
1

Multi-Job Intelligent Scheduling with
Cross-Device Federated Learning

Ji Liu∗‡, Juncheng Jia∗§, Beichen Ma‡, Chendi Zhou§, Jingbo Zhou‡, Yang Zhou¶,
Huaiyu Dai‖, and Dejing Dou‡

Abstract—Recent years have witnessed a large amount of decentralized data in various (edge) devices of end-users, while the
decentralized data aggregation remains complicated for machine learning jobs because of regulations and laws. As a practical
approach to handling decentralized data, Federated Learning (FL) enables collaborative global machine learning model training without
sharing sensitive raw data. The servers schedule devices to jobs within the training process of FL. In contrast, device scheduling with
multiple jobs in FL remains a critical and open problem. In this paper, we propose a novel multi-job FL framework, which enables the
training process of multiple jobs in parallel. The multi-job FL framework is composed of a system model and a scheduling method. The
system model enables a parallel training process of multiple jobs, with a cost model based on the data fairness and the training time of
diverse devices during the parallel training process. We propose a novel intelligent scheduling approach based on multiple scheduling
methods, including an original reinforcement learning-based scheduling method and an original Bayesian optimization-based
scheduling method, which corresponds to a small cost while scheduling devices to multiple jobs. We conduct extensive
experimentation with diverse jobs and datasets. The experimental results reveal that our proposed approaches significantly outperform
baseline approaches in terms of training time (up to 12.73 times faster) and accuracy (up to 46.4% higher).

Index Terms—Federated learning, Scheduling, Multi-job, Parallel execution, Distributed learning.

F

1 INTRODUCTION

In recent years, we have witnessed a large amount of
decentralized data over various Internet of Things (IoT)
devices, mobile devices, etc. [1], which can be exploited to
train machine learning models of high accuracy for diverse
artificial intelligence applications. Since the data contain
sensitive information of end-users, a few stringent legal
restrictions [2], [3], [4], [5] have been put in place to protect
data security and privacy. In this case, it is difficult or even
impossible to aggregate the decentralized data into a single
server or a data center to train machine learning models.
To enable collaborative training with decentralized data,
Federated Learning (FL) [6], which does not transfer raw
data, have emerged as a practical approach.

FL was first introduced to collaboratively train a global
model with non-Independent and Identically Distributed
(non-IID) data distributed across mobile devices [6]. During
the training process of FL, the raw data remains decentral-
ized without being transferred to a single server or a single
data center [7], [8]. FL only allows the intermediate data to
be transferred from the distributed devices, which can be the
weights or the gradients of a model. FL generally utilizes a
parameter server architecture [9], [10], [11], where a server
(or a group of servers) coordinates the training process with
numerous devices. To collaboratively train a global model,
the server selects (schedules) several devices to perform
local model updates based on their local data, and then it
aggregates the local models to obtain a new global model.
This process is repeated multiple times to generate a global

∗ Corresponding author.
‡ J. Liu, B. Ma, J. Zhou, and D. Dou are with Baidu Inc., Beijing, China.
§ J. Jia and C. Zhou are with Soochow University, China.
¶ Y. Zhou is with Auburn University, United States.
‖ H. Dai is with North Carolina State University, United States.

model of high accuracy.
While current FL solutions [6], [12] focus on a single-

task job or a multi-task job [13], FL with multiple jobs [14]
remains an open problem. The major difference between the
multi-task job and multiple jobs is that the tasks of the multi-
task job share some common parts of the model, while the
multiple jobs do not interact with each other in terms of
the model. The multi-job FL deals with the simultaneous
training process of multiple independent jobs. Each job
corresponds to multiple updates during the training process
of a global model with the corresponding decentralized
data. While the FL with a single job generally selects a
portion of devices to update the model, the other devices
remain idle, and the efficiency thus is low. The multi-job FL
can well exploit diverse devices for multiple jobs simulta-
neously, which brings high efficiency. The available devices
are generally heterogeneous [15], [16], i.e., the computing
and communication capacity of each device is different,
and the data in each device may also differ. For instance,
multiple machine learning jobs, e.g., CTR models [17], [18],
mobile keyboard prediction [19], and travel time prediction
[20], may be concurrently executed with FL. The concur-
rent execution can be carried out with the same group of
users. In addition, industry-level machine learning jobs, e.g.,
recommendation system jobs [21], speech recognition [22],
etc., may be adapted to be executed in parallel with FL for
privacy issues.

During the training process of multiple jobs, the devices
need to be scheduled for each job. At a given time, a device
can be scheduled to one job. However, only a portion of
the available devices are scheduled to one job to reduce
the influence of stragglers [6]. Powerful devices should be
scheduled to jobs to accelerate the training process, while

ar
X

iv
:s

ub
m

it/
46

16
23

6 
 [c

s.D
C

]  
24

 N
ov

 2
02

2



2

other eligible devices should also participate in the training
process to increase the fairness of data to improve the accu-
racy of the final global models. The fairness of data refers
to the fair participation of the data in the training process of
FL, which can be indicated by the standard deviation of the
times to be scheduled to a job [23], [24].

While the scheduling problem of devices is typical NP-
hard [25], [26], some solutions have already been proposed
for the training process of FL [16], [27], [28], [29] or dis-
tributed systems [30], which generally only focus on a
single job with FL. In addition, these methods either cannot
address the heterogeneity of devices [27], or do not consider
the data fairness during the training process [16], [28], [29],
which may lead to low accuracy.

In this paper, we propose a Multi-Job Federated Learning
(MJ-FL) framework to enable the efficient training of multi-
ple jobs with heterogeneous edge devices. The MJ-FL frame-
work consists of a system model and a novel intelligent
scheduling approach. The system model enables the parallel
training process of multiple jobs. With the consideration
of both the efficiency of the training process, i.e., the time
to execute an iteration, and the data fairness of each job
for the accuracy of final models, we propose a cost model
based on the training time and the data fairness within
the system model. We propose an intelligent scheduling
approach based on multiple scheduling methods, includ-
ing two original scheduling methods, i.e., reinforcement
learning-based and Bayesian optimization-based, to sched-
ule the devices for each job. To the best of our knowledge,
we are among the first to study FL with multiple jobs. This
paper is an extension of a conference version [31], with
an extra meta-scheduling approach, additional theoretical
proof, and extensive experimental results. We summarize
our contributions as follows:

• We propose MJ-FL, a multi-job FL framework com-
posed of a parallel training process for multiple jobs
and a cost model for scheduling methods. We pro-
pose combining the capability and data fairness in
the cost model to improve the efficiency of the train-
ing process and the accuracy of the global model.

• We propose two scheduling methods, i.e., Reinforce-
ment Learning (RL)-based and Bayesian Optimiza-
tion (BO)-based methods, to schedule the devices to
diverse jobs (more details including the method to
estimate the loss in Section 3.3 are added compared
with [31]). Each method has advantages in a specific
situation. The BO-based method performs better for
simple jobs, while the RL-based method is more
suitable for complex jobs. In addition, we provide
theoretical convergence analysis in Section 5.

• We propose a novel intelligent scheduling approach
based on multiple scheduling methods (extra con-
tribution compared with [31]). The novel intelligent
scheduling approach is a meta-scheduling approach
that coordinates multiple scheduling methods to
achieve excellent performance with an adapted dy-
namic cost model.

• We carry out extensive experimentation to validate
the proposed approach. We exploit multiple jobs,
composed of Resnet18, CNN, AlexNet, VGG, and

LeNet, to demonstrate the advantages of our pro-
posed approach using both IID and non-IID datasets
(with extra extensive experimental results for the
meta-scheduling approach).

The rest of the paper is organized as follows. We present
the related work in Section 2. Then, we explain the system
model and formulate the problem with a cost model in
Section 3. We present the scheduling methods in Section 4.
We provide theoretical convergence analysis in Section 5.
The experimental results with diverse models and datasets
are given in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

In order to protect the security and privacy of decentralized
raw data, FL emerges as a promising approach, which en-
ables training a global model with decentralized data [1], [6],
[8], [15]. Based on the data distribution, FL can be classified
into three types, i.e., horizontal, vertical, and hybrid [1],
[8]. The horizontal FL addresses the decentralized data of
the same features, while the identifications are different.
The vertical FL handles the decentralized data of the same
identifications with different features. The hybrid FL deals
with the data of different identifications and different fea-
tures. In addition, FL includes two variants: cross-device
FL and cross-silo FL [7]. The cross-device FL trains global
machine learning models with a huge number of mobile or
IoT devices, while the cross-silo FL handles the collaborative
training process with the decentralized data from multiple
organizations or geo-distributed datacenters. In this paper,
we focus on the horizontal and cross-device FL.

Current FL approaches [32], [33], [34], [35], [36], [37]
generally deal with a single job, i.e., with a single global
model. While some FL approaches have been proposed
to handle multiple tasks [13], [38], the tasks share some
common parts of a global model and deal with the same
types of data. In addition, the devices are randomly selected
(scheduled) in these approaches.

A few scheduling approaches [16], [16], [27], [28], [28],
[29], [29], [30], [39] exist for single-job scheduling while the
device scheduling with multi-job FL is rarely addressed. The
scheduling methods in the above works are mainly based on
some heuristics. For instance, the greedy method [40] and
the random scheduling method [27] are proposed for FL,
while genetic algorithms [30] are exploited for distributed
systems. However, these methods do not consider the fair-
ness of data, which may lead to low accuracy for multi-job
FL. The black-box optimization-based methods, e.g., RL [39],
BO [41], and deep neural network [42], have been proposed
to improve the efficiency, i.e., the reduction of execution
time, in distributed systems. They do not consider data
fairness either, which may lead to low accuracy for multi-
job FL. Although ensemble learning or ensemble method
consisting of multiple models [43], has been exploited for
scheduling parallel tasks [44], proper cost models and en-
semble mechanism should be well designed.

Different from all existing works, we propose a system
model for the multi-job FL with the consideration of both
efficiency and accuracy. In addition, we propose a novel in-
telligent scheduling approach based on multiple scheduling
methods. To improve the efficiency of the training process,



3

TABLE 1: Summary of Main Notations

Notation Definition
K; |K| Set of all devices; size of K

M ; m; T The total number of jobs; index of jobs; total training time
Dm

k ; Dm
k ; dmk Local dataset of Job m on Device k; size of Dm

k ; batch size of the local update of Device k
Dm; Dm Global dataset of Job m; size of Dm

Fm
k (w); Fm(w) Local loss function of Job m in Device k; global loss function of Job m

wm
k,r(j) Local model of Job m in Device k in the j-th local update of Round r
Rm The maximum rounds for Job m during the execution
R′

m The minimum rounds for Job m to achieve the required performance (loss value or accuracy)
lm The desired loss value for Job m

τm; Cm Number of local epochs of Job m; the ratio between the number of devices scheduled to Job m and |K|
Sm, srk,m The frequency vector for Job m; the frequency of Device k scheduled to Job m at Round r
Vr
m A set of devices scheduled to Job m at Round r

Vo;Vr
o A set of occupied devices; the set of occupied devices in Round r

ζm,r
k,j The sampled dataset for Job m at local iteration h Round r on Device k

we propose two original scheduling methods, i.e., RL and
BO, for multi-job FL, which are suitable for diverse models
and for both IID and non-IID datasets.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first explain the motivation for multi-
job FL. Then, we propose our multi-job FL framework ,
consisting of a multi-job FL process and a cost model.
Afterward, we formally define the problem to address in
this paper. Please see the meanings of the major notations in
Table 1.

