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Offline Evaluation Matters: Investigation of the
Influence of Offline Performance of EMG-Based
Neural-Machine Interfaces on User Adaptation,
Cognitive Load, and Physical Efforts in a
Real-Time Application
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Abstract— There has been controversy about the value
of offline evaluation of EMG-based neural-machine inter-
faces (NMis) for their real-time application. Often, con-
clusions have been drawn after studying the correlation
of the offline EMG decoding accuracy/error with the NMI
user’s real-time task performance without further consid-
ering other important human performance metrics such as
adaptation rate, cognitive load, and physical effort. To fill
this gap, this study aimed to investigate the relationship
between the offline decoding accuracy of EMG-based NMis
and user adaptation, cognitive load, and physical effort
in real-time NMI use. Twelve non-disabled subjects par-
ticipated in this study. For each subject, we established
three EMG decoders that yielded different offline accu-
racy (low, moderate, and high) in predicting continuous
hand and wrist motions. The subject then used each EMG
decoder to perform a virtual hand posture matching task
in real time with and without a secondary task as the
evaluation trials. Results showed that the high-level offline
performance decoders yield the fastest adaptation rate and
highest posture matching completion rate with the least
muscle effort in users during online testing. A secondary
task increased the cognitive load and reduced real-time
virtual task competition rate for all the decoders; however,
the decoder with high offline accuracy still produced the
highest task completion rate. These results imply that the
offline performance of EMG-based NMIs provide important
insight to users’ abilities to utilize them and should play an
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important role in research and development of novel NMI
algorithms.

Index Terms— EMG decoding, neural machine interface,
cognitive load, adaptation.

[. INTRODUCTION

LECTROMYOGRAPHIC (EMG) signals represent the
efferent neural control commands of body movement
and, therefore, have been commonly used as a neural control
source for design of neural-machine interfaces (NMIs) [1].
These NMIs usually consist of an EMG sensor interface,
an EMG decoding algorithm, and external virtual or physical
devices. Neural signals from targeted muscles are extracted via
EMG sensors placed on the skin surfaces [2] or implantable
intramuscular electrodes [3]. An EMG decoding algorithm
then interprets the EMG signals, determining user intent such
as discrete motion classes (e.g., open/close hand) [4] or con-
tinuous joint motion [5]. To identify discrete motion classes,
pattern recognition has been the most used computational
framework for EMG decoder design [6]. This framework
involves the extraction of features [7] from acquired EMG
signals and a classification algorithm (ranging from simple
linear discriminant analysis [8] to deep learning [9]) to identify
the motion class. For continuous decoders, data-driven regres-
sion methods, such as artificial neural networks (ANNs) [10],
[11], [12], [13], [14], [15], [16], musculoskeletal models [17],
[18], [19], [20], [21], [22], [23], [24], or a combination of
machine learning and a musculoskeletal model [24] have been
reported to successfully predict continuous joint kinematics
or kinetics. Finally, the outputs of the decoder are fed to an
external machine, such as virtual reality [25], [26] or prosthetic
limbs [21], [24], [27] to enable intuitive control of these
machines. For example, continuous kinematics decoders have
been used for position control of virtual and prosthetic joints
to produce natural, multi-joint coordinated arm motions [17],
[18], [20], [24].
The EMG-based NMI design procedure is often composed
of offline design and analysis and real-time application and
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evaluation [28]. Offline design and analysis aim to ensure the
best performance of the EMG decoding algorithm before its
human-in-the-loop real-time applications. In the offline design
phase, EMG signals and joint motion classes or kinematics are
first simultaneously collected. The known input (EMG signals)
and output (motion class or kinematics) data are used to train
the parameters in the EMG decoders to achieve the desired
offline performance. The offline performance is usually quan-
tified by confusion matrices and classification accuracy in the
case of pattern recognition for recognizing the discrete motion
class [9], or correlation, root mean square error (RMSE), and
coefficient of determination (R?) for EMG decoders that pre-
dict continuous kinematics [28]. Iterative decoding algorithm
design and offline evaluation are performed to optimize the
offline decoder performance before real-time implementation
of the decoder for control of a physical device or virtual
environment.

