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We identify laser-accessible transitions in group-16-like highly charged ions as candidates for high-accuracy
optical clocks, including S-, Se-, and Te-like systems. For this class of ions, the ground 3 P; fine-structure mani-
fold exhibits irregular (nonmonotonic in J) energy ordering for large enough ionization degree. We consider the
[3P) <— | 3Py (ground to first-excited state) electric quadrupole transition, performing relativistic many-body
calculations of several atomic properties important for optical clock development. All ions discussed are suitable
for production in small-scale ion sources and lend themselves to sympathetic cooling and quantum-logic readout

with singly charged ions.
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I. INTRODUCTION

The performance of optical clocks has improved rapidly
over the last few decades [1]. This has led to improvements in
frequency metrology as well as tests of fundamental physics
using atomic clocks [2]. The highest performance optical
clocks are currently based on ensembles of neutral atoms
trapped in optical lattices or singly charged ions stored in
electromagnetic traps [3—-6]. However, in recent years, sev-
eral clocks based on highly charged ions (HCIs) have been
proposed as both improved optical frequency standards and
as systems with enhanced sensitivity to possible new physics
[7-9] (see also Ref. [10], and references therein). Optical
clocks based on HCIs provide several systematic advantages
over current optical clocks including reduced blackbody radi-
ation (BBR), Zeeman, and electric quadrupole shifts [10,11].
Here, we identify group-16-like HCIs as optical clock can-
didates. For this class of ions, the ground 3 P; fine-structure
manifold exhibits irregular (nonmonotonic in J) energy order-
ing for large enough ionization degree, with the 3 P; state lying
above the 3p, (ground) and 3py (first-excited) states. Given
this irregular ordering, the 3P, excited state lacks a magnetic-
dipole (M1) decay channel, resulting in a relatively long
lifetime and making the | *p,) <— |3Ry) electric quadrupole
(E2) transition a viable clock transition. This irregular energy
ordering is illustrated in Fig. 1. Due to the high nuclear charge,
the ordering is irregular for Te-like systems beginning with
neutral tellurium. In the case of O-, S-, and Se-like systems,
the ionization degree must be increased before the irregular
ordering is observed. Specifically, for O-like ions, the irregu-
lar ordering is not observed until Mn!"*. For this system, the
clock transition wavelength (= 150 nm [12,13]) is outside the
range of current clock lasers. The S-, Se-, and Te-like sys-
tems offer more favorable clock transition wavelengths. In the
present work, we perform relativistic many-body calculations
of relevant properties for optical clock development. While
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we present results only for select S-, Se-, and Te-like systems,
other group-16-like systems not explicitly considered may
also be of interest.

The present work is a broader study of the group-16-like
systems started in our previous work with just Ba*t [17].
We include Ba** in the list of ions considered here. Broadly
speaking, similar computational techniques are used here as
in Ref. [17]. The results of Ref. [17] are reproduced with
only small deviations, with two exceptions. First, a small
clerical error is corrected, giving a second-order Zeeman shift
that is a factor of 2 larger. The essential conclusion that this
shift is negligible remains valid. Second, an improved method
is used to calculate the scalar differential polarizability Ac,
which predicts a much larger degree of cancellation between
the clock state polarizabilities. While the revised value of
A« does not support cancellation between the trap-induced
Stark and micromotion time-dilation shifts (by operating at
a “magic” rf trap drive frequency [18]), it does offer highly
suppressed Stark shifts, including the BBR shift. We find sim-
ilar cancellation between the clock state polarizabilities for the
other group-16-like systems, resulting in similarly small Acr.

In the present work, we focus on the isotopes with zero
nuclear spin to avoid complications caused by the hyperfine
structure (hfs). In particular, the second-order Zeeman shift is
enhanced in isotopes with hfs, by small hfs energy intervals.
In contrast, the second-order Zeeman shift is small and can be
neglected in spin-zero isotopes.

II. METHOD

A. Calculation of energy levels

The calculations are carried out using a combination of the
configuration interaction (CI) technique with the linearized
single-double—coupled-cluster (SD) method, as described
in Ref. [19]. The combined method (CI+ SD) has been

©2022 American Physical Society



SALEH O. ALLEHABI et al.

