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Abstract

We prove identifiability of a broad class of deep latent variable models that (a) have universal
approximation capabilities and (b) are the decoders of variational autoencoders that are commonly
used in practice. Unlike existing work, our analysis does not require weak supervision, auxiliary
information, or conditioning in the latent space. Specifically, we show that for a broad class of gen-
erative (i.e. unsupervised) models with universal approximation capabilities, the side information «
is not necessary: We prove identifiability of the entire generative model where we do not observe
u and only observe the data x. The models we consider match autoencoder architectures used in
practice that leverage mixture priors in the latent space and ReLU/leaky-ReLU activations in the
encoder, such as VaDE and MFC-VAE. Our main result is an identifiability hierarchy that signifi-
cantly generalizes previous work and exposes how different assumptions lead to different “strengths”
of identifiability, and includes certain “vanilla” VAEs with isotropic Gaussian priors as a special case.
For example, our weakest result establishes (unsupervised) identifiability up to an affine transfor-
mation, and thus partially resolves an open problem regarding model identifiability raised in prior
work. These theoretical results are augmented with experiments on both simulated and real data.

1 Introduction

One of the key paradigm shifts in machine learning (ML) over the past decade has been the transition
from handcrafted features to automated, data-driven representation learning, typically via deep neural
networks. One complication of automating this step in the ML pipeline is that it is difficult to provide
guarantees on what features will (or won’t) be learned. As these methods are being used in high stakes
settings such as medicine, health care, law, and finance where accountability and transparency are not
just desirable but often legally required, it has become necessary to place representation learning on a
rigourous scientific footing. In order to do this, it is crucial to be able to discuss ideal, target features
and the underlying representations that define these features. As a result, the ML literature has begun
to move beyond consideration solely of downstream tasks (e.g. classification, prediction, sampling, etc.)
in order to better understand the structural foundations of deep models.

Deep generative models (DGMs) such as variational autoencoders (VAEs) (I<ingma and Welling, 2013;
Rezende et al., 2014) are a prominent example of such a model, and are a powerful tool for unsupervised
learning of latent representations, useful for a variety of downstream tasks such as sampling, prediction,
classification, and clustering. Despite these successes, training DGMs is an intricate task: They are

susceptible to posterior collapse and poor local minima (Yacoby et al., 2020; Dai et al., 2020; He et al.,
2018; Wang et al., 2021), and characterizing their latent space remains a difficult problem (e.g. Klys
et al., 2018; Van Den Oord et al., 2017). For example, does the latent space represent semantically

meaningful or practically useful features? Are the learned representations stable, or are they simply
artifacts of peculiar choices of hyperparameters? These questions have been the subject of numerous
studies in recent years (e.g. Schott et al., 2021; Luise et al., 2020; Locatello et al., 2019; Bansal et al.; 2021;
Csiszarik et al.; 2021; Lenc and Vedaldi, 2015), and in order to better understand the behaviour of these
models and address these questions, the machine learning literature has recently turned its attention
to fundamental identifiability questions (I<hemakhem et al., 2020a; D’ Amour et al., 2020; Wang et al.,
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). Identifiability is a crucial primitive in machine learning tasks that is useful for probing stability,
consistency, and robustness. Without identifiability, the output of a model can be unstable and unreliable,
in the sense that retraining under small perturbations of the data and/or hyperparameters may result
in wildly different models.! In the context of deep generative models, the model output of interest is the
latent space and the associated representations induced by the model.

In this paper, we revisit the identifiability problem in deep latent variable models and prove a surpris-
ing new result: Identifiability is possible under commonly adopted assumptions and without conditioning
in the latent space, or equivalently, without weak supervision or side information in the form of auxiliary
variables. This contrasts a recent line of work that has established fundamental new results regarding
the identifiability of VAEs that requires conditioning on an auxiliary variable u that renders each latent
dimension conditionally independent ( , ). While this result has been generalized
and relaxed in several directions ( , ; , ;

, ), fundamentally these results still crucially rely on the side information u. We show
that this is in fact unnecessary—confirming existing empirical studies (e.g ,
, )—and do so without sacrificing any representational capacity. What’s more, the model we
analyze is closely related to deep architectures that have been Wldely used in practice (
, ): We bhOW that there is good reason for this, and provide new
insight into the propertles of these models and support for their continued use.

Overview More specifically, we consider the following generative model for observations x:
x=f(z)+e, x=(21,...,2,) €ER", 2= (21,...,2m) ER™, (1)

where the latent variable z follows a Gaussian mixture model (GMM),? f : R™ — R™ is a piecewise affine
nonlinearity such as a ReLU network, and € € R" is independent, random noise.®> We do not assume that
the number of mixture components, nor the architecture of the ReLLU network, are known in advance,
nor do we assume that z has independent components. Both the mixture model and neural network may
be arbitrarily complex, and we allow for the discrete hidden state that generates the latent mixture prior
to be high-dimensional and dependent. This includes both vanilla VAEs (i.e. with a standard isotropic
Gaussian prior) and classical ICA models (i.e. for which the latent variables are mutually independent)
as special cases. Since both z and f are allowed to be arbitrarily complex, the model (1) has universal
approximation capabilities, which is crucial for modern applications.
This model has been widely studied in the literature from a variety of different perspectives:

o Nonlinear ICA. When the z; are mutually independent, (1) recovers the standard nonlinear ICA
model that has been extensively studied in the literature ( , ;

, ). Although our most general results do not make independence

assumptions, our results cover nonlinear ICA as a special case (see Section 3.4 for more discussion).

o VAE with mizture priors. When the prior over z is a mixture model (e.g. such as a GMM), the

model (1) is closely related to popular autoencoder architectures such as VaDE ( , ),

SVAE ( , ), GMVAE ( , ), DLGMM ( ,

), VampPrior ( , ), MFC-VAE ( , ), etc. Although

such VAEs with mixture priors have been used extensively in applications, theoretical results are
missing.

o Warped miztures. Another closely related model is the warped mixture model of ( ),

which is a Bayesian version of (1). Once again, theoretical guarantees for these models are lacking.

e (VAE. Finally, (1) is also the basis of the iVAE model introduced by ( ),
where identifiability (up to certain equivalences) is proved when there is an additional auxiliary
variable u that is observed such that z; 1L z; | u.

1Formally, identifiability means the parametrization of the model is injective. See Section 2 for details.
2See Remark 2.1 for extensions to more general mixture priors.
30ur results include the noiseless case € = 0 as a special case.



Assumptions on f Assumptions on Z Theoretical guarantees Result

(P1) (F1), (F2) P(Z) identifiable up to Theorems
an affine transformation 3.2(a), 3.3(a)

(P1) (F1), (F4) P(Z) and f up to identifiable Theorems
an affine transformation 3.2(c), 3.3(d)

(P1), (P2) (F1), (F4) P(Z) and f identifiable up to Theorems
permutation, scaling and translation  3.2(b), 3.3(b)

(P1), (P2), (P3) (F1), (F4) P(U, Z) and f are identifiable up to Theorems

permutation, scaling and translation  3.3(c), 3.3(d)

Table 1: Summary of results in this paper. The strength of the assumptions increases in each successive
row, as do the strength of the guarantees. See Section 3.3 for formal statements.

Contributions Driven by this recent interest from both applied and theoretical perspectives, our main
results (Theorems 3.2, 3.3) show that the model (1) is identifiable up to various linear equivalences,
without conditioning or auxiliary information in the latent space. In fact, we develop a hierarchy of
results under progressively stronger assumptions on the model, beginning with affine equivalence and
ending up with a much stronger equivalence up to permutations only. See Table 1 for a summary.

In order to develop this hierarchy, we prove several technical results of independent interest:

1. First, we establish a novel identifiability result for nonparametric mixtures (Theorem C.2);

2. Second, we show how to use the mixture prior to strengthen existing identifiability results for
nonlinear ICA (Theorem D.1);

3. Third, we extend existing results ( , ) on the recovery of structured multivariate
discrete latent variable models to recovery under an unknown affine transformation (Theorem F.1).

Our proof techniques—based on elementary tools from analytic function theory and mixture identifiability—
are new and depart from existing work in this area. As a consequence, the analysis itself provides new
insight into the structure and behaviour of deep generative models.

Related work This problem is widely studied, and has garnered significant recent interest, so we focus
only on the most closely related work here.

Classical results on nonlinear ICA ( , ) establish the nonidentifiability of
the general model (i.e. without restrictions on z and f); see also ( ); ( ).
More recently, ( ) proved a major breakthrough by showing that given side infor-

mation u, identifiability of the entire generative model is possible up to certain (nonlinear) equivalences.
Since this pathbreaking work, many generalizations have been proposed ( , ;
K 7 k) ’ K ’ ;

; , ; , ), all of Wthh requlre some form of auxﬂ—
iary mformatlon Other approaches to identifiability include various forms of weak supervision such as
contrastive learning ( , ), group-based disentanglement ( , ),
and independent mechanisms ( , ). Non-identifiability has also been singled out as a
contributing factor to practical issues such as posterior collapse in VAEs ( , ;

’ )

Our approach is to avoid additional forms of supervision altogether, and enforce identifiability in a
purely unsupervised fashion. Recent work along these lines includes ( ), who propose to
use Brenier maps and input convex neural networks, and ( ) who leverage sparsity and
an anchor feature assumption. Aside from different assumptions, the main difference between this line
of work and our work is that their work only identifies the latent space P(Z), whereas our focus is on
jointly identifying both P(Z) and f. In fact, we provide a decoupled set of assumptions that allow f or
P(Z) or both to be identified. Thus, we partially resolve in the affirmative an open problem regarding
model identifiability raised by the authors in their discussion.

Another distinction between this line of work and the current work is our focus on architectures and
modeling assumptions that are standard in the deep generative modeling literature, specifically ReLU



nonlinearities and mixture priors. As noted above, there is a recent tradition of training variational
autoencoders with mixture priors ( , ; , ; , ;
, ; , ; , ; , ; , ). Our work
builds upon this empirical literature, showing that there is good reason to study such models: Not only
have they been shown to be more effective compared to vanilla VAEs, we show that they have appealing
theoretical properties as well. In fact, recent work ( , ; , ) has
observed precisely the identifiability phenomena studied in our paper, however, this work lacks rigourous
theoretical results to explain these observations.
Another related line of work studies identification in graphical models with latent variables, al-
beit without any explicit connection to deep generative models ( , ; , ;
Finally, since a key step in our proof involves the analysis of a nonparametric mixture model (see
Appendix C for details), it is worth reviewing previous work in mixture models. See

( ) for an overview. Of particular use for the present work are ( ) and
( ), wherein the identifiability of Gaussian and exponential family mixtures, respectively, are proved.
Specifically for nonparametric mixtures, existing results consider product mixtures ( , ;

, ), grouped observations ( , : , ), symmetric
measures ( ) ) ), and separatlon conditions ( ) ). For

context, we note here that a dlbcrete VAE can be interpreted as a mixture model in disguise: This is a
perspective that we leverage in our proofs. We are not aware of previous work in the deep generative
modeling literature that exploits this connection to prove identifiability results.

2 Preliminaries

We first introduce the main generative model that we study and its properties, and then proceed with a
brief review of identifiability in deep generative models.