However, the importance of offline evaluation/optimization
of EMG-based NMI has recently been controversial in the
community. This is because several recent studies have con-
cluded decoder offline performance does not correlate with
real-time task performance (e.g., task completion percentage,
task completion time, etc.) of the users when utilizing the
NMI [11], [29], [30]. Although these studies offer engross-
ing observations, the conclusion of these studies have been
misinterpreted by the research community that improving or
optimizing offline performance of EMG-based NMIs is less
important [11]. As a result, when a new EMG deciphering
algorithm is proposed in the field, the engineers are urged to
conduct real-time evaluation of the new algorithm rather than
careful offline analysis and optimization to show the value
of the new method. Nevertheless, this concept is counterin-
tuitive to engineers, as offline analysis is often used in the
engineering development process to validate the performance
and reliability of the algorithm itself and is cost-effective for
troubleshooting before real-time applications. In addition, our
recent study showed that the offline decoding accuracy in NMI
has a significant effect on real-time virtual task performance
in humans [31], contrary to the evidence observed previously.

The controversy around the importance of offline NMI
analysis and optimization was drawn around the limited eval-
vation metrics. In fact, online NMI performance was solely
quantified as the NMI user’s task performance. Nevertheless,
other metrics, such as a user’s adaptation rate [32], cognitive
load [33], and energetic exertion [30], are equally important,
which are related to utility of EMG-based NMIs. These online
performance metrics, together with the NMI user’s task perfor-
mance, have been studied in a limited manner across different
EMG decoding mechanisms (such as pattern recognition vs.
direct myoelectric control) [32] and feedback conditions [34]
for upper limb prostheses. Results showed that low adaptation
rate and high cognitive load in NMI users for prosthesis
operation can be significant factors in the abandonment of
upper limb prosthetic devices [35], [36], [37]. In addition,
high energetic exertion in NMI use can lead to muscle fatigue,
known to alter EMG signals [38], potentially further affecting
the usability of the NMI for real-time control. Nevertheless,
how the offline NMI decoding accuracy associated with these

NMI user’s physical and cognitive performance in real-time
application has not been systematically investigated. Hence,
it is essential to understand the influence of NMI accuracy
evaluated offline on the user’s adaptation, adaptation rate,
and mental and physical efforts in real-time NMI use before
making the conclusion on whether offline NMI evaluation and
optimization is important.

Therefore, in this study we sought to investigate the question
of whether the offline performance of EMG-based decoding
algorithms influences users’ capacity to adapt to the controller
in a real-time task, the rate at which users can adapt to the
controller, the effort users must exert during use, and the
cognitive load associated with real-time use. We manipulated
the training process of artificial neural network (ANN) EMG
decoders to control the coefficient of determination (R? value)
associated with each decoder in offline evaluation. Participants
then used the trained decoders in a virtual hand posture
matching task, training to steady state performance before final
evaluation. Additionally, cognitive load was assessed using a
dual task paradigm in which participants were instructed to
perform the real-time task while also performing a secondary
task [39], [40]. We hypothesized that improved offline perfor-
mance of decoders would result in greater capacity to adapt,
faster rates of adaptation, decreased effort, and decreased
cognitive burden. This study provided new evidence, valuable
to the scientific community, in understanding the importance of
offline evaluation/optimization of EMG-based NMIs, as well
as providing a rigorous reexamination of the relationship
between offline performance and real-time task performance.

[I. METHODS
A. Subjects

The University of North Carolina at Chapel Hill Institutional
Review Board reviewed and approved the experimental proto-
col (Protocol #16-0798; renewal approval on March 11, 2022).
Informed consent was obtained from 12 subjects (6 male,
6 female, ages 22-31, right hand dominant) to participate.
None of the participants reported neuromuscular disorders or
any cognitive impairment.

