Downloaded via UNIV OF WISCONSIN-MADISON on August 30, 2023 at 20:21:42 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

l‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

High-Throughput Screening and Prediction of High Modulus of
Resilience Polymers Using Explainable Machine Learning

Tianle Yue, Jinlong He, Lei Tao, and Ying Li*

Cite This: J. Chem. Theory Comput. 2023, 19, 4641-4653 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

Modulus of resilience: R (MJ cm™) 1 410 100 1000

(GPa)

10! E

10° o

Young’s modulus, E

1 Woods '
3 ~~ 1
] Foams Sl ',f’\,\
i
) Elastomers X
L - o O
10 10° 10! 10? 10% 104
Yield strength, elastic limit (MPa)

ABSTRACT: The ability to store and release elastic strain energy, as well as mechanical strength, are crucial factors in both natural
and man-made mechanical systems. The modulus of resilience (R) indicates a material’s capacity to absorb and release elastic strain
energy, with the yield strength (o,) and Young’s modulus (E) as R = o,/(2E) for linear elastic solids. To improve the R in linear
elastic solids, a high o, and low E combination in materials is sought after. However, achieving this combination is a significant
challenge as both properties typically increase together. To address this challenge, we propose a computational method to quickly
identify polymers with a high modulus of resilience using machine learning (ML) and validate the predictions through high-fidelity
molecular dynamics (MD) simulations. Our approach commences by training single-task ML models, multitask ML models, and
Evidential Deep Learning models to forecast the mechanical properties of polymers based on experimentally reported values.
Utilizing explainable ML models, we were able to determine the critical substructures that significantly impact the mechanical
properties of polymers, such as E and o,. This information can be utilized to create and develop new polymers with improved
mechanical characteristics. Our single-task and multitask ML models can predict the properties of 12 854 real polymers and 8 million
hypothetical polyimides and uncover 10 new real polymers and 10 hypothetical polyimides with exceptional modulus of resilience.
The improved modulus of resilience of these novel polymers was validated through MD simulations. Our method efficiently speeds
up the discovery of high-performing polymers using ML predictions and MD validation and can be applied to other polymer material
discovery challenges, such as polymer membranes, dielectric polymers, and more.

1. INTRODUCTION large amounts of elastic energy to produce powerful
The modulus of resilience denotes the maximum amount of locomotion.”®’ Advanced flexible electronic panels require a
energy that can be stored in a material before it undergoes high modulus of resilience to balance the demands of

plastic deformation." The storage and release of elastic strain
energy in materials, as well as the mechanical strength, play an
important role in both natural and engineered mechanical

durability and flexibility. Materials with a high modulus of

actuation systems.” Many emerging technologies also rely on SP_eCial Issue: Machine Learning for Molecular Simu-
the efficient use of mechanical energy storage and release, such lation
as alternative energy systems.” > Materials with a high Received: January 31, 2023
modulus of resilience %ifer exceptional protection against Published: June 20, 2023
mechanical deformation.”” Additionally, artificial muscles in
robots often require a high modulus of resilience as they use
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Figure 1. A plot of specific strength versus specific modulus was created to summarize the mechanical properties of polymers discovered through
ML and verified through MD, and to compare them with other engineering materials. Additionally, a schematic diagram was included to depict the

relationships between stress, strain, and modulus of resilience.

resilience can provide great protection against mechanical
deformation while still maintaining the flexibility needed for
these electronic devices.'”"! As shown in Figure 1, the
modulus of resilience of isotropic linear elastic solids is
mathematically defined as GZY/ (2E), where o, is the yield
strength and E is Young’s modulus. According to this
definition, achieving high o, and low E at the same time
leads to a high modulus of resilience. However, it is challenging
to design and create materials with a high modulus of
resilience. Most engineering materials have a strong correlation
between o, and E, resulting in low (7;/ (2E) values. Despite this,
polymer composites are considered promising candidates for
achieving a high modulus of resilience because a polymer
matrix can be used as a starting material with a low E, which
can be combined with other materials to achieve high yield
strength. In this study, computational methods of ML and MD
simulations are utilized to accelerate the discovery of high-
performance polymers with high modulus of resilience. The
results of the discovery can be observed in the modified Ashby
Chart (Figure 1) of specific strength vs specific modulus,
where the excellent specific modulus of resilience of the
discovered polymers will be highlighted. The Ashby chart is a
useful tool for evaluating the mechanical properties of
materials, by plotting the ratio of specific strength to specific
modulus.

Polymers are a versatile class of natural or synthetic
materials. Polymers are composed of long-chain molecules,
which are widely available in the world. They can be found in
biological organisms, such as proteins, cellulose, and nucleic
acids, as well as in common man-made materials such as
concrete, glass, paper, plastics, and rubbers."””"> The
polymeric structure consists of several simpler chemical
units, which are also known as monomers. Those monomers
are covalently bonded together to form long-chain macro-
molecules. The properties of the polymer, from microstructure
to physical and mechanical behavior, are determined by the
chemical structure of the monomers and their arrange-
ments.'°""" This makes polymer materials highly adaptable
and useful in a wide range of applications.'®*~**

