0

x1 = 0.0033

CAV(net.0)
CAV(net.2)
CAV(net.4)
CG
gt

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

c1

x1 = 0.0033

CAV(net.0)
CAV(net.2)
CAV(net.4)
CG
gt

Figure 1: Visualization of concept predictions (from both CAV and CG). CG concept predictions are
almost identical to the ground truth while CAV is unable to accurately capture the concept relation.4.1 Synthetic example

The purpose of this example is to test whether TCAV and CG can recover the actual gradient ∂y
∂c in a

synthetic scenario where the derivative of target y with respect to concept c uniquely exist and can
be expressed in closed-form. Theoretically, we have shown CG is capable of exactly recovering the
derivative via chain rule in Eq 3. On the other hand, CAV can only retrieve the gradient attribution
if the concepts are linearly separable in some input latent representation. We find that the linear
separability assumption doesn’t hold even in such simple scenarios.

Dataset We define the inputs x0, x1, concepts c0, c1, and target y as follows

x0, x1 ∈ [−1.65, 1.65], c0 = sin(k0 · x0), c1 = sin(k1 · x1), y = α0 · c0 + α1 · c1.

The coefficients are randomly generated k0 = 0.5388, k1 = 0.9198, α0 = 0.3633, α1 = 0.2271.
Clearly, ∂y

∂c0
= α0 and ∂y

∂c1
= α1. The derivative of concepts with respect to inputs can also be

represented in closed-form expression

∂c0
∂x0

= k0 cos(k0 · x0),
∂c0
∂x1

= 0,
∂c1
∂x1

= k1 cos(k1 · x1),
∂c1
∂x0

= 0.

Training First, we trained a 4-hidden-layer, fully-connected neural network model f that maps
(x0, x1) to y. This serves as the target model to be interpreted. For CAV, we calculate the CAVs
corresponding to the two concepts (c0, c1) in the first 3 hidden layers. Note that the last hidden
layer cannot be used to calculate CAV otherwise the concept saliency score S would degenerate
to a constant for all input (x0, x1). For CG, we trained two 4-hidden-layer, fully-connected neural
network models g0, g1 that maps (x0, x1) to c0 and c1, respectively.

Evaluation Fig 1 visualizes the concept prediction results with CAV and CG. Here we fixed one of
the input variables (x0 or x1) to a constant value and show the relation between the remaining input
variable and the predicted concepts. CG captures the concept relation significantly better than the
linear functions of CAV (for all layers). CG concept predictions are almost identical to the ground
truth. Next we compare the concept importance attribution between CAV and CG. For CAV, we
calculate the concept saliency S as concept importance. For CG, we calculate the concept gradient
via chain rule as shown in Eq 3. Recall the ground truth importance attribution for y is α0, α1 for c0,
c1, respectively, constant for every input sample. The mean square error for the predicted concept
importance is 5.64× 10−2, 3.47× 10−2, 6.63× 10−2, and 3.6× 10−3 for CAV (net.0), CAV (net.2),
CAV (net.4), and CG, respectively. The error of CG is an order less than even the best of the CAVs.
Thus, we have shown that CG is capable of capturing the concept relation better, which leads to more
accurate gradient estimation and outperforming CAV in concept importance attribution.

4.2 Quantitative analysis

In this experiment, our goal is to quantitatively benchmark how well CG is capable of correctly
retrieving relevant concepts in a setting where the ground truth concept importance is available.

Dataset We conducted the experiment on the CUB-200-2011 [40] dataset, a dataset for fine-grained
bird image classification. It consists of 11k bird images, 200 bird classes, and 312 binary bird
attributes. These attributes are descriptors of bird parts (e.g. bill shape, breast pattern, eye color)
that can be used for classification. We followed experimental setting and preprocessing in [25]
where class-wise attributed labels are derived from instance-wise attribute labels via majority vote
for denoising and sparse attributes are filtered out, which leaves 112 attributes as concepts for
interpretation.

6

fc
+

M
ix

ed
_7

c+
M

ix
ed

_7
b+

M
ix

ed
_7

a+
M

ix
ed

_6
e+

M
ix

ed
_6

d+
M

ix
ed

_6
c+

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Inception v3

recall@30
concept accuracy

fc
+

la
ye

r4
.2

+
la

ye
r4

.1
+

la
ye

r4
.0

+
la

ye
r3

.5
+

la
ye

r3
.4

+
la

ye
r3

.3
+

0.850

0.875

0.900

0.925

0.950

0.975

Resnet50

recall@30
concept accuracy

cl
as

sif
ie

r.6
+

cl
as

sif
ie

r.3
+

cl
as

sif
ie

r.0
+

fe
at

ur
es

.3
4+

fe
at

ur
es

.2
4+

fe
at

ur
es

.1
4+

fe
at

ur
es

.7
+

0.86

0.88

0.90

0.92

0.94

0.96

0.98

VGG16

recall@30
concept accuracy

Figure 2: CG concept recall and concept prediction accuracy for different finetuned layers and model
architectures on CUB (left to right, deep to shallow layers). The optimal recall generally occurs when
concept accuracy plateaus (circled).

Training We first trained models to predict the class labels as the target model f . We then finetuned
f to predict concepts labels, freezing some model weights, to serve as the concept model g. The
study is conducted on three CNN architectures: Inception v3, Resnet50, and VGG16. We performed
extensive study on how finetuning different portions of the model as well as which layer is used for
evaluating concept gradient affect CG’s importance attribution. We also performed trained CAVs on
different model layers as baselines for comparison. The layer for evaluating CG or CAV defaults to
previous layer of finetuning, unless specified otherwise. More training details are in the Appendix.