B. Data Acquisition and Real-Time Processing

Four bipolar EMG electrodes (Sensor SX230, Amplifier
K800, Biometrics, Ladysmith, VA, USA) were placed over
the flexor digitorum superficialis (FDS), flexor carpi radialis
(FCR), extensor digitorum communis (EDC), and extensor
carpi radialis longus(ECRL) muscles of the subject’s dom-
inant arm. Each muscle was identified via palpation and the
skin over each muscle was prepared using an alcohol pad.
Following placement of the EMG electrodes, 9 motion capture
markers were placed over anatomic landmarks of the forearm
and hand to allow for calculation of wrist and metacarpopha-
langeal (MCP) flexion/extension angles. Detailed marker setup
can be found in our previous report [19]. Trajectories of
markers were recorded using an optical motion capture system
(Vicon Motion Systems Ltd., Oxford, UK). Marker and EMG
data were synchronously collected at 100 Hz and 1000 Hz,
respectively.
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Next, subjects sat in front of a computer screen and rested
their dominant arm on a table in front of them with their elbow
held at approximately 45° of flexion during testing. The virtual
posture matching task was displayed on the computer screen.
A maximum voluntary contraction (MVC) was performed
by the 4 muscles of interest and EMG data were recorded.
Five 60 second trials of various motions were performed
for training the artificial neural networks (ANNs) used to
control the virtual hand in the posture matching task [19].
The 5 trials involved random, isolated MCP motion; ran-
dom, isolated wrist motion; patterned, isolated MCP motion;
patterned, isolated wrist motion; and random, simultaneous
motion of both joints. The patterned motion of each joint
consisted of cycling from full flexion to relaxed posture to
full extension, and back to relaxed posture with the assistance
of a metronome set to 1 beat per second. Movements between
postures occurred on each beat allowing subjects to cycle
through the pattern at a rate of 0.25 Hz. During trials involving
random motion, subjects were directed to cover each joint’s
full range of motion while randomly moving at self-selected
speeds.

Coordinate systems for the forearm, palm, and finger
segments were defined using marker data according to previ-
ous work and wrist and MCP flexion/extension angles were
determined via inverse kinematics. The EMG signals were
enveloped by calculating the mean absolute value of a sliding
260 ms window to envelope the signals. The enveloped EMG
signals from each muscle were normalized by the maximum
enveloped EMG value from the corresponding muscle’s MVC
trial. The normalized, enveloped EMG data were down sam-
pled to 100 Hz.

C. ANN Training

The artificial neural network (ANN) algorithms was used
to train EMG [31]. Two separate ANNs were implemented
during each experimental session: one to predict wrist joint
angles (flexion/extension) from EMG, and another to predict
MCEP flexion/extension angles from EMG. The predicted joints
angles of each trained ANN and the measured joints angles
was used to calculate the coefficient of determination R?
as the stopping rule for training the three decoders with
low, moderate and high offline performance. ANN decoders
were used because we can easily control the offline decoding
accuracy during the ANN training procedure. The ANNs
used were non-linear autoregressive neural networks with
external inputs (NARX) networks (Deep Learning Toolbox,
MATLAB 2019a; MathWorks, Natick, MA). NARX networks
(NN5s) are recurrent neural networks commonly used in time
series predictions [41], [42], which can also be used for
the prediction of joint kinematics from EMG data [24]. The
NNs consisted of a single hidden layer of 7 neurons and an
output layer. The inputs consisted of the previous time step’s
predicted joint angle and the normalized, enveloped EMG data
from the current timestep. Training initially occurred in an
open-loop configuration, with measured joint angles as inputs,
before being trained in a closed-loop configuration, receiving
estimated joint angles as inputs.

[l Wrist Decoder
I MCP Decoder
g 06
&
>
% 04 MCP
0.2 Wrist,
0 .
Low Moderate High Virtual Posture Matching Task
Offline Performance Level
Fig. 1. (A) Summary of R2 values for wrist (blue) and MCP (orange)

EMG-based decoders for all subjects for low, moderate, and high offline
performance levels. (B) The virtual posture matching hand interface. The
virtual hand (black) was controlled by subjects to match target postures,
like the one shown in gray.

Performance of each NN was evaluated by calculating the
coefficient of determination, as defined in Eqn. 1:

2 (éi - 9z’)2
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where 6, 6;, and 6; are the average measured joint angle, the
measured joint angle at timestep i, and the estimated joint
angle at timestep i, respectively. To test a large range of offline
performance levels, NNs were trained to performance levels of
were R2 ~ 0.4, (low offline performance), R? ~ 0.6 (moderate
offline performance), and R? ~ 0.8 (high offline performance).
In each session, the NN predicting wrist joint angles and the
NN predicting MCP joint angles were trained to the same level
of offline accuracy.