When addressing large-scale data challenges, artificial
intelligence (AI) and ML are often considered effective
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computational methods for finding solutions. ML utilizes
existing data, whether experimental or computational and is
particularly useful not only in polymer applications but also in
materials discovery and characterization.”” ' However, a
majority of the training data currently used for ML algorithms
in polymer applications is derived from density functional
theory calculations of small, monomeric, or oligomeric
substances.”” Furthermore, the representation of the polymeric
structures used in current ML models are often the monomers
simplified molecular-input line-entry system (SMILES), which
simplifies the input but may not fully capture all information
on the polymer.”>™*> SMILES is a widely used method for
representing molecules, as it is easy for both humans and
machines to read and understand. While SMILES describes the
structural information on homopolymers, it does not take into
account the influence of polymer chain topology on the target
properties, such as cross-linking, branching, and so forth.**~**
It is difficult to fully understand the macroscopic behaviors of
polymer chains, such as self-assembly, polymer crystallization,
or knot-type classifications, when they are represented by
monomers only. Therefore, using traditional ML methods in
combination with current polymeric databases and monomeric
representations may not provide a complete understanding of
polymer behavior.

To accelerate the discovery of new polymers with high
modulus of resilience, we propose an integrated, data-driven
approach that leverages ML by utilizing the PoLylInfo
database™ and a large data set of actual polyimides, a
hypothetical data set of over 8 million potential polyimides,*’
for screening using custom-built ML models, and MD
simulations for validation. Our method starts by gathering
2468 real polymer structures from the PoLyInfo database with
their 10 reported physical properties if available, such as
density (p), Young’s modulus (E), tensile yield strength (o),
tensile break strength (o), shear modulus (G), shear yield
strength (7,), shear break strength (7,), flexural modulus
(Egey), flexural yield strength (6}.,), and flexural break strength
(65y). This data set of polymers that have been synthesized
and characterized experimentally forms a large data set of real
polymers. Using this data set, we train ML models to establish
the mapping between structure and properties, gaining insight
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J. Chem. Theory Comput. 2023, 19, 46414653


https://pubs.acs.org/doi/10.1021/acs.jctc.3c00131?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00131?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00131?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00131?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
140
(a) 100 40
120
100 80 30
5 80 5 60 §20
© 60 o 8
40
40 10
. 20
05 10 15 20 25 30 °% 2 4 6 8 10 %% 25 0 75 100 125 150 175 200
Density (g/cm3) Young's Modulus (GPa) TensileYield (MPa)
p 1622 E 923 ay 230
:r (@]
D) (@ E =——p E
\ -
‘ 0%
‘ s
y O Ty
Monomer : B
5, - O Oflex
{g 2 > C afb,ex

!

*c¢1nc2c([nH]1)cce(c2)N1C(=0)c2¢(C1=0)cc(cc2)C(=
0O)c1cc2c(C(=0)N(C2=0)c2cce(cc2)*)ec

SMILES

i

Morgan fingerprint
N

[o]i]o]TTo]
Morgan fingerprint with frequency
[oToT2To[1T--ToT6To o o[3]

Multi-Task Learning

Single-Task Learning

Figure 2. (a) Univariate distribution plots for p, E, and o,. (b) The structure representation, feature representation, and ML models. The polymer
structure representation used in the study was the monomer. Two types of Morgan fingerprints were calculated from the monomer structures: bit
vectors and repeat unit notation. The bit vectors were used as input for a multitask feedforward neural network (FFNN) model, while the repeat

unit notation vectors were used for training in a single-task model.

into the key structural features that affect different properties.
The well-trained ML models are then used as a predictive tool
to estimate the properties of new polymers. Using the
PoLyInfo and hypothetical data set, over 8 million polymers
are screened, and our primary focus is on the properties of o,
and E, as a high modulus of resilience is highly desirable.

Finally, we identify several multifunctional polymers with
improved performance compared to current real polymers and
verify their properties through all-atom MD simulations. Our
study designs novel multifunctional polymers by narrowing
large-scale chemistry space down to promising candidates
through ML screening and MD validation. By using physics-
based ML predictions to exhaust all possibilities before
experimental synthesis, this approach successfully allows for
the exploration of the entire design space, making it much
more efficient compared to the conventional trial-and-error
process. This strategy can also be applied to the molecular
design of other polymeric materials.””

2. ML MODELS AND APPROACHES

2.1. Training and Screening Data sets. The largest
database, PoLyInfo, contains over 18 000 reported polymers,
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including 12 854 homopolymers with their chemical structures
and around 100 types of properties. This homopolymer data
set is suitable for training neural networks in our study. Among
the entire data set, as shown in Figure 2, 1625 homopolymers
have reported values of p, 923 homopolymers have reported
values of E, and 230 homopolymers have reported values of .
The properties (p, E, and 6,) distributions are shown in Figure
2. Using these reported property values and corresponding
monomer structures, ML models can be trained to set up the
composition-property mapping of polymers.27

Obtaining the p, E, and o, for all polymers in the PoLyInfo
database would be a daunting task, given the amount of labor,
cost, and time required. Additionally, the database includes a
library of 8205087 hypothetical polyimides formed by the
polycondensation of known diamines/diisocyanates with
dianhydrides from the PubChem database,*' providing a vast
search domain for discovering potential high-performing
polymers.