Generative model The observations z € R™ are realizations of a random vector X, and are generated
according to the generative model (1), where z € R™ represents realizations of an unobserved random
vector Z. We make the following assumptions on Z and f:*

(P1) P(Z) is a (possibly degenerate) Gaussian mixture model with an unknown number of components
J>1, ie.

J
Z/\Jw G %5), DN =1 A >0, (2)

Jj=1

where p(z) is the density of P(Z) with respect to some base measure, and ¢(z;pu;,%;) is the
gaussian density with mean jp; and covariance X;.

(F1) f is a piecewise affine function, such as a multilayer perceptron with ReLU (or leaky ReLU)
activations.

Recall that an affine function is a function x — Az + b for some matrix A. As already discussed, special
cases of this model have been extensively studied in both applications and theory, and both (P1)-(F1)
are quite standard in the literature on deep generative models and represent a useful model that is widely
used in practice (e.g. , ; , ;

; , : ; ; , ). In partlcular when J = 1
this is simply a classmal VAE w1th an 1sotr0plc Gaussum prlor (see Section 3.4 for more discussion).

Remark 2.1. The assumption that P(Z) is a GMM can be replaced with more general exponential family
mixtures ( , ) as long as (a) the resulting mixture prior p(z) is an analytic function
and (b) the exponential family is closed under affine transformations.

4In the sequel, we will use (P#) to index assumptions on the prior P(Z), and (F#) to index assumptions on the decoder

f.



Universal approximation Under assumptions (P1)-(F1), the model (1) has universal approximation
capabilities. In fact, any distribution can be approximated by a mixture model (2) with sufficiently

many components J (e.g. , ). Alternatively, when J is bounded, by taking
f to be a sufficiently deep and/or wide ReLU network, any distribution can be approximated by f(Z)
(e.g. , ; , ), even if f is invertible ( , ). Thus, there

is no loss in representational capacity in (P1)-(F1). To the best of our knowledge, our results are the
first to establish identifiability of both the latent space and decoder for deep generative models without
conditioning in the latent space or weak supervision. We note that ( ) and
( ) also propose deep architectures that identify the latent space, but not the decoder.

Identifiability A statistical model is specified by a (possibly infinite-dimensional, as in our setting)
parameter space O, a family of distributions P, and a mapping 7 : ©® — P; i.e. w(f) € P for each
6 € ©. In more conventional notation, we define P = {pp : 0 € O}, in which case pyp = 7(6). A
statistical model is called identifiable if the parameter mapping 7 is one-to-one (injective). In practical
applications, the strict definition of identifiability is too strong, and relaxed notions of identifiability
are sufficient. Classical examples include identifiability up to permutation, re-scaling, or orthogonal
transformation. More generally, a statistical model is identifiable up to an equivalence relation ~ defined
on O if 7(0) = n(¢') = 6 ~ #'. For more details on the different notions of identifiability in deep
generative models, see ( ,b); ( ).

More precisely, we use the following deﬁmtlon Let f3P denote the pushforward measure of P by f.

Definition 2.1. Let P be a family of probability distributions on R™ and F be a family of functions
fiR™ 5 R™.

1. For (P, f) € P x F we say that the prior P is identifiable (from fyP) up to an affine transformation
if for any (P', f') € P x F such that fyP = f;P' there exists an invertible affine map h : R™ — R™
such that P’ = hyP (i.e., P' is the pushforward measure of P by h).

2. For (P, f) € P x F we say that the pair (P, f) is identifiable (from fyP) up to an affine trans-
formation if for any (P, f') € P x F such that fyP = f{P’ there exists an invertible affine map
h:R™ — R™ such that f' = foh~' and P’ = hyP.

If the noise € has a known distribution, then f;P is identifiable from the convolution (f;P) *e. Hence,
this definition can be automatically extended to the setup with known noise. This definition also can be
extended to transformations besides affine transformations (e.g. permutations, translations, etc.) in the
obvious way.

Identifiability is a crucial property for a statistical model: Without identifiability, different training
runs may lead to very different parameters, making training unpredictable and replication difficult. The
failure of identifiability, also known as underspecification and ill-posedness, has recently been flagged
in the ML literature as a root cause of many failure modes that arise in practice ( ,

; , ; , ). As a result, there has been a growing emphasis on
1dent1ﬁcat10n in the deep learmng literature, which motivates the current work. Finally, in addition to
these reproducibility and interpretability concerns, identifiability is a key component in many applications

of latent variable models including causal representation learning ( , ), independent
component analysis ( , ), and topic modeling ( , ; , ).
See ( ) for additional discussion and examples.

Auxiliary information and iVAE It is well-known that assuming independence of the latent factors—
ie. Z; Il Z;—is insufficient for identifiability ( , ). Recent work, starting
with iVAE, shows identifiability by additionally assuming that a k-dimensional auxiliary variable w is
observed such that p(z|u) is conditionally factorial, i.e. Z; 1L Z;|U. This extra information serves to
break symmetries in the latent space and is crucial to existing proofs of identifiability.

To make the connection with this work clear, observe that assumption (P1) is equivalent to assuming
that there is an additional hidden state U € {1,...,J} such that P(Z = z|U = j) = p;(z) and
P(U = j) = Aj. More generally, U = (Un,...,Us) may be multivariate. In this way, a direct parallel
between our work and previous work is evident, with several crucial caveats:

e We do not assume that U is observed—even partially—or known in any way;



e We allow for the Z; to be arbtrarily dependent even after conditioning on U, and this dependence
need not be known;

e We do not even require the number of states J to be known, and we do not require any bounds on
J (e.g. iVAE requires J > m + 1).

e In the case where U is multivariate (i.e k := dim(U) > 1), we do not require the number of latent
dimensions k, the state spaces, or their dependencies to be known.

e The original iVAE paper only proves identifiability of f up to a nonlinear transformation (see
Lemma G.1 in Appendix G for details). By contrast, we will show identifiability of f up to an
affine transformation, without knowing U.

In order to break the symmetry without knowing anything about U or its dependencies, we develop
fundamentally new insights into nonparametric identifiability of latent variable models.

3 Main results

For any positive integer d, let [d] = {1,...,d}. By (P1), we can write the model (1) as follows. Let
U= (U,...,Ux) € [di] x ---[dg] where d; := dim(U;) and k := dim(U); we allow U to be multivariate
(k > 1) and dependent—i.e., we do not assume that the U; are marginally independent. It follows
trivially from (P1) that P(U1 = w1,...,Ux = ug) € {\,...,A;} and J =[], d;, where we recall that J
is the unknown number of mixture components in P(Z). Denote the marginal distribution of U, which
depends on \j, by Py. The variables (U, Z) are unobserved and encode the underlying latent structure:

[Z|U =u] ~ N(py, Zu) = U—Z—X. (3)
(X |Z =2~ f(2)+¢, e~N(0,07%

Here, P, is the distribution on U described above. Our goal is to identify the latent distribution P(U, Z)
and/or the nonlinear decoder f from the marginal distribution P(X) induced by (3). We will additionally
assume throughout that m < n; see Remark 3.3 for a discussion of the overcomplete case with m > n.

Our main results (Theorems 3.2-3.3) provide a hierarchy of progressively stronger conditions under
which P(U,Z), f, or both, can be identified in progressively stronger ways. The idea is to illustrate
explicitly what conditions are sufficient to identify the latent structure up to affine equivalence (the
weakest notion of identifiability we consider), equivalence up to permutation, scaling, and translation, and
permutation equivalence (the strongest notion of identifiability we consider, and the strongest possible
for any latent variable model).

We defer the statement of the main results to Section 3.3, after the main conditions have been
described. As a preview to the main results, we first present the following corollary:

Corollary 3.1. Suppose k =dim(U) =1, J > 1, (U, Z) are unobserved, and X is observed. (a) If f is
an invertible ReLU network, then both P(U,Z) and f are identifiable up to an affine transformation. (b)
If f is only weakly injective (cf. (F2)), then P(U,Z) is still identifiable up to an affine transformation.

For comparison, Corollary 3.1 already strengthens existing results, since U is not required to be known
and we are able to identify f. In fact, the latter answers an open question raised by ( ).
What’s more, this is just the weakest result implied by our main results: Under stronger assumptions on
the latent structure, the affine equivalence presented above can be strengthened further.

Taken together, the results in this section have the following concrete implication for practitioners:
For stably training variational autoencoders, there is now compelling justification to work with a GMM
prior and deep ReLU/Leaky-ReLU networks. As we saw above, this is commonly done in practice
already.

3.1 Possible assumptions on f

To distinguish cases where f is and is not identifiable, we require the following technical definition. Recall
that for sets A, B, f~1(A) = {x: f(z) € A} and f(B) = {f(z) : € B}.

Definition 3.1. Let m < n (see Remark 3.3) and f : R™ — R".



(F2) We say that f is weakly injective if (i) there exists zo € R™ and § > 0 s.t. |f~1({z})| = 1 for every
x € B(xo,8)N f(R™), and (ii) {z € R™ : |f~1({x})] = oo} C f(R™) has measure zero with respect
to the Lebesgue measure on f(R™).

(F3) We say that f is observably injective if {x € R™ : |f~1({z})| > 1} C f(R™) has measure zero with
respect to the Lebesgue measure on f(R™). In other words, f is injective for almost every z in its
image f(R™) (i.e. almost every “observable” x).

(F4) We say that f is injective if |f~1({z})| = 1 for every z € f(R™).

Remark 3.1. For piecewise affine functions assumption (F2) is weaker than assumption (F3), which in
turn is weaker than (F4). Therefore, for piecewise affine functions we have the chain of implications:

(F4) = (F3) = (F2).

In the sequel, we mostly focus on (F2) and (F4) for simplicity; although we prove results for (F3) in
Appendix D.1. See also Remarks 3.2, 3.5.

Example 1. In general, a deep ReLU network may be either injective or observably injective, or neither
(e.g. ReLU(—ReLU(z)) = 0). For example, although x — ReLU(x) is not injective, it is observably
injective, where ReLU(x) = max{0,z} is the usual rectified linear unit. To see this, note that image of
ReLU is the set R> = {y | y > 0}, and ReLU has the unique preimage for every y € Ry, = {y | y > 0}.
Clearly, (R> \ R>) = {0} has measure zero inside R>.

At the same time, z — 0 and z — |z| are not even weakly injective.

Remark 3.2. In Appendix H, we show that ReLU networks or Leaky ReLU networks are generically
observably injective (and hence also weakly injective) under simple assumptions on their architecture.

Remark 3.3. We restrict attention to the case m < n, which is a standard assumption, as it is common to
think of a latent space to be a low-dimensional representation of the observed space. In the overcomplete
case, i.e. when m > n, we believe that identifiability is unlikely unless stronger assumptions are made, or
weaker notions of identifiability are considered. To see this, consider the projection f(z,y) = x, which is
trivially affine. Then we can arbitrarily transform the y-coordinate without changing P, i.e. (fog)sP =
[t P, where g(x,y) = (z,h(y)) for any h. As an example of identifiability in the overcomplete regime
under stronger assumptions, when the auxiliary variable u is known, ( ) show
that the feature maps f and g in conditional energy-based models (for which p(z | u) o< exp(f(x)T g(u)))
can be identified up to an affine transformation.