3.1 Motivation for Multi-Job Federated Learning

Let us assume a scenario where multiple FL jobs are
processed simultaneously, e.g., image classification, speech
recognition, and text generation. These jobs can be trained in
parallel to exploit the available devices efficiently. However,
while each device can only update the model of one job
at a given time slot, it is critical to schedule devices to
different jobs during the training process. As the devices
are generally heterogeneous, some may possess high com-
putation or communication capability while others may not.
In addition, the data fairness of multiple devices may also
impact the convergence speed of the training process. For
instance, if only specific powerful devices are scheduled for
a job, the model can only learn from the data stored on these
devices, while the knowledge from the data stored on other
devices may be missed. In order to accelerate the training
process of multiple jobs with high accuracy, it is critical to
consider how to schedule devices while considering both
the computing and communication capability and the data
fairness.

A straightforward approach is to train each job sepa-
rately using the mechanism explained in [27], while exploit-
ing the existing scheduling of single-job FL, e.g., FedAvg
[27]. In this way, simple parallelism is considered while
the devices are not fully utilized and the system is of
low efficiency. In addition, a direct adaptation of existing
scheduling methods to multi-job FL cannot address the
efficiency and the accuracy at the same time. Thus, it is
critical to propose a reasonable and effective approach for
the multi-job FL.

3.2 Multi-job Federated Learning Framework
In this paper, we focus on an FL environment composed of
a server module and multiple devices. The server module
(Server) may consist of a single parameter server or a group
of parameter servers [45]. In this section, we present a multi-
job FL framework, which is composed of a process for the
multi-job execution and a cost model to estimate the cost of
the execution.

3.2.1 Multi-job FL Process
Within the multi-job FL process, we assume that K devices,
denoted by the set K, collaboratively train machine learning
models for M jobs, denoted by the setM. Each Device k is
assumed to have M local datasets corresponding to the M
jobs without loss of generality, and the dataset of the m-th
job on Device k is expressed as Dmk = {xmk,d ∈ Rnm , ymk,d ∈
R}D

m
k

d=1 with Dm
k = |Dmk | as the number of data samples,

xmk,d representing the d-th nm-dimentional input data vector
of Job m at Device k, and ymk,d denoting the labeled output
of xmk,d. The whole dataset of Job m is denoted by Dm =⋃
k∈KDmk with Dm =

∑
k∈KD

m
k . The objective of multi-job

FL is to learn respective model parameters {wm} based on
the decentralized datasets.

The global learning problem of multi-job FL can be
expressed by the following formulation:

min
W

M∑
m=1

Lm, with Lm =
K∑
k=1

Dm
k

Dm
Fmk (wm), (1)

where Lm is the loss value of Job m, Fmk (wm) =
1
Dmk

∑
{xmk,d,ymk,d}∈Dmk

fm(wm;xmk,d, y
m
k,d) is the loss value of

Job m at Device k, W :≡ {w1,w2, ...,wM} is the set of
weight vectors for all jobs, and fm(wm;xmk,d, y

m
k,d) captures

the error of the model parameter wm on the data pair
{xmk,d, ymk,d}.

In order to solve the problem defined in Formula 1, the
Server needs to continuously schedule devices for different
jobs to iteratively update the global models until the training
processes of the corresponding job converge or achieve the
target performance requirement (in terms of accuracy or loss
value). We design a multi-job FL process as shown in Figure
1. The Server first initializes a global model for each job.
The initialization can be implemented randomly or from the
pre-training process with public data. To know the current
status of devices, the Server sends requests to available
devices in Step 1©. Then, in Step 2©, the Server schedules
devices for the current job based on the scheduling plan



4

FL Server

Scheduler Aggregator

…

Global  model 1

Global  model m

…

Upload local model

Distribute Global model  m

Multi-job Device Scheduling

…

…

…

…
…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

Resource Request1

2

User 1

User i

User j

User K
Distribute Global model  m

Distribute Global model  1

Distribute Global model  1

Upload local model

Upload local model

Upload local model

User

…

……Local update
Model m

Local model upload

3

456

…
…

RLDS

BODS

Fig. 1: The training process within the Multi-job Federated Learning Framework.

generated by the scheduling method (see details in Section
4). The scheduling plan is a set of devices selected to execute
the local training process of the current job. Note that the
scheduling process generates a scheduling plan for each job
during the training process of multiple jobs, i.e., with an
online strategy, while the scheduling processes for multiple
jobs are carried out in parallel. The Server distributes the
latest global model for the current job to the scheduled
devices in Step 3©, and then the model is updated in each
device based on the local data in Step 4©. Afterward, each
device sends the updated model to the Server after its local
training in Step 5©. Finally, the Server aggregates the models
of scheduled devices to generate a new global model in Step
6©. The combination of Steps 1© - 6© is denoted by a round,

which is repeated for each job until the corresponding global
model reaches the expected performance (accuracy, loss
value, or convergence). Please note that multiple jobs are
executed in parallel asynchronously, while a device can only
be scheduled to one job at a given time. In addition, we
assume that each job is of equal importance.

As an FL environment may contain GPUs or other high-
performance chips, it is beneficial to train multiple jobs si-
multaneously to reduce training time while achieving target
accuracy. Within each round, Step 6© exploits FedAvg [27]
to aggregate multiple models within each job, which can
ensure the optimal convergence [46], [47].Within our frame-
work, the sensitive raw data is kept within each device,
while only the models are allowed to be transferred. Other
methods, e.g., homomorphic encryption [48] and differential
privacy [49], can be exploited to protect the privacy of
sensitive data.

3.2.2 Cost Model

In order to measure the performance of each round, we ex-
ploit a cost model defined in Formula 2, which is composed
of time cost and data fairness cost. The data fairness has a
significant impact on convergence speed.

Costrm(Vrm) = α ∗T r
m(Vrm) + β ∗F r

m(Vrm), (2)

where α and β are the weights of time cost and fairness
cost respectively, T r

m(·) represents the execution time of the
training process in Round r with the set of scheduled de-
vices Vrm, and F r

m(·) is the corresponding data fairness cost.
We choose the linear combination because of its convenience
and excellent performance. In practice, we empirically set α
and β based on the information from previous execution
and adjust them using small epochs. We increase α for fast
convergence and increase β mainly for high accuracy.

As defined in Formula 3, the execution time of a round
depends on the slowest device in the set of scheduled
devices.

T r
m(Vrm) = max

k∈Vrm
{tkm}, (3)

where tkm is the execution time of Round r in Device k
for Job m. tkm is composed of the communication time and
the computation time, which is complicated to estimate and
differs for different devices. In this study, we assume that the
execution time of each device follows the shift exponential
distribution as defined in Formula 4 [50], [51]:

P [tkm<t] =

{
1− e−

µk
τmD

m
k

(t−τmakDmk )
, t ≥ τmakDm

k ,
0, otherwise,

(4)
where the parameters ak > 0 and µk > 0 are the maximum
and fluctuation of the computation and communication
capability, which is combined into one quantity, of Device
k, respectively. Moreover, we assume that the calculation
time of model aggregation has little impact on the training
process because of the strong computation capability of the
Server and the low complexity of the model.

The data fairness of Round r corresponding to Job m is
indicated by the deviation of the frequency of each device
to be scheduled to Job m defined in Formula 5.

F r
m(Vrm) =

1

|K|
∑
k∈K

(srk,m −
1

|K|
∑
k∈K

srk,m)2, (5)

where srk,m is the frequency of Device k to be scheduled to
Job m, and K and |K| are the set of all devices and the size,
respectively. srk,m is calculated by counting the total number
of the appearance of Device k to be scheduled to Job m in



5

the set of scheduling plans for Job m, i.e., {V1
m, ...,Vrm}. In

particular, Srm = {sr1,m, ..., sr|K|,m} represents the frequency
vector of Job m at Round r. At the beginning, i.e., Round 0,
each s0

k,m ∈ S0
m is 0. srk,m represents the frequency of Device

k scheduled to Job m at Round r. Then, we can calculate
sr+1
k,m using the following formula:

sr+1
k,m =

{
srk,m + 1, if Device k ∈ Vrm
srk,m, otherwise

(6)

Please note that the “data fairness” is reflected by the
deviation of the frequency of each device scheduled to a
job [52], which is different from the “fairness” (the bias of
the machine learning models concerning certain features) in
machine learning [53]. Formula 5 is inspired by [52], and we
are among the first to extend this idea from distributed or
network systems to FL. When the devices are non-uniformly
sampled with low data fairness, the convergence is slowed
down [46], [47]. In addition, data fairness is important due
to the underlying data heterogeneity across the devices.
Data fairness can help arbitrarily select devices without
harming the learning performance.

3.3 Problem Formulation

The problem we address is how to reduce the training time
when given a loss value for each job. While the execution
of each job is carried out in parallel, the problem can be
formulated as follows:

min
Vrm

{ M∑
m=1

R′
m∑

r=1

T r
m(Vrm)

}
s.t.

{
Lm(R′m) ≤ lm,
Vrm ⊂ K, ∀m ∈ {1, 2, ...,M}, ∀r ∈ {1, 2, ..., R′m},

(7)
where lm is the given loss value of Job m, R′m represents the
minimum number of rounds to achieve the given loss in the
real execution, and Lm(R′m) is the loss value of the trained
model at Round R′m, defined in Formula 1.

We assume Stochastic Gradient Descent (SGD) is utilized
to train models, which converges at a rate of O(r) with r
representing the number of rounds [54]. Inspired by [46],
we exploit Formula 8 to roughly estimate the loss value of
the global model for Job m at Round r.

Lossm(r) =
1

γ0
mr + γ1

m

+ γ2
m, (8)

where γ0
m, γ1

m and γ2
m represent non-negative coefficients

of the convergence curve of Job m. γ0
m, γ1

m and γ2
m can

be calculated based on previous execution. In addition, we
assume that the real number of rounds corresponding to the
same loss value has 30% error compared with r (from the
observation of multiple executions). Given a loss value of a
model, we exploit this loss estimation method to calculate
the maximum rounds for each job. Given a loss value of a
model, we utilize this loss estimation method to calculate
the number of rounds as Rcm and take (1 + 0.3) ∗ Rcm as
Rm defined in Table 1. Please note that this estimation is
different from the loss value during the real execution; i.e.,
R′m can be different from Rm.

As it requires the global information of the whole train-
ing process, which is hard to predict, to solve the problem,
we transform the problem to the following one, which can

be solved with limited local information of each round. In
addition, in order to achieve the given loss value of Job m
within a short time (the first constraint in Formula 7), we
need to consider the data fairness within the total cost in
Formula 9, within which the data fairness can help reduce
R′m to minimize the total training time.

min
Vrm

{
TotalCost(Vrm)

}
,

T otalCost(Vrm) =
M∑

m′=1

Costrm′(Vrm′),

s.t. Vrm′ ⊂ K, ∀m′ ∈ {1, 2, ...,M},

(9)

where Costrm(Vrm) can be calculated based on Formula 2
with a set of scheduled devices Vrm to be generated using a
scheduling method for Job m. Since the scheduling results
of one job may potentially influence the scheduling of other
jobs, we consider the cost of other jobs when scheduling
devices to the current job in this problem. As the search
space is O(2|K|), this scheduling problem is a combinatorial
optimization problem [55] and NP-hard [25].

4 DEVICE SCHEDULING FOR MULTI-JOB FL
In this section, we propose two original scheduling meth-
ods, i.e., BO-based and RL-based, and a novel intelligent
scheduling approach, i.e., meta-greedy, to address the prob-
lem defined in Formula 9. The scheduling plan generated
by a scheduling method is defined in Formula 10:

V ′rm = argmin
Vrm⊂{K\Vro}

TotalCost(Vrm), (10)

where V ′rm is a scheduling plan, K\Vro represents the set of
available devices to schedule, TotalCost(Vrm) is defined in
Formula 9, and K and Vro are the set of all devices and the
set of occupied devices in Round r, respectively.