PHYSICAL REVIEW A 106, 043101 (2022)

T 104 & <4 E —, 4 b -
g E El E El: 3 —e— 3p
> L 1t ] 1 f ]
N 1T f 1 | = p
g 3
E 1 E O-like Els El3 Se-like T F Telike 3

g (N =28) 15 (N = 16) 10 (N=34) 1 (N=52) ]

102 U - Ll - L - Ll - L - L |
0 5 10 15 0 5 10 15 0 5 0 5
Z—-N Z—-N Z—-N Z—-N

FIG. 1. Experimental energies for group-16-like atomic systems. For each system, the lowest-lying electronic states are part of a 3P,
fine-structure manifold, with the *P, ground state taken to have zero energy. Energies of the 3P, and 3P, states are plotted versus ionization
degree Z — N for the isoelectronic sequences, where Z and N denote the number of protons and electrons, respectively. For the O, S, and
Se isoelectronic sequences, the *P; energy ordering transitions from regular ordering (monotonic in J) at low ionization degree to irregular
ordering at high ionization degree. For the Te isoelectronic sequence, the ordering is irregular already for the neutral Te system. For the
systems with irregular energy ordering, the 3P, state lacks an M1 decay channel. Energies are from the NIST Atomic Spectra Database [12]
and Refs. [14-16]. The curves are interpolating functions intended to guide the eye.

demonstrated to be efficient and very precise for systems with
several valence electrons. With the SD technique, it is pos-
sible to accurately determine the core-valence and core-core
electron correlations, while the CI method takes the valence-
valence correlations into account. Our calculations are done
using the VN=¥ approximation [19], where N is the total
number of electrons and M is the number of valence electrons.
For all atomic systems considered (see, e.g., Table I), the
calculations begin with the relativistic Hartree-Fock (RHF)
method for a closed-shell core, which removes all valence
electrons. We treat all systems as M = 6 valence systems,
except for Te and Sr?**, which are treated as M = 4 valence

systems; this is because NIST data [12] indicate that Te and
Sr??* have no low-lying states with the excitations from the
5s and 3s subshells, respectively. Therefore, it is reasonable
to treat Ss electrons in Te and 3s electrons in Sr??* as core
electrons. The RHF Hamiltonian has the following form:

A = ca - p 4 (B — Dmc? 4 Vaue(r) + Veore(r), (1)

where c is the speed of light, & and g are the Dirac matrices,
p is the electron momentum, m is the electron mass, Ve
is the nuclear potential obtained by integrating the Fermi
distribution of the nuclear charge density, and V o (7) is the

TABLE I. Excitation energies (E), wavelength transitions (A), £2 amplitudes (A), decay rates (7T'), and lifetimes (7) for the excited clock
states. Note that for calculating A, the experimental energies (where available) have been used.

E (cm™) A (a.u) T (s7h 7 (s)
System State Present Other A (nm) Present Present Other cal. Present
Te-like systems
Te 5p 3Py 4630 4706* 2124.9 —5.483 0.0078 0.0073¢, 0.0097" 128.21
Xet 55%5p* 3py 8515 8130* 1230.0 —3.163 0.0398 0.04451°F 25.13
Ba*t 5525p* 3py 11548 11302° 884.8 —2.351 0.1141 0.1253f 8.76
Ce®t 5525p* 3py 14697 14210° 703.7 —1.825 0.2159 0.2437* 4.63
Se-like systems
Zr% 45%4p* 3p, 12722 12557¢ 796.4 —1.131 0.0447 0.0468¢ 22.37
cdl4+ 4s5%4p* 3p, 28909 288284 345.9 0.585 0.7612 — 1.31
S-like systems
Gel6+ 3s23p* 3py 33635 33290 300.4 0.228 0.2377 0.2502¢ 4.21
K20+ 35%3p* 3Py 47618 46900* 213.2 0.176 0.7859 0.8322¢ 1.27
Sr22+ 3p* 3R 50011 53400* 187.3 —0.160 1.2434 1.257¢ 0.805

4 Ref. [12]; the values are compiled from the NIST database; Te-like systems (Expt.), S-like systems (Expt. or Semi.).

b Ref. [15]; Expt.
¢ Ref. [16]; Expt.
d Ref. [25]; Theor.
¢ Ref. [26]; Theor.
T Ref. [27]; Theor.
¢ Ref. [28]; Theor.
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self-consistent RHF potential created by the electrons of the
closed-shell core.

Following the completion of the self-consistent procedure
for the core, the B-spline technique [20,21] is used to develop
a complete set of single-electron wave functions. Based on
B splines, one can make linear combinations of basis states,
which are eigenstates of the RHF Hamiltonian. The basis set
is built up of 40 B splines of order 9 in a box that has a radius
Riax = 40ag, where ap is the Bohr radius, with the orbital
angular momentum 0 < / < 6. There are two types of basis
states: core states and valence states. Core states are used to
calculate the effective potential of the core. Valence states are
used as a basis for the SD equations and for obtaining the
many-electron states required for the CI calculations.