3.2 Possible assumptions on 7

Our weakest result requires no additional assumptions on Z beyond (P1); see Corollary 3.1. Under
stronger assumptions, more can be concluded. As with the previous section, the assumptions presented
here are not necessary, but may be imposed in order to extract stronger results.

The first condition is a mild condition that allows us to strengthen affine identifiability:

(P2) Z, 1L Z; | U for all i # j and there exist a pair of states U = u; and U = uy such that all
(Bu1)y / (Buy)yy | t € [m]) are distinet. (Note that this implies J > 2).

The second condition is more technical, and is only necessary if k¥ > 1 and we wish to identify P(U)
in addition to P(Z). In fact, not only will we recover P(U), but also the (unknown) number of hidden
variables (i.e. k) and their state spaces (i.e. d;j). Note that P(U) is not needed to sample from (1), as
long as we have P(Z). Before introducing this condition, we need a preliminary definition.

Definition 3.2. Let U_; denote {U; : j # i}. We define ne(U;) = [m]\ {t : Z; 1L U; | U_;} and
ne(Z;) ={t: Z; € ne(U;)}. For a subset Z' C Z, ne(Z’) = Uz, cz ne(Z;).

The neighborhood ne(U;) collects the variables Z; that depend on U; directly.
(P3) The following conditions hold:

(a) For all Z' C Z and uy # ug, P(Z'| ne(Z’) = uy) # P(Z' | ne(Z') = us);
(b) If P(U", Z,X) = P(U, Z, X), then dim(U") < dim(U); and
(c) For any U; # U; the set ne(U;) is not a subset of ne(Uj).



Condition (P3) is a “maximality” condition that is adapted from ( ): We are interested
in identifying the most complex latent structure with the most number of hidden variables. This is in
fact necessary since we can always merge two (or more) hidden variables into a single hidden variable
without changing the joint distribution. Moreover, if two distinct hidden variables U; # U; have the
same neighborhood (or one is a subset of another), then it is known that P(U) cannot be identified
( , : , ; , ). Evidently, if we seek to learn P(U) in addition
to P(Z), then this must be avoided. Finally, as the proof will indicate, this condition is slightly stronger
than what is needed (see Remark F.2 for details).

Remark 3.4. Condition (P3) should be contrasted with the stronger “anchor words” assumption that
has appeared in prior work ( , , , ): In fact, the existence of an
anchor word for each U; automatically implies that ne(Ui) is not a subset of ne(U;) for ¢ # j. Thus,
anchor words are a sufﬁ(nent but not necessary condition for identifiability, whereas Condition (P3) is
indeed necessary as described above.

More details and discussion on these assumptions can be found in Appendix F.

3.3 Main identifiability results

When dim(U) = 1, there is no additional structure in U to learn, and so the setting simplifies considerably.
We begin with this special case before considering the case of general multivariate U.

Theorem 3.2. Assume dim(U) = 1. Under (P1)-(F1), we have the following:
(a) (F2) = P(U,Z) is identifiable from P(X) up to an affine transformation of Z.

(b) (F2)+(P2) = P(U,Z) is identifiable from P(X) up to permutation, scaling, and/or translation
of Z.

(c) In either (a) or (b), if additionally (F4) holds and f is continuous, then f is also identifiable from
P(X) up to an affine transformation.

The next result generalizes Theorem 3.2 to arbitrary (possibly multivariate) discrete U. This is an
especially challenging case: Unlike previous work such as iVAE that assumes U (and hence its structure)
is known, we do not assume anything about U is known. Thus, everything about U must be reconstructed
based on P(X) alone, hence the need for (P3) to identify P(U) below.

Theorem 3.3. Under (P1)-(F1), we have the following:
(a) (F2) = P(Z) is identifiable from P(X) up to an affine transformation.

(b) (F2)+(P2) = P(Z) is identifiable from P(X) up to permutation, scaling, and/or translation.

(¢) (F2)+(P2)+(P3) = (k,dy,...,dy, P(U)) are identifiable from P(X) up to a permutation of U,
and P(Z) is identifiable up to permutation, scaling, and/or translation.

(d) In any of (a), (b), or (c), if additionally (F4) holds and f is continuous, then f is also identifiable
from P(X) up to an affine transformation.

Without (P3), ( ) have shown that it is not possible to recover the high-dimensional

latent state U, however, we can still identify the continuous latent state Z, which is enough to generate
random samples from the model (1). In order to have fine-grained control over the individual variables
in U, however, it is necessary to assume (P3).
Remark 3.5. If (F4) is relaxed to (F3) f may not be identifiable up to an affine transformation, but it
is “essentially” identifiable in the following sense. Let S = {z : [f~'({z})| > 1}. On every connected
component of R™ \ f~1(S), f is identifiable up to an affine transformation (which may depend on the
connected component). Note, for f defined by a ReLU NN, points of S are atoms of P(X).

Remark 3.6. If the assumption (F2) that f is weakly injective is removed, then the claim of Theorem 3.2
is not true anymore. Consider g(z) = f(z) = |x| and

1 1 1
P=_-N(-2,0%) + §N(—1, o?) + §N(3702) and

3 4
1 1 1 (@)
P = gN(—2,02) + g1\7(1,02) + g1\1(3,02).

It is easy to verify that P cannot be transformed into P’ by an affine transformation, but fyP and g4 P’
are equally distributed.



Remark 3.7. In Theorems 3.2(a) and 3.3(a), the identifiability up to an affine transformation is the
best possible if no additional assumptions on Z are made (i.e. beyond (P1)). Indeed, for an arbitrary
invertible affine map h : R™ — R™, h(Z) has a GMM distribution, f o h~! is an invertible piecewise
affine map, and (U, Z, f) and (U, h(Z), f o h=1) in model (3) generate the same distribution.

3.4 Special cases

Our main results contain some notable special cases that warrant additional discussion.

Classical VAE The classical, vanilla VAE ( , ; , ) with an

isotropic Gaussian prior is equivalent to (3) with J = 1. In this case, U is trivial and the Gaussian

distribution P(Z) can be transformed by an affine map to a standard isotropic Gaussian N'(0,7). In

this case, Theorem 3.2(c) shows that f is identifiable from P(X) up to an orthogonal transformation. In

fact, this case can readily be deduced from known results on the identifiability of ReLU networks, e.g.
(2021).

Although the J = 1 case is already identifiable, there are clear reasons to prefer a clustered latent
space: It is natural to model data that has several clusters by a latent space that has similar clusters (e.g.
Figure 2). Although in principle any distribution can be approximated by f(Z) where Z ~ AN (0,1) and
f is piecewise affine, such f is likely to be extremely complex. At the same time, the same distribution
may have a representation with Z being a simple GMM and f being a simple piecewise affine function.
Clearly, the latter representation is preferable to the former and can likely be more robustly learned in
practice. This is consistent with previous empirical work ( , ; , ;

) ) ) 7 ) ’ ) ) ) )'

Linear ICA In classical linear ICA ( , ), we observe X = AZ, where Z is assumed to have
independent components. Compared to the general model (1), this corresponds to the special case where
f is linear and € = 0. In our most general setting under (F2) only, our results imply that P(Z) can be
recovered up to an affine transformation without assuming independent components, which might seem
surprising at first. This is, however, easily explained: In this case, X is also a GMM, and hence P(Z)
can already be trivially recovered up to the affine transformation z — Az. This follows from well-known
identifiability results for GMMs ( , ). This provides some intuition to how the mixture prior
assumption (P1) helps to achieve identifiability.

Nonlinear ICA In classical nonlinear ICA, one assumes the model (1) with (a) no assumptions on f
and (b) independence assumptions in the latent space. It is well-known that this model is nonidentifiable

, ). Our problem setting is distinguished from the classical nonlinear ICA
model via assumptions (P1)-(F1). While we do not require the Z; to be mutually independent, we impose
assumptions on the form of f. It is precisely this inductive bias that allows us to recover identifiability.
As a result, our identifiability theory does not contradict known results such as the Darmois construction
( , ) discussed in ( ).

3.5 Counterexamples

A natural question is whether or not the mixture prior (P1) or the piecewise affine nonlinearity (F1)
can be relaxed while still maintaining identifiability. In fact, it is not hard to show this is not possible:
If either (P1) or (F1) is broken, then the model (1) becomes nonidentifiable. Of course, this is entirely
expected given known negative results on nonlinear ICA ( , ).

Example 2. If f is allowed to be arbitrary, but (P1) is still enforced, then (1) is no longer identifiable:

Pick any two GMMs P = Z 1 AN (pj,25) and P = ZJ L AN (pf, 2%). Then we can always find a

function ¢ such that g4 P’ = fﬁ (e g. use the inverse CDF transform), and g # f.

Example 3. If P(Z) is allowed to be arbitrary, but (F1) is still enforced, then (1) is no longer identifiable:
Consider any two arbitrary piecewise affine, injective functions f,g : R™ — R™. Then almost surely the
preimages f~!({z}) and g~ !({z}) will not be equivalent up to an affine transformation. In other words,
fixing P(X), we can find models (f, P) and (g, P’) such that fyP = P(X) = g4P’, but f is not equivalent
to g (i.e. up to any affine transformation).



Figure 1: Selected examples of the negative log-likelihood for different runs. In each figure, one parameter
from a model (e.g. f; is a weight in the neural network defining f) is selected, and the value of the
negative log-likelihood is visualized as a function of this parameter. Vertical lines indicate the ground
truth and (global) minimizer, which always coincide. Three particularly interesting, nonconvex examples
are shown here. See Appendix J.3.1 for details.

4 Experiments

There has been extensive work already to verify empirically that the model (1) under (P1)-(F1) is identi-
fiable. For example, ( ) observe that deep generative models with clustered latent
spaces are empirically identifiable, and compared this directly to models that rely on side information,
and ( ) show that meaningful latent variables can be learned consistently in a fully un-
supervised manner even when U has high-dimensional structure. Moreover, ( ) indicate
that high-dimensional structure is important for improved performance. Beyond these, it is well-known
that VAEs with mixture priors such as VaDE ( , ) achieve competitive performance on
many benchmark tasks; see ( ); ( ); ( );

( ); ( ); ( ); ( ) for additional experiments and
verification. Building upon the established success of these methods, we augment these experiments
as follows: 1) We use simple examples to verify that the likelihood indeed has a unique minimizer at
the ground truth parameters; 2) We train VaDE on (misspecified) simulated toy models; and 3) We
measure stability (up to affine transformations) of the learnt latent spaces on real data. To measure this,
we report the Mean Correlation Coefficient ( , , Appendix A.2) metric, which is
standard, and an L2-based alignment metric (denoted by distag r2). Definitions of these metrics and
additional details on the experiments can be found in Appendix J.

Maximum likelihood We simulated models satisfying (P1)-(F1) by randomly choosing weights and
biases for a single-layer ReLU network and randomly generating a GMM with J = 2 or 3 components.
These models are simple enough that exact computation of the MLE along the likelihood surface is
feasible via numerical integration (Figure 1). In all our simulations (50 total), the ground truth was
the unique minimizer of the negative log-likelihood, as predicted by the theory. These examples also
illustrate a small-scale test of misspecification in the theoretical model: We include cases where J is
misspecified and f fails to satisfy (F4), but the MLE succeeds anyway.