Evaluation We evaluate the performance of concept importance attribution by measuring the concept
recall. Specifically, we treat concept prediction as a multilabel classification problem. For an input
instances, there are multiple concepts with positive labels. A good importance attribution method
should assign highest concept importance to concepts associated with positive labels. We rank the
concepts according to their attributed importance and take the top k to calculate recall@k. Higher
recall implies better alignment between predicted and ground truth concept importance. Table 1
compares the best result of TCAV and CG on all 3 model architectures. CG outperforms TCAV
significantly on every model we have experimented with.

Table 1: Performance comparison on CUB
Model Method R@30 R@40 R@50.

Inception v3 TCAV 0.7348 0.8304 0.8950
CG 0.9822 0.9983 0.9999

Resnet50 TCAV 0.6148 0.7053 0.7785
CG 0.9783 0.9977 0.9998

VGG16 TCAV 0.7217 0.8149 0.8791
CG 0.9761 0.9949 0.9984

For CG, we experimented with finetuning with
different portions of the model weights frozen.
We plotted the CG concept recalls in Fig 2. The
plus sign in x-axis implies all layers after the
specified layer are also finetuned. For reference,
we also plotted the concept prediction accuracy.
The first thing we notice is that as the number
of finetuned layers increases, the concept vali-
dation accuracy increases until some layer, then
plateaus. This is consistent with our analysis in Section 3.5. The mutual information between the rep-
resentation of Xl and the concept C gradually reduces in deeper layers. Therefore as more layers are
unfrozen and finetuned, more information can be used to predict concepts. The optimal recall occurs
when the concept accuracy plateaus, as predicted in our analysis. The same phenomenon is observed
in all 3 architectures: Mixed_7b for Inception v3, layer4.1 for Resnet50, and features.34 for
VGG16.

For CAV, we experimented with different layers of the model. We plotted the CAV concept recalls in
Fig 3. Similar to the CG results, the concept accuracy are provided for reference to show how well
the CAVs capture the concepts. We observe that the CAVs in later layers perform better in both recall
and concept accuracy. The trend is generally monotonic. The accuracy never saturates since linear
functions are insufficient to predict the concepts, even for the final layer where the concept is closest
to being linearly separable in the representation of x. CAV is equivalent to CG in the final layer since
the final layer is a linear layer. Interestingly, the result is the best for CAV, but the worst for CG in the
final layer. This is also verified in Fig 2 and Fig 3, where the worst result of CG matches the best
result of CAV at the final layer. Therefore, the performance of CG dominates that of CAV’s.

7

fc
M

ix
ed

_7
c

M
ix

ed
_7

b
M

ix
ed

_6
b

m
ax

po
ol

2
m

ax
po

ol
1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Inception v3

recall@30
concept accuracy

fc
la

ye
r4

.2
la

ye
r4

.1
la

ye
r3

.5
la

ye
r3

.1
la

ye
r2

.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Resnet50

recall@30
concept accuracy

cl
as

sf
ie

r.6
cl

as
sf

ie
r.3

cl
as

sf
ie

r.0
fe

at
ur

es
.2

4
fe

at
ur

es
.1

4
fe

at
ur

es
.7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VGG16

recall@30
concept accuracy

Figure 3: CAV concept recall and prediction accuracy for different selected layers and model
architectures on CUB (left to right, deep to shallow layers). The optimal recall occurs when finetuning
the final layer which coincides with the highest concept accuracy. Performing CAV in the final layer
is equivalent to CG, so best CAV recall in this figure corresponds to the worst CG recall in Fig 2.

Finally, we compare different methods of calculating the concept gradient, including pseudo-inverse
jointly with all concepts versus each concept separately as well as various gradient normalization
schemes. We ran all experiments on Inception v3 with finetuned layers Mixed_7b+. The results are
presented in Table 2. Joint represents the pseudo-inverse being performed on all the concepts jointly
while individual represents the pseudo-inverse being performed on each individual concept separately.
Un-normalized represents pure inner product between ∇f(x) and ∇g(x) without normalization,
normed∇g(x) with normalized∇g(x), and cosine with both normalized∇f(x) and∇g(x). Recall
that individual pseudo-inverse is exactly inner product normalized with squared concept norm. We
observe that the concept attribution with joint pseudo-inverse is not aligned with human perception of
concept importance while all other methods performs equally well. This supports the argument that
the gradient norms in trained neural network are well-behaved and it is unlikely to encounter cases
where normalization influences the attribution results significantly.

4.3 Qualitative analysis Table 2: Comparison of different CG calculations
Method pseudo-inverse inner product

joint individual un-normalized normed ∇g(x) cosine
recall@30 0.3146 0.9822 0.9818 0.9822 0.9822
recall@40 0.4121 0.9983 0.9983 0.9983 0.9983
recall@50 0.5053 0.9999 0.9983 0.9999 0.9999

The purpose of this experiment is to provide in-
tuition and serve as a sanity check by visualizing
instances and how CG works.

Dataset We conducted the experiment on the
Animals with Attributes 2 (AwA2) dataset [42], an image classification dataset with 37k animal
images, 50 animal classes, and 85 binary attributes for each class. These concepts cover a wide
range of semantics, from low level colors and textures, to high level abstract descriptions (e.g.
“smart”, “domestic”). We further filtered out 60 concepts that is visible in the input images to perform
interpretation.

Evaluation The evaluation is performed on the validation set. Fig 4 visualizes the instances with
the highest CG importance attribution for 6 selected concepts, filtering out samples from the same
class (top 1 instance in the top 3 classes). The concepts are selected to represent different levels of
semantics. The top row contains colors (low-level), the middle row contains textures (medium-level),
and the bottom row contains body components (high-level). Observe that CG is capable of handling
different levels of semantics simultaneously well, owing to the expressiveness of non-linear concept
model g. Additionally, we presented random sampled instances from the validation set and listed
top-10 most important concepts as attributed by CG (see the appendix). We intentionally avoided
curating the visualization samples to demonstrate true importance attribution performance of CG.
The most important concepts for each instance passed the sanity check. There are no contradictory
concept-class pairings and importance is attributed to concepts existent in the images.