The stopping criterion of the NN training was mean-square
error (MSE), so the R? value of each NN was set by solving
Eqn. 1 for the MSE corresponding to the desired R? value as
shown in Eqn. 2:

~ 2
- (% —¢) _ %69
N N

where N represents the number of training data timesteps, and
all other variables are as defined above. Arbitrary 20 second
windows of data from each of the 5 trials described above
were used in training each NN. A 5-fold cross-validation was
done to determine performance, with 20% of each training
trial withheld for testing and the other 80% used for training.
Training was re-initialized and repeated until performance was
40.05 of the target R? value. The offline performance of all
NNs used by all subjects in the experiment is summarized in
Fig. 1.

R2

)

(1-RY» (2

D. Virtual Posture Matching Task

A 2-DoF, planar stick figure hand was displayed and visu-
ally updated at 20Hz on a computer screen for subjects to
control in the virtual posture matching task [20]. Subjects were
given 20 seconds to successfully match each displayed target
posture by moving the wrist and MCP joints to be within +5°
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(3.6% and 5.6% of wrist and MCP task space, respectively)
of their target posture values for 0.5 consecutive seconds. The
target posture turned from gray to green to indicate the subject
was within the target tolerance.

Testing for each subject was completed over 4 sessions.
In the first session, subjects performed the virtual posture
matching task using the joint angles calculated in real-time
via inverse kinematics, allowing the virtual hand to perfectly
mirror the subject’s desired motion (an optimal performance).
We estimated that the delay due to the sliding window could
be estimated as approximately 50% of the length of the
window, while all other processing delays were considered
negligible. Since the 260 ms sliding EMG windows for the
ANN decoders was estimated to cause a 130 ms delay to
display the joint angles on the screen, a 130 ms delay was
added to the inverse kinematic (IK) controller to simulate
the delay associated with EMG-based control. Subjects were
instructed to match as many targets as was possible and to do
so as quickly and as accurately as possible. First, 10 practice
trials were performed with 9 target postures per trial to
measure adaptation. Upon completion of the practice trials,
a line was fit to the final 3 trials’ target completion percentages
and target completion times to determine if the subject had
reached steady-state performance. If the slope of this line
was determined to be statistically different from O using
a student’s t-test, additional practice trials were completed
until performance ceased improving. Next, 5 evaluation trials
were performed with 36 target postures per trial. Finally,
an additional 5 evaluation trials with 36 target postures were
performed. During the evaluation trials, a secondary task was
implemented to increase the cognitive load of the participants.
Half of the subjects simultaneously performed the secondary
task in the first set of evaluation trials and the other half
performed the secondary task in the second set of evaluation
trials to counteract the order effect of testing. Practice trials
consisted of 9 target postures to prevent fatigue before eval-
uation trials with 36 target postures. Marker and EMG data
were recorded for all attempted postures of each trial. The
virtual hand interface and an example target posture are shown
in Fig. 1B.

Following completion of the IK controller session, each
subsequent session was performed using trained ANNs from
each of the 3 approximate R? levels. The order in which
subjects utilized each of the 3 decoder performance levels were
counterbalanced so each possible permutation of decoder order
was implemented for 2 subjects.

E. Secondary Task

During 5 of the evaluation trials subjects were instructed
to perform a secondary task simultaneously with the virtual
posture matching task. The secondary task involved subjects
attempting to spell English words backwards. Difficulty of
spelling ranged from education grade 5 to grade 10 levels.
Subjects were instructed to spell backward with as much
accuracy and as many words as possible while performing
the virtual postural matching task.

F. Task Performance Metrics

Four performance metrics were used to evaluate subjects’
performance during the virtual posture matching task: comple-
tion percentage, normalized completion time, path efficiency,
and number of target posture overshoots [11], [28]. (1) Com-
pltion percentage (%) is defined as the percent of all possible
target postures matched by the subject. (2) Normalized com-
pletion time (s/rad) is defined as the duration required to
match a target posture normalzied by the shortest path distance
between the starting and target postures. (3) Number of
overshoots is the number of times the virtual hand enters and
leaves the target posture tolerance window before matching
the target. (4) Path efficiency (%) is defined as the ratio of the
shortest path length between the starting and target postures
to the path length the virtual hand traveled to match the target
posture.