Simulated data In our experiments on synthetic datasets we consider, to obtain an experimental
evidence of identifiability of model (3) we fit VaDE to observed data 5 times (see Figure 2). Let
ZW 7@ Z05) be the learned latent spaces. For every pair Z(®), ZU) we evaluate the MCC and
distag, 2 loss. For instance, for the pinwheel dataset with three clusters as in Figure 2, the average
distas,2(p1, p2) across 20 pairs ZW_ 7G) is 0.113 with standard deviation 0.065. The average weak
MCC is 0.87 and the average strong MCC is 1.0. This shows strong evidence of recovery of the latent
space up to affine transformations.

Real data We measure stability of the learnt latent space by training MFCVAE ( , )
on MNIST 10 times with different initializations and then comparing the latent representations learnt.
It becomes computationally infeasible to compute distag, 2 therefore we report only MCC. The strong
MCCs are computed to be 0.7 (ReLU), 0.69 (LeakyReLU) and the weak MCCs are computed to be 0.91
(ReLU), 0.94 (LeakyReLU). These observations validate the observations first made in

( ), who ran extensive experiments on VaDE and iVAE on several large datasets including MNIST,
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Figure 2: Recovered latent spaces for 5 runs of VaDE on pinwheel dataset with 3 clusters

SVHN and CIFAR10. These strong correlations confirm our theory and are of particular importance to
practitioners for whom stability of learning is of the essence.

5 Conclusion

We have proved a general series of results describing a hierarchy of identifiability for deep generative
models that are currently used in practice. Our experiments confirm both on exact and approximate
simulations that identifiability indeed holds in practice. An obvious direction for future work is to study
finite-sample identifiability problems such as sample complexity and robustness (i.e. how many samples
are needed to ensure that the global minimizer of the likelihood is reliably close to the ground truth?).
Theoretical questions aside, developing a better understanding of the ELBO and its effect on optimization
is an important practical question. For example, an important limitation of the current set of results is
that they apply only to the likelihood, which is known to be nonconvex and intractable to optimize (see
Figure 1 for concrete examples). It is an important open question to use these insights to develop better
algorithms and optimization techniques that work on finite-samples with misspecified models (i.e. real
data).

More generally, although our assumptions map onto architectures and priors that are widely used in
practice, it is important to emphasize the relevant distinction between models and estimators. That is,
the architectures used in practice represent the estimators used, and may not reflect realistic assumptions
on the model itself (which is typically misspecified). For example, the piecewise affine assumption may not
accurately reflect valid assumptions about real-world problems. Given the lack of purely unsupervised,
nonparametric identifiability results in the literature, we view our results as an important technical step
towards understanding practical identifiability for deep generative models. Thus, an important future
direction is to replace our assumptions with more appropriate modeling assumptions that are relevant
for practical applications.
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A Detailed comparisons

Since the original iVAE paper ( , ), there have been many generalizations and
extensions proposed. We pause here to provide a more detailed comparison of our results against this
developing literature. For a comparison against iVAE, see Section 2.

We first discuss related work that assumes auxiliary information is available (i.e. U is known), then
discuss more recent work that does not assume any auxiliary information; the ensuing comparisons are
then presented in alphabetical order.

Assuming auxiliary information is available.

1. ( ) achieves identifiability in the fully unsupervised regime for the model in

which the latent state is defined by a Hidden Markov Model (HMM). The proof of identifiability in

( ) invokes ( ) to essentially recover the HMM transition

matrix and the auxiliary variable U from X, reducing the problem to ( ).

Our Theorem C.1 shows that identifiability in fully unsupervised regime is possible even without
additional structure given here by the time-dependency according to Markov dynamics.

2. ( ) extend ( ) by observing that the conditional
independence Z; I Z; | U is not required for identifiability, so they propose a more general IMCA
framework for conditional energy-based models. However, identifiability in

( ) still critically relies on observing an auxiliary variable (in their setting, this is a dependent
variable V). Our Theorem C.1 achieves same type of identifiability as ( )
(up to affine transformation) without relying on conditional independence or an auxiliary variable.
3. ( ) extends the iVAE identifiability theory of ( ) by
showing that a stronger notion of identifiability can be achieved if Z is distributed according to
factorial GMM (instead of a general exponential family as in , ). More

specifically, given the auxiliary information U, they show that Z can be recovered up to permu-
tation and scaling of the variables Z;. By contrast, in Theorem E.2, we show that under similar
assumptions Z; are identifiable up to permutation and scaling and importantly, we do this only
from X, without using U in any way. We also do not require the GMM to be factorial. Finally, our

proof technique is different: While ( ) relies on ( ) (and
hence, for instance, require J > m + 1), our proof is independent of ( ).
4. ( ) studies identifiability of the model (3) under the assumption that f is volume

preserving and Z comes from a conditionally factorial exponential family, similar to iVAE. They
prove that if U is known, (P2) holds, and f is twice differentiable, then Z is identifiable up to
permutation and non-linear functions applied to each Z; (i.e., Z; = hi(Z;(;). If additionally Z
is a GMM, then Z can be recovered up to permutation, scaling, and translation. In comparison,
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we do not require U to be known, and we do not require f to be volume preserving or even
differentiable everywhere. We show that under the same assumption (P2) the latent variables Z;
can be recovered up to permutation, scaling, and translation if f is only assumed to be piecewise
affine. Additionally, we show that a weaker notion of identifiability holds if Z is not assumed to
be conditionally factorial.

9. ( ) considers a contrastive model in which samples arrive in pairs, which
is a type of weak supervision. Additionally, it is assumed that the latent variables are sampled
uniformly from a convex body, and that f is differentiable and injective. By comparison, our model
allows for more general non-uniform mixture priors, non-injective and non-smooth f, and is fully
unsupervised.

No auxiliary information.

1. ( ) propose a novel Multifacet VAE (MFCVAE) model for unsupervised deep clus-
tering. Their model has the following form

k
pla,z,u) = plal2) [ pzilupluy), 2l ~ N (g, ;) (5)

j=1

Through empirical experiments, ( ) emphasizes the importance of high-dimentional
structure of U and shows how it results in improved clustering performance. The key idea is that
while the number of meaningful clusters in the data may be very large, there may be meaningful
individual categorical variables U; (“facets”) with a much smaller number of states, which may be
easier to learn. In this way, by simultaneously performing clustering for each “facet” U; one can
learn meaningful fine-grained clusters in the data. Note that k binary variables U; result in .J = 2%
fine-grained clusters in the data.

Compared to our work, ( ) is focused on practical implementation details, and lacks
a formal identifiability theory. In fact, our results provide precisely such a formal identifiability
theory in a more general setting. If p(z|z) is modeled by ReLU/leaky-ReLU NN, MFCVAE is a
special case of our model (3) with high-dimensional U. More specifically, the MFCVAE model
(5) restricts our model (3) to the case when u; are independent and ne(U;) = {i}. In particular,
it satisfies assumption (P3). Therefore, Theorem 3.3 implies that for MFCVAE with diagonal
covariances ¥,,;, dim(U), dim(U;), P(U) are identifiable from P(X) up to a permutation of U, and
P(Z) is identifiable up to permutation, scaling, and/or translation.

2. ( ) establishes the identifiability of latent representations for non-parametric mea-
surement models U — X. Their result crucially relies on the fact that observed variables are
conditionally independent X; I X; | U. Our Theorem F.1 significantly generalizes this result,
by showing the same guarantees for the model (3) that allows arbitrarily complex dependencies
between the observed variables X.

3. ( ) propose a sparse VAE and prove that the latent space of this model is identifi-
able. Similar to ( ), identifiability of f is not addressed. Their identifiability results
also assume an anchor feature assumption, which we do not require. Even our strongest assumption
(P3) is weaker compared to the anchor feature assumption (see Remark 3.4). Moreover, we do not
require any sparsity assumptions.

4. ( ) propose LIDVAE as a way to identify the latent space of a VAE without
auxiliary information, however, their approach only guararantees identifiability of P(Z), and does
not address f (this is acknowledged by the authors in their discussion as an open question). By
restricting f to be a Brenier map, they guarantee that the likelihood is injective, which leads to
identifiability of P(Z). Compared to ( ) our work restricts f in a different way (i.e.
by an injective ReLU network), which matches common practice. Moreover, we show that both f
and the multivariate U structure (i.e. in addition to P(Z)) are identifiable under mild additional
assumptions.
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B Proof outline

We will prove the main results by breaking the argument into four phases:

1. (Appendix C) First, we show that if f is weakly injective, then P(Z) is identifiable (Theorem C.1).
The proof involves a novel result on identifiability of a nonparametric mixture model (Theorem C.2)
that may be of independent interest.

2. (Appendix D) Second, we show that if f is continuous and injective, then f is identifiable up to
an affine transformation (Theorem D.1). This result strengthens existing identifiability results in
nonlinear ICA by exploiting the mixture prior, which is crucial in the sequel.

3. (Appendix E) Next, we show that if Z is conditionally factorial GMM, then under mild generic
assumptions, the individual variables Z; can be recovered (up to permutation, scaling and transla-
tion) (Theorem E.1).

4. (Appendix F) Finally, since for conditionally factorial Z we are able to recover the individual
variables Z;, we show how we can apply the theory developed in ( ) to recover
the multivariate discrete latent variable U, its dimension, domain sizes of each U; and Pr(U, Z)
(Theorem F.1). Since we can only recover Z up to permutation, scaling and translation, the results
from ( ) cannot be applied directly, and we show how to perform this recovery
under an unknown affine transformation.

Each of these phases tackles a particular level of the identifiability hierarchy described in the main
theorems. A detailed proof outline of each main theorem is provided below; technical proofs can be
found in the subsequent appendices.

A notable difference between Theorems 3.2 (k = 1) and 3.3 (k > 1) is the conclusion in the latent
space: Theorem 3.2 identifies P(U, Z) jointly whereas Theorem 3.3 identifies P(Z) and P(U) separately.
The reason is simple: If U is 1-dimensional, i.e., k¥ = 1, then P(U, Z) for (3) is trivially identifiable
from P(Z), since P(Z) is assumed to be a GMM by (P1). Indeed, since finite mixture of Gaussians are
identifiable, we can recover P(U = u) and P(Z | U = u) as mixture weights and corresponding Gaussian
components. This extends to more general exponential mixtures as in Remark 2.1, see
( ) for details.

When k£ > 1, the situation is considerably more nontrivial, as one also needs to learn the high-
dimensional structure of U.

Proof of Theorem 3.2. We assume € = (0 without any loss of generality; i.e. it is sufficient to consider the
noiseless case. This follows from a standard deconvolution argument as in ( )
(see Step I of the proof of Theorem 1).

(a) By Theorem C.1, P(Z) is identifiable up to an affine transformation. Moreover, as described above,
we can identify P(U, Z) from P(Z).

(b) Since P(Z) is identifiable up to an affine transformation by part a), claim follows from Theorem E.1.

(¢) By Theorem D.1, f is identifiable. O
Proof of Theorem 3.3. As with Theorem 3.2, we assume € = 0 without loss of generality.

(a) By Theorem C.1, P(Z) is identifiable up to an affine transformation.

(b) Since P(Z) is identifiable up to an affine transformation by part a), by Theorem E.1, Z; are
identifiable up to permutation, scaling and translation.

(¢) Follows from Theorem F.1.