The BO-based and RL-based methods are designed for
different model complexities, and we choose the better one
based on known profiling information with small tests (a
few epochs) to avoid possible limitations. RLDS favors
complex jobs, as it can learn the influence among diverse
devices. The influence refers to the concurrent, complemen-
tary, and latent impacts of the data in multiple devices for
diverse jobs. However, BODS favors simple jobs, while it
relies on simple statistical knowledge. The complexity of
jobs is determined by the number of parameters of models
and the size of the training dataset. We consider the proba-
bility to release the devices in Vo in BODS and RLDS, and
possible concurrent occupation of other devices for other
jobs, which is not explained in the paper to simplify the
explanation. During the execution, we assume that a fraction
of the devices is sampled for each job and some devices can
be unavailable for the execution. In order to optimize the
scheduling process for diverse types of models, we further
propose a meta-greedy scheduling approach, which takes
advantage of multiple scheduling methods and chooses the
most appropriate scheduling plan from the results of the
scheduling methods.

4.1 Bayesian Optimization-Based Scheduling

As the Gaussian Process (GP) [56] can well represent linear
and non-linear functions, BO-based methods [57] can exploit



6

Algorithm 1: Bayesian Optimization-Based Scheduling

Input:
Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
Vm = {V∗1m , ...,V∗Rmm } : a set of scheduling plans,
each with the size |K| × Cm

1: ΠL ← Randomly generate a set of observation points
and calculate the cost

2: for r ∈ {1, ...Rm} and lm is not achieved do
3: Π′ ← Randomly generate a set of observation points

with the devices within K\Vo
4: V∗rm ← argmax

V⊂Π′
αEI(V ; Π′)

5: FL training of Job m with V∗rm and update Sm, Vo
6: Cr = TotalCost(V∗rm )
7: ΠL+r ← ΠL+r−1 ∪ (V∗rm ,Cr)
8: end for

a GP to find a near-optimal solution for the problem defined
in Formula 10. In this section, we propose a Bayesian
Optimization-based Device Scheduling method (BODS).

We adjust a GP to fit the cost function TotalCost(·). The
GP is composed of a mean function µ defined in Formula
11 and a covariance function K defined in Formula 12 with
a Matern kernel [58].

µ(Vrm) = E
Vrm⊂{K\Vro}

[TotalCost(Vrm)] (11)

K(Vrm,V ′rm) = E
Vrm⊂{K\Vro},V′r

m⊂{K\Vro}

[(TotalCost(Vrm)− µ(Vrm))(TotalCost(V ′rm)− µ(V ′rm))]
(12)

The BODS is explained in Algorithm 1. First, we gen-
erate a random set of observation points and calculate the
cost according to the Formula 2 (Line 1). Each observation
point is a pair of scheduling plan and cost for the estimation
of mean function and the covariance function. Then, in each
round, we randomly sample a set of scheduling plans (Line
3), within which we use updated µ and K based on ΠL+r−1

(Line 4) to select the one with the largest reward. Afterward,
we perform the FL training for Job m with the generated
scheduling plan (Line 5). In the meanwhile, we calculate the
cost corresponding to the actual execution (Line 6) according
to Formula 9 and update the observation point set (Line 7).

Let (Vrl , Cl) denote an observation point l for Job
m in Round r, where Vrl = {Vrl,1, ...,Vrl,M} and Cl is
the cost value of TotalCost(Vrl,m) while the scheduling
plans of other jobs are updated with the ones in use in
Round r. At a given time, we have a set of observations
ΠL−1 = {(Vr1 ,C1), ..., (VrL−1,CL−1)} composed of L − 1
observation points. We denote the minimum cost value
within the L − 1 observations by C+

L−1. Then, we exploit
Expected Improvement(EI) [59] to select a new scheduling
plan V∗rm in Round r what improves C+

L−1 the most, which is
the utility function. Please note that this is not an exhaustive
search since we randomly select several observation points
(a subset of the whole search space) at the beginning and
add new observation points using the EI method. The utility
function is defined in Formula 13.

Fig. 2: The architecture of the RLDS.

u(V∗rm ) = max(0,C+
L−1 − TotalCost(V

∗r
m )), (13)

where we receive a reward C+
L−1 − TotalCost(V∗rm ) if

TotalCost(V∗rm ) turns out to be less than C+
L−1, and no

reward otherwise. Then, we use the following formula,
which is also denoted an acquisition function, to calculate
the expected reward of a given scheduling plan V .

αEI(V ; ΠL−1) =E[u(V)|V ,ΠL−1]

=(C+
L−1 − µ(V))Φ(C+

L−1;µ(V),K(V ,V))

+ K(V ,V)N (C+
L−1;µ(V),K(V ,V)),

(14)
where Φ is the Cumulative Distribution Function (CDF) of
the standard Gaussian distribution. Finally, we can choose
the scheduling plan with the largest reward as the next
observation point, i.e., V∗rL,m.

4.2 Reinforcement Learning-Based Scheduling

In order to learn more information about the near-optimal
scheduling patterns for complex jobs, we further propose
a Reinforcement Learning-based Device Scheduling (RLDS)
method as shown in Figure 2. In addition, the method is
inspired by [39], [60]. The scheduler of RLDS consists of a
policy network and a policy converter. During the process
of device scheduling, RLDS collects the status information
of jobs as the input of the policy network. Afterwards, the
policy network generates a list of probabilities on all devices
as the output. Finally, the policy converter converts the list
into a scheduling plan.

4.2.1 Policy Network

The policy network is implemented using a Long Short-
Term Memory (LSTM) network followed by a fully con-
nected layer, which can learn the device sharing relationship
among diverse jobs. We take the computation and commu-
nication capability of available devices to be used in For-
mula 4, and the data fairness of each job defined in Formula
5 as the input. The network calculates the probability of each
available device to be scheduled for a job.

4.2.2 Policy Converter

The Policy Converter generates a scheduling plan based on
the probability of each available device which is calculated
by the policy network with the ε-greedy strategy [61].

4.2.3 Training

In the training process of RLDS, we define the reward as
Rm = −1∗TotalCost(Vrm). Inspired by [62], [63], we exploit
Formula 15 to update the policy network:



7

Algorithm 2: Reinforcement Learning Based Pre-Training

Input:
Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
N : The number of scheduling plans used to train the

network for each round
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
θ : Parameters of the pre-trained policy network

1: θ← randomly initialize the policy network, bm ← 0
2: for r ∈ {1, 2, ..., Rm} and lm is not achieved do
3: Vrm ← generate a set of N scheduling plans
4: for Vrn,m ∈ Vrm do
5: Rm

n ← −1 ∗ TotalCost(Vrn,m)
6: end for
7: Update θ according to Formula 15
8: bm ← (1 - γ) * bm + γ

N *
∑N
n=1 Rm

n

9: V∗rm ← argminVrn,m∈VrmTotalCost(Vrn,m)
10: Update Sm, Vo with V∗rm
11: end for

θ
′

= θ+
η

N

N∑
n=1

Vrn,m⊂K\V
r
o∑

k∈Vrn,m

∇θ logP (Sm
k |Sm

(k−1):1; θ)

(Rm
n − bm),

(15)
where θ′ and θ represent the updated parameters and the
current parameters of the policy network, respectively, η
represents the learning rate, N is the number of scheduling
plans to update the model in Round r (N > 1 in the pre-
training process andN = 1 during the execution of multiple
jobs), P represents the probability calculated based on the
RL model, Sm

k = 1 represents that Device k is scheduled to
Jobm, and bm is the baseline value for reducing the variance
of the gradient.

We pre-train the policy network using Algorithm 2.
First, we randomly initialize the policy network (Line 1).
We use the latest policy network and the ε-Greedy method
to generate N scheduling plans (Line 5). The parameters
are updated based on the Formula 15 (Line 7), and the
baseline value bm is also updated with the consideration
of the historical value (Line 8). Afterward, we choose the
best scheduling plan that corresponds to the minimum total
cost, i.e., the maximum reward (Line 9). Finally, we update
the frequency matrix Sm and the set of occupied devices Vo,
while assuming that the best scheduling plan is used for the
multi-job FL (Line 10).

After the pre-training, we exploit RLDS during the train-
ing process of multiple jobs within the MJ-FL framework
as shown in Algorithm 3. First, we load the pre-trained
policy network and initialize the parameters ∆θ, bm (Line
1). When generating a scheduling plan for Job m, the
latest policy network is utilized (Line 3). We perform the FL
training for Job m with the generated scheduling plan and
update the frequency matrix Sm and the set of occupied
devices Vo (Line 4). Afterward, we calculate the reward
corresponding to the real execution (Line 5). The parameters
are updated based on the Formula 15 (Line 6), while the

Algorithm 3: Reinforcement Learning-Based Scheduling

Input:
Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
Vm = {V1

m, ...,VRmm } : a set of scheduling plans,
each with the size |K| × Cm

1: θ← pre-trained policy network, ∆θ ← 0, bm ← 0
2: for r ∈ {1, 2, ..., Rm} and lm is not achieved do
3: Vrm ← generate a scheduling plan using the policy

network
4: FL training of Job m and update Sm, Vo
5: Compute Rm

6: Update θ according to Formula 15
7: bm ← (1 - γ) * bm + γ * Rm

n

8: end for

baseline value bm is updated with the consideration of the
historical value (Line 7).

4.3 Meta-Greedy Scheduling

Multiple jobs of diverse structures and layers exist
within the multi-job federated learning environment. Some
scheduling methods, e.g., BODS, favor simple jobs, while
some other scheduling methods, e.g., RLDS, prefer com-
plex jobs. In addition, heuristic scheduling methods, e.g.,
Greedy and Genetic, can be exploited to schedule devices,
as well. In this case, we take advantage of the existing
scheduling methods, and further propose a meta-greedy
scheduling approach as shown in Figure 3. In Round r,
the Meta-Greedy executes six scheduling methods in par-
allel, appends the solution generated by each method to
the candidate scheduling solutions set Θr

m, and selects a
scheduling plan from the set of candidate device scheduling
solutions according to Formula 16 as the solution for the
r-th round under the current job. The meta-greedy schedul-
ing approach chooses the most appropriate one from the
scheduling plans generated by multiple methods, which can
be closer to the optimal solution compared with that of a
single method.

The Meta-Greedy algorithm is shown in Algorithm 4.
First, for each round (Line 2), we exploit diverse schedul-
ing methods, e.g., BODS, RLDS, Random [27], FedCS [28],
Genetic [30], and Greedy [40], to generate scheduling plan
candidates (Line 3). As each scheduling method may have
superior performance in a specific environment (Random
corresponds to high final accuracy; Genetic corresponds to
high accuracy at the beginning of the training process for the
jobs of moderate complexity; Greedy corresponds to high
accuracy at the beginning of the training process of simple
jobs; FedCS corresponds to high accuracy at the middle
of the the training process; see details in Section 6), we
take these 6 methods in Meta-Greedy. Then, we choose a
scheduling plan that corresponds to the smallest total cost
according to Formula 16 (Line 4). Finally, we utilize the
selected scheduling plan for the training process (Line 5).



8

Fig. 3: The architecture of the Meta-Greedy.