G. Adaptation Analysis

The effects of practice with controllers of all levels of
offline performance were quantified in two ways: (1) the total
change in performance and (2) the initial adaptation rate. The
total change in performance was determined by calculating
the performance metrics for the first and final practice trials
and calculating the difference between the two trials for all
subjects. This was calculated for all levels of offline decoder
performance.

Initial adaptation rates for all subjects were determined for
all metrics and were calculated for all levels of controller
offline performance. An exponential curve was fit to the
practice trial data of each subject using each decoder using
Equation 3:

f(x)=AeP*+C (3)

where x is the practice trial number, f(x) is the predicted
performance metric value, and A, B, and C are constants
determined by the curve fitting [43]. Representative examples
of practice trial data and the fit curves for completion percent
are shown in Fig. 3. The derivative of the fit curve was then
calculated and evaluated at the first trial (x = 1) to determine
the initial adaptation rate.

H. Measurement of Intuitiveness

In this study, we quantified the intuitiveness of NMI in
real-time operation as the normalized error, defined as the
absolute difference between subjects’ physical hand joint
angles and virtual hand joint angles for successfully matched
target postures, normalized by each joint’s range of motion,
as shown below.

Ovirtual — 9physical| (4)
RoM
wherein, 6yirtuqr 1S the joint angle of the virtual hand upon
successfully matching a target posture, Oppysicas is the cor-
responding joint angle of the subject’s physical hand upon
successfully matching a target posture, and RoM is the joint’s
range of motion [28]. The normalized error of each joint
was then regressed on controller accuracy (R? value) to

Normalized Error =
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Fig. 2. A summary of the experimental workflow. First, subjects performed testing with the inverse kinematic (IK) controller (top). Subjects were
prepared, had the task demonstrated, performed 10 practice trials, performed 5 evaluation trials with or without the secondary task, and then
performed 5 evaluation trials without or with the secondary task. Testing with artificial neural network (ANN) controllers for all offline performance
levels was the same as the IK controller testing, with the addition of ANN training data collection.
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Fig. 3. Representative examples of exponential curves fit to subjects’
target completion percentage data demonstrating slower (A) and faster
(B) initial adaptation rates.

determine if any relationship was present. The smaller the
normalized error, the more closely matched between the user’s
proprioception and the NMI estimated virtual arm posture (i.e.,
the more intuitive the NMI control to the users).

I. Cognitive Burden Analysis

The effect of the secondary task load on performing the
virtual postural matching task was quantified by calculating
the relative change in target completion percentage between
the single and dual tasks. The relative change (RC) calculation
is shown below.
CPiyar — CPsingle

CP single

RC =

x 100%, 5)
where CPgyq and CPgipg. represent the completion per-
centage during the dual and single task evaluation trials,
respectively [40].

J. User Effort Analysis

Subjects’ effort using each controller was quantified by
calculating the normalized EMG magnitude of each muscle
during the single task evaluation trials, averaged across the
time required to complete the target postures [38].

K. Statistical Analysis

A chi-square goodness of fit test was applied to all results
and were determined to be sufficiently normal to apply analy-
sis of variance (ANOVA). Mixed effects ANOVA with subjects
included as random effects, and offline performance levels
(low, moderate, and high), tasks (single and dual), and training
state (initial and final) as fixed effects was performed and were
considered significant at the @ = 0.05 level. When main effects

100 100
Ay e . B
3
80 )
X gd
g £a
- 3w
g 40 2 = 40
3 CF
o] ER
20 gqﬂ’ 20
i
0 - - 0
Initial Final Low Moderate High
Training Trial Offline Performance Level
Fig. 4. (A) The change in target completion percentage from the

beginning (Initial) to the end (Final) of the training/practice trials. Higher
offline performance leads to higher completion percentages. However,
there was no significant increase from the initial practice trial to the
final training trial across all offline performance levels. (B) The initial
adaptation rate for improving completion percentage was significantly
higher for high offline performance decoders compared to the moderate
decoders (p=0.013). Standard error bars are shown in (B). * — p<0.05;
** —p<0.01; *** — p<0.001.

were found to be statistically significant, Tukey’s honestly
significant difference test was applied to perform post-hoc
analysis. All results are reported as mean =+ standard deviation
unless otherwise stated.