(d) By Theorem D.1, f is identifiable. O
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C Identifiability of Z up to an affine transformation via non-
parametric mixtures

In this section we prove that if in model (3) the function f is weakly injective, then Z is identifiable up
to an affine transformation. More specifically, we prove the following:

Theorem C.1. Assume that (U, Z, X) are distributed according to model (3). If f is weakly injective
(see (F2) in Definition 3.1), then P(U, Z) is identifiable from P(X) up to an affine transformation.

We will prove this result by first proving a result on identifiability of nonparametric mixtures that
may be of independent interest.

J
Theorem C.2. Let f,g: R™ — R"™ be piecewise affine functions satisfying (F2). LetY ~ > MNN (i, 35)
i=1

J/
andY' ~ 37 NN (s, ) be a pair of GMMs (in reduced form). Suppose that f(Y') and g(Y') are equally
j=1

distributed.
Then there exists an invertible affine transformation h : R™ — R™ such that h(Y) =Y, ie., J=J
and for some permutation T € S; we have \; = /\’T(i) and hyN (p;, %;) = N(M’T(i), E’T(i)).

In other words, a mixture model whose components are piecewise affine transformations of a Gaussian
is identifiable. To see this more clearly, observe that

J J
D A feN (g, on) ~ fﬁ(z)\k/\/(uk, Uk))-
j=1

j=1

To the best of our knowledge, this identifiability result for a nonparametric mixture model is new to the
literature. In Theorem C.2, the transformation and number of components is allowed to be unknown
and arbitrary, and no separation or independence assumptions are needed.

C.1 Technical lemmas

We recall that a m-dimensional Gaussian distribution A (p, ) with covariance ¥ and mean p has the
following density function

1 Ty—1
§0) = s e (12— W= e - ) (6)

We assume that all Gaussian components are non-degenerate in the sense that X is positive definite.
We also recall that if Y ~ A (p,¥) and Y/ = AY + b for an invertible A € R™*™ and b € R™, then
Y ~ N(Ap + b, AXAT).

Definition C.1. We say that a Gaussian mixture distribution

J
P =Y NN, %) (7)

j=1
is in reduced form if A\; > 0 for every j € [J] and for every i # j € [J] we have (u;, X;) # (15, %;).

In the proofs we use the notion of real analytic functions. We remind the definition for reader’s
convenience.

Definition C.2. Let D C R"™ be an open set. A function f: D — R is called a (real) analytic function
if for every compact K C D there exists a constant C' > 0 such that for any a € N™ we have

(63

sup z)| <l (8)

SUP | G ¢

Alternatively, a real analytic function f : D — R can be defined as a function that has a Taylor expansion
convergent on D.
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It is a standard fact that a linear combination and a product of analytic functions are analytic, and
it is well-known that the density of the multivariate Gaussian is a real analytic function on R™. We will
also need the standard notion of analytic continuation:

Definition C.3. Let Dy C D C R"™ be open sets. Let fo: Dy — R. We say that an analytic function
f D — Ris an analytic continuation of fy onto D if f(x) = fo(x) for every x € Dy.

Definition C.4. Let 2o € R™ and ¢ > 0. Let p : B(zg,d) — R. Define
Ext(p) : R™ - R (9)

to be the unique analytic continuation of p on the entire space R™ if such a continuation exists, and to
be 0 otherwise.

Definition C.5. Let Dy C D and p : D — R be a function. We define p|p, : Do — R to be a restriction
of p to Dy, namely a function that satisfies p|p,(z) = p(z) for every x € Dy.

Theorem C.3. Consider a pair of finite GMMs (in reduced form) in R™

J

J/
P=> NN(u;j,%;) and P'=> NN(u;, %)) (10)
j=1

j=1

Assume that there exists a ball B(xg,d) such that P and P’ induce the same measure on B(xg,d). Then
P="P, ie,J=2J and for some permutation T we have \; = )\’T(i) and (p;, 2;) = (;L’T(i), E'T(i)).

Proof. Follows from the identity theorem for real analytic functions and the identifiability of finite GMMs.
O

Definition C.6. Let f : R™ — R” be a piecewise affine function. We say that a point z € f(R™) C R"
is generic with respect to f if the preimage f~!({x}) is finite and there exists § > 0, such that f :
B(z,8) — R" is affine for every z € f~1({x}).

Lemma C.4. If f : R™ — R" is a piecewise affine function such that {x € R" : |f~1({z})| = oo} C
f(R™) has measure zero with respect to the Lebesgue measure on f(R™), then dim(f(R™)) = m and
almost every point in f(R™) (with respect to the Lebesgue measure on f(R™)) is generic with respect

to f.

Proof. Let g;(z) = Az+b, g: D — R™ be one of the affine pieces defining piecewise affine function f. If
A does not have full column rank, then every x € g(D) has an infinite number of preimages. Therefore,
the assumption of the lemma implies that for at least one of the affine pieces g;, A has full column rank.
Thus, dim(f(R™)) = m.

Let S = {z € R" : |f~'1({2})] = oo} then by assumption S has measure zero in f(R™). Let E
be the set of points z € R™ such that for every 6 > 0, f is not affine on B(z,d). Since f is piecewise
affine, E' can be covered by a locally-finite union of (m — 1)-dimensional subspaces, i.e. every compact
set intersects only finitely many of these (potentially infinite) (m — 1)-dimensional subspaces. Thus F
has measure zero. Moreover, since dim(f(R"™)) = m, f(F) has measure zero in f(R™).

Finally, by definition, every z € f(R™)\ (SU f(E)) is generic. O

We make the following useful observation.

J

Lemma C.5. Consider a random variable Z distributed according to the GMM Y AN (pj, ;). Con-
j=1

sider the random wvariable X = f(Z), where f : R™ — R™ is a piecewise affine function, such that

dim(f(R™)) = m. Let zo € R™ be a generic point with respect to f. Let p be the density function of X.
Then the number of points in the preimage f~*({xo}) can be computed as

[f 7 {zo})| = Lim o Ext(p| p(zy.5)) (2)d2- (11)

Proof. Since x( is generic with respect to f, the preimage of xy consists of finitely many points,
FY{wo}) = {21,22,..., 25}, and there exists ¢ > 0 such that for every i € [s] there is a well-defined
invertible affine function g; : B(z;,e) — R™ such that g;(z) = f(z) for all z € B(z;,¢€).
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We can write g;(z) = A;z + b; for some A; € R™*™ and b; € R™. Let dyp > 0 be such that

S

i=1
Let 0 < § < ég. Then, for ygj = A;p +b; and ;5 = AiZinT, and every z € B(xzo,d) we have
I \Ty—1 /
PlBosn (@ ZZ T ((“1/2)(@ = 1) TS5 @ = i) ) - (13)

The RHS of (13) is a real analytic function defined on all of R™ (i.e. it is an entire function) that equals
p on an open neighborhood, hence it defines Ext(p|p(4,,5)) on the entire space R™. Therefore,

f Ext(p| (00 6))(2)dz =
Tr€ER™

- D) PRSI g o (VD6 - )5 )

11]1

- ZJGRM s \/ﬁ exp ((*1/2)(95 - u;j)TEi_jl(:c — H;j))

=5 = £~ ({wo})l .

We can deduce the following corollary.
Corollary C.6. Let f,g: R™ — R" be pzecewzse affine functions that satisfy (F2).
Let Z ~ Z)\N(ul, i) and Z' ~ ZX (1, 2%).  Suppose that f(Z) and g(Z') are equally

distributed. Assume that for xo € R™ and 5 > 0, f is invertible on B(xzg,20) N f(R™).
Then there exists x1 € B(xo,d) and 61 > 0 such that both f and g are invertible on B(xz1,01)N f(R™).

Proof. Since f is piecewise affine and f is invertible on B(zg,25) N f(R™), then dim f(R™) = m. Note
that since f(Z) and g(Z’) are equally distributed and since regular GMMs have positive density at every
point, we have

f(R™) = supp(f(Z)) = supp(g(Z’)) = g(R™).

Therefore, dim(g(R™)) = dim(f(R™)) = m and, by Lemma C.4, almost every point = € B(zg, )N f(R™)
is generic with respect to f and w.r.t to g. Let #; € B(xg,d) be such a point. Since f is invertible on
B(z1,6), we have that |f~*({z1})| = 1. Since z; is generic with respect to f and with respect to to g,
by Lemma C.5, we deduce that |[g~*({x1})| = 1. Therefore, since z; is generic, there exists 0 < §; < &
such that on (B(z1,61) N f(R™)) C (B(zo,28) N f(R™)) the function g is invertible. O

C.2 Identifiability of nonparametric mixtures

First we prove our identifiability theorem under the assumption that f and g are invertible in the
neighborhood of the same point.

J J'
Theorem C.7. Let f, g : R™ — R"™ be piecewise affine. Let Z ~ 2; MN (14, %;) and Z' ~ 321 NN (1, %3%)
be a pair of GMMs (in reduced form). Suppose that f(Z) and g(Z') are equally distributed.

Assume that there exists xg € R™ and § > 0 such that f and g are invertible on B(xg,0) N f(R™).

Then there exists an invertible affine transformation h : R™ — R™ such that h(Z) = Z', i.e., J = J'
and for some permutation T we have A = X,y and hyN (1, Bi) = N (15, Z7 ).
Proof. Since f and g are piecewise affine and both f and ¢ are invertible on B(zg,d) N f(R™), then
dim f(R™) = m and the inverse functions are piecewise affine. Hence, moreover, there exist 7 and
81 > 0 with B(z1,61) C B(wo, ) such that f~! and ¢g=! on B(x1,d1) C B(zo,0) are defined by affine
functions.

Let L C R™ be an m-dimensional affine subspace, such that B(x1,d1) N f(R™) = B(x1,1) N L.
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Let hy,hg : R™ — L be a pair of invertible affine functions such that h;l coincides with f~! on
B(x1,01) N L and h, ' coincides with g~' on B(x1,6;) N L. This means that distributions hy(Y) and
hg(Y") coincide on B(x1,d1) N L. Moreover, since hy and hy are affine transformations, then h¢(Y") and
hg(Y") are finite GMMs. Therefore, by Theorem C.3, h;(Y) = hy(Y”). The claim of the theorem holds
for h = h, ' o hy. O

Combining this identifiability result with results of Section C.1, we obtain the proof of our main
identifiability result for non-parametric mixtures.

Proof of Theorem C.2. By Corollary C.6 there exists zg € f(R™) that is generic with respect to to both
f and g and § > 0 such that f and g are invertible on B(zg,d) N f(R™). Therefore, the result follows
from Theorem C.7. O

C.3 Proof of Theorem C.1

We give a proof by contradiction. Assume that there exists another model (U’, Z’, X’) and a piecewise
affine function g in model 3 that generates the same distribution, i.e., P(X) = P(X").

By Corollary C.6 there exists zy € f(R™) that is generic with respect to to both f and g and
d > 0 such that f and g are invertible on B(xg,d) N f(R™). Therefore, by Theorem C.7, there exists
h:R™ — R™ such that Z’ = h(Z). In other words, P(U, Z) is identifiable up to an affine transformation.

D Identifiability of f

In this section we show that if f is continuous piecewise affine and injective then it is identifiable from
P(X) up to an affine transformation.

Theorem D.1. Assume that (U, Z,X) are distributed according to model (3). Assume that f is contin-
uous piecewise affine and satisfies (F4) (i.e., f is injective).
Then (P(U, Z), f) is identifiable from P(X) up to an affine transformation.