2.2. ML Models. Ensuring an appropriate representation of
polymer structure, utilizing a suitable characterize method, and
selecting a proper machine learning (ML) algorithm are the
three main steps to establishing an ML model for polymer

https://doi.org/10.1021/acs.jctc.3c00131
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Figure 3. Parity plot of the single-task ensemble FFNN model using improved Morgan fingerprints as input features for (a) E, (b) o,, and the parity
plot of the multitask ensemble FFNN model using improved Morgan fingerprints as input features for (c) E, (d) 0.

informatics.”” As shown in Figure 2, in this study, to fit the
scale of data sets, the SMILES and repeat unit notation are
used for structure representation, and single-task and multitask
feed-forward neural networks (FFNNs) are implemented as
the ML models to process the data.**~**

For single-task feedforward neural networks, as shown in
Figure 2 (b), Morgan fingerprint (MF)* with frequency is
utilized for feature representation. The Morgan fingerprint
method detects substructures enclosed in a circle of radius Ry,
and assigns each substructure a numerical identifier. In this
study, the SMILES of the repeat unit for each homopolymer
were utilized and the fingerprint algorithm was implemented in
RDKit with Ry equal to 3. In total, 8831 substructures were
detected, but only 129 prominent substructures shared by
most polymers were kept for prediction of the values of p, E,
and o, to reduce the number of dimensions of the input
vectors. Finally, for each polymer, vectors were obtained in
which each bit represents the presence of a detected
substructure. Compared to the default Morgan fingerprints,
the improved Morgan fingerprints in this study take into
account the frequency of occurrence for each substructure,
which carries more physical meaning. This input vector is
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found to be a proper representation as it indicates both the
substructures present and their frequency in the polymer’s
repeating unit.*

Using FFNNs with the improved Morgan fingerprints, two
single-task ML models were built for each property
individually. An ensemble model that averages the predictions
of 12 models was utilized to obtain better prediction
performance. Specifically, the single-task ML model for tensile
modulus was optimized to have a hidden layer, which has 40
neurons, and the single-task ML model for tensile yield stress
was optimized to have four hidden layers with 8, 8, 8, and 16
neurons, respectively. The architecture of these single-task
ensemble models can be found in Supporting Information, SI,
Figures S1 and S2.

Multitask learning can be applied effectively in the field of
polymer informatics due to the fact that there are many
properties associated with polymers. Even if the amount of
experimental data for a particular property is relatively small, a
combination of multiple properties can still form a large data
set.* In a recent study, Gurnani et al. proposed the use of
Multitask Graph Neural Network (MGNN) to predict 23
different properties of polymers, including mechanics-related

https://doi.org/10.1021/acs.jctc.3c00131
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Figure 4. Substructure importance plot for (a) E and (b) 6,. It lists the most important substructure in descending order and each dot represents
the impact from a particular sample in the training set and the most important 12 substructures associated with E and o, according to SHAP values.
The central atom of the substructures is highlighted in blue. Aromatic atoms are highlighted in yellow. Atoms’ connectivity is highlighted in light
gray. (c) The individual SHAP value plot for one of the smallest E polymers, and (d) the individual SHAP value plot for the highest 6, polymers.
Red or blue arrows indicate the positive or negative contributions of substructures. The feature value of a substructure can be “0” meaning the
absence of the substructure in the molecule, but its feature importance is still a valid value indicated by the length of the arrow. The top
substructures in this polyimide are highlighted in different colors.

properties such as Young’s modulus and tensile strength.”’ Figure 2(b), the MF algorithm can find and identify all
MGNN is the first protocol to integrate polymer feature substructures in a monomer. After that, based on the presence
learning from SMILES strings and other relevant features, of each substructure, all substructures will be marked in a bit
invariant transformations, data augmentation, and multitask vector, which is used for prediction values of E and o,. The
learning. Benchmarking shows that this network has superfast multitask machine learning model was optimized with three
polymer fingerprint recognition and accurate property hidden layers, each containing 128, 16, and 64 neurons,
prediction for the most comprehensive chemical and property respectively (see SI Figure S4 for the architecture of the
arrays studied to date. In our work, we focus on the mechanical multitask model). All single-task and multitask ML models in

properties of polymers, especially E and o,. Therefore, we did this study were implemented using the Keras package.
not include a large number of other polymer properties in the The effectiveness of the single-task ML models is
multitask network. Instead, we only used these two properties demonstrated in Figure 3(ab). E was determined using a
and seven mechanical properties that are related to E and o, in single-task ML model, which was trained using 95% of the 923
the multitask learning, which is very different from the MGNN real polymers with reported experimental values of tensile
study. modulus. The remaining 5% of data points were used as a test
An enlarged data set is used for training the ML model, a set. R* of 0.96 and 0.84 are obtained for the model training and
total of 923, 230, 1009, 19, 6, 6, 67, 6, and S8 real polymers validation, respectively. For o, learned through a single-task
were used with reported experimental values of E, oy, G, 7, ML model, there are 230 real polymers with a reported
Ejew Oliery and 6, respectively (see SI Figure S3). As shown in experimental value, and 90% of the data points are selected
4645 https://doi.org/10.1021/acs.jctc.3c00131
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pseudorandomly for the training set, the other 10% of data
points are used for the testing set. Following the same training
process as the model for E, the R* 0.95 and 0.80 for the model
training and validation, respectively. The averages of the
prediction values generated by 12 models in the ensemble are
shown in dots, while the variances from the prediction values
of 12 models are illustrated with error bars.