[1l. RESULTS
A. Adaptation and Adaptation Rate

Increases in offline performance, on average, resulted in
larger increases in task completion percentage over the course
of the practice trials. Two of the 12 subjects required 13 prac-
tice trials to achieve steady-state performance using the
high and low offline performance levels, respectively, while
one subject required 11 practice trials using the moderate
offline performance level. In 10 practice trials, all other
subject-controller pairs achieved steady-state performance.
The completion percentages at the beginning of training and
following completion of training are shown in Fig. 4A across
three different offline performance levels. Offline performance
level was found to significantly influence performance dur-
ing training (p<0.001) with pairwise results summarized in
Fig. 4A. However, no significant difference was observed
between initial performance during training, and final perfor-
mance at the end of training (p=0.104). Initial ANOVA results
showed no significant interaction (p=0.667) between offline
performance level and training state (initial or final) and was
excluded from the final model.

While there was no significant difference in total change in
completion percentage, offline performance had a significant
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Fig. 5. The average difference between physical hand and virtual hand
joint angles for the wrist (A-B) and MCP (C-D) upon successfully match-
ing a target, normalized by joint range of motion. Higher normalized error
indicates subjects’ physical hands were farther away from the posture of
the virtual hand. As offline performance improved, error for the wrist joint
reduced while it remained unchanged for the MCP. * — p<0.05; ** —
p<0.01; *** — p<0.001; n.s. — not significant.

effect on the subjects’ initial adaptation rate of completion
percentage (p=0.012) (see Fig. 4B). The high offline per-
formance level showed significantly higher initial adaptation
rates compared to the moderate level (p=0.013) but not
the low offline performance level (p=0.054). No significant
difference was observed between the low and moderate groups
(p=0.785).

B. Intuitiveness

The level of intuitiveness of each controller performance
level was quantified by finding the error between the subject’s
physical posture and virtual hand posture upon successfully
matching a target posture. The normalized wrist joint error
showed strong negative correlation (r = —0.74) with offline
performance (R? value), indicating the virtual and physical
wrist joints were behaving more similarly (Fig. 5A). Nor-
malized wrist error for the low, moderate, and high offline
performance levels were shown in Fig. 5B. Tukey comparison
detected significant differences between all offline perfor-
mance levels (low-moderate: p<0.001; low-high: p<=0.001;
moderate-high: p=0.035).

While controller offline performance demonstrated a strong
effect on normalized wrist error when successfully matching a
target posture, no correlation between R? value and normalized
MCEP joint error was detected (r = —0.04, Fig. 5C). Addi-
tionally, the groups with low, moderate, and high offline per-
formance showed similar normalized MCP error (p=0.420),
as shown in Fig. 5D.

C. Effects of Cognitive Load

The effect of increased cognitive load during the dual task
evaluation trials was determined using the relative change
(Eqn. 5) from subjects’ performance during each task individ-
ually. The dual task reduced the performance of the primary

task regardless of the offline decoding performance level.
The dual task reduced the performance of the primary task
regardless of the offline decoding performance level. However,
there is no significant difference between the three offline
controllers in the secondary task (p = 0.341) (Fig. 6A).
In addition, increased offline performance resulted in a higher
task completion percentage regardless of single or dual task
conditions (Fig. 6B). Mixed effect two-way ANOVA with
offline performance level and task condition (single vs. dual
task) as fixed effects and subject as a random effect was
performed as well and found no significant interaction between
offline performance level and task condition (p=0.997).

D. User Effort

Offline controller performance exhibited a significant influ-
ence on the average EMG magnitude of subjects’ ECRL
(p=0.001), FCR (p<0.001), and FDS (p=0.003) muscles,
but not EDC (p=0.220). All muscle activation results across
different decoders, including the IK method (i.e., the virtual
hand was driven by actual hand motion), are summarized in
Fig. 7.