5 Related work
Our work belongs to post-hoc concept-based explanations. Post-hoc explanations aims to explain
a given fixed machine learning model, which can be contrasted with self-interpretable models
[6, 8, 27, 41] which train an inherently interpretable model from scratch. Other classes of post-hoc
explanations include featured-based explanations [49, 31, 10, 37, 38], counterfactual explanations[11,
18, 39, 16, 20, 32, 19], and sample-based explanations [4, 22, 24, 43, 33, 21]. Our work considers

8

brown yellow

stripes spots

tusks flippers

Figure 4: Visualization of instances with highest CG attributed importance (AwA2 validation set) for
each concept (top 1 instance in the top 3 classes per concept). CG is capable of handling low level
(colors), middle level (textures), and high level (body components) concepts simultaneously.
the gradient from prediction to concepts, which is in spirit connected to feature explanations which
considers the gradient from prediction to feature inputs [47, 1].

Concept-based explanations aims to provide human-centered explanations which answer the question
“does this human understandable concept relates to the model prediction?”[23, 48]. Some follows-up
for concept-based explanations include when are concept sufficient to explain a model [44], computing
interventions on concepts for post-hoc models [15] and self-interpretable models [25], combining
concept with other feature attributions [35], unsupervised discovery of concepts [14, 45, 13], and
debiasing concepts [2]. The most similar work to ours is the work of [9], which is motivated by the
issue of CAV that concept does not necessarily lie in the linear subspace of some activation layer.
They address this problem in the self-explainable model setting by training a self-interpretable model
and limits the concepts to be whitened. On the other hand, our work address the non-linear concept
problem of CAV in the post-hoc setting by learning a non-linear concept component and connects
to the activation space via chain rule. As a result, our method can be applied to the setting when
the user has no control of the training process of the model. Another work that considers nonlinear
modeling of concepts is that of [46]. They adopted a causal-based interpretation instead and consider
the co-occurrence of predicted concept and target labels to capture the logical causal relation.

6 Conclusion
We revisited the fundamental assumptions of CAV, one of the most popular concept-based explanation
methods. We tackled the problem from a mathematical standpoint and proposed CG to generalize CAV
beyond linear functions and corrected normalization term. Empirical experiments demonstrated that
CG outperforms CAV in both synthetic and real datasets. Currently CG depends on the representation
of input. Devising a input representation invariant method is an interesting future direction.

Acknowledgments and Disclosure of Funding

I would like to thank Karen who supported me and offered deep insight into the study.

References
[1] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better under-

standing of gradient-based attribution methods for deep neural networks. arXiv preprint
arXiv:1711.06104, 2017.

[2] Mohammad Taha Bahadori and David Heckerman. Debiasing concept-based explanations with
causal analysis. In International Conference on Learning Representations, 2020.

[3] E. J. Benjamin, P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy.
Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation, 98
(10):946–952, Sep 1998.

[4] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification. The
Annals of Applied Statistics, pages 2403–2424, 2011.

[5] J. T. Bigger. Why patients with congestive heart failure die: arrhythmias and sudden cardiac
death. Circulation, 75(5 Pt 2):28–35, May 1987.

9

[6] Diane Bouchacourt and Ludovic Denoyer. Educe: Explaining model decisions through unsuper-
vised concepts extraction. arXiv preprint arXiv:1905.11852, 2019.

[7] W. Bougouin, E. Marijon, E. Puymirat, P. Defaye, D. S. Celermajer, J. Y. Le Heuzey, S. Boveda,
S. Kacet, P. Mabo, C. Barnay, A. Da Costa, J. C. Deharo, J. C. Daubert, J. Ferrières, T. Simon,
and N. Danchin. Incidence of sudden cardiac death after ventricular fibrillation complicating
acute myocardial infarction: a 5-year cause-of-death analysis of the FAST-MI 2005 registry.
Eur Heart J, 35(2):116–122, Jan 2014.

[8] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This
looks like that: deep learning for interpretable image recognition. In Advances in Neural
Information Processing Systems, pages 8928–8939, 2019.

[9] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782, 2020.

[10] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Advances
in Neural Information Processing Systems, pages 6967–6976. NeurIPS, 2017.

[11] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. In Advances in Neural Information Processing Systems, pages 592–603.
NeurIPS, 2018.

[12] A. Eisen, D. L. Bhatt, P. G. Steg, K. A. Eagle, S. Goto, J. Guo, S. C. Smith, E. M. Ohman, and
B. M. Scirica. Angina and Future Cardiovascular Events in Stable Patients With Coronary Artery
Disease: Insights From the Reduction of Atherothrombosis for Continued Health (REACH)
Registry. J Am Heart Assoc, 5(10), 09 2016.

[13] Asma Ghandeharioun, Been Kim, Chun-Liang Li, Brendan Jou, Brian Eoff, and Rosalind W
Picard. Dissect: Disentangled simultaneous explanations via concept traversals. arXiv preprint
arXiv:2105.15164, 2021.

[14] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based
explanations. In Advances in Neural Information Processing Systems, 2019.

[15] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal concept
effect (cace). arXiv preprint arXiv:1907.07165, 2019.

[16] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual
visual explanations. In International Conference on Machine Learning, pages 2376–2384.
ICML, 2019.

[17] P. Harikrishnan, T. Gupta, C. Palaniswamy, D. Kolte, S. Khera, M. Mujib, W. S. Aronow,
C. Ahn, S. Sule, D. Jain, A. Ahmed, H. A. Cooper, J. Jacobson, S. Iwai, W. H. Frishman,
D. L. Bhatt, G. C. Fonarow, and J. A. Panza. Complete Heart Block Complicating ST-Segment
Elevation Myocardial Infarction: Temporal Trends and Association With In-Hospital Outcomes.
JACC Clin Electrophysiol, 1(6):529–538, Dec 2015.

[18] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual
explanations. In ECCV. ECCV, 2018.