Before proving this theorem, we provide an example that shows that assumption (F2) does not
guarantee that f can be recovered uniquely up to an affine transformation in Theorem C.1.

Example 4. Consider
Y~ %N(—Q, 1)+ %N(z 1) (14)
Define a pair of piecewise affine functions (see also Figure 3)
v 4 forz>2, x—4, forax>4,

—xz+4, for2<z<A4,
—z, for —2<x<2, -

= = , for —2< 2z <2, 15
/(@) r+4, for —4 << -2, 9(z) oo =7 (15)
—xz—4, for —4<z< -2,

4)/5, f < —4.
(@+4)/ o (x+4)/5, forxz < —4.

Figure 3: Graphs of f (black and red) and g (black and blue) in Example 4.

Then it is easy to see that f(Y) and ¢g(Y") have the same distribution, but f cannot be transformed
into g by an affine transformation.
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In order to prove Theorem D.1 we need to show that for a mixture of Gaussians P and a pair of
piecewise affine functions f, g if fyP = g4P, then f = ho g for some invertible affine h. We first consider
the case when g is the identity.

J
Lemma D.2. Let Z ~ > MN(uj,%;). Assume that f: R™ — R™ is a continuous piecewise affine
j=1
function such that f(Z) ~ Z. Then f is affine.

Proof. Since Z has positive density at every point and f(Z) ~ Z we must have dim f(R™) = m.

If f is not affine, then there exist an (m — 1)-dimensional affine subspace L, zp € L and § > 0
such that the following holds: The subspace L divides B(zp,d) into two sets (formally, these are “half-
balls”) BT and B~ such that f,(z) := f|g+(2) = A12+ b1 and f_(2) := f|g-(2) = A2z + be, where
(Al, bl) 7& (AQ, bg) and Al, A2 are invertible.

Since f(Z) ~ Z we have

{f+(,u1)a"'7f+(/LJ)} = {:uh/uQv"'huK} = {f—(:ul)w"vf—(:uJ)}

~l=

J
as multisets (i.e. including repetitions). Let pu, = — > p;. Then, since f and f_ are affine we get
j=1

fr(ps) = f=(ps) = ps. By translating Y and adjusting f accordingly, we may assume that p* = 0. In
this case, by = by = 0. Moreover, since f1(z) = f_(z) for z € L, we get

—

(A7'A5)(2) =z forall z € L. (16)
Finally, since f(Y) ~ Y, we have
{AS AT AN AT = {20,880 = {AX AT A AT

as multisets (i.e. including repetitions). This implies that

J J J
[T det (413,47 ) = [ det (%) = [ det (425547 ) .
j=1 j=1

j=1

Hence, det(A;)? = det(A3)? = 1, and det(A;'45)% = 1. By (16), A Ay is the identity map on L. Let
v be a unit vector orthogonal to L (in the direction of BT). Then we get that either A7 Asv = v, or
A7 Agv = —v. In the latter case Ay (yo+ (6/2)v) = Aa(yo — (6/2)v), which means that f is not injective.
This contradicts Lemma C.5. Therefore, we must have AflAgv = v, and so, by (16), A; = A,.
Therefore, fi = f_, which contradicts (Ay,b;) # (Az,b2). It follows that f must be affine. O

Theorem D.3. Let f,g : R™ — R™ be continuous invertible piecewise affine functions. Let Z ~

J J
121 AN (i, 234) and Z' ~ ]21 NN (15, %5) be a pair of GMMs (in reduced form). Suppose that f(Z) and

gEZ’) are equally distribute?i.
Then there exists an affine transformation h : R™ — R™ such that h(Z) = Z' and g = foh™1.

Proof. By Theorem C.7, there exists an invertible affine transformation hg : R™ — R™ such that
ho(Z) = Z'. Then, f(Z) ~ g(ho(Z)), and since g and hg are invertible, we can rewrite this as Z ~
(hgtog=to f)(Z). By Lemma D.2, (hg' og~' o f) is affine, i.e. there exists an invertible affine map hy
such that

halogflof:hl & f=go(hpohy)

Hence the claim of the theorem holds for h = hg o hy.

Proof of Theorem D.1. Immediately follows from Theorems C.1 and D.3. O

D.1 Identifiability under assumption (F3)

In this section we discuss the case (F3). In particular, show that in (3) under the weaker assumption
(F3), f is identifiable up to an affine transformation on the preimage of every connected open set onto
which f is injective.
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Theorem D.4. Let f,g:R™ — R™ be continuous piecewise affine functions satisfying (F3).

i=1

reduced form). Suppose that f(Z) and g(Z') are equally distributed.
Let D C R™ be a connected open set such that f and g are injective onto D. Then there exists an
affine transformation h : R™ — R™ such that h(Z) = Z' and g(z) = (f o h=1)(z) for every z € g~ (D).

J J
Let Z ~ 37 NN (i, Xi) and Z' ~ 37 NN (1, 55) be a pair of variables with GMM distribution (in
j=1

Proof. Similarly, as in the proof of Theorem D.3, by Theorem C.7, there exists an invertible affine
transformation hy : R™ — R™ such that ho(Z) = Z'. Then, f(Z) ~ g(ho(Z)), and since g is invertible
on D and hy is invertible, we can rewrite this as Z ~ (hg ' og~'o f)(Z) on f~1(D). Since f is invertible
and continuous piecewise affine, f~1(D) is an open connnected set. Therefore, applying Lemma D.2 on
YD), we deduce that (hy' 0 g~' o f) is affine on f~1(D), i.e. there exists an invertible affine map hy
such that

hologlof=h & f=go(hgohi) on f7'(D)

Therefore, for h = (hg o k1), we have g(y) = (f o h=1)(z) for every 2z € g~ (D). O

Remark D.1. Let f be a continuous piecewise affine function that satisfies (F3). Denote
S={zeR": [[T'({=})| > 1} S FR™).

Recall that assumption (F3) says that S has measure zero in f(R™).

We claim that (F3) implies that for every z € S in fact |f~*({z})| = co. Indeed, if for all sufficiently
small § > 0 we have dim (B(z,6) N f(R™)) < m, then |f~*({z})| = oo since f is continuous piecewise
affine. Otherwise, using Corollary C.4, we get that for every § > 0 there exists a generic with respect to
f point x5 € B(z,8) N f(R™). Assumption (F3) implies that |f~1({zs})| = 1 for every x5. Therefore,
since f is continuous piecewise affine we get that either |f~1({z})| =1 or |f~}({z})| = c0.

E Identifiability of 7 up to a permutation, scaling and transla-
tion
Under (P2), we have
J
Z ~ Z )\J'./\/(/IJ]'7 Zj), (17)
j=1

where X; is diagonal for every j € [J]. In the setup of model (3) this just means that Z; 1L Z; | U.
Let Y = AZ + b, where A : R™ — R™ is an invertible linear map and b € R™. Then Y is also a
GMM. We next show how Z may be recovered from Y up to a permutation, scaling, and translation.

Theorem E.1. Let J > 2, and \; > 0 for all j € [J]. Let Z = (Z1,Z,...,Zm) be given by
J
7~y AN (%)) (18)
j=1

Assume that ¥; is diagonal for every j € [J]. Let Y = AZ +b, where A : R™ — R™ is an invertible
linear map and b € R™. Moreover, assume that there exist indices i1,i2 € [J], such that all numbers
(B / (Big)y | t € [m]) are distinct. Given'Y', one can recover an invertible linear map A’ : R™ — R™,
such that (A")"1A = QD, where Q is a permutation matriz and D is a diagonal matriz with positive
entries.

Remark E.1. The translation b is impossible to recover without stronger assumptions, as b corresponds
to an arbitrary translation in the Z space. In other words, choice of b determines the origin in the
coordinate space of Z and it can be completely arbitrary.

Remark E.2. A slightly different version of Theorem E.1 under different assumptions appeared in
( ). The main difference is that ( ) assumed that f is volume-preserving but
nonlinear, whereas we restrict to the general (i.e. not necessarily volume-preserving) linear case.
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Proof. Without loss of generality assume i; = 1 and iy = 2.
Let 3; be the covariance matrices of Z; and let 3; be the covariance matrices of Y; for ¢ € [J]. Clearly

¥ = A% AT for each i € [J]. (19)

The matrices &; are PSD. Therefore, using SVD we can find PSD matrices V;, such that for every
i€ lJ],
s = ViV (20)
Moreover, such a decomposition is unique up to an orthogonal matrix, i.e., for every pair of such de-
compositions ; = V;VI = V/(V/)T there exists a unitary matrix R such that V;R = V. Therefore, for
every i € [J] there exists a matrix R;, such that

ViR; = Ax}/? (21)

In particular,
MRS =R, = R (30 Ry = (V) (22)

Since R; and R;l are unitary and (2;1/22§/2) is diagonal, they can be determined from the SVD of
‘/1_1‘/2. Moreover, they can be determined uniquely up to a permutation matrix since all diagonal entries
of Efl/ 225/ ? are distinct. In other words, using SVD for (Vl_lVg) we can find R} such that for some

permutation matrix P we have
ViRIQ = AZ}/Q, so, for A':=ViR; wehave (A')'A= QEl_l/Q. (23)
This concludes the proof. O]

As an immediate corollary we can deduce the following theorem from Theorem C.1.

Theorem E.2. Assume that (U, Z, X)) are distributed according to model (3) and that f is weakly injec-
tive. Suppose that Z; \L Z; | U for all i # j. Moreover, assume that there exist a pair of states U = uy
and U = uy such that all (X4, ),/ (Bu,)y | t € [m]) are distinct.

Then P(U, Z) is identifiable from P(X) up to permutation, scaling ans translation of Z;.

Proof. By Theorem C.1, P(Z) is identifiable from P(X) up to an affine transformation. That is, we can
reconstruct a random variable Y from P(X) which satisfies Y = AZ 4 b for some invertible A € R™*™,

Now, by Theorem E.1, we can find A’ such that Z’ = (A")7'Y = QDZ + (A")~1b, where Q is a
permutation matrix and D is a diagonal matrix. This means, that we can recover Z up to permutation,
shift and scaling of individual variables Z;. O

F Identifiability of multivariate U structure

When k = 1, P(Z) contains all the information about P(U, Z), however, when k£ > 1 (i.e. U is mul-
tivariate), this may not be true anymore. It is not even obvious that P(Z) must contain information
about the true dimension of U. The distribution P(U, Z) may contain interesting dependencies between
individual variables U; and Z;.

Previously, ( ) studied necessary and sufficient conditions for identifiability of P(U)
when Z is observed under the so-called measurement model. A key limitation of ( )
is that it requires the observed variables to be conditionally independent, which is not the case in our
setting. Ultimately, this is a consequence of Z being unobserved: Previous work such as
( ) assumes there is only a single layer of hidden variables connected to the observations. In our
setting, under (3), we need to recover U from Z, the latter of which is unobserved. As a result, if we
can only identify Z up to an affine transformation (e.g., like in Theorem C.1); i.e. we can only recover
7' = AZ + b, then it almost surely will not be conditionally factorial. Hence, the results from

( ) cannot be applied directly for weak (e.g., up to affine transformation, or as in
, ) notions of identifiability of Z.