TABLE 2: Experimental Setup of Group A. Size represents
the size of training samples and test samples (number
of training samples/number of test samples). “Emnist-
L” represents “Emnist-Letters” and “Emnist-D” represents
“Emnist-Digitals”.

datasets Cifar10 Emnist-L Emnist-D

Features 32x32 28x28 28x28
Network model VGG16 CNN LeNet5

Parameters 26,233K 3,785K 62K
Size 50k/10k 124.8k/20.8k 240k/40k

Local epochs 5 5 5
Mini-batch size 30 10 64

We propose a dynamic cost model for the selection in
Line 4. While Formula 2 can also be exploited for the
selection, the influence of the data fairness becomes smaller
in the later round of FL as the frequency of the participation
has little change with a small increase of one. We reconstruct
the cost model using Formula 16 to replace Formula 2.

ReCost(Vrm) = α ∗T r
m(Vrm) + βr ∗F r

m(Vrm), (16)
where βr dynamically changes according to r and is defined
in Formula 17.

βr = β ∗ Ω(r), r ≥ 1 (17)
where Ω(r) is a function based on Round r. Ω(r) should
enhance the impact of data fairness when r becomes signif-
icant. We take Ω(r) =

√
r in our algorithm because of its

excellent performance (see details in Section 6).

5 CONVERGENCE ANALYSIS

In this section, we present the theoretical convergence proof
for our multi-job FL with arbitrary scheduling methods.
We first introduce the assumptions and then present the
convergence theorem and corollary.

Assumption 1. Lipschitz gradient: The function Fmk is L-
smooth for each device k ∈ N i.e., ‖ ∇Fmk (x) − ∇Fmk (y) ‖≤
L ‖ x− y ‖.

Assumption 2. Unbiased stochastic gradient:
Eζm,rk,h ∼Di [∇f

m
k (wm; ζm,rk,h )] = ∇Fmk (wm).

Assumption 3. Bounded local variance: For each device k ∈ N ,
the variance of its stochastic gradient is bounded: Eζm,rk,h ∼Di ‖
∇fmk (wm, ζm,rk,h )−∇Fmk (wm) ‖2≤ σ2.

Algorithm 4: Meta-Greedy Scheduling

Input:
Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
Vm = {V1

m, ...,VRmm } : a set of scheduling plans,
each with the size |K| × Cm

1: Initialize Vm ← ∅
2: for r ∈ {1, 2, ..., Rm} and lm is not achieved do
3: Θr

m ← generate a set of candidate scheduling plans
using BODS, RLDS, Genetic, Greedy, FedCS and Ran-
dom within K\Vo

4: Vrm ← argminReCost(V)
V⊂Θrm

5: Vm ← Vm ∪ Vrm
6: end for

TABLE 3: Experimental Setup of Group B. Size represents
the size of training samples and test samples (number of
training samples/number of test samples).

datasets Fashion mnist Cifar10 Mnist

Features 28x28 32x32 28x28
Network model CNN ResNet18 AlexNet

Parameters 225K 598K 3,275K
Size 60K/10K 50K/10K 60K/10K

Local epochs 5 5 5
Mini-batch size 10 30 64

Assumption 4. Bounded local gradient: For each device k ∈
N , the expected squared of stochastic gradient is bounded:
Eζm,rk,h ∼Di ‖ ∇f

m
k (wm, ζm,rk,h ) ‖2≤ G2.

Assumption 1 has been made in [46], [64], while As-
sumptions 2, 3, 4, have been exploited in [65]. When As-
sumptions 1 - 4 hold, we get the following theorem.

Theorem 5.1. Suppose that Assumptions 1 to 4 hold, and
consider that Fmk is a non-convex function. When the learning
rate satisfies 0 < ηm ≤ 1

L , then for all R ≥ 1 we have:

1

RH

R∑
r=1

H∑
h=1

E ‖ ∇Fm(w̄mr,h) ‖2

≤ 2

ηmr,hRH
(Fm(w̄m1,1)− Fm∗) + Lηmr,hσ

2

+ L2Q2(H − 1)2ηmr,h
2G2

(18)

where Fm∗ is the local optimal value, R refers to the number of
rounds for Job m during the execution, H represents the number
of local iterations, and Q is the upper bound ratio between the
learning rate at local iteration 0 and h′, i.e., ηmr,0 ≤ Qηmr,h′ .

Proof. The proof can be found in Appendix.

Then, we can get the following corollary:

Corollary 5.1.1. When we choose ηmr = 1
L
√
RH

and Q ≤



9

TABLE 4: The convergence accuracy and the time required to achieve the target accuracy for different methods in Group
A. The numbers in parentheses represent the target accuracy, and ”/” represents that the target accuracy is not achieved.

Convergence Accuracy Time (min)
Random Genetic FedCS Greedy BODS RLDS Meta-Greedy Random Genetic FedCS Greedy BODS RLDS Meta-Greedy

Non-IID

VGG 0.55 0.54 0.55 0.43 0.57 0.56 0.577 VGG (0.55) 2486 1164.3 1498.5 / 455.1 406.8 291.3
Cnn 0.90 0.80 0.80 0.83 0.90 0.897 0.90 Cnn (0.80) 44.25 95.85 27.39 43.04 15.88 17.6 11.9

LeNet 0.990 0.988 0.990 0.986 0.991 0.991 0.991 LeNet (0.984) 43.81 30.15 33.37 43.76 28.84 22.54 12.37
IID

VGG 0.610 0.558 0.603 0.522 0.603 0.605 0.602 VGG (0.55) 126.9 231.4 87.5 / 57.7 43.81 30.34
Cnn 0.943 0.928 0.942 0.928 0.943 0.935 0.936 Cnn (0.930) 52.05 176.85 27.45 26.48 19.25 13.0 12.88

LeNet 0.9945 0.9928 0.9934 0.990 0.9946 0.9946 0.9936 LeNet (0.99) 14.94 6.03 7.12 17.98 5.18 4.02 2.02

TABLE 5: The convergence accuracy and the time required to achieve the target accuracy for different methods in Group
B. The numbers in parentheses represent the target accuracy, and ”/” represents that the target accuracy is not achieved.

Convergence Accuracy Time (min)
Random Genetic FedCS Greedy BODS RLDS Meta-Greedy Random Genetic FedCS Greedy BODS RLDS Meta-Greedy

Non-IID

ResNet 0.546 0.489 0.523 0.403 0.583 0.562 0.590 ResNet (0.50) 852.9 621.5 402.3 / 219.8 168.9 149.8
Cnn 0.824 0.767 0.823 0.764 0.836 0.830 0.845 Cnn (0.73) 47.1 22.0 18.5 70.8 13.8 15.5 13.0

AlexNet 0.989 0.986 0.987 0.871 0.990 0.990 0.990 AlexNet (0.976) 140.57 60.0 82.87 181.2 59.2 53.87 45.0
IID

ResNet 0.787 0.754 0.782 0.743 0.791 0.785 0.799 ResNet (0.740) 65.93 32.51 31.4 52.93 15.9 12.82 10.6
Cnn 0.868 0.867 0.868 0.868 0.869 0.869 0.871 Cnn (0.867) 120.19 38.99 89.6 36.13 32.83 19.7 16.13

AlexNet 0.9938 0.9938 0.9939 0.9935 0.9939 0.9943 0.9940 AlexNet (0.9933) 35.08 19.44 20.97 / 21.65 12.9 10.8

TABLE 6: The time required to achieve the target accuracy for jobs executed sequentially with FedAvg. “*” indicates that it
fails to achieve the target accuracy.

non-IID/IID non-IID/IID
Job VGG CNN LeNet ResNet CNN AlexNet

Target Accuracy 0.55/0.55 0.80/0.93 0.984/0.99 0.50/0.74 0.73/0.867 0.976/0.9933

Time (min) 2483.4/133.3 53.1/45.5 50.5/18.01 897.2/* 35.8/322.6 115.8/65.16

(RH)
1
4 , we have:

1

RH

R∑
r=1

H∑
h=1

E ‖ ∇Fm(w̄mr,h) ‖2

≤ 2L√
RH

(Fm(w̄m1,1)− Fm∗) +
1√
RH

σ2 +
1√
RH

(H − 1)2G2

= O(
1√
RH

)

(19)

We can find that, the training process of multi-job FL
converges to a stationary point of f(w∗) with a convergence
rate of O( 1√

RH
) for each job.

6 EXPERIMENTS

In this section, we present the experimental results to show
the efficiency of our proposed scheduling methods within
MJ-FL. We compared the performance of Meta-Greedy,
RLDS, and BODS with six baseline methods, i.e., Random
[27], FedCS [28], Genetic [30], Greedy [40], Deep Neural
Network (DNN), and Simulated Annealing (SA) [66].

6.1 Federated Learning Setups
In the experiment, we take three jobs as a group to be
executed in parallel. We carry out the experiments with two
groups, i.e., Group A with VGG-16 (VGG) [67], CNN (CNN-
A-IID and CNN-A-non-IID) [68], and LeNet-5 (LeNet) [68],
and Group B with Resnet-18 (ResNet) [69], CNN (CNN-B)
[68], and Alexnet [70], while each model corresponds to one

job. The complexity of the models is as follows: AlexNet
< CNN-B < ResNet and LeNet < CNN (CNN-A-IID and
CNN-A-non-IID)< VGG. We exploit the datasets of Cifar-10
[71], emnist-letters [72], emnist-digital [72], Fashion-MNIST
[73], and MNIST [68] in the training process.

CNN-A-IID comprises of two 3 × 3 convolution layers,
one with 32 channels and the other with 64 channels.
Each layer is followed by one batch normalization layer
and 2 × 2 max pooling. Then, there are one flatten layer
and three fully-connected layers (1568, 784, and 26 units)
after the two convolution layers. In addition, we make a
simple modification of CNN-A-IID to CNN-A-non-IID since
the convergence behavior of CNN on non-IID in Group A
is not satisfiable. CNN-A-non-IID consists of three 3 × 3
convolution layers (32, 64, 64 channels, each of them exploits
ReLU activations, and each of the first two convolution
layers is followed by 2 × 2 max pooling), followed by one
flatten layer and two fully-connected layers (64, 26 units).
CNN-B consists of two 2 × 2 convolution layers (64, 32
channels, each of them exploits ReLU activations) followed
by a flatten layer and a fully-connected layer, and each
convolution layer is followed by a dropout layer with 0.05.
In addition, the other parameters are shown in Tables 2 and
3.

DNN comprises of a flatten layer and 40 hidden layers
before an Alpha Dropout layer and a fully-connected layer.
The hidden layers consist of 20 units of a fully-connected
layer and a batch normalization layer.

For the non-IID setting of each dataset, the training set
is classified by category, and the samples of each category



10

50 100 150 200 250 300 350 400 450
Elapsed Time (min)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

VGG with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(a)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Te
st

 A
cc

ur
ac

y

Cnn with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

Te
st

 A
cc

ur
ac

y

LeNet with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(c)

Fig. 4: The convergence accuracy of different jobs in Group A changes over time with the IID distribution.

0 20 40 60 80 100 120 140
Elapsed Time (min)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Te
st

 A
cc

ur
ac

y

Resnet with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(a)

0 20 40 60 80 100
Elapsed Time (min)

0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

Te
st

 A
cc

ur
ac

y

Cnn with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(b)

0 5 10 15 20 25 30 35 40 45 50
Elapsed Time (min)

0.980
0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.991
0.992
0.993
0.994
0.995

Te
st

 A
cc

ur
ac

y

Alexnet with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(c)

Fig. 5: The convergence accuracy of different jobs in Group B changes over time with the IID distribution.