[19] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon
Kim, Sanjiv Kumar, and Cho-Jui Hsieh. Evaluations and methods for explanation through
robustness analysis. In International Conference on Learning Representations. ICLR, 2021.
URL https://openreview.net/forum?id=4dXmpCDGNp7.

[20] S. Joshi, O. Koyejo, Warut D. Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards realistic
individual recourse and actionable explanations in black-box decision making systems. ArXiv,
abs/1907.09615, 2019.

[21] Rajiv Khanna, Been Kim, Joydeep Ghosh, and Oluwasanmi Koyejo. Interpreting black box
predictions using fisher kernels. arXiv preprint arXiv:1810.10118, pages 3382–3390, 2018.

10

https://openreview.net/forum?id=4dXmpCDGNp7

[22] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to
criticize! criticism for interpretability. In Advances in Neural Information Processing Systems,
pages 2280–2288. NeurIPS, 2016.

[23] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning, pages 2673–2682. ICML, 2018.

[24] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning, pages 1885–1894. ICML, 2017.

[25] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. arXiv preprint arXiv:2007.04612, 2020.

[26] B. A. Koplan and W. G. Stevenson. Ventricular tachycardia and sudden cardiac death. Mayo
Clin Proc, 84(3):289–297, Mar 2009.

[27] Guang-He Lee, Wengong Jin, David Alvarez-Melis, and Tommi Jaakkola. Functional trans-
parency for structured data: a game-theoretic approach. In International Conference on Machine
Learning, pages 3723–3733. PMLR, 2019.

[28] Ari D Leib, Lisa A Foris, Tran Nguyen, and Karam Khaddour. Dressler syndrome. 2017.

[29] C. Medi, J. M. Kalman, and S. B. Freedman. Supraventricular tachycardia. Med J Aust, 190(5):
255–260, Mar 2009.

[30] S. Orn, J. G. Cleland, M. Romo, J. Kjekshus, and K. Dickstein. Recurrent infarction causes the
most deaths following myocardial infarction with left ventricular dysfunction. Am J Med, 118
(7):752–758, Jul 2005.

[31] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation
of black-box models. arXiv preprint arXiv:1806.07421, 2018.

[32] Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodríguez, T. D. Bie, and Peter A. Flach. Face:
Feasible and actionable counterfactual explanations. Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society, 2020.

[33] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33,
2020.

[34] A. Roguin, D. Behar, H. Ben Ami, S. A. Reisner, S. Edelstein, S. Linn, and Y. Edoute. Long-
term prognosis of acute pulmonary oedema–an ominous outcome. Eur J Heart Fail, 2(2):
137–144, Jun 2000.

[35] Jessica Schrouff, Sebastien Baur, Shaobo Hou, Diana Mincu, Eric Loreaux, Ralph Blanes,
James Wexler, Alan Karthikesalingam, and Been Kim. Best of both worlds: local and global
explanations with human-understandable concepts. arXiv preprint arXiv:2106.08641, 2021.

[36] F. Shamshad, S. Kenchaiah, P. V. Finn, J. Soler-Soler, J. J. McMurray, E. J. Velazquez, A. P.
Maggioni, R. M. Califf, K. Swedberg, L. Kober, Y. Belenkov, S. Varshavsky, M. A. Pfeffer, and
S. D. Solomon. Fatal myocardial rupture after acute myocardial infarction complicated by heart
failure, left ventricular dysfunction, or both: the VALsartan In Acute myocardial iNfarcTion
Trial (VALIANT). Am Heart J, 160(1):145–151, Jul 2010.

[37] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. International Conference on Machine Learning, 2017.

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

[39] Jasper van der Waa, Marcel Robeer, Jurriaan van Diggelen, Matthieu Brinkhuis, and Mark
Neerincx. Contrastive Explanations with Local Foil Trees. In 2018 Workshop on Human
Interpretability in Machine Learning (WHI). WHI, 2018.

11

[40] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[41] Fulton Wang and Cynthia Rudin. Falling rule lists. In Artificial Intelligence and Statistics,
pages 1013–1022, 2015.

[42] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly. IEEE transactions on pattern
analysis and machine intelligence, 41(9):2251–2265, 2018.

[43] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point
selection for explaining deep neural networks. In Advances in Neural Information Processing
Systems, pages 9291–9301. NeurIPS, 2018.

[44] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep Ravikumar.
On the (in)fidelity and sensitivity of explanations. In NeurIPS, volume abs/1901.09392, pages
10965–10976, 2019.

[45] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in
Neural Information Processing Systems, 33, 2020.

[46] Mohammad Nokhbeh Zaeem and Majid Komeili. Cause and effect: Concept-based explanation
of neural networks. In 2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 2730–2736. IEEE, 2021.

[47] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[48] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition
for visual explanation. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 119–134. ECCV, 2018.

[49] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural
network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

12

A Limitations

CG is a gradient-based interpretation methods, which is can only be applied to differentiable white-
box models. Gradient-based methods convey how small changes in the input affect the output via
gradients. Larger changes in the input requires intervention-based causal analysis to predict how the
output is affected. As a modification upon TCAV, CG also requires users to specify concepts with
sufficient representative data samples or close-form concept functions. Sufficient amount of data is
more important for CG to prevent the nonlinear function to overfit. Automatic discovery of novel
concepts requires introducing other tools. Finally, CG requires fitting non-linear concept models if
the concept is provided in the form of representative data samples. This might be computationally
intensive for complex non-linear models (e.g. neural networks). The quality of interpretation highly
depends on how accurately the concept is captured by the concept model.