Compared to ECRL activations while performing the pos-
ture matching task with the IK controller (0.07 £ 0.04),
average ECRL activations were significantly higher using
controllers with low (0.11 £ 0.04, p=0.027) and moderate
(0.13 £ 0.06, p<0.001) offline performance. However, average
ECRL activations using the controllers from the high offline
performance group (0.09 % 0.05) were not significantly higher
compared to when using the IK controller (p=0.264).

Similar to ECRL, average activations of FCR while using
the low performance (0.16 &= 0.08) and moderate performance
(0.15 £ 0.06) controllers were significantly higher (p<0.001
and p=0.002, respectively) compared to FCR activations while
utilizing the IK controller (0.08 £ 0.03). Meanwhile, using
controllers with high offline performance resulted in FCR
activations (0.11 & 0.04) not significantly different from those
seen in trials using the IK controller (p=0.220).

Finally, average activations of FDS displayed trends similar
to those observed in ECRL and FCR. During use of the IK
controller, average activations of FDS were observed to be
0.07 £ 0.03. Utilizing controllers with low (0.13 £ 0.05)
and moderate (0.13 = 0.06) offline performance resulted in
significantly higher activations, compared to those recorded
using the IK controller (p=0.007 and p=0.006, respectively).
Controllers with high offline performance demonstrated aver-
age activations (0.11 £ 0.08) not significantly different from
those seen using the IK controller (p=0.120).

IV. DISCUSSION

In this study, we set out to examine the relationship between
EMG controller offline predictive accuracy and an individual’s
ability to adapt and utilize the controller online. We also
explored the intuitiveness, cognitive burden, and physical
effort in using EMG controllers with varying level of offline
decoding accuracy. We hypothesized improved offline perfor-
mance of decoders would result in greater capacity to adapt,
faster rates of adaptation, decreased effort, and decreased
cognitive burden.
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(A). Effects from increased cognitive load as shown by the relative change from single task target posture completion percentage caused

by the introduction of the secondary task with 95% confidence intervals. Negative relative changes indicate decreased performance. No significant
difference was found between all levels. (B). Average completion percentages for the single and dual task setups are shown with standard error
bars. As offline performance improves, completion percentage increases in both cases. *** —p<0.001.
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Fig. 7. Subjects’ effort levels, shown by average muscle activations
during the single task evaluation trials. No significant differences were
seen in the average activation of EDC across all control schemes used
for posture matching. However, for ECRL, FCR, and FDS, the EMG
controllers with low (blue) and moderate (orange) offline performance
demonstrated significantly higher muscle activations compared to the IK
controller (purple). Meanwhile the EMG controllers with high (yellow)
offline performance showed similar activation levels to the IK con-
troller, indicating less effort was necessary using EMG controllers with
higher offline performance. Standard error bars are displayed above.
* — p<0.05; ** — p<0.01; ** — p<0.001; n.s. — not significant.

A. Users Adapt to EMG-Based NMI Faster When the
Offline Decoding Accuracy Increase

The virtual posture matching task performance metrics
can be broken down into two categories: overall capability
to perform the task, represented by completion percentage,
and efficiency with which the task is completed successfully,
represented by normalized completion time, path efficiency,
and number of target overshoots.

As offline performance improved (as evidenced by higher
R? values), subjects’ capacity to learn and improve their target
completion percentage increased (Fig. 4A). While the trend in
capacity to improve completion percentage was evident, the
magnitudes of these changes were not significant. However,
the controllers with the highest offline performance demon-
strated faster initial adaptation rates for improving completion
percentage (Fig. 4B). The controllers with high offline per-
formance demonstrated significantly higher initial adaptation
rates compared to the moderate level, and approached signif-
icance compared to the low level. These results indicate once
offline performance reaches a sufficiently high level, users

can more quickly and intuitively figure out what they can
perform in the task space with the given interface. One of
the reasons is that the improved offline performance led the
virtual hand to mimic the desired physiologic motion of the
user more closely (i.e., better intuitiveness), as shown in Fig. 5,
indicating the controller is more intuitive. This indicates that
an EMG-based NMI with high offline decoding accuracy
enables more intuitive control (i.e., the NMI identified user
intent is more consistent with the user’s internal model of
motion [44]), a potential factor making the controllers easier
to use without much effort in learning/adapting.