0 100 200 300 400 500 600 700 800
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y

VGG with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(a)

0 40 80 120 160 200 240
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Te
st

 A
cc

ur
ac

y

Cnn with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

LeNet with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(c)
Fig. 6: The convergence accuracy of different jobs in Group A changes over time with the non-IID distribution.

are divided into 20 parts. Each device randomly selects two
categories and then selects one part from each category to
produce its local training set. For the IID setting, each device
randomly samples a specified number of images from each
training set. In addition, we use 12 Tesla V100 GPUs to sim-
ulate an FL environment composed of a parameter server
and 100 devices. We exploit the execution time, including
the training time and communication time, measured in real
edge devices as the parameters in Formula 4 to simulate the
real execution. We use Formula 4 to simulate the capabili-
ties of devices in terms of training time with the uniform
sampling strategy, while the accuracy is the results from the
actual training processes. In the experimentation, we use
corresponding target accuracy (for ease of comparison) in
the place of target loss value.

6.2 Experimental Results

We first present the comparison between MJ-FL and Single-
Job FL (SJ-FL). Then, we compare the proposed methods
with baselines, e.g., Random [27], FedCS [28], Genetic [30],
Greedy [40], DNN and SA, in both IID and non-IID settings.

Afterward, we present the ablation experiments to show the
impact of execution time and the data fairness in the cost
model and the influence of Ω(r).

6.2.1 Comparison with Single-Job FL

In order to demonstrate the effectiveness of our pro-
posed framework, i.e., MJ-FL, over the SJ-FL, we execute
each group of jobs sequentially with FedAvg, which is
denoted the Random method when adapted to multi-job FL.
As shown in Tables 4, 5, and 6, MJ-FL outperforms SJ-FL (up
to 1.68 times faster) with Random and the same accuracy.
RLDS with MJ-FL outperforms Random with SJ-FL up to
15.38 times faster, and the advantage of BODS can be up
to 8.83 times faster. Furthermore, Meta-Greedy can achieve
much better performance, i.e., 19 times faster.
6.2.2 Comparison within MJ-FL

In this section, we present the experimental results with the
IID setup and the non-IID setup.

Evaluation with the IID setting: As shown in Figures
4 and 5, the convergence speed of our proposed methods
(i.e., BODS, RLDS and Meta-Greedy) is significantly faster



11

50 100 150 200 250 300 350 400 450 500
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y

Resnet with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(a)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Te
st

 A
cc

ur
ac

y

Cnn with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

Alexnet with NIID

Random
Genetic
FedCS
Greedy
BODS
RLDS
MetaGreedy

(c)

Fig. 7: The convergence accuracy of different jobs in Group B changes over time with the non-IID distribution.

(a) (b) (c)

(d) (e) (f)

Fig. 8: The convergence accuracy of different jobs changes over time compared with DNN and SA

than other methods. In addition, the convergence speed of
RLDS has significant advantages in terms of both complex
and simple jobs compared to BODS, while Meta-Greedy
outperforms all others in terms of convergence speed. Be-
sides, Meta-Greedy can achieve higher accuracy within less
time compared to other methods for both complex jobs
(ResNet in Figure 5(a)) and simple jobs (AlexNet in Figure
5(c)). Tables 4 and 5 reveal that IID data correspond to
high convergence accuracy, and for VGG in IID setups, the
final accuracy of our proposed methods, i.e., BODS (up to
15.52% compared to Greedy), RLDS (up to 15.90% compared
to Greedy), and Meta-Greedy (up to 15.33% compared to
Greedy), significantly surpasses that of the other methods.
In addition, the training time for a target accuracy of our
proposed methods is significantly shorter than baseline
methods, including the time for an individual job, i.e., the
training time of each job (up to 8.19 times faster for BODS,
12.6 times faster for RLDS, and 12.73 times faster for Meta-
Greedy), and the time for the whole training process, i.e.,
the total time calculated according to Formula 7, (up to
4.04 times for BODS, 5.81 times for RLDS and 8.16 times
for Meta-Greedy). Slightly different from Non-IID setups
results, RLDS performs better than BODS for both complex

and simple jobs in terms of the convergence speed, while
Meta-Greedy still converges the fastest to the target accu-
racy.

Evaluation with the non-IID setting: When the de-
centralized data is of non-IID, the data fairness defined
in Formula 5 has a significant impact on the accuracy.
As shown in Figures 6 and 7, the convergence speed of
our proposed methods, i.e., RLDS, BODS and Meta-Greedy,
is significantly faster than other methods. RLDS shows a
significant advantage for complex jobs (VGG in Figure 6(a)),
while BODS shows advantage for relatively simple jobs in
Groups A and B (please see details in Figures 6 and 7). This
is reasonable as we have much more parameters to adjust
for complex jobs with RLDS, e.g., the learning rate, the ε
decay rate, the structure of the LSTM etc, which can fit
into a complex jobs. However, it may be complicated to
fine-tune the parameters for a simple job with RLDS. In
contrary, the execution of simple jobs can be directly well
addressed by the Bayesian optimization. Meta-Greedy can
lead to a good performance for both simple and complex
jobs. As shown in Tables 4 and 5, the final accuracy of
RLDS, BODS and Meta-Greedy significantly outperforms
other methods (up to 44.6% for BODS, 39.4% for RLDS and



12

50 100 150 200 250 300 350 400 450 500
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y

Resnet with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(a)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Te
st

 A
cc

ur
ac

y

Cnn with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

Alexnet with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(c)

0 20 40 60 80 100 120 140
Elapsed Time (min)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Te
st

 A
cc

ur
ac

y

Resnet with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(d)

0 20 40 60 80 100
Elapsed Time (min)

0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

Te
st

 A
cc

ur
ac

y

Cnn with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(e)

0 5 10 15 20 25 30 35 40 45 50
Elapsed Time (min)

0.980
0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.991
0.992
0.993
0.994
0.995

Te
st

 A
cc

ur
ac

y

Alexnet with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(f)

Fig. 9: The convergence accuracy of different jobs in Group B changes over time with the ablation setting, i.e., “time”
represents the cost model with execution time and “variance” represents the cost model with data fairness.

46.4% for Meta-Greedy), as well. Given a target accuracy,
our proposed methods can achieve the accuracy within a
shorter time, compared with baseline methods, in terms of
the time for a single job, i.e., the training time of each job
(up to 5.04 times shorter for BODS, 5.11 times shorter for
RLDS and 7.53 times shorter for Meta-Greedy), and the time
for the whole training process, i.e., the total time calculated
based on Formula 7 (up to 4.15 times for BODS, 4.67 times
for RLDS and 7.16 times for Meta-Greedy), for Groups A
and B. In addition, among our proposed methods, Meta-
Greedy always has the shortest time to achieve the target
accuracy. We have similar observations with IID, while the
advantage of Meta-Greedy is much more significant (up to
19.0 times shorter in terms of the time for a single job)
than that of non-IID as shown in Tables 4 and 5. Besides,
we can find that our proposed method (i.e., Meta-Greedy)
leads to a better performance in the case of non-IID data
due to dynamically enhancing the impact of data fairness to
decrease the imbalance of devices.

Comparison in other cases: As shown in Figures 5 and 7,
the convergence speed corresponding to RLDS, BODS and
Meta-Greedy is much higher than baseline methods with
different target accuracy. The advantage of RLDS and BODS
is up to 8.77 times faster for Target 1 (0.845), 13.96 times
faster for Target 2 (0.856), and 27.04 times faster for Target
3 (0.865), compared with the baselines. In addition, Meta-
Greedy outperforms the other six methods (four baselines
and two scheduling methods, i.e., RLDS and BODS) up to
4.42 times faster for Target 1 (0.845), 6.65 times faster for
Target 2 (0.856), and 5.61 times faster for Target 3 (0.865).
Furthermore, According to Figure 8, SA [66] corresponds
to much worse performance (up to 91.4% slower and 3.5%
lower accuracy) compare with our methods. We carry out
experiments to compare out methods with DNNs [42], the

performance of which is significantly worse (up to 90.5%
slower and 26.3% lower accuracy) than our methods. In
addition, we test other combinations of the two costs, which
correspond to worse performance (up to 37.1% slower and
3.5% lower accuracy for the sum of squared costs, and
64.4% slower and 3.3% lower accuracy for multiplication)
compared to the linear one (Formula 2).

As RLDS can learn more information through a complex
neural network, RLDS outperforms BODS for complex jobs
(0.008 and 0.029 in terms of accuracy with VGG19 and
ResNet18, and 46.7% and 34.8% faster for the target accuracy
of 0.7 with VGG19 and 0.5 with ResNet18; see details in
Appendix). Due to the emphasis on the combination of
data fairness and device capabilities, i.e.,computation and
communication capabilities, BODS can lead to high conver-
gence accuracy and fast convergence speed for simple jobs
(0.018 in terms of accuracy and 38% faster for the target
accuracy of 0.97 with CNN; see details in Appendix). Meta-
Greedy reconstructs the cost model based on six scheduling
schemes and dynamically adjusts the parameters so that
the impact of data fairness increases with the number of
rounds, which leads to high convergence accuracy and
fast convergence speed in both complex and simple jobs.
BODS, RLDS and Meta-Greedy significantly outperform the
baseline methods, while there are also differences among
the four methods. The Greedy method prefers devices with
high capacity, which leads to a significant decline in terms of
the final convergence accuracy. The Genetic method can ex-
ploit randomness to achieve data fairness while generating
scheduling plans, and the convergence performance is better
than the Greedy method. The FedCS method optimizes
the scheduling plan by randomly selecting devices, which
improves the fairness of the device to a certain extent, and
convergences faster than the Random method. We carry out



13

0 100 200 300 400 500 600 700 800
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y
VGG with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(a)

0 40 80 120 160 200 240
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Te
st

 A
cc

ur
ac

y

Cnn with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

LeNet with NIID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(c)

50 100 150 200 250 300 350 400 450
Elapsed Time (min)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

VGG with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(d)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Te
st

 A
cc

ur
ac

y

Cnn with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(e)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

Te
st

 A
cc

ur
ac

y

LeNet with IID

BODS
RLDS
MetaGreedy
BODS(Time)
RLDS(Time)
BODS(Variance)
RLDS(Variance)

(f)

Fig. 10: The convergence accuracy of different jobs in Group A changes over time with the ablation setting, i.e., “time”
represents the cost model with execution time and “variance” represents the cost model with data fairness.

(a) (b) (c)

(d) (e) (f)

Fig. 11: The time required for each job of Group A to achieve the target convergence accuracy on the non-IID and IID
distribution with the ablation setting, i.e., “time” represents the cost model with execution time and “variance” represents
the cost model with data fairness.



14

(a) (b) (c)

(d) (e) (f)

Fig. 12: The time required for each job of Group B to achieve the target convergence accuracy on the non-IID and IID
distribution with the ablation setting, i.e., “time” represents the cost model with execution time and “variance” represents
the cost model with data fairness.

an experiment with Group A with both IID and non-IID
distribution, and find that Meta-Greedy with 6 methods
significantly outperforms that with 2 methods in terms
of accuracy (up to 0.091) and training speed (up to 65%)
(see details in Appendix). In addition, after analyzing the
log of the training process (see details in Appendix), we
find Greedy and Genetic are extensively exploited, RLDS
is selected at the beginning of the training process, BODS is
chosen at the end of the training process, FedCS participates
with less frequency, and Random is seldomly utilized. As
Meta-Greedy can intelligently select a proper scheduling
plan based on available methods, it results in a more effi-
cient training process.

6.2.3 Ablation Study

In this section, we first present the ablation study to show
the impact of the execution time and the data fairness. Then,
we analyze the influence of Ω(r).