As shown in Figure 3(c,d), the multitask ML model training
and validation for E and o, obtained R? values of 0.99, 0.85,
0.97, and 0.88, respectively. These high R values indicate
accurate predictions for these two attributes. It should be
noted that due to the small size of the data set for o,, which
contains only 230 samples, the test set is very small and lacks
statistical significance.

As a result, the obtained models were utilized for high-
throughput screening of real polymers without reported values
of E and o, in the PoLylnfo data set, as well as 8 million
hypothetical polyimides mentioned in Section 2.1.

Using the established predictive model, we aim to gain
insight into the effect of each substructure feature on the final
property. To accomplish this, we will calculate SHapley
Additive exPlanations (SHAP)*® values based on single-task
ML models to determine the impact of substructures on E and
o, The top substructures that have the most influence on E, as
determined by the model’s output, are shown in Figure 4(a).
Figure 4(a) also shows the substructures and their correspond-
ing SHAP values for different polymers. Each row in the figure
represents a substructure, and the dots along the same row
indicate the SHAP value of that substructure for different
polymers. For example, the SHAP values of one of the
polymers with the lowest E are highlighted in Figure 4 (c) for
further examination. The feature values for the important
substructures are presented in Figure 4(a), with one
substructure that contributes the most to the high E
highlighted in the molecular graph using colored circles. This
highlights the impact of the key substructures revealed by the
model. The results show that the developed ensemble model
not only has good predictive accuracy but also provides clear
physical explanations. Similarly, the important substructures
for 6, can be found in Figure 4(b) and one of the polymers
with the highest o, is highlighted in Figure 4(c) for further
examination. The examination of the SHAP values for E and o,
in Figure 4(a) and 4(b), respectively, shows that some of the
key substructures for 6, match with the top key substructures
for E. This suggests that these substructures have a significant
impact on both properties and may be important design
considerations when developing polymers with high o, and E.
As seen in Figure 4(a,b), substructures 42332, 30534, 31454,
8046, 28037, and 38125 have been identified as important for
both E and o, predictions. This makes sense given the
correlation between these two properties and highlights the
importance of these substructures in the overall mechanical
performance of polymers. These substructures may be crucial
design considerations when developing polymers with high
mechanical properties.

Moreover, SHAP technique was not only used to identify
the substructures involved in their mechanical properties but
also to provide some physicochemical insights related to their
molecular structures and organizations through feature
important analysis (SHAP values). Specifically, this technique
involves analyzing the relative contribution or importance of
different substructures or molecular features in the polymer
molecule toward a specific mechanical property. For instance,
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as observed from Young’s modulus in Figure 4c, the
substructure “38125” can improve Young’s modulus but the
substructure “28037” can lower this property. However, for
yield strength in Figure 4d, the yield strength can be enhanced
by substructure “1326” and weakened by substructure “8046”.
Clearly, the mechanical properties of polymers exhibit the
strongest correlation with specific molecular substructures or
motifs in chemical space. These substructures can be identified
through their chemical functionality, physical arrangement, and
position in the polymer backbone, offering valuable insights
into the fundamental relationships between the structure and
mechanical properties of polymers.

In addition, as presented in Figure 5, the average feature
importance of each substructure for these properties is also
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Figure 5. PCA analysis on feature importance for two properties of
129 substructures.

visualized in a principal component analysis (PCA) plot, to
illustrate the influence of the 129 substructures on the
properties. This provides an indication of the overall
contributions of different substructures toward different
properties. From the PCA plot of the two properties, it can
be observed that the first two principal components (PC1 and
PC2) explain most of the variance in the data, offering general
guidelines. However, most substructures are located near the
origin, indicating the difficulty in differentiating their
contributions to different properties. The property o, is nearly
orthogonal to the other property E, indicating the challenge of
adjusting o, while adjusting E in a polymer. Key substructures
such as “30534” and “28037” that are critical for both
properties are located far away from the origin, demonstrating
their high impact on the overall performance of a polymer.
Compared to the feature importance analysis for a single
property, the PCA analysis provides a more comprehensive
evaluation of how different substructures are correlated with
different properties, allowing for a better understanding of how
each substructure affects the polymer’s properties.

In addition to using the single-task ML models and the
multitask ML model, Evidential Deep Learning (EDL)
models*” have also been used as a benchmark in the study.
EDL models provide a way to estimate the uncertainty in the
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predictions and can be useful for applications where high
accuracy is critical. By comparing the performance of the EDL
models with that of the other models, it is possible to gain
insights into the strengths and limitations of each approach
and determine which one is best suited for a particular
application. EDL is a powerful machine learning model that
can quantify uncertainty for neural network-based molecular
structure—property predictions. The EDL model can be
trained with a small-scale data set and provides accurate
predictions and uncertainty, as shown in SI Figure SS for the
univariate distribution data set as well as the parity plot.
However, when the data sets of E and o, are used for model
training, the EDL models do not show good results, as seen in
SI Figure S6 for the parity plots. This may be due to the
limitations of the EDL models when dealing with large and
complex data sets, or the specific characteristics of the E and o,
data sets used in the study.