B Example for demonstrating different CG calculation methods

We use a simple toy example to explain the difference between option 1 and 2. Assume y = x0 + x1
and two concepts c0 = x0, c1 = x0 + 0.1x1. Since these relationships are all linear, concept gradient
will be invariant to reference points. The results computed by option 1 and 2 are

Option 1 (individually apply (4)): Rc0,y = 1, Rc1,y ≈ 1.01

Option 2 (apply CG jointly by (2)): Rc0,y = −9, Rc1,y = 10

At the first glance, it is weird why the contribution of c0 is negative to y with option 2. But in
fact there exists a unique function y = −9c0 + 10c1 mapping c to y (when jointly considering two
concepts), which leads to negative contribution of c0. This shows that when considering two concepts
together as a joint function, the gradient is trying to capture the effect of one concept with respect to
others, which may be non-intuitive to human.

C Proof

Theorem 2. Let h : Rm → Rd be a smooth and differentiable function mapping c to x and satisfy
g(h(c)) = c locally within an ε-ball around c0. Then the gradient of h will take the form of

∇h(c0) = ∇g(x0)† + g⊥, (6)

where g⊥ is in the null space of∇g(x0)T .

Proof. Assume h : Rm → Rd is a function mapping c to x. By Taylor expansion we have

g(x′) = g(x) +∇g(x)T (x′ − x) +O(‖x′ − x‖2) (7)

h(c′) = h(c) +∇h(c)T (c′ − c) +O(‖c′ − c‖2), (8)

where x′ = h(c′) and x = h(c). Therefore

g(x′) = g(x) +∇g(x)T (h(c′)− h(c)) +O(‖h(c′)− h(c)‖2)

= g(x) +∇g(x)T∇h(c)T (c′ − c) +O(‖∇g(x)‖2‖c′ − c‖2) +O(‖h(c′)− h(c)‖2).

The last two terms are both O(‖c − c′‖2) since ∇g(x) is a constant and h is smooth (thus locally
Lipschitz), so

c′ − c = ∇g(x)T∇h(c)T (c′ − c) +O(‖c− c‖2). (9)

Therefore,∇g(x)T∇h(c)T = I , which means∇h(c) = ∇g(x)† + g⊥.

C.1 Definition of Concept Gradient

Given input space X and two differentiable functions f : X → Y and g : X → C, where Y is the
target label space and C is the concept label space. We define the concept gradient of x ∈ X to
attribute the prediction of the model to the concepts:

CG(x) := ∇f(x) · ∇g(x)†, (10)

13

where ∇g(x)† denotes the pseudo-inverse of ∇g(x). Let y = f(x) ∈ Y and c = g(x) ∈ C.
Essentially concept gradient approximates gradient-based saliency of y to c, h′(c), via chain rule.
For the case where X , Y , and C are all scalar fields, the concept gradient exactly recovers h′(c) if
g′(x) 6= 0 for all x ∈ X ,

Given input space X and two differentiable functions f : X → Y and g : X → C, where Y is the
target label space and C is the concept label space. Suppose there exist an unknown differentiable
function h : C → Y s.t. f = h ◦ g. Let f ′, g′, and h′ denote the first-order derivatives. We define the
concept gradient of x ∈ X as

CG(x) := ∇f(x) · ∇g(x)†

where ∇g(x)† denotes the pseudo-inverse of ∇g(x). Let y = f(x) ∈ Y and c = g(x) ∈ C.
Essentially concept gradient approximates gradient-based saliency of y to c, h′(c), via chain rule.
For the case where X , Y , and C are all scalar fields, the concept gradient exactly recovers h′(c) if
g′(x) 6= 0 for all x ∈ X ,

h′(c) =
dy
dc

=
dy
dx
· dx

dc
=

dy
dx
· (dc

dx
)−1 = f ′(x) · 1

g′(x)
= CG(x)

We now generalize X to a n-dimensional vector space. Since f , g, and h are differentiable, we can
perform Taylor expansion around x and c

f(x′) = f(x) +∇f(x)(x′ − x) +O((x′ − x)2) (11)

g(x′) = g(x) +∇g(x)(x′ − x) +O((x′ − x)2) (12)

h(c′) = h(c) + h′(c)(c′ − c) +O((c′ − c)2) (13)

Let us denote ∆x = x′ − x. We can plug Eq 12 into Eq 13

h(g(x′))− h(c) = h′(c)(g(x′)− c) +O((g(x′)− c)2)

= h′(c) ·
(
g(x) +∇g(x)∆x+O(∆x2)− c

)
+O((g(x′)− c)2)

= h′(c) ·
(
∇g(x)∆x+O(∆x2)

)
+O((g(x′)− c)2)

≈ h′(c) ·
(
∇g(x)∆x

)

f(x′)− f(x) = ∇f(x)∆x+O(∆x2)

≈ ∇f(x)∆x

h(g(x′))− h(c) = f(x′)− f(x)

h′(c) ·
(
∇g(x)∆x

)
≈ ∇f(x)∆x

Let us denote the set of right inverses for∇g(x) as G−1r (x).

G−1r (x) = {∇g(x)† + gT⊥, ∀g⊥ : 〈∇g(x), g⊥〉 = 0}

By definition for all g−1r ∈ G−1r (x),

h′(c) ·∆x ≈ ∇f(x) · g−1r ·∆x

14

If ∇g(x) is invertible, G−1r (x) = {∇g(x)†} and the equality exactly holds

h′(c) = ∇f(x) · ∇g(x)
†

= ∇f(x) · ∇g(x)
−1

If ∇g(x) is not invertible, g−1r is not unique and infinitely many right inverses exist for ∇g(x). In
this case, how does the selection of right inverse relate to interpretation? For interpretation, the
goal is to attribute a small change ∆c via g−1r to a small change ∆x. Non-invertibility of ∇g(x)
implies there are many ways we could perform the attribution. Consider the alignment between some
g−1r = ∇g(x)† + gT⊥ and ∇g(x),

∇g(x)·(∇g(x)† + gT⊥)

‖∇g(x)‖ · ‖∇g(x)† + gT⊥‖
=

∇g(x)·∇g(x)†

‖∇g(x)‖ · ‖∇g(x)† + gT⊥‖
≤ ∇g(x)·∇g(x)†

‖∇g(x)‖ · ‖∇g(x)†‖

We argue that the best interpretation is when the attribution is faithful to the relation g between X
and C, i.e., when g−1r is best aligned with ∇g(x). Observe that ∇g(x)† is in the same direction as
∇g(x). On the other hand, any right inverse with g⊥ 6= 0 is attributing some proportion of dc to dx
in a direction that is orthogonal to∇g(x). Thus, the best choice for g−1r is ∇g(x)†.