Luckily, in Section E, we showed how to recover the true Z from Z’ = AZ +b. This will enable us to
identify P(U) in Theorem 3.3(c). In the remainder of this appendix, we outline these details.

We say that a distribution P(U, Z) satisfies the Markov property with respect to the neighborhoods
ne(Z;) (cf. Definition 3.2) if

P(U, Z) = P(U) HIP’(ZZ» | ne(Z;)). (24)
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Remark F.1. The neighborhoods ne(Z;) define a bipartite graph between (Uy,...,Uy) and (Z1,..., Zy)
that is described in ( ). Since this graph is not needed for our purposes, we proceed
without further mention of this graph. The assumptions below have been re-phrased accordingly.

( ) show that assumptions (L1)-(L4) below are necessary for identifiability of U.
L1) (No twins) For any U; # U; we have ne(U;) # ne(Uj;).
J J
(L2) (Maximality) There is no U’ such that:

(a) P(U', Z) is Markov with respect to the neighborhoods ne(Z;) defined by U’;

(b) U’ is obtained from U by splitting a hidden variable (equivalently, U is obtained from U’ by
merging a pair of vertices);
(c) U’ satisfies Assumption (L1).

(L3) (Nondegeneracy) The distribution over (U, Z) satisfies:

(a) P(U = u) > 0 for all u.

(b) For all Z/ C Z and uy # uz, P(Z'|ne(Z') = uy) # P(Z'|ne(Z’) = us), where uy and ug are
distinct configurations of ne(Z’).

(L4) (Subset condition) For any pair of distinct variables U;, U; the set ne(U;) is not a subset of ne(Uj).

We prove the following identifiability result.

Theorem F.1. Assume that (U, Z, X) are distributed as in (3) and that f satisfies (F2). Assume further
that (P2)-(P3) hold and P(U = u) > 0 for all u in the domain of U.

Then dim(U) = k, dim(U;), P(U, Z) are identifiable from P(X) up to a permutation of variables U;
and permutation, scaling and translation of variables Z;.

Proof. The assumptions of Theorem F.1 are stronger than those of Theorem E.2, so by Theorem E.2,
P(Z) is identifiable up to a permutation, scaling and translation of Z.

Combined with the positivity assumption P(U = u) > 0, the assumptions (L1)-(L4) are weaker than
assumption (P3). Indeed, (P3) (a) is equivalent to (L3) (b); (P3) (c) is equivalent to (L4) and implies
(L1); and, finally, (P3) (b) and (c) together imply (L2).

Since Z is identifiable up to a permutation, scaling and translation, Z; 1L Z; | U, and assumptions
(L1)-(L4) hold, using ( , , Thm 3.2), we deduce that dim(U) = k, dim(U;), P(U), and
ne(U;) are identifiable up to a permutation of the variables U;. Finally, by the Markov Property, P(U),
ne(U;) for all ¢, and the fact that P(Z) is a finite GMM (that is identifiable) are sufficient to recover
P(U, Z). O

Remark F.2. As the proof indicates, assumptions (L1)-(L4) are weaker than (P3), so Theorem F.1 implies
part (c¢) of Theorem 3.3.

G Equivalence in iVAE

In this section we compare the equivalence relation up to which iVAE ( , )
guarantees identifiability and equivalence up to an affine transformation. While iVAE achieves the best
possible identifiability under the assumptions they make, we show that identifiability up to an affine
transformation is considerably stronger.

G.1 iVAE equivalence relation

Recall that iVAE ( ) considers the following model, which differs from (3) by
assuming that Z has conditionally factorlal exponential family distribution:
U=ur~p(u)
(Z|U =u] ~ HC exp ZTJ zi)Aij — U—Z—X. (25)
i=1
(X[ Z =2~ f(2) +e, €~N(v70 )
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Here T; = (T1,T5,...T;) are sufficient statistics, @; is the base measure and Ai,; parameters depending
on u. iVAE defines the following equivalence relation:

Definition G.1.
(f;T,0) ~(f,T0") & 3d,c: T(f({z}) = AT ((f) " (2) +e (26)
where A : R™ — R™ is an invertible linear map, and ¢ € RV,

This type of identifiability allows for essentially any (synchronized) changes to Z and f:

Lemma G.1. Let ¢ : R™ — R™ be any invertible map. Let f' = foy, and T' = T o p. Then
(f7T7 U) ~ (fI7TI7 0)'

Moreover, if Z has exponential family distribution with statistics T, then Z' = ¢~ Y(Z), has an
exponential family distribution with statistics T', and f(Z) ~ f'(Z').

Proof. We have (f')"'=¢ tof ™l soT o(f)"t =To f. Hence (f,T,0) ~ (f',T',0"), where in (26)
A is the identity map and ¢ = 0.
Since Z comes from an exponential family distribution, we can write

P(Z|U) = h(Z2)g(U) exp(MU)T(Z)). (27)

Let Z' = p=1(Z). Then by the change of variable formula

B(Z' | U) = (hg(2)) det [Jac(p(e))lamp-r(z) ) 9(U) expAUIT(9(2)), (28)

where Jac(yp) is the Jacobian of ¢. Hence Z’ indeed has an exponential family distribution with statistics
T'. Clearly, f'(Z") = (fopop 1) (2) = f(2). O

Remark G.1. In other words, the equivalence relation (26) allows an arbitrary (possibly highly nonlinear)
change of basis in the latent Z space. In principle, this may indicate, that any meaningful analysis of
the Z space in this setup may be challenging.

Remark G.2. As in ( ), the additional assumption that Z has a conditionally
factorial distribution imposes additional restrictions on . In this case, ¢ : R™ — R™ can be any
invertible coordinatewise function ¢©(Z’) = (p1(21), ©2(25), ... w2(2],)).

G.2 GMDMs give more robust identifiability

The next result was also observed in ( ). We present a slightly simplified proof for
completeness.
If P(Z|U) is a multivariate Gaussian distribution, then the sufficient statistics are given by

T’m = (Zlv"';Zm72121321227"'2m2m)' (29)
Remark G.3. For product measures, there are no cross-terms z;z;.

Proposition G.2 ( , , Appendix B). Assume that (Ty, f,0) ~ (T, f',0’), where
T, is defined by (29). Then there exists an invertible linear map M : R™ — R™ and a vector ¢ € R™
such that f=*({z}) = M(f")~1(z) + ¢ for every z.

Proof. Let z = f~'({z}) and 2’ = (f')~!(x). By an assumption of the proposition there exists an
invertible matrix A : R™*+m* — Rm+m” such that

Z1 21
29 24
z z
" =A |+ b (30)
Z121 21727
! !
Z1%2 Z1%9
ZmZ 2 2!
m~m m~m
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This means that for every ¢ there exists a polynomial p; of degree at most 2 such that z; = p; (2], ..., 2.,).

rm
Assume that for some 4, we have deg(p;) = 2. Then it is easy to verify (say, by using lexicographical order
on monomials) that deg(p?) = 4. If 2’ is defined on an open neighbourhood, we get a contradiction with
(30) as 22 can be written as a degree-2 polynomial over variables z;. Therefore, every p; is a polynomial
of degree at most 1. But this means that that 2 = M2z’ + ¢ for some matrix M and a vector c. Moreover,

since A is invertible, M is invertible as well. O

H Conditions on ReLU Neural Network that guarantee that it
is an observable injection

For completeness, in this section we provide simple sufficient conditions on ReLU architectures that
guarantee that it is an observable injection (cf. (F3)) and simple sufficient conditions on leaky-ReL.U
architectures which guarantee that it is injection (cf. (F4)). For a more comprehensive account of
identifiability in ReLU networks, see ( ).

We recall the definitions of ReLU and leaky-ReLU (with parameter a > 0, a # 1) activation functions

x, forax >0,
0, forxz <0,

z, forxz >0,
(31)
a-x, forx<O0.

ReLU(z) = { LReLU(z) = {

A standard choice of a for leaky-ReLlU is a = 0.01.
Definition H.1. Let Aff(n;,ns) denote the set of affine maps h : R™* — R"2.

Let 0 : R — R be a general activation function. For a vector z € RY, o(z) is a vector obtained from
x by applying o coordinatewise.

Definition H.2. Let ny,no,...,n; > ng = m and o be an activation function. Define
From ={hyoocohi_1000...00hy | h; € Aff(n;—1,n;)} (32)
f;an _ U U J—_-;LO,..A,nt (33)

t=1 ni,n2,...,nt>n0, no=m, Ny=n

Remark H.1. The function families Furi}, Flkort e genuinely nonparametric: There is no bound on
the number of layers.

Remark H.2. In the arguments below we do not rely on the fact that the activation function is the same
on every layer, or even the same across the nodes of the same layer. However, we will give proofs only
in this case, to simplify the presentation.

Remark H.3. ReLU networks under similar assumptions were also studied in ( ).

Lemma H.1. Let f =hiooohi_jo0o0...00h; € FRuil- Assume thatm=ng <n; <...<ng=n,
and dim(f(R™)) = m. Then for almost all y € f(R™) there exists §, such that f~' is a well-defined
affine function on B(y,d,) N f(R™).

Proof. We prove the claim by induction on the depth of the NN. If t = 1, we have f = h; and the claim
is trivial. Assume that we already proved the lemma for all ¢ < s — 1. We prove the claim for t = s. We
can write f as f = hy o0 o g where g € frTe?L?t !

Since dim(f(R™)) = m, the map h; has full column rank. Additionally, denoting by D = {x €
R™-t | x; > 0, Vi € [ny—1]} the domain on which o is injective, we get g(R™) N D has positive measure
in g(R™). Moreover, by the induction assumption, g satisfies conclusion of the lemma, i.e., there exists
a set S of measure 0 in g(R™) such that for any y € g(R™) \ S there exists a &, > 0 such that g~! is
a well-defined affine function on B(y,d,) N g(R™). Since h; has full column rank, f~! is a well-defined
affine function on B(z,d,) N f(R™) for every z = (f o 0)(y) where y € (9(R™) \ S) ND. Clearly, such «
form a set of full measure in f(R™). O

Corollary H.2. Let f = hyooohi_j000...00hy € FRuit. Assume thatm =no <n; < ... <ny=mn,
and dim(f(R™)) = m, then f satisfies (F3).

Proof. Immediately follows from Lemma H.1. O
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Lemma H.3. Let f =hioo0hi_1000...00h € F{R . Assume that m=no <n1 < ... <np=n
and every h; is invertible. Then for almost all y € f(R™) there exists 8, such that f~' is a well-defined
affine function on B(y,d,) N f(R™).

Proof. Clearly, any f =hjocoh;_1000...00h1 € FLreLu is a piecewise affine function. The LReLLU
activation function is invertible, so f is invertible. Finally, since f is a piecewise affine transformation,
for almost all y € B(xo,d) there exists &, such that f~! is an affine function on B(y, d,). O

Corollary H.4. Let f = hyooohs_1000...00h; € Flxity. Assume thatm =no <n; <... <ny=mn,
then generically f satisfies (F4).

Proof. Generically, every h; has full column rank, and so is injective. Since LReLU is injective, we get
that f is injective. O

We conclude with an example of a very simple LReLU NN that is not even weakly injective.