Impact of data fairness: As shown in Figures 10 and
9, we conduct ablation experiments and find an evident
decline in convergence accuracy when the cost model is only
composed of execution time cost. From Figures 10 and 9,
we can see that the accuracy of the cost model composed
of execution time (i.e., BODS (Time) and RLDS (Time)) is
worse than that of both data fairness and execution time
(i.e., BODS and RLDS) in most cases (up to 35.83% lower for
RLDS (Time)). The abnormal case, when the convergence
accuracy of BODS (Time) is slightly higher (about 1%) than
the convergence accuracy of BODS (please see details in
Figure 10 (d)) should be caused by randomness. Besides,
from the Figures 10 and 9, we can find that the impact of
execution time on complex jobs (VGG in Figure 10 and
Resnet in Figure 9) is significantly greater than that on
simple jobs (LeNet in Figure 10 and AlexNet in Figure 9).

Impact of execution time: As shown in Figures 10 and 9,
the data fairness improves both the convergence speed (up
to 9.35 times faster) and the accuracy (up to 15.3%). From
Figures 11 and 12, we can find that the convergence speed
significantly decreases (up to 25.46 times slower for RLDS
(Variance) compared with RLDS) when given a target accu-
racy with the cost model composed of only data fairness.
In most cases, considering data fairness reduces the conver-
gence speed and essentially does not affect the convergence
accuracy. There are few cases that the job fails to achieve the
convergence accuracy. In addition, from the results shown
in Figures 10 and 9, we find that the convergence accuracy
in complex jobs (VGG in Figure 11 and ResNet in Figure
12) are more likely to decline when the cost model is
only composed of data fairness, compared with that with
simple jobs. Besides, the performance corresponding to the
cost model with only data fairness is close to that of the
’Random’ method in most setups.

Influence of Ω(r): As shown in Figures of Appendix,
Meta-Greedy with Ω(r) =

√
r outperforms other methods,

i.e., Ω(r) = r and Ω(r) = log r, in terms of both convergence
accuracy and convergence speed. Although the convergence
accuracy of Meta-Greedy with Ω(r) = r is slightly higher
than that with Ω(r) =

√
r in a few experiments, the

convergence accuracy of Meta-Greedy with Ω(r) =
√
r in

complex jobs is significantly lower than that with Ω(r) = r.
In addition, Meta-Greedy with Ω(r) =

√
r takes less time

to reach the target accuracy in previous rounds compared
with Meta-Greedy with Ω(r) = r. This indicates that when
round r is linearly related to Ω(r), the data fairness in later
rounds influences the cost model too much and may lead
to a lower convergence accuracy. Therefore, we avoid using
Ω(r) = r due to the dramatic changes of the magnitude
in the linear relationship. Meta-Greedy with Ω(r) =

√
r



15

takes less time to reach the target accuracy in previous
rounds compared with Meta-Greedy with Ω(r) = log r. In
the meanwhile, the convergence accuracy of Meta-Greedy
with Ω(r) = log r is lower than that of Meta-Greedy
with Ω(r) =

√
r, which implies that the relatively gentle

variation of Ω(r) with round r leads to lower convergence
accuracy and slower convergence speed. By contrast, Meta-
Greedy with Ω(r) =

√
r performs best among them in terms

of both convergence accuracy and convergence speed. Thus,
we adopt Meta-Greedy with Ω(r) =

√
r, which dynamically

changes the influence of data fairness to obtain relatively
optimal solution in both complex and simple jobs.

7 CONCLUSION

In this work, we proposed a new Multi-Job Federated Learn-
ing framework, i.e., MJ-FL. The framework is composed
of a system model and three device scheduling methods.
The system model is composed of a process for the parallel
execution of multiple jobs and a cost model based on the
capability of devices and data fairness. We proposed three
device scheduling methods, i.e., RLDS for complex jobs and
BODS for simple jobs, while Meta-Greedy for both complex
and simple jobs, to efficiently schedule proper devices for
each job based on the cost model. We carried out extensive
experimentation with six real-life models and four datasets
with IID and non-IID distribution. The experimental results
show that MJ-FL outperforms the single-job FL, and that
our proposed scheduling methods, i.e., BODS and RLDS,
significantly outperform baseline methods (up to 44.6% in
terms of accuracy, 12.6 times faster for a single job and 5.81
times faster for the total time). In addition, Meta-Greedy, the
intelligent scheduling approach based on multiple schedul-
ing methods (including the two proposed methods, i.e.,
RODS and BODS) significantly outperforms other methods
(up to 46.4% in terms of accuracy, 12.73 times faster for a
single job and 8.16 times faster for the total time).

REFERENCES

[1] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou, “From
distributed machine learning to federated learning: a survey,”
Knowledge and Information Systems, vol. 64, no. 4, pp. 885–917, 2022.

[2] Official Journal of the European Union, “General data protection
regulation,” https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32016R0679, 2016, online; accessed 12/02/2021.

[3] “Cybersecurity law of the people’s republic of china,” https:
//www.newamerica.org/cybersecurity-initiative/digichina/
blog/translation-cybersecurity-law-peoples-republic-china/,
2018, online; accessed 22/02/2021.

[4] “California consumer privacy act home page,” https://www.
caprivacy.org/, 2018, online; accessed 14/02/2021.

[5] W. B. Chik, “The singapore personal data protection act and an
assessment of future trends in data privacy reform,” Computer Law
& Security Review, vol. 29, no. 5, pp. 554–575, 2013.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), 2017, pp. 1273–1282.

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings
et al., “Advances and open problems in federated learning,” arXiv
preprint arXiv:1912.04977, 2019.

[8] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. on Intelligent Systems
and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[9] A. Smola and S. Narayanamurthy, “An architecture for parallel
topic models,” Very Large Data Bases Conference (VLDB) Endowment,
vol. 3, no. 1-2, pp. 703–710, 2010.

[10] J. Liu, D. Dong, X. Wang, A. Qin, X. Li, P. Valduriez, D. Dou,
and D. Yu, “Large-scale knowledge distillation with elastic het-
erogeneous computing resources,” Concurrency and Computation:
Practice and Experience, pp. 1–16, 2022.

[11] J. Liu, Z. Wu, D. Yu, Y. Ma, D. Feng, M. Zhang, X. Wu, X. Yao, and
D. Dou, “Heterps: Distributed deep learning with reinforcement
learning based scheduling in heterogeneous environments,” arXiv
preprint arXiv:2111.10635, pp. 1–14, 2021.

[12] L. L. Pilla, “Optimal task assignment for heterogeneous federated
learning devices,” in IEEE Int. Parallel and Distributed Processing
Symposium (IPDPS), 2021, pp. 661–670.

[13] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated
multi-task learning,” in Annual Conf. on Neural Information Process-
ing Systems (NeurIPS), 2017, p. 4427–4437.

[14] J. Han, M. M. Rafique, L. Xu, A. R. Butt, S.-H. Lim, and S. S.
Vazhkudai, “Marble: A multi-gpu aware job scheduler for deep
learning on hpc systems,” in IEEE/ACM Int. Symposium on Cluster,
Cloud and Internet Computing (CCGRID), 2020, pp. 272–281.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[16] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to
work: Flexible communication compression for energy efficient
federated learning over heterogeneous mobile edge devices,” in
IEEE Conf. on Computer Communications (INFOCOM), 2021, pp. 1–
10.

[17] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “Aibox: CTR
prediction model training on a single node,” in ACM Int. Conf. on
Information and Knowledge Management, (CIKM), 2019, pp. 319–328.

[18] H. Guo, W. Guo, Y. Gao, R. Tang, X. He, and W. Liu, ScaleFreeCTR:
MixCache-Based Distributed Training System for CTR Models with
Huge Embedding Table. Association for Computing Machinery,
2021, p. 1269–1278.

[19] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays,
S. Augenstein, H. Eichner, C. Kiddon, and D. Ramage, “Fed-
erated learning for mobile keyboard prediction,” arXiv preprint
arXiv:1811.03604, 2018.

[20] X. Fang, J. Huang, F. Wang, L. Liu, Y. Sun, and H. Wang, “Ssml:
Self-supervised meta-learner for en route travel time estimation at
baidu maps,” in ACM SIGKDD Int. Conf. on Knowledge Discovery &
Data Mining (SIGKDD), 2021, pp. 2840–2848.

[21] C. Qin, H. Zhu, C. Zhu, T. Xu, F. Zhuang, C. Ma, J. Zhang,
and H. Xiong, “Duerquiz: A personalized question recommender
system for intelligent job interview,” in ACM SIGKDD Int. Conf.
on Knowledge Discovery & Data Mining (SIGKDD), 2019, pp. 2165–
2173.

[22] M. Masterson, “Baidu’s deep speech recognition bests google,
apple, and bing,” Speech Technology Magazine, vol. 20, no. 1, pp.
12–13, 2015.

[23] T. Pitoura and P. Triantafillou, “Load distribution fairness in p2p
data management systems,” in IEEE Int. Conf. on Data Engineering
(ICDE), 2007, pp. 396–405.

[24] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang,
““fairness analysis” in requirements assignments,” in IEEE Int.
Requirements Engineering Conf., 2008, pp. 115–124.

[25] J. Du and J. Y.-T. Leung, “Complexity of scheduling parallel task
systems,” SIAM Journal on Discrete Mathematics, vol. 2, no. 4, p.
473–487, 1989.

[26] L. Liu, H. Yu, G. Sun, L. Luo, Q. Jin, and S. Luo, “Job scheduling
for distributed machine learning in optical wan,” Future Generation
Computer Systems (FGCS), vol. 112, pp. 549–560, 2020.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics. PMLR,
2017, pp. 1273–1282.

[28] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in IEEE Int. Conf.
on Communications (ICC), 2019, pp. 1–7.

[29] S. Abdulrahman, H. Tout, A. Mourad, and C. Talhi, “Fedmccs:
Multicriteria client selection model for optimal iot federated learn-
ing,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4723–4735,
2021.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.caprivacy.org/
https://www.caprivacy.org/


16

[30] M. Barika, S. Garg, A. Chan, and R. Calheiros, “Scheduling algo-
rithms for efficient execution of stream workflow applications in
multicloud environments,” IEEE trans. on Services Computing, 2019.

[31] C. Zhou, J. Liu, J. Jia, J. Zhou, Y. Zhou, H. Dai, and D. Dou,
“Efficient device scheduling with multi-job federated learning,”
AAAI Conf. on Artificial Intelligence, 2022, to appear.

[32] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” in Machine Learning
and Systems (MLSys), 2019.

[33] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng,
T. Chen, H. Yu, and Q. Yang, “Fedvision: An online visual object
detection platform powered by federated learning,” in AAAI Conf.
on Artificial Intelligence, vol. 34, no. 08, 2020, pp. 13 172–13 179.

[34] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of
neural networks,” in Int. Conf. on Machine Learning (ICML), 2019,
pp. 7252–7261.

[35] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaza-
eni, “Federated learning with matched averaging,” in Int. Conf. on
Learning Representations (ICLR), 2020.

[36] H. Zhang, J. Liu, J. Jia, Y. Zhou, and H. Dai, “Fedduap: Federated
learning with dynamic update and adaptive pruning using shared
data on the server,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2022, pp. 1–7, to appear.

[37] J. Jin, J. Ren, Y. Zhou, L. Lv, J. Liu, and D. Dou, “Accelerated
federated learning with decoupled adaptive optimization,” in Int.
Conf. on Machine Learning (ICML), vol. 162, 2022, pp. 10 298–10 322.

[38] D. Chen, C. S. Hong, L. Wang, Y. Zha, Y. Zhang, X. Liu, and
Z. Han, “Matching theory based low-latency scheme for multi-
task federated learning in mec networks,” IEEE Internet of Things
Journal, 2021.