2.3. MD Simulation. All MD simulations in this work are
carried out employing the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) package.”® The
parametrized polymer consistent force field (PCFF)>'™** is
used to describe the interatomic potentials, which have been
extensively applied to calculate materials’ properties, such as
compressibility, elastic constant, mechanical metrics, thermal
properties, and so forth. Nonbonded interactions, including LJ
and Coulomb potentials. L] potential is characterized by the 6/
9 types. The six-power mixing criteria’" are used to calculate
the interaction force between different types of atoms. A cutoff
distance of 12.0 A is employed to truncate both van der Waals
and electrostatic interactions. The long-range electrostatic
interactions are calculated using particle—particle particle—
mesh (PPPM) solver, which has a force tolerance of 107

With regard to homopolymers, we first generate a single
polymer chain by connecting the head atom with the tail atom
of the repeat unit. Each polymer chain has almost 2000 atoms.
Energy minimization and geometry optimization are con-
ducted for each chain. On the basis of the optimized single
polymer chain, 100 polymer chains are randomly filled into a
3D amorphous box using the self-avoiding random walks
method. In a Monte Carlo way, polymer chain configurations
are reset during the inserting process so that realistic contacts
between atoms are achieved. After that, the initial 3D
simulation model for the homopolymer is developed. The
detailed procedure for building MD homopolymer models is
described in our previous works."”** Then, 40 annealing cycles
are performed for the generated homopolymer models to
eliminate the system’s thermal stress. The annealed homopol-
ymer configurations are used to conduct the following process.

All MD simulations are controlled by the periodic boundary
conditions and a 21-step®® equilibration procedure is
implemented to relax each system. During this equilibration
process, system relaxation conducts alternatively between high-
temperature and high-pressure under isothermal—isobaric
ensembles (NPT) and canonical ensembles (NVT) to obtain
the full equilibration configuration. The maximum value for
temperature and pressure can arrive at 1000 K and 50 000 atm,
respectively. After the system is cyclically compressed and
stretched, a realistic polymer configuration can be obtained. 0.1
fs is employed for the time step in the whole simulation. The
parameters for temperature damping and pressure damping are
governed by 100 and 1000 timesteps, respectively. After the
relaxing process, the optimized homopolymers are employed
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to perform the subsequent calculations in mechanical proper-
ties.

Prior to conducting mechanical properties, a further
relaxation under the NPT ensemble is implemented over 1
ns at 300 K and 0.0 MPa according to the optimized
equilibrium configuration above. Then, employing a 0.2 fs time
step, a stress-stain loading process is used to tensile the system
along the x-direction at 300 K through NEMD simulations.
The x-dimension of the simulation box was stretched under
the Noye;T ensemble during each loading step until an
approximate engineering tensional strain realizes 25%. Besides,
pressures of the x and y directions are maintained at 0.0 MPa
during the tension process, enabling the two dimensions to
unrestrained change to attain the Poisson’s effect. A constant
strain rate of 10® s™' is adopted for a stress—strain response
during tensile simulation. Polymers’ mechanical properties
including E, and o, are then estimated according to the
produced stress—strain curves.

To demonstrate the precision of MD simulations in the
prediction of polymers’ mechanical properties, we first
benchmark the MD simulations by simulating 10 experimental
homopolymers and comparing the measured mechanical
properties in the experiments with our calculation results.
The monitoring stress—strain curves and the extracted E and o,
for the 10 simulated polymers are shown in SI Figures S7 and
S8, respectively. These investigations indicated that physics-
based MD simulations can give high-fidelity mechanical
properties, allowing us to use MD results to verify the ML
predictions.

From MD’s perspective, the identified polymers have high
modulus of resilience, corresponding to a high yield strength
and a low Young’s modulus. Observed the stress—strain curves
in Figure S10, these polymers presented as a relatively high
yield point at a large loading strain location, approximately
0.15. That is to say, these polymers with a high modulus of
resilience typically exhibit a relatively low slope in their stress—
strain curves as well as high level of external force resistance,
indicating a low stiffness or modulus of elasticity. This means
that these polymers can undergo significant elastic deformation
without permanent deformation or plastic yielding, effectively
storing elastic energy during loading. Meanwhile, it has been
observed that the remarkable modulus of resilience, charac-
terized by high yield strength and low Young’s modulus, is
closely correlated with their unique substructures through
bridging molecular dynamics (MD) and machine learning
(ML) findings (Figure 4).

3. RESULTS AND DISCUSSIONS

3.1. Discovery of High Modulus of Resilience
Polymers through Single-Task ML Models. Single-task
and multitask ML models can be used to predict the specific
properties of new polymers. This is a useful tool for scanning a
large design domain that includes two different data sets with
approximately 8 million polymers. By applying well-trained ML
models to the entire data set, we can estimate the E and o, of
the polymers, allowing us to identify superior performers.

Our focus is on polymers with high o, and low E properties.
To verify this, we have selected 10 real polymers with relatively
high o, and relatively low E for MD verification. These high-
performance polymers may not have both properties reported,
but we have obtained reasonable estimations of their properties
using Single-task ML models, which were used for screening
and prediction. On the basis of the tracked stress—strain curves
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Figure 6. Parity plots of MD simulations vs ML prediction for E and o6, of 10 novel real polymers selected based on single-task ML models.