C.2 Connection with CAV

CAV is a special case of concept gradient with g restricted to linear functions. Let vc denote the
concept activation vector associated with concept c. CAV defines the conceptual sensitivity S as the
inner product of the input gradient and concept activation vector,

S(x) := ∇f(x) · vc

‖vc‖

If g is restricted to linear functions,

g(x) = vT
c · x+ bc

for some constant bias bc. Concept gradient is equivalent to CAV conceptual sensitivity normalized
by the norm of the concept activation vector,

CG(x) = ∇f(x) · ∇g(x)† = ∇f(x) · (vT
c)† = ∇f(x) · vc

‖vc‖2
=
S(x)

‖vc‖

Thus, if the concept can be accurately modeled by a linear function, CAV is capable of retrieving
the concept gradient. However, in general the linear separability assumption does not hold. In
contrast, concept gradient considers general function classes for g, which better captures the relation
between X and C. Given accurately modeling the concept with g is a necessary condition for correct
interpretation, concept gradient is superior to CAV.

D Alternative perspective for layer selection

We can also view layer selection in a typical bias-variance tradeoff perspective. If we selected a later
layer to evaluate CG, we are biased towards using a representation of x that is optimized for predicting
the target y, not c. However, since the information consists in the representation is less, we also enjoy
the benefit of less variance. On the other hand, if we selected an earlier layer to evaluate CG, then
we suffer less from the bias (towards y) but is penalized with higher variance due to abundance of
information. The optimal layer is where the representation of x is capable of predicting the concept
(minimized bias) while no redundant information is available (minimized variance).

We verified the bias-variance tradeoff hypothesis with experiments. More bias (with respect to target
labels) in later layers is confirmed with the observation that finetuning more layers yields higher
concept prediction accuracy (see Fig 2). Less variance in later layers is confirmed with the experiment
below. We repeated the CUB experiments on the Inception v3 model with 5 different random seeds
and evaluated the variance of the gradient∇g(x) over repeated trials, averaged over all data points.
Specifically, the gradients for models finetuned starting from different layers are evaluated on the
same layer (Mixed_6d) for fair comparison. The results are shown in Fig 5 and confirmed the
variance hypothesis.

15

fc+
Mixed_7c+

Mixed_7b+
Mixed_7a+

Mixed_6e+

2

3

4

5

6

av
er

ag
e

gr
ad

ie
nt

 v
ar

ia
nc

e

1e 7

Figure 5: Variance of gradients finetuning starting from different layers. The variance is higher when
finetuning starting from earlier layers.

E Experiments on the Myocardial Infarction Complications Database

To verify whether CG is effective for critical applications (e.g. medical domain) with non-natural-
image data, we conducted experiment on the Myocardial infarction complications database. The
database consists of 1,700 entries of patient data with 112 fields of input tabular features, 11 compli-
cation fields for prediction, and 1 field of lethal outcome also for prediction. The input features are
measurements taken when the patients were admitted to the hospital due to myocardial infarction as
well as past medical records. The target models predicts lethal outcome given the 112 input fields.
The concept models predict the complications given the same 112 input fields. Our goal is to interpret
the lethal outcome with the complications and compare our interpretation with existing literature
regarding how each complication affects the risk of death. We expect good interpretations to assign
high relevance to complications that poses the highest mortality risk.

Table 3 shows the CG interpretation scores as well as the excerpted description of the complication
mortality risk in existing medical literature. The severity of descriptions in medical literature are
largely aligned with the CG scores. Highest risk complications are attributed the most importance
(e.g. relapse of myocardial infarction, chronic heart failure) while the lower risk complications
are attributed the least importance (e.g. supraventricular tachycardia, post-infarction angina). This
supports CG as an effective method for real-life practical use for interpreting models in critical
domains.

F Comparison with other nonlinear concept modeling interpretation
methods

[46] proposed a causal-based interpretation method which also considers nonlinear modeling of
concepts. Different from our gradient-based perspective, they directly utilize the concept model
prediction output and evaluate the co-occurrence of concept and target labels as a form of causal
relation. Their interpretation evaluates whether concepts are necessary or sufficient conditions for the
target function. Although their method is only loosely related to CG, we included the comparison of
performance on the CUB experiment for curious readers that might wonder how different approaches
of utilizing the nonlinear concept model might affect the interpretation quality.

Table 4: Performance comparison on CUB
Method R@30 R@40 R@50.
TCAV 0.7348 0.8304 0.8950

CG 0.9822 0.9983 0.9999
Sufficient [46] 0.0994 0.1488 0.2083
Necessary [46] 0.5451 0.6436 0.7243

We benchmarked on the CUB experiment set-
ting in Section 4.2 focusing on the Inception
v3 model. The experiment results presented in
Table 4 suggest interpreting concepts as neces-
sary conditions perform much better sufficient
conditions. This is expected since no concept
in the CUB dataset alone is sufficient to predict

16

Table 3: Mortality risk attribution with respect to myocardial infarction complications and comparison
with existing medical literature

Complication CG Excerpted mortality risk description
Relapse of myocardial infarction 3.466 Recurrent infarction causes the most deaths

following myocardial infarction with left ven-
tricular dysfunction. [30]

Chronic heart failure 3.265 Patients with congestive heart failure have a
high incidence of sudden cardiac death that
is attributed to ventricular arrhythmias. The
mortality rate in a group of patients with class
III and IV heart failure is about 40% per year,
and half of the deaths are sudden. [5]