[39] P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, and Y. Hu, “Deepweave: Ac-
celerating job completion time with deep reinforcement learning-
based coflow scheduling.” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2020, pp. 3314–3320.

[40] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast con-
vergence for wireless federated learning,” in IEEE Int. Conf. on
Communications (ICC), 2020, pp. 1–6.

[41] K.-r. Kim, Y. Kim, and S. Park, “A probabilistic machine learning
approach to scheduling parallel loops with bayesian optimiza-
tion,” IEEE trans. on Parallel and Distributed Systems (TPDS), vol. 32,
no. 7, pp. 1815–1827, 2020.

[42] Z. Zang, W. Wang, Y. Song, L. Lu, W. Li, Y. Wang, and Y. Zhao,
“Hybrid deep neural network scheduler for job-shop problem
based on convolution two-dimensional transformation,” Compu-
tational intelligence and neuroscience, vol. 2019, 2019.

[43] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-
task transfer learning: Model and practice with data-driven task
allocation,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 31, no. 6, pp. 1357–1371, 2019.

[44] M. K. Emani and M. O’Boyle, “Celebrating diversity: A mixture
of experts approach for runtime mapping in dynamic environ-
ments,” in ACM SIGPLAN Conf. on Programming Language Design
and Implementation, vol. 50, no. 6, 2015, pp. 499–508.

[45] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling dis-
tributed machine learning with the parameter server,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2014, pp. 583–598.

[46] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in Int. Conf. on Learning
Representations (ICLR), 2020.

[47] F. Zhou and G. Cong, “On the convergence properties of a k-step
averaging stochastic gradient descent algorithm for nonconvex
optimization,” in Int. Joint Conf. on Artificial Intelligence (IJCAI),
7 2018, pp. 3219–3227.

[48] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Int. Conf. on the theory and applications of
cryptographic techniques, 1999, pp. 223–238.

[49] C. Dwork, “Differential privacy: A survey of results,” in Int. conf.
on theory and applications of models of computation, 2008, pp. 1–19.

[50] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device
scheduling and resource allocation for latency constrained wire-
less federated learning,” IEEE Trans. on Wireless Communications,
vol. 20, no. 1, pp. 453–467, 2021.

[51] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,”
IEEE Trans. on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2018.

[52] S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. De Turck, “A
multi-agent q-learning-based framework for achieving fairness in
http adaptive streaming,” in IEEE Network Operations and Manage-
ment Symposium (NOMS), 2014, pp. 1–9.

[53] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” ACM Com-
puting Surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.

[54] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in EuroSys
Conf., 2018, pp. 1–14.

[55] P. Toth, “Optimization engineering techniques for the exact solu-
tion of np-hard combinatorial optimization problems,” European
Journal of Operational Research (EJOR), vol. 125, no. 2, pp. 222–238,
2000.

[56] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experi-
mental design,” in Int. Conf. on Machine Learning (ICML), 2010, pp.
1015–1022.

[57] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Fre-
itas, “Taking the human out of the loop: A review of bayesian
optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175,
2016.

[58] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[59] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[60] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in ACM Special Interest Group on Data Communication
(SIGCOMM), J. Wu and W. Hall, Eds. ACM, 2019, pp. 270–288.

[61] Z. Xia and D. Zhao, “Online reinforcement learning by bayesian
inference,” in Int. Joint Conf. on Neural Networks (IJCNN), 2015, pp.
1–6.

[62] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine Learning, vol. 8,
no. 3-4, pp. 229–256, 1992.

[63] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in Int. Conf. on Learning Representations (ICLR),
2017.

[64] G. Li, Y. Hu, M. Zhang, J. Liu, Q. Yin, Y. Peng, and D. Dou,
“Fedhisyn: A hierarchical synchronous federated learning frame-
work for resource and data heterogeneity,” in Int. Conf. on Parallel
Processing (ICPP), 2022, pp. 1–10, to appear.

[65] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimiza-
tion,” arXiv preprint arXiv:2003.00295, 2020.

[66] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in
Simulated annealing: Theory and applications, 1987, pp. 7–15.

[67] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Int. Conf. on Learning
Representations (ICLR), 2015.

[68] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Annual Conf.
on Neural Information Processing Systems (NeurIPS), 2012, pp. 1106–
1114.

[71] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” University of Toronto, Toronto, Ontario,
Tech. Rep., 2009.

[72] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist:
Extending mnist to handwritten letters,” in Int. Joint Conf. on
Neural Networks (IJCNN), 2017, pp. 2921–2926.

[73] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[74] Baidu, “Baidu ai cloud,” https://login.bce.baidu.com/, 2022, on-
line; accessed 18/11/2022.

https://login.bce.baidu.com/


17

APPENDIX

Proof of Theorem 1

For simplicity, we take ∇fmk (wm,kr,h ) instead of
∇fmk (wm,kr,h ; ζm,rk,h ) in the proof. By the smoothness of
Fm, we have

E[Fm(w̄mr,h+1)]

≤ E[Fm(w̄mr,h)] + E[〈∇Fm(w̄mr,h), w̄mr,h+1 − w̄mr,h〉]︸ ︷︷ ︸
A

+
L

2
E[‖ w̄mr,h+1 − w̄mr,h ‖2]︸ ︷︷ ︸

B

(20)

Where for B we have, ηmr,h is learning rate.

E[‖ w̄mr,h+1 − w̄mr,h ‖2]

= E ‖ ηmr,h
∑
k∈V rm

pmk,rg
m,k
r,h ‖

2

= ηmr,h
2E ‖

∑
k∈V rm

pmk,rg
m,k
r,h ‖

2

= ηmr,h
2E ‖

∑
k∈V rm

pmk,r(g
m,k
r,h −∇F

m
k (wm,kr,h )) ‖2

+ ηmr,h
2E ‖

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h )) ‖2

≤ ηmr,h
2
∑
k∈V rm

pmk,rE ‖ g
m,k
r,h −∇F

m
k (wm,kr,h ) ‖2

+ ηmr,h
2E ‖

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h )) ‖2

≤ ηmr,h
2
∑
k∈V rm

pmk,rσ
2 + ηmr,h

2E ‖
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h )) ‖2

(21)

where the first inequality results from Jensen’s inequality.
The last inequality results from Assumption 3. Next, for A
we have

E[〈∇Fm(w̄mr,h), w̄mr,h+1 − w̄mr,h〉]
= E[〈∇Fm(w̄mr,h),−ηmr,h

∑
k∈V rm

pmk,rg
m,k
r,h 〉]

= − ηmr,hE[〈∇Fm(w̄mr,h),
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h )〉]

= −
ηmr,h
2

E
[
‖ ∇Fm(w̄mr,h) ‖2 + ‖

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

− ‖ ∇Fm(w̄mr,h)−
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2
]

= −
ηmr,h
2

E ‖ ∇Fm(w̄mr,h) ‖2

−
ηmr,h
2

E ‖
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

+
ηmr,h
2
‖ ∇Fm(w̄mr,h)−

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

where the fourth equality results from the basic identity
〈a, b〉 = 1

2

(
‖ a ‖2 + ‖ b ‖2 − ‖ a− b ‖2

)
.

Then, combine A and B together

E[Fm(w̄mr,h+1)]

≤ E[Fm(w̄mr,h)]−
ηmr,h
2

E ‖ ∇Fm(w̄mr,h) ‖2

−
ηmr,h
2

E ‖
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2 +
L

2
ηm2

∑
k∈V rm

pkmσ
2

+
ηmr,h
2
‖ ∇Fm(w̄mr,h)−

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

+
ηm2L

2
E ‖

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h )) ‖2

= E[Fm(w̄mr,h)]−
ηmr,h
2

E ‖ ∇Fm(w̄mr,h) ‖2 +
L

2
ηm2

∑
k∈V rm

pkmσ
2

−
ηmr,h − ηmr,h

2L

2
E ‖

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

︸ ︷︷ ︸
C

+
1

2
ηmr,hE ‖ ∇Fm(w̄mr,h)−

∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

︸ ︷︷ ︸
D

(22)

We take 0 < ηmr,h ≤ 1
L . As C in (22) is positive, we have

E[Fm(w̄mr,h+1)]

≤ E[Fm(w̄mr,h)]−
ηmr,h
2

E ‖ ∇Fm(w̄mr,h) ‖2 +
L

2
ηm2

∑
k∈V rm

pkmσ
2

+
ηmr,h
2

E ‖ ∇Fm(w̄mr,h)−
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

︸ ︷︷ ︸
D

(23)

For D we have,

E ‖ ∇Fm(w̄mr,h)−
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

= E ‖
∑
k∈V rm

pmk,r∇Fmk (w̄mr,h)−
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

= E ‖
∑
k∈V rm

pmk,r
(
∇Fmk (w̄mr,h)−∇Fmk (wm,kr,h )

)
‖2

≤ E[
∑
k∈V rm

pmk,r ‖ ∇Fmk (w̄mr,h)−∇Fmk (wm,kr,h ) ‖2]

≤ L2E
∑
k∈V rm

pmk,r ‖ w̄mr,h − w
m,k
r,h ‖

2 (24)

where the first inequality results from Jensen’s inequality.
The second inequality results from Assumption 1. Then we



18

0 100 200 300 400 500 600 700 800
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y

VGG with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(a)

0 40 80 120 160 200 240
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Te
st

 A
cc

ur
ac

y

Cnn with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

LeNet with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(c)

50 100 150 200 250 300 350 400 450
Elapsed Time (min)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

VGG with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(d)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Te
st

 A
cc

ur
ac

y

Cnn with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(e)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

Te
st

 A
cc

ur
ac

y

LeNet with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * r)

(f)

Fig. 13: The convergence accuracy of different jobs in Group A changes over time with diverse settings of β.

50 100 150 200 250 300 350 400 450 500
Elapsed Time (min)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Te
st

 A
cc

ur
ac

y

Resnet with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(a)

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Te
st

 A
cc

ur
ac

y

Cnn with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(b)

0 10 20 30 40 50 60 70 80
Elapsed Time (min)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y

Alexnet with NIID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(c)

0 20 40 60 80 100 120 140
Elapsed Time (min)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Te
st

 A
cc

ur
ac

y

Resnet with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(d)

0 20 40 60 80 100
Elapsed Time (min)

0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

Te
st

 A
cc

ur
ac

y

Cnn with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(e)

0 5 10 15 20 25 30 35 40 45 50
Elapsed Time (min)

0.980
0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.991
0.992
0.993
0.994
0.995

Te
st

 A
cc

ur
ac

y

Alexnet with IID

BODS
RLDS
MetaGreedy( * r )
MetaGreedy( * log r)

(f)

Fig. 14: The convergence accuracy of different jobs in Group B changes over time with diverse settings of β.