Example 5. Let o(z) = z for x > 0 and o(x) = x/2 for z < 0. Let h; : R — R? defined as
hi(xz) = (x,—x). Then oo hy(z) = (x,—x/2) if x > 0 and oo hy(z) = (z/2,—x) if © < 0. Let

ho : R?Z — R? given by
1 -1
=1 )
Then (hgooohy)(z) = (3x/2,2/2) for x > 0 and (hgooohy)(z) = (3z/2, —x/2) for z < 0 (see Figure 4).

Let hg(x,y) = y. Then f(x) := (hgooohgooohy)(x) = |z|/2. By Remark 3.6, this implies that f is
not invertible at every point except 0.

Figure 4: Graphs of o o hy (black) and hg o o o hy (blue) in Example 5

J Experiment details

J.1 Metrics

Previous work has relied on the Mean Correlation Coefficient (MCC) as a metric to quantify identifi-
ability. For consistency with previous work, we report this metric, but also propose a new metric to
quantify identifiability up to an affine transformation. There are two challenges in designing such a met-
ric: Firstly, for two Gaussian mixtures, standard distance metrices such as TV-distance or KL-divergence
do not have a closed form. Secondly, we need to find an affine map A that best aligns a pair of Gaussian
mixtures. Therefore, developing a metric to quantify identifiability up to an affine transformation has
natural challenges. We propose distag 12, defined below, as an additional metric in this setting.

Measuring loss In this work, we consider two different metrics. For a pair of distributions p1, p2, we
define distag, 1,2 loss as

distas,zo(p1,p2) =  min - Ap,(Agpr,pa), where Ap,(p1,p2) = % (34)
AR™SR™, [Pl / P2l /
affine L 2L
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The other metric we consider is the Mean Correlation Coefficient (MCC) metric which had been used
in prior works ( , ; , ). See ( ,
Appendix A.2) for a detailed discussion. There are two versions of MCC that have been used:

e The strong MCC is defined to be the MCC before alignment via the affine map A.
e The weak MCC is defined to be the MCC after alignment.

In our experiments, we report both the strong MCC and weak MCC. Moreover, all reported MCCs are
out-of-sample, i.e. the optimal affine map A is computed over half the dataset and then reused for the
other half of the dataset.

Alignment To find the affine map A that best aligns the two GMMSs, we use two approaches. One
approach is to use Canonical Correlation Analysis (CCA) as was done in prior works in computing MCC.
We describe an alternative approach now. Given two GMMs, we iterate over all permutations of
the components and for each fixed permutation, we find the best map A that maps the components
accordingly. In an ideal setting, we would want to find A to align not just the means but also the
covariance matrices but unfortunately this is a challenging optimization problem. Therefore, we instead
find A that maps the means of the first GMM to the means of the second GMM. The map A can be
found by solving a least-squares optimization problem which is straightforward using a Singular Value
Decomposition (SVD). In practice, we find that this technique of matching the means works well.

J.2 Implementation

For VaDE ( , ), we use the implementation available at https://github.com/mperezcarrasco/
Pytorch-VaDE. For MFCVAE ( , ), we use the author implementation available at
https://github.com/FabianFalck/mfcvae. For iVAE ( , ), we use the im-

plementation available at https://github.com/MatthewlWilletts/algostability. Experiments were
performed on an NVIDIA Tesla K80 GPU with 12GB memory.

J.3 Setup

Our experiments consist of three different setups, designed to probe different aspects of identifiability.
First, we checked the exact log-likelihood for a unique global minimizer on simple toy models (Ap-
pendix J.3.1). We then used VaDE ( , ) to train a practical VAE on a simulated dataset
where the ground truth latent space is known (Appendix J.3.2). Finally, we compared the performance
of MFCVAE ( , ) against iVAE on MNIST (Appendix J.3.3). The last experiment is based
on previous work by ( ) that compares iVAE to VaDE; we successfully replicated
these experiments using MFCVAE as an additional baseline that closely aligns with our assumptions.

The fact that our theory closely aligns with and replicates existing empirical work illustrates that the
model (3) is not merely a theoretical curiosity, but in fact practically relevant in modern applications.
In our view, this is a significant advantage compared to related work.

J.3.1 Maximum likelihood

We simulated random models of the form (1) as follows:
1. Fix J=2or J = 3;
2. Randomly select (A1,...,As) from a uniform grid by discretizing the simplex;
3. Randomly select (g1, ..., us) from a uniform grid on the hypercube;

4. Randomly select coefficients (a1, as), weights (81, 82), and biases (w1, m2) from a uniform grid on
the hypercube.

Given these parameters, the prior P(Z) is defined as in (2) and the decoder f is defined to be the
following single-layer ReLU network

f(2) = a3 ReLU(B12 + m1) + as ReLU(B2z + 7).

As a result of the simulation mechanism, the following important cases of misspecification naturally arise:
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e We allow \; = 0, i.e. the model allows for J = 3 components, but the true model only has two
nontrivial components.

e We allow a; = 0 and 3; = 0, i.e. the model allows for up to two neurons in the hidden layer, but
the true model only has one nontrivial neuron.

e f is not forced to be injective or even weakly injective, i.e. assumptions (F2)-(F4) are not checked
explicitly.

After generating a pair (f, P(Z)), the exact negative log-likelihood is approximated via numerical
integration. An exhaustive grid search is performed over all parameters to identify the global minimizers.
The computational cost of this step limited the complexity of the models that could be tested, hence the
restriction to simple toy models in this experiment. In all runs, the ground truth was the unique global
minimizer of the negative log-likelihood, as predicted by our theory. Since the problem is nonconvex,
there often exist additional (non-global) local minima (see e.g. Figure 1), however, the global minimizer
is always unique up to affine equivalence. That is, due to affine equivalence, in some cases there is more
than one global minimizer, but in all such cases it is easy to check that the different minimizers are indeed
affinely equivalent. Multiple minimizers also arise when certain parameters (e.g. A; or «;) vanish, again,
these are easily checked.

J.3.2 Simulated data

We consider 4 synthetic datasets described below: Pinwheel and three different copies of the “Random
parallelograms” dataset

See Section 4 for results of the simulated experiments on the “pinwheels” dataset (see ,

). In those experiments we use 5000 samples and set m = n = 2. In that experiment we used the
same neural network architecture as discussed below for “Random parallelograms”.

We simulate an artificial dataset “Random parallelograms” as follows: We generate 3 randomly
oriented parallelograms in the plane. After that, an n-dimensional observed distribution is obtained by
sampling points uniformly at random from these parallelograms and by adding Gaussian noise to every
sampled point.

We fit VaDE to each (observed) dataset 5 times (see Figures 2, 5-7). Let Z(), Z(2) .. Z®) be the
learned latent spaces. For every pair Z(), ZU) we evaluate the MCC and dist Af, 12 loss. We report
means of the MCCs/losses and their standard deviations in Table 2.

For the VaDE training, we use a sequential neural network architecture with LeakyReL.U activations
for the encoder, with four fully connected layers of the following dimentions: n — 64 — 512 — 64 — m.
For the decoder, we use a sequential neural network architecture with LeakyReLU activations, with
four fully connected layers of the following dimentions: m — 64 — 512 — 512 — n. We pretrain the
autoencoder for 15 epochs and then run VaDE training for 20 epochs.

In all experiments with simulated data we set m = 2. We set the number of observed samples to be
5000.

Dataset distafr, 12 Strong MCC  Weak MCC
Random parallelograms %1 0.1542 (0.150) _ 0.86 (0.09) 0.9 (0.003)
Random parallelograms #2 0.1231 (0.076)  0.83 (0.12)  0.99 (0.003)
Random parallelograms #3  0.578 (0.301) 0.91 (0.08)  0.99 (0.001)

Table 2: Mean (std) distag 2 distance (lower is better) and Mean (std) MCC (higher is better) for
synthetic data

J.3.3 Real data

We run MFCVAE ( , ) on the MNIST dataset 10 times with different initializations.
For all the 45 pairs of runs, we compute the strong MCC (before alignment) and weak MCC (after
alignment with CCA of dimension 5). For these experiments, we omit the distag o metric since it’s
computationally infeasible with a large number of components. The mean and standard deviation of
the MCCs are reported in Table 3. As a baseline, we also report the same metrics for 10 runs of iVAE

, ) on identical architecture and latent dimension, but recall that iVAE has
additional access to the true digit labels U.
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Observed X Latent GMM #1 Latent GMM #2 Latent GMM #3 Latent GMM #4 Latent GMM #5

@ | \
¢ |/

Figure 5: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #1 with 3
clusters

Observed X Latent GMM #1 Latent GMM #2 Latent GMM #3 Latent GMM #4 Latent GMM #5

Figure 6: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #2 with 3
clusters

Observed X Latent GMM #1 Latent GMM #2 Latent GMM #3 Latent GMM #4 Latent GMM #5
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Figure 7: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #3 with 3
clusters

Architecture Model Activation | Strong MCC Weak MCC
MFCVAE ReLU 0.7 (0.07) 0.91 (0.05)

Archl MFCVAE LeakyReLU | 0.69 (0.06) 0.94 (0.02)
iVAE LeakyReLU | 0.65 (0.07) 0.88 (0.07)

MFCVAE ReLU 0.69 (0.07) 0.89 (0.08)

Arch2 MFCVAE LeakyReLU | 0.69 (0.06) 0.92 (0.03)
iVAE LeakyReLU | 0.64 (0.07) 0.87 (0.04)

MFCVAE ReLU 0.69 (0.07) 0.86 (0.08)

Arch3 MFCVAE LeakyReLU | 0.70 (0.05) 0.92 (0.03)
iVAE LeakyReLU | 0.67 (0.06) 0.87 (0.05)

Table 3: Mean and standard deviation of the MCCs (higher is better) across various models, architectures
and activations

As recommended in Falck et al. (2021), we set the dimension of the latent space to be 5 and number
of components to be 25. No hyperparameter tuning was done. The architectures we use are as follows:

e Archl: The encoder is a sequential neural network architecture with fully connected layers of
dimensions n — 500 — 1000 — m. The decoder is also a sequential neural network architecture
with fully connected layers of dimensions m — 500 — 500 — n.

e Arch2: The encoder is a sequential neural network architecture that is fully connected with di-
mensions n — 256 — 512 — 512 — m. The decoder is similarly a sequential neural network
architecture with fully connected layers of dimensions m — 512 — 256 — n.

e Arch3: The encoder is a sequential neural network architecture that is fully connected with di-
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mensions n — 128 — 256 — 128 — 128 — m. The decoder is again a sequential neural network
architecture with fully connected layers of dimensions m — 128 — 128 — n.

The work ( ) ran extensive experiments comparing VaDE and iVAE. We
augment these experiments by using MFCVAE instead of VaDE. We observe that even without access
to U, MFCVAE has competitive performance (stability) in recovering the latent space as compared to
iVAE which has full access to U. This offers strong evidence for stability of training, as predicted by our
theory.

For purely illustrative purposes, we also show the output of MFCVAE on MNIST. In Figure 8,
we show samples synthetically generated from each learnt cluster. In Figure 9, we visualize the true
datapoint x and the corresponding reconstructed z for four different datapoints in each cluster. For
similar experiments on other datasets and other architectures, we refer the reader to ( ).
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Figure 8: Output of MFCVAE on MNIST data: Synthetically generated samples. Each row corresponds

to a different learnt component. The columns are samples generated from the component. The rows are

sorted by average confidence.
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