Table 1. Comparison of ML Predictions and MD Simulations of 10 Novel Real Polymers

mechanical ML for diff* ML for diff*
polymer properties MD single-task (%) multitask (%)
No. 1 *C=CCC(C*)(clcccccl )cleccecl E (GPa) 1.52 14 -7.9 1.18 —22.4
o, (MPa) 138 157.61 142 6168  —553
No. 2 *C=CCC(C*)clcccccl E (GPa) 1.22 1.19 -2.5 1.57 28.7
o, (MPa) 130 1202 75 10512 —19.1
No. 3 *N1C(=0)c2c(C1=0)cc(c(c2)clccc(ccl) E (GPa) 1.31 1.07 -18.3 1.47 12.2
Eigz()%)c(zcc)c (c:()ccclzc)c*z)cc(c(i Eﬂggﬁﬁg[zsﬁ?c)f(chcc o, (MPa) 103 115.97 126 7189  —302
No. 4 *clcc2c(C(=0)N(C2=0)c2cc(cc(c2)C E (GPa) 1.15 1.09 =52 1.48 28.7
(=0)OC)N2C(=0)c3c(C2=0)cc(c(c3)Cl) C(=0)*)cclCl o, (MPa) 105 99.20 55 96.67 —79
No. § #*$(=0)(=0)clccc(ccl)Necleee(ccl)Cl (c2ccccc2-c2cccecl2)clecc(ccl) E (GPa) 1.16 1.08 -9.5 1.44 24.1
Neleee(eel)* o, (MPa) 94 103.52 103 7158 —239
No. 6 *C(=CCCC*)clcccecl E (GPa) 1.12 1.02 -89 1.41 25.9
oy, 98 106.40 8.6 50.18 —48.8
No. 7 *nlInc(nnl)clccc(ccl)clnn(nnl) C(=Nclccceel)cleec(ccl)C (=Ncleececl)*  E (GPa) 1.02 0.90 —11.8 1.53 50.0
o, (MPa) 103 105.79 27 7434 -278
No. 8 *clcc2c(C(=0)N(C2=0)c2cc (ccc2)N2C(=0)c3c(C2=0)cc E (GPa) 1.24 1.09 —12.1 1.51 21.8
(c(e3)CC(=0)*)cc1Cl o, (MPa) 96 101.60 63 4954  —482
No. 9 *clc(nnc(nl)clnc(cecl)clne (c(nnl)cleccecl)clecc(ccl)C E (GPa) 1.06 1.01 -1.6 1.58 49.1
(=0)elece(cel)*)eleceecl o, (MPa) 116 130.15 12.2 89.09  —232
No. 10 *C#CC(=C(*)Cnlcnc2clccec2) Cnlenc2cleccc2 E (GPa) 1.21 1.14 -5.8 1.41 16.5
oy (MPa) 115 103.64 -9.9 63.13 —45.1
“Notably, Diff = (ML — MD)/MD.
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Figure 7. Parity plots of MD simulations vs ML prediction for E and 6, of 10 novel hypothetical polyimides selected based on multitask ML
models.

in Figure S9 and three ML models, Figure 6 compares the MD
simulated properties of the ten real polymers with their

estimations given by single-task ML models, multitask ML
models, and EDL models. The stress—strain curves can be
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Table 2. Comparison of ML Predictions and MD Simulations of 10 Novel Hypothetical Polyimides

polyimide
No. 11 *clece(c2ec3nc(N4C(=0)cS ccc(C(=0)cbecc7c(c6)C(=0)
N(*)C7=0)cc5C4=0)ccc3 [nH]2)ccl

No. 12 *clece2nc(c3ccenc3N3C(=0) cdccc(C(=0)cScec6e(cS)C
(=0)N(*)C6=0)cc4C3=0) [nH]c2cl

No. 13 *clenc(c2cc3cc(N4C(=0)cScce (C(=0)cbeec7c(c6)C(=0)N(*)
C7=0)cc5C4=0)ccc3[nH]2)ncl

No. 14 *clccc(c2c3ccc(N4C(=0)cScce (C(=0)cbecc7c(c6)C(=0)N(*)C7
=0)cc5C4=0)cc3nc3ccc(C)cc23) ccl

No. 15 *clece(c2cc3nc(N4C(=0)cSccc(cbecc7c(c6)C(=0)N(*)C7=0)
cc5C4=0)ccc3[nH]2)ccl

No. 16 *clccecclclne2cec(N3C(=0)c4dccc
(C(=0)cS5ccc6e(c5)C(=0)N(*)C6=0)cc4C3=0)cc201

No. 17 *clecceclelne2ec(N3C(=0)cdcec(C(=0)cSccc6e(cS)C(=0)
N(*¥)C6=0)cc4C3=0)ccc201

No. 18 *clnenc2ccc(c3ccenc3N3C (=0)cdccc(C(=0)cScec6c(cS)C
(=0)N(*)C6=0)cc4C3=0)ccl2

No. 19 *cleee(c2ne3cc(N4C(=0)cScce (C(=0)c6eccc7c(c6)C(=0)N(*)
C7=0)cc5C4=0)ncc3[nH]2)ccl