19

have,

E
∑
k∈V rm

pmk,r ‖ w
m,k
r,h − w̄

m
r,h ‖2

= E
∑
k∈V rm

pmk,r ‖ (wm,kr,h − w
m,k
r,0 )− (w̄mr,h − w

m,k
r,0 ) ‖2

≤ E
∑
k∈V rm

pmk,r ‖ w
m,k
r,h − w

m,k
r,0 ‖2

= E
∑
k∈V rm

pmk,r ‖
h−1∑
h′=0

ηmr,h′g
m,k
r,h′ ‖2

= E
∑
k∈V rm

pmk,r ‖
h−1∑
h′=0

ηmr,h′∇fmk (wm,kr,h′ ) ‖2

≤
∑
k∈V rm

pmk,r(H − 1)
h−1∑
h′=0

ηmr,h′
2E ‖ ∇fmk (wm,kr,h ) ‖2

≤
∑
k∈V rm

pmk,r(H − 1)2ηmr,0
2G2

≤ Q2(H − 1)2ηmr,h
2
∑
k∈V rm

pmk,rG
2 (25)

In the first inequality, we use E||X−EX||2 ≤ E||X||2 where
X = wm,kr,h − w

m,k
r,0 . In the second inequality from, We use

the following steps:

V ar(xk) = E(xk
2)− (E(xk))2 ≥ 0

1

h

h−1∑
h′=0

‖ xk ‖2 − ‖
1

h

h−1∑
h′=0

xk ‖2 ≥ 0

1

h2
‖
h−1∑
h′=0

xk ‖2≤
1

h

h−1∑
h′=0

‖ xk ‖2

‖
h−1∑
h′=0

xk ‖2≤ h
h−1∑
h′=0

‖ xk ‖2

we take ηmr,h′ ≤ ηmr,0 = ηmr−1,H with 0 ≤ h′ ≤ H − 1 and 0 ≤
h ≤ H − 1. The third inequality results from Assumption 4.
The last inequality, we assume that ηmr,0 ≤ Qηmr,h′ . Therefore,
we have

E ‖ ∇Fm(w̄mr,h)−
∑
k∈V rm

pmk,r∇Fmk (wm,kr,h ) ‖2

≤ L2Q2(H − 1)2ηmr,h
2
∑
k∈V rm

pmk,rG
2 (26)

Then, we have

E[Fm(w̄mr,h+1)] ≤ E[Fm(w̄mr,h)]−
ηmr,h
2

E ‖ ∇Fm(w̄mr,h) ‖2

+
L

2
ηmr,h

2
∑
k∈V rm

pmk,rσ
2

+
L2

2
Q2(H − 1)2ηmr,h

3
∑
k∈V rm

pmk,rG
2 (27)

Divide (27) both sides by
ηmr,h

2 and rearrange it yields,

E ‖ ∇Fm(w̄mr,h) ‖2 ≤ 2

ηmr,h
(E[Fm(w̄mr,h)]− E[Fm(w̄mr,h+1)])

+ Lηmr,h
∑
k∈V rm

pmk,rσ
2

+ L2Q2(H − 1)2ηmr,h
2
∑
k∈V rm

pmk,rG
2 (28)

Summing from r = 1, h = 1 to r = R, h = H and dividing
both sides by RH yields

1

RH

R∑
r=1

H∑
h=1

E ‖ ∇Fm(w̄mr,h) ‖2

≤ 2

ηmr,hRH
(Fm(w̄m1,1)− E[Fm(w̄mR,H)])

+ Lηmr,h
∑
k∈V rm

pmk,rσ
2 + L2Q2(H − 1)2ηmr,h

2
∑
k∈V rm

pmk,rG
2

≤ 2

ηmr,hRH
(Fm(w̄m1,1)− E[Fm(w̄mR,H)]) + Lηmr,hσ

2

+ L2Q2(H − 1)2ηmr,h
2G2

≤ 2

ηmr,hRH
(Fm(w̄m1,1)− Fm∗) + L2Q2(H − 1)2ηmr,h

2G2

+ Lηmr,hσ
2 (29)

We choose ηmr = 1
L
√
RH

. Then we have

1

RH

R∑
r=1

H∑
h=1

E ‖ ∇Fm(w̄mr,h) ‖2

≤ 2L√
RH

(Fm(w̄m1,1)− Fm∗) +
1√
RH

σ2 +
Q2

RH
(H − 1)2G2

(30)

If we further choose Q ≤ (RH)
1
4 , we have

1

RH

R∑
r=1

H∑
h=1

E ‖ ∇Fm(w̄mr,h) ‖2

≤ 2L√
RH

(Fm(w̄m1,1)− Fm∗) +
1√
RH

σ2

+
1√
RH

(H − 1)2G2

= O(
1√
RH

) (31)

Experimental Results
Experimentation with Real Mobile Devices
We carried out an experimentation with 20 real devices
(mobile devices) and a parameter server on the Baidu AI
Cloud [74]. The devices are summarized in Table 8. We carry
out the experimentation with a synthetic CNN model of 4
layers, a VGG model of 6 layers, and a ResNet model of 13
layers.

The time to achieve target accuracy is shown in Table 7.
From the table, we can find that Meta-Greedy corresponds
to the shortest time (up to 42.4% shorter than others) to
achieve the target accuracy of simple models, i.e. CNN and
VGG, while BODS outperforms baseline methods (up to



20

TABLE 7: The time to achieve target accuracy for divers models and methods. The “()” after the model represents the target
accuracy. “/” represents that the training cannot achieve the target accuracy with the corresponding scheduling method
while the “()” represents the highest accuracy during the training process.

Time (s)
Random Genetic FedCS Greedy BODS RLDS Meta-Greedy

CNN (0.928) / (0.908) 1997.71 1909.72 / (0.900) 1369.10 / (0.915) 1351.37
VGG (0.870) 2414.70 1714.55 / (0.848) / (0.848) 1553.10 2591.16 1493.06

ResNet (0.680) 2533.00 2839.45 2474.19 2876.11 2209.64 2446.88 2198.79
ResNet (0.808) 5552.51 5117.59 / (0.776) / (0.806) 4553.23 3539.88 4983.88

TABLE 8: Summary of devices.

Device type RAM size

HUAWEI Mate20 6G
OPPO A72 8G
Galaxy M11 8G
Redmi Note9 Pro 8G
HUAWEI P40 Pro 8G
Realme GT2 8G
Smartisan R2 8G
HUAWEI nova2 4G
Redmi K20 6G
HUAWEI MatePad 8G
HONOR 60 8G
HUAWEI M6 4G
Galaxy 20U 8G
HONOR V10 4G
Redmi Note11 8G
HUAWEI nova5i 6G
Redmi K50 Pro 12G
Galaxy S21 8G
HONOR Play4 8G
HUAWEI MatPad 6G

35.7%). With a complex model, i.e., ResNet, Meta-Greedy
corresponds to excellent efficient training (up to 23.5% com-
pared with others) for a low target accuracy (0.680) while
RLDS significantly outperforms baseline methods (up to
36.2%) for a high target accuracy (0.808). This result implies
that RLDS favors complex models while BODS favors sim-
ple models.

Impact of Ω(r)

As shown in Figures 13 and 14, Meta-Greedy with Ω(r) =√
r outperforms other methods, i.e., Ω(r) = r and Ω(r) =

log r, in terms of both convergence accuracy and conver-
gence speed.

RLDS & BODS with Simple and Complex Jobs
As shown in Figure 15, RLDS favors complex jobs (VGG and
ResNet) while BOSD corresponds to better performance for
a simple job (CNN). We exploit VGG19 (21,240,010) [67] and
ResNet18 (595,466) [69] to train models with non-IID Cifar10
[71] dataset. We exploit CNN with 491,920 parameters to
train a model with the emnist-digital dataset [72].

As RLDS can learn more information through a complex
neural network, RLDS outperforms BODS for complex jobs
(0.008 and 0.029 in terms of accuracy with VGG19 and
ResNet18, and 46.7% and 34.8% faster for the target accuracy
of 0.7 with VGG19 and 0.5 with ResNet18). Due to the
emphasis on the combination of data fairness and device
capabilities, i.e.,computation and communication capabil-
ities, BODS can lead to high convergence accuracy and
fast convergence speed for simple jobs (0.018 in terms of

accuracy and 38% faster for the target accuracy of 0.97 with
CNN; see details in Appendix).

Meta-Greedy with 2 Methods and 6 Methods
As shown in Figure 16, Meta-Greedy with 2 methods (BODS
and RLDS) significantly outperforms that with 6 methods
(BODS, RLDS, Genetic, Greedy, Random, and FedCS).

Frequency of Each Method in Meta-Greedy
As shown in Figure 17, Meta-Greedy with 2 methods (BODS
and RLDS) significantly outperforms that with 6 methods
(BODS, RLDS, Genetic, Greedy, Random, and FedCS). We
find that Greedy and Genetic are extensively exploited,
RLDS is selected at the beginning of the training process,
BODS is chosen at the end of the training process, FedCS
participates with less frequency, and Random is seldomly
utilized. This result shows that when there are Greedy,
Genetic, FedCS, and RLDS, Meta-Greedy can combine them
to generate better scheduling plans for a simple job (LeNet
with IID). When the job becomes complex, Meta-Greedy
combines Greedy, Genetic, FedCS, RLDS, and BODS to gen-
erate proper scheduling plans (LeNet with non-IID, CNN
with both IID and non-IID). However, when the job becomes
even more complex, Meta-Greedy exploits more frequently
RLDS and BODS. RLDS is utilized at the beginning of the
training process because of its superior performance while
BODS is exploited at the end. As BODS may introduce
some randomness to the scheduling process, it may cor-
respond to better data fairness and higher accuracy at the
end. Please note that does not contradict with the claim
“BODS favors simple jobs and RLDS favors complex jobs”
as the combination of Greedy and Genetic can well address
the simple jobs and the training process is quite different
from that of a single scheduling method. As Meta-Greedy
can intelligently select a proper scheduling plan based on
method, it corresponds to efficiency training process.



21

0 100 200 300 400
Elapsed Time (min)

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

BODS
RLDS

(a) CNN

0 100 200 300 400
Elapsed Time (min)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

BODS
RLDS

(b) VGG

0 100 200 300 400
Elapsed Time (min)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

BODS
RLDS

(c) ResNet

Fig. 15: The accuracy of different jobs (CNN, VGG, and ResNet) with non-IID data.

0 20 40 60 80
Elapsed Time (min)

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(a) LeNet with IID data

0 60 120 180 240
Elapsed Time (min)

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(b) CNN with IID data

0 40 80 120 160 200 240 280
Elapsed Time (min)

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(c) VGG with IID data

0 20 40 60 80
Elapsed Time (min)

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(d) LeNet with non-IID data

0 50 100 150 200
Elapsed Time (min)

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(e) CNN with non-IID data

0 200 400 600 800
Elapsed Time (min)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

MetaGreedy (2)
MetaGreedy (6)

(f) VGG with non-IID data

Fig. 16: The accuracy of different jobs in Group A with MetaGreedy (2) and MetaGreedy (6). MetaGreedy (2) represents
Meta-Greedy with 2 methods and MetaGreedy (6) represents Meta-Greedy with 6 methods.



22

0 200 400 600 800 1000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(a) LeNet with IID data

0 200 400 600 800 1000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(b) LeNet with non-IID data

0 200 400 600 800 1000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(c) CNN with IID data

0 200 400 600 800 1000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(d) CNN with non-IID data

0 500 1000 1500 2000 2500 3000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(e) VGG with IID data

0 500 1000 1500 2000 2500 3000
Epoch

BODS

RLDS

FedCS

Random

Genetic

Greedy

(f) VGG with non-IID data

Fig. 17: The participation frequency of diverse methods in the training process of Group A with Meta-Greedy and 6
methods.


	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Motivation for Multi-Job Federated Learning
	3.2 Multi-job Federated Learning Framework
	3.2.1 Multi-job FL Process
	3.2.2 Cost Model

	3.3 Problem Formulation

	4 Device Scheduling for Multi-job FL
	4.1 Bayesian Optimization-Based Scheduling
	4.2 Reinforcement Learning-Based Scheduling
	4.2.1 Policy Network
	4.2.2 Policy Converter
	4.2.3 Training

	4.3 Meta-Greedy Scheduling

	5 Convergence Analysis
	6 Experiments
	6.1 Federated Learning Setups
	6.2 Experimental Results
	6.2.1 Comparison with Single-Job FL
	6.2.2 Comparison within MJ-FL
	6.2.3 Ablation Study


	7 Conclusion
	References