Atrial fibrillation 2.285 AF increases the risk of death by 1.5-fold in
men and 1.9-fold in women. [3]

Myocardial rupture 1.617 Myocardial rupture is a relatively rare and
usually fatal complication of myocardial in-
farction (MI). [36]

Pulmonary edema 1.505 Pulmonary oedema in patients with acute MI
hospitalized in coronary care units was re-
ported to be associated with a high mortality
of 38–57%. [34]

Ventricular fibrillation 0.910 Patients developing VF in the setting of acute
MI are at higher risk of in-hospital mortal-
ity. [7]

Third-degree AV block 0.691 In patients with CHB complicating STEMI,
there was no change in risk-adjusted in-
hospital mortality during the study pe-
riod. [17]

Ventricular tachycardia 0.514 The risk and consequently the therapeutic
approach are determined by the underlying
heart disease. Ventricular tachycardia is most
commonly associated with ischemic heart dis-
ease or other forms of structural heart dis-
ease that are associated with a risk of sudden
death. [26]

Dressler syndrome 0.316 The prognosis for patients with DS is typically
considered to be quite good. [28]

Supraventricular tachycardia 0.236 Although SVT is usually not life-threatening,
many patients suffer recurrent symptoms that
have a major impact on their quality of
life. [29]

Post-infarction angina -1.404 After adjustment, angina was only weakly
associated with cardiovascular death, myocar-
dial infarction, or stroke, but significantly
associated with heart failure, cardiovascular
hospitalization, and coronary revasculariza-
tion. [12]

17

the target bird class. In general, [46]’s method
performs poorly on retrieving relevant concepts relative to TCAV and even worse when compared
with CG. Interestingly, they benchmarked on a synthetic dataset where captions are artificially added
to natural images to serve as concepts and demonstrated clear causal relations with their proposed
method in their original paper. We suspect causal relations may not be well captured by co-occurrence
of concept and target labels alone in real world datasets.

G Ablation study on concept model configuration

Experiments in Section 4.2 and 4.3 shares the same model architecture for the target and concept
model. The two design choices here are 1) using the same model architecture and 2) warm-starting
the training of concept models with target model weights. The choices are rather straightforward
since both models need to share the same input feature representation for the gradients with respect
to the input layer to be meaningful. Nevertheless, we conducted an ablation study on the CUB
experiment to verify how using different model architectures different weight initialization for the
concept model affects interpretation. In this case, CG needs to be evaluated in the input layer, the
only layer where the feature representation is shared between target and concept models.

The model architecture alabltion study results are presented in Table 5. The CG scores are all
evaluated in the input layer. Evidently, using the same model architecture for both the target and
concept models is crucial for good interpretation quality with CG. The degradation of interpretation
when using different architectures may be caused by mismatched usage of input feature representation
between models. The concept model weight initialization results are presented in Table 6. Using
target model weights as initialization outperforms using ImageNet pretrained weights significantly.
The more similar the pretrained task is to the downstream task is, the better the finetuned performance.
In this case, the concept prediction accuracy suggests the target model task of bird classification is a
better pretraining task for predicting bird concepts, allowing the concepts to be better captured by the
concept function (higher accuracy). This naturally leads to better interpretation results.

Table 5: Ablation study on concept model architecture

Target model Concept model R@30 R@40 R@50.
Inception v3 Inception v3 0.8716 0.9310 0.9570
Inception v3 Resnet50 0.5352 0.6201 0.6835
Inception v3 VGG16 0.4860 0.5609 0.6194

Resnet50 Resnet50 0.9329 0.9755 0.9881
Resnet50 Inception v3 0.6233 0.7051 0.7569
Resnet50 VGG16 0.5542 0.6312 0.6916
VGG16 VGG16 0.9549 0.9856 0.9941
VGG16 Inception v3 0.5254 0.6060 0.6635
VGG16 Resnet50 0.6094 0.6984 0.7582

Table 6: Ablation study on concept model weight initialization

Weight initialization Concept accuracy R@30 R@40 R@50.
ImageNet pretrained 0.9161 0.5771 0.6701 0.7394

target model pretrained 0.9724 0.8716 0.9310 0.9570

H Experiment details

H.1 Animal with Attributes 2 (AwA2)

Data preprocessing Since the original task is proposed for zero-shot classification, the class labels
in the default training and validation set is disjoint. To construct a typical classification task, we
combined all data together then performed a 80:20 split for the new training and validation set. During
training, the input images are augmented by random color jittering, horizontal flipping, and resizing,
then cropped to the default input resolution of the model architecture (299 for Inception v3, 224 for
others). During evaluation, the input images are resized and center cropped to the input resolution.

18

The attribute labels provided in the dataset contains both concrete and abstract concepts. Some
abstract concepts cannot be identified merely by looking at the input image (e.g. new world vs
old world). We filtered out 25 attributes that are not identifiable via the input image and used the
remaining 60 attributes for interpretation.

Training We trained the target model f with Inception v3 architecture with ImageNet pretrained
weights (excluding the final fully connected layer). We optimized with Adam (learning rate of 0.001,
beta1 of 0.9, and beta2 of 0.999) with weight decay 0.0004 and schedule the learning rate decay by
0.1 every 15 epochs until the learning rate reaches 0.00001. We trained the model for a maximum of
200 epochs and early stopped if the validation accuracy had not improved for 50 consecutive epochs.
The validation accuracy of the trained target model is 0.947.

We trained the concept model g by finetuning different parts of f (freezing different layer model
weights). We reweighted the loss for positive and negative class to balance class proportions. We
optimized with Adam (learning rate of 0.01, beta1 of 0.9, and beta2 of 0.999) with weight decay
0.00004 and schedule the learning rate decay by 0.1 every 25 epochs until the learning rate reaches
0.00001. We trained the model for a maximum of 200 epochs and early stopped if the validation
accuracy had not improved for 50 consecutive epochs.