In the process of solving the SD equations for the core and
valence states, we generate correlation operators X; and X,
[19,22,23]. X, is the correlation interaction between a partic-
ular valence electron and the core, and accordingly, one-body
part /1; can be described as follows:

hy = AYF + 3. )

%, represents the screening of the Coulomb interaction be-
tween a pair of valence electrons; hence, the two-body
Coulomb interaction operator, fzg, is modified so as to include
the two-body part of the core-valence interaction as follows
(we use Gaussian electromagnetic expressions; e is electron
charge):

62

hy=——+3%,. 3)
lri — rjl

Whenever there is more than one valence electron above the
closed-shell core, these X operators can be used in the sub-
sequent CI calculations to account for the core-valence and
core-core correlations. By solving the SD equations for exter-
nal states, the single-electron energies of an atom or ion with
one valence electron can also be obtained. However, we note
that there are slight differences between the SD equations used
for this purpose and those to be used for CI calculations. In
this case, one term in the SD equations needs to be eliminated
because its contribution is accounted for by the CI calcula-
tions (refer to Ref. [19]). This contribution is relatively small;
therefore, differences in the SD equations can be ignored.

In the CI approach, we build the effective CI 4 SD
Hamiltonian for many valence electrons as a sum of one- and
two-electron parts with the addition of ¥; and ¥, operators in
order to account for the correlation between core and valence
electrons,

2
geff — Z(HRHF+EI)’+Z<V |+221,> @

i<j

where i and j enumerate valence electrons.

It is well recognized that increasing the number of valence
electrons exponentially increases the size of the CI matrix.
Our present work has up to six valence electrons, which
leads to an extremely large CI matrix. In order to deal with
a matrix of this magnitude, it would require considerable
computational power. However, the size of the CI matrix can
be decreased by orders of magnitude at the expense of some
accuracy. In order to accomplish this, we use the recently

developed version of the CI method called the CIPT method
[24]. The method combines CI with perturbation theory and is
used to ignore the off-diagonal matrix elements between high-
energy states in the CI matrix. This step is justified because
the high-energy states provide only a minimal correction to
the wave function.

The wave function for valence electrons is presented as
an expansion over single-determinant basis states, which is
divided into two parts:

Netr

W(ry, o) = Y @iy, 1)
i=1
Nootal
+ Z i ®i(ry, ..., rn). @)
i=Negr +1

Here c¢; are the expansion coefficients and &; are single-
determinant many-electron basis functions. The first part of
the wave function represents a small number of low-energy
terms that contribute a great deal to the CI valence wave
function (1 < i < Negr, where Nggr is the number of low-energy
basis states), while the second part represents a large number
of high-energy states that introduce minor corrections to the
valence wave function (Negr < i < Niotal, Where Nigra 1S the
total number of the basis states). Consequently, this allows us
to truncate the CI Hamiltonian by ignoring the off-diagonal
matrix elements between terms in the second summation in
Eq. (5) ((i|Heff|h) = 0 for Nett < i, h < Niota1), Which in turn
reduces computation time with a negligible loss in precision.

The matrix elements between low-energy states i and g are
corrected by the following formula similar to the second-order
perturbative correction to the energy:

(il H k) (lee“Ig>
. Heff Heff 6
(iI1H" |g) — (i[H™ |g) + § E_E, (6)
Here, i, g < Negr, Nett < k < Niorat, E 1s the energy of the

state of interest, and Ej denotes the diagonal matrix element
for high-energy states, E; = (k|H*"|k). The summation in
(6) runs over all high-energy states. Note that neglecting
off-diagonal matrix elements between highly excited states
corresponds to neglecting the third-order contribution

- pyeff eff eff
5@ _ N~ GIHTR) KIECT ) (1 H )
& Z (E—E)(E - E)

(7

k.l

This contribution is suppressed by large energy denominators.
Neglecting the third-order corrections over the second-order
corrections cannot cause any false contributions to the spin-
orbit splitting or break the symmetry of the CI Hamiltonian.

The problem of finding the wave function and correspond-
ing energy can be reduced to a modified CI matrix eigenvalue
equation H°T [Eq. (4)] with size N

(A" — EDX =0, ®)

where [ is the identity matrix and X is the vector
{ci, ..., cn, ) Note that for accurate solution the energy pa-
rameter £ must be the same in Egs. (6) and (8). Since this
energy is not known in advance, the equations (6) and (8) are
solved by iterations. The starting point for the iterations can
be, e.g., the solution of (8) with the matrix (6) without the
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second-order corrections. A more comprehensive description
of this technique is given in Ref. [24].