No. 20 *clccc2[nH]c(c3ccc(N4C(=0)cS ccc(C(=0)c6ccc7c(c6)C(=0)N(*)
C7=0)cc5C4=0)cc3C)nc2nl

mechanical ML for diff ML for

properties MD single-task (%) multitask  diff (%)
E (GPa) 1.85 429 132.0 1.76 —4.9
oy, (MPa) 128 142.47 11.3 149.42 16.7
E (GPa) 1.53 4.60 200.8 1.71 11.7
o, (MPa) 137.5 14121 27 14385 46
E (GPa) 1.95 412 1113 169  —133
o, (MPa) 146 141.06 -34 14068 -3.6
E (GPa) 1.57 343 118.6 1.68 7.0
o, (MPa) 122 142.16 16.5 140.12 149
E (GPa) 1.48 423 186.0 1.66 122
o, (MPa) 121 138.58 14.5 137.42 136
E (GPa) 145 3.18 1192 1.65 13.8
o, (MPa) 125 12871 30 1364 92
E (GPa) 1.72 3.18 84.8 1.65 —4.1
o, (MPa) 118 128.71 9.1 136.35 15.6
E (GPa) 1.46 321 120.2 1.65 13.0
o, (MPa) 108 140.97 30.5 135.99 259
E (GPa) 1.55 494 2187 171 103
o, (MPa) 122 152.65 25.1 1402 149
E (GPa) 1.42 4.02 183.2 1.64 18.5
o, (MPa) 117 154.32 319 134.34 14.8

found in Figure S9. The agreement between MD simulations
and true values can be assessed. It can be seen that the MD
simulated E and o, are comparable to those estimated by
single-task ML models, but there is a lower level of
comparability between MD simulation and multitask ML
model predictions when compared to single-task ML models.
A comparison of the calibrated MD results and the
corresponding ML predictions can be found in Table 1. The
average RMSE plus/minus one standard deviations for the
single-task models are 0.12 + 0.06 GPa and 11.03 + 10.00
MPa for E and o, respectively. The average RMSE plus/minus
one standard deviations for the multitask model are 0.34 +
0.23 GPa and 40.78 + 18.31 MPa for E and o, respectively.
3.2. Discovery of High Modulus of Resilience
Polyimides through Multi-Task ML Model. In order to
find high-performance polymers in a larger space, a hypo-
thetical data set of more than 8 million possible polyimides is
screened, and the multitask ML model is used for the
measurement of its performance in this section. This allows us
to select 10 potential hypothetical polyimides with relatively
high o, and relatively low E for MD verification. Through the
stress—strain curves shown in Figure S10 and three ML
models, Figure 7 compares the MD simulated properties of
these ten hypothetical polyimides with their multitask ML
estimations, as well as estimations from single-task ML models
and EDL models. Similarly, to the previous analysis, the MD
simulated E and o, are comparable to the multitask ML model
predictions, but there are significant gaps between estimations
of E and o, from the single-task models and the MD
simulations. A comparison of the calibrated MD results and the
corresponding ML predictions can be found in Table 2. The
average RMSE plus/minus one standard deviations for the
single-task models are 2.40 + 0.60 GPa and 21.24 + 13.21
MPa for E and o, respectively. The average RMSE plus/minus
one standard deviations for the multitask model are 0.18 +
0.16 GPa and 17.34 + 8.66 MPa for E and o, respectively.
3.3. Discussion. Remarkably, these identified polymers
break the barrier of the trade-off between two mechanical
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properties, Young’s modulus, and yield strength. The
mechanical properties of polymers are closely linked to their
substructures in the chemical space, as governed by
physicochemical considerations. Figure 4 illustrates that certain
substructures, such as aromatic rings and carbonyl groups, can
significantly influence the yield strength and Young’s modulus
of polymers. These substructures can enhance the material’s
yield strength while reducing its Young’s modulus, ultimately
resulting in a high modulus of resilience. This demonstrates
how the substructural composition of polymers impacts their
mechanical properties, underscoring the intricate relationship
between polymer chemistry and mechanical performance.
Likewise, from the perspective of mechanics, the existing
aromatic rings in the polymers are highly stable, provide strong
covalent bonding, and enhance additional intermolecular
interactions, which withstand significant levels of external
force without permanent deformation, contributing to the high
yield strength of polymers. These strong covalent bonds make
it difficult for the polymer chains itself to slide or deform under
stress, leading to high yield strength. However, the carbonyl
groups in the polymers allow for greater molecular mobility,
making the polymer chains more flexible during loading, hence
lowering Young’s modulus. As a result, these identified
polymers have successfully overcome the traditional trade-off
between the two mechanical properties, breaking the barrier
and demonstrating a high modulus of resilience with both high
yield strength and low Young’s modulus. The key substructures
of 20 promising candidates can be found in SI Table SI.

As shown in Section 3.1, the predictions of the single-task
ML models match MD simulations better than those of the
multitask ML model for both E and o, However, it is
important to note that the polymers used for testing in this
section were specifically selected by the single-task ML models
due to their extreme properties. The goal of our study is to find
polymer materials with better performance than existing ones,
which means there must be a lack of data in the target
searching space to train. For example, the values of E for the
selected polymers in Section 3.1 are around 1.0 to 1.5, but
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Figure 8. (a) Chemical space visualization of the real polymer data set with reported E (red points), the whole real polymer data set (green points),
and the 10 promising hypothetical polyimides (blue points). (b) Histogram plot of the pairwise Tanimoto similarity (Tc) between 20 promising
polymers and the real polymer data set with reported E. Two polymers are the same if Tc = 1 and totally different if Tc = 0.

there are only about 100 data points with reported E values
between 1.0 and 1.5 out of 923 in the data set, and most of
them are not in the target searching space because of a low o,.
In this situation, it is not fair to compare these two types of ML
models with the promising polymers searched by one of them.
The results shown in Section 3.2 also support this point. In
Section 3.2, the predictions of the multitask ML models match
MD simulations better than those of the single-task ML model
for both E and o,. The polyimides used for testing in Section
3.2 were specifically selected by the multitask ML models due
to their extreme properties.