Evaluation Visualization is conducted on the validation set. Finetuning from Mixed_7a is the
latest layer that still predicted the concepts well. According to the layer selection guideline, we
selected Mixed_7a to evaluate CG. We computed CG with the individual inverse method (4). Fig 6
shows random samples from the validation set and their top 10 rated concepts. These samples are
intentionally randomly sampled as opposed to intentionally curated to provide an intuition of the
true effectiveness of CG. In general, the retrieved highest ranked concepts are relevant with the input
image. In terms of sanity check, there are no contradictions in the concepts (e.g. furry is never
assigned to an whales).

1. tail
2. strong
3. fish
4. toughskin
5. big
6. hairless
7. flippers
8. agility
9. ocean
10. black

1. walks
2. furry
3. ground
4. strong
5. quadrapedal
6. black
7. white
8. paws
9. big
10. forest

1. quadrapedal
2. ground
3. walks
4. timid
5. furry
6. tail
7. black
8. brown
9. toughskin
10. big

1. quadrapedal
2. furry
3. ground
4. mountains
5. bulbous
6. hooves
7. vegetation
8. fields
9. white
10. walks

1. ground
2. furry
3. agility
4. quadrapedal
5. walks
6. tail
7. fields
8. brown
9. forest
10. paws

1. furry
2. brown
3. agility
4. forest
5. walks
6. ground
7. quadrapedal
8. lean
9. strong
10. tail

1. tail
2. big
3. arctic
4. blue
5. ocean
6. flippers
7. toughskin
8. fish
9. gray
10. strong

1. quadrapedal
2. furry
3. tail
4. ground
5. black
6. walks
7. gray
8. brown
9. timid
10. fierce

1. brown
2. ground
3. tail
4. timid
5. furry
6. quadrapedal
7. walks
8. lean
9. black
10. gray

1. furry
2. walks
3. lean
4. agility
5. white
6. tail
7. quadrapedal
8. timid
9. meat
10. paws

1. furry
2. black
3. brown
4. quadrapedal
5. walks
6. strong
7. agility
8. vegetation
9. jungle
10. small

1. quadrapedal
2. walks
3. ground
4. strong
5. tail
6. big
7. furry
8. plains
9. bulbous
10. toughskin

Figure 6: Visualization of randomly sampled instances (AwA2 validation set) and the most important
concepts associated with their respective CG attribution (top 10 concept, 60 in total).

19

Table 7: Finetune layers for architectures

Architecture Finetuned layers
Inception v3 fc+, Mixed_7c+, Mixed_7b+, Mixed_7a+, Mixed_6e+,

Mixed_6d+, Mixed_6c+
Resnet50 fc+, layer4.2+, layer4.1+, layer4.0+, layer3.5+,

layer3.4+, layer3.3+
VGG16 classifier.6+, classifier.3+, classifier.0+,

features.34+, features.24+, features.14+,
features.7+

H.2 Caltech-UCSD Birds-200-2011 (CUB)

Data preprocessing Similar to the AWA2 experiments, the input images are augmented by random
color jittering, horizontal flipping, and resizing, then cropped to the default input resolution of the
model architecture (299 for Inception v3, 224 for others) during training. During evaluation, the
input images are resized and center cropped to the input resolution. We followed [25] procedure of
denoising the attribute labels by majority voting for the class attribute label and removing attributes
with insufficient data samples. Denoising is necessary since the annotations are collected from
Amazon Mechanical Turk and contradicting labels are not uncommon. A total of 112 attributes
remains for conducting interpretation. The class attribute labels are assigned as instance labels, i.e.,
instances from the same class share the same attribute labels.

Training We trained the target model f with three different CNN architectures: Inception v3,
Resnet50, and VGG16 (with batch normalization), each with ImageNet pretrained weights (excluding
the final fully connected layer). We searched for hyperparameters over a range of learning rates
([0.01, 0.001]), learning rate schedules (decaying by 0.1 for every [15, 20, 25] epochs until reaching
0.0001), and weight decay ([0.0004, 0.00004]). We optimized with the SGD optimizer. We trained
the model for a maximum of 200 epochs and early stopped if the validation accuracy had not improved
for 50 consecutive epochs. The validation accuracy of the trained target model is 0.797, 0.764, and
0.782 for the three models, respectively.

We trained the concept model g by finetuning different parts of f (freezing different layer model
weights). The different layers we started to finetuned from for each model architecture is listed in
Table 7. The plus sign in the table represents all layers after the specified layer are all finetuned
while all layers prior to the specified layer have their weights kept frozen. We reweighted the loss for
positive and negative class to balance class proportions. We searched for the hyperparameters and
trained the model same as the target model f .

Evaluation Evaluation is conducted on the testing set. CG and CAV are evaluated in the layer prior
to finetuning. We evaluated the global recalls for k = 30, 40, 50 and reported for k = 30 as the recall
trend is monotonic for other thresholds. These thresholds are chosen since the number of concepts
with positive labels for each instance is in the range of 30 to 40.

20

	1 Introduction
	2 Preliminaries
	3 Proposed method
	3.1 Definition of Concept Gradient (CG)
	3.2 CG for a single concept
	3.3 Should we explain multiple concepts jointly or individually?
	3.4 Deriving CG
	3.5 Layer selection

	4 Experimental Results
	4.1 Synthetic example
	4.2 Quantitative analysis
	4.3 Qualitative analysis

	5 Related work
	6 Conclusion
	A Limitations
	B Example for demonstrating different CG calculation methods
	C Proof
	C.1 Definition of Concept Gradient
	C.2 Connection with CAV

	D Alternative perspective for layer selection
	E Experiments on the Myocardial Infarction Complications Database
	F Comparison with other nonlinear concept modeling interpretation methods
	G Ablation study on concept model configuration
	H Experiment details
	H.1 Animal with Attributes 2 (AwA2)
	H.2 Caltech-UCSD Birds-200-2011 (CUB)