B. Effect of Dual Task on Task Performance Using
Different Levels of Accuracy of Offline Decoding

According to the capacity sharing model of the
cognitive-motor dual task paradigm, individuals have a
limited total cognitive capacity [37], [38]. The cognitive
domains required increase proportionally with the number
of concurrent tasks. If the requirements of the task exceed
the total capacity, performance will be affected. Hence,
we hypothesized that improved offline decoding accuracy
would require less cognitive effort to control the virtual hand,
resulting in less performance impact when a secondary task
was introduced. Although the highest offline performing NMI
did yield the smallest relative change (i.e., cost of secondary
task), unfortunately, the result did not reach statistical
significance. One potential reason is that the designed
secondary task of backward spelling might be too difficult for
some subjects. In future work, including additional secondary
tasks in the testing may reduce the variations of individuals
in performing the secondary task to assess the cognitive
workload. In addition, other objective measures, such as
heart rate, electroencephalography, eye tracking measures,
detection response task, and NASA TLX [32], [45], during
the postural matching task performance can be explored to
quantify the cognitive load. Finally, regardless of the single
or dual task scenario, more accurate offline decoding resulted
in higher primary task performance, indicating the importance
in maintaining high offline decoding accuracy for real life
NMI applications.
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C. User Effort Reduces With Increased of Offline
Decoding Accuracy

The magnitude of normalized EMG in IK controllers was
significantly smaller than controller with low and moderate
offline performance, and there was no significant difference
between IK and controller with high offline performance for
ECRL, FCR, and FDS muscles (three out of four muscles
used to control the virtual hand) (see Fig. 7). This result indi-
cates that as controller offline performance improved, subjects
were able to better perform the virtual posture matching task
(higher completion percentage) while also reducing the effort
required, as the reduction of muscle activations [38]. The IK
controller results offer an important reference as it depicted
the ideal scenario of accomplishing the posture matching task
which closely imitates the user’s desired motion. The reduced
effort associated with higher offline performance suggests
subjects are less likely to become fatigued with prolonged use.
Avoiding fatigue is important for any EMG-based controller,
as fatigue results in changes to the EMG signals, which often
degrade controller performance [46].

D. Limitations

This study is not without its limitations. As previously
mentioned, there is a potential need for a larger sample size to
better determine the adaptation capacity and effect of increased
cognitive load associated with controllers of various offline
performance levels. Another limitation is the time users were
required to maintain the target posture (0.5 s), while consistent
with previous literature, is still a short amount of time. In the
future, similar experiments may involve providing users with
a fixed amount of time to achieve and maintain a target
posture and calculate the percentage of time the target posture
was achieved. Additionally, the observed cognitive trade-off
between the two tasks seen in the dual task paradigm prevented
meaningful insight into the effect of increased cognitive load
on subjects while using various controllers.

V. CONCLUSION

In this study, we explored the effect of EMG-based NMIs
with different offline decoding accuracy levels on users’ ability
to adapt to the NMI controller, how users respond to increased
cognitive burden, and the user’s effort required to perform the
posture matching task. The NMI with high offline performance
level predicted hand and wrist positions closer to the physical
arm posture and therefore was more intuitive to the user.
The human user also showed larger capacity to improve task
completion percentage with a faster initial adaptation rate
through practice when using the NMI with higher offline
performance for virtual hand control. Interestingly, subjects
can benefit the most from additional training and practice
in using the NMI with moderate offline accuracy. Improved
offline performance was also associated with lower effort by
users, allowing for less fatigue and better controller stability.
Finally, a secondary task took additional cognitive resources
away from the user, leading to a similar amount of reduction
for online NMI performance regardless of the offline perfor-
mance level. However, for both single and dual task tests,

the NMI with high offline performance level yielded the best
online task completion percentage. In summary, our results
implied that offline performance of EMG-based NMIs can be
indicative of overall capability of users in using NMI online for
external device control. Therefore, offline analysis and iterative
optimization of EMG decoding accuracy offline is essential to
making EMG-based NMI design useful and acceptable by the
users for different applications.
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