In summary, our study demonstrates that both single-task
and multitask ML models can be used to discover high-
performance polymers, with predictions of the models having a
high level of comparability to MD simulations. However, the
lack of data in the target searching space can lead to inaccurate
estimates for some polymers. Additionally, the results suggest
that the bias of the data set used for training the models can
have an impact on the predictions. Overall, the study highlights
the potential of ML models for discovering promising
polymers, but also emphasizes the need for a larger and
more diverse data set to improve the accuracy of predictions.

In Section 3.2, it is evident that there are significant
differences between the predictions of single-task ML model
and MD simulations for E. The input dimension of single-task
models is restricted by the size of the training data set. To
reduce the number of parameters in the single-task models and
match the small-scale data set, only 129 of the most prevalent
substructures were used, as shown in Section 2.2. This leads to
a weaker generalization capability compared to the 2048-
dimension vectors used in multitask model. Figure 8(a)
illustrates the chemical space visualization of a real polymer
data set with reported E values (red points), the entire real
polymer data set (green points), and 10 promising hypo-
thetical polyimides (blue points). T-distributed Stochastic
Neighbor Embedding (TSNE) is used for embedding high-
dimensional data into two spaces.”” TSNE is a popular
nonlinear dimensionality reduction and data visualization
technique, which can preserve nonlinear similarities between
data points. TSNE works by first calculating the similarity
between high-dimensional data points based on a Gaussian
distribution, then calculating the similarity between data points
in the low-dimensional space based on a t-distribution, and
minimizing the difference between high-dimensional and low-
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dimensional similarities. It can be observed that the 10
hypothetical polyimides are structurally similar to each other
and are situated in a relatively small area. As shown in Figure
8(b), the pairwise similarity coefficient, the Tanimoto
coefficient (Tc), was calculated between 10 promising real
polymers selected from the PoLyInfo data set and the training
data set with reported E values, as well as 10 promising
hypothetical polyimides and the training data set with reported
E values. Tc was used to measure the structural similarity
between polymers by comparing their fingerprints pairwise.
The coeflicient of similarity between two polymers is
determined by the ratio of common substructures to the
total number of substructures present in both. It can be found
that compared with ten promising real polymers, the ten
promising hypothetical polyimides have lower similarities to
the training data set. And as for 10 promising hypothetical
polyimides, a Tc of 0.04, indicates that the hypothetical
polyimides are dissimilar to the data set used for model
training. This lack of similarity is reflected in the poor accuracy
results shown in Table 2 (see the SI Figure S11 for the K-
means clustering analysis).

4. CONCLUSIONS

Highly resilient materials are in high demand for numerous
cutting-edge technologies. To identify better-performing and
more promising polymers, we established structure—property
relationships through predictive ML models. This allowed us
to conduct high-throughput screening of both the PoLylnfo
and 8 million hypothetical polyimides data sets. In our study,
we collected 10 properties, including p, E, 0y, O G, Tyy Tpy Egen
Yy and 6%, Among these properties, we focused on two key
mechanical properties, E and 6,. To accomplish this, we built
and trained single-task ML models, multitask ML models, and
EDL models based on the reported property values. Using the
explainable machine learning models, we were able to
determine the crucial substructures that significantly affect
the mechanical properties of polymers, such as E and o,. This
information can be utilized to design and manufacture new
polymers with enhanced elastic resilience.

By utilizing well-trained machine learning models on the
PoLyInfo and 8 million hypothetical polyimides data sets, we
identified novel polymers that simultaneously exhibit high o,
and low E. Through the single-task ML models, we selected
ten of the best-performing real polymers. The multitask ML
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models were used to discover ten promising hypothetical
polyimides. These polymers have a high potential for use in
various applications that require high strength and flexibility.
These novel polymers show consistent key substructures that
contribute to their outstanding performance, surpassing the
Ashby frontier of existing polymers as confirmed by MD
simulations.

Moreover, the methodology used in this study, which
combines explainable machine learning techniques and high-
fidelity molecular dynamics simulations, has proven to be a
highly efficient approach for handling a vast number of
chemical structures. Meanwhile, the neural network demon-
strated in this study has shown a promising predictive ability
for polymer’s mechanical properties, which suggests that it
could be applied to address more intricate issues, including the
prediction of mechanical properties for branched or cross-
linked polymers. Both types of these polymers exhibit different
mechanical properties compared to their linear counterparts,
and understanding their structure—property relationships is
crucial for designing new polymeric materials with specific
mechanical functions. The results also demonstrate the
influence of data set bias on the predictions of machine
learning models. To enhance the accuracy of future
predictions, techniques such as active learning can be applied.
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