B. Calculation of transition amplitudes and lifetimes

The method we use for computing transition amplitudes
is based on the time-dependent Hartree-Fock method [22],
which is the same as the well-known random-phase approx-
imation (RPA). The RPA equations are defined as

HM — )89 = —(f + 8V ) v, 9)

where the operator f refers to an external field. The index
¢ denotes single-electron states, . is a single-electron wave
function with corresponding energy €., 1, is a correction to
the wave function due to the external field, and (SVc{,re is the
correction to the self-consistent RHF potential caused by the
amendment of all core states in the external field. For all states
in the core, the RPA equations (9) are solved self-consistently.
The transition amplitudes are found by calculating matrix
elements between states a and b using the formula

Aw = (bIf + 8V

core

la). (10)

Here, |a) and |b) are the many-electron wave functions calcu-
lated with the method described above. These wave functions
are given by Eq. (5). In the present work, only the rates of E2
transitions are taken into account. The rates are computed as
follows (in atomic units):

2

A
@ (1
20, + 1

Ty = 1( )
ab—ls A Wgap

where « is the fine-structure constant (o ~ %), wgp 18 the fre-

quency of the transition, Jj, is the total angular momentum of
the upper state b, and A, represents the transition amplitude
(reduced matrix element) of the £2 operator. The lifetimes of
each excited state b, 75, expressed in seconds, are given as

7, =2.4189 x 10717/ Y " T, (12)

where the summation runs over all possible transitions to
lower states a.

III. RESULTS

A. Energy levels, transition amplitudes, and lifetimes
of the systems

Table I presents the calculated energy levels of the systems
and compares them to the results of previous work; note that
all earlier data presented in the table are either experimental or
semiempirical, except for the value for Cd'**, which has been
calculated. The calculated energies are in good agreement
with experiment, within a few percent. In Table I, we also
present the E2 amplitudes and corresponding decay rates for
excited clock states decaying to the ground state. The rates
are in good agreement with previous studies. The rates and
lifetimes of the excited clock states were calculated using
calculated amplitudes and experimental energies.

B. Ionization potential, Landé g factors, and electric
quadrupole moments

Table II presents the results of the calculated ionization
potential (IP) of all atomic systems. The IP of a system
can be calculated as a difference in the ground state energy
between the system of interest (E™) and the following ion
(EM-1),IP = EM~! — EMThe results of our calculations are
compared with data compiled by NIST. With the exception of
the first two systems, the NIST data have large uncertainties
ranging from 6800 cm ™! to 22 000 cm~!. Within these uncer-
tainties, our calculations agree with the NIST data. In Table II,
we also present the calculated values of the Landé€ g factors for
the ground states of all systems. The g factors are calculated
as expectation values of the M1 operator.

Electric quadrupole shifts are known to be caused by an
interaction between the quadrupole moment of an atomic state
and an external electric-field gradient, and in the Hamiltonian,
the corresponding term is given as [30]

—1
Ho = Z(—l)"Vé’f)@_q. (13)
g=1

Here, the tensor VE? represents the external electric field

gradient at the atom’s position, and C:)q describes the electric-
quadrupole operator for the atom. It is the same as for the £2
transitions, ©, = r2C;2>, where Cf) is the normalized spher-
ical function and ¢ indicates the operator component. The
electric quadrupole moment, ®, is defined as the expectation
value of O, for the extended state

© = (nJJ|O|ndJ)

R J2J —1
— <nJ||®||nJ>\/ @b
I 132+ DU+ 1)

(14)

where (nJ||©||nJ) indicates the reduced matrix element of
the electric quadrupole operator. We compute the values of
® using the CI 4+ SD and RPA methods described in the
previous section. The results are presented in Table II. Note
that the excited clock states of all atomic systems have ® = 0
since the total angular momentum J is zero. Some of these
atomic systems have been investigated before. In our early
work [31] a different approach was used leading to quadrupole
moments Q(Te) = —2.58 a.u. and Q(Xe”) =—1.17 au. It
should be noted that in this earlier work [31], the electric
quadrupole moment Q is defined in a way which differs from
our definition by a factor of 2, so that ® = Q/2. Taking this
into account, the results for the two calculations are in good
agreement.

C. Polarizabilities, blackbody radiation shifts, and second-order
Zeeman shifts

The scalar polarizability o, (0) of an atomic system in state
v is given by a sum over a complete set of excited states n
connected to state v by the electric-dipole (E 1) reduced matrix
elements (we use atomic units)

2 A?
- - vn’ 15
327, + 1) 2. Won (15

n

oy (0) =
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TABLE II. Ionization potential (IP; cm™!), quadrupole moment (©; a.u.), and Landé g factor of the ground state.

P
System State Present NIST C] g factor
Te-like systems
Te 5p 3P, 70939 72669.006(0.047) 1.22 1.467*
Xe?* 55%5p* °py 247505 250400(300) 0.53 1.441
Ba** 5525p* 3Py 475734 468000(15000) 0.32 1.424°
CeS* 5525p* 3p, 748287 734000(16000) 0.19 1.407
Se-like systems
Zr%* 45%4p* 3 p, 913400 903000(16000) 0.23 1.457
Cd+* 45%4p* 3p, 2894809 2887000(22000) 0.062 1.407
S-like systems
Ge'o* 3s23p* 3P, 4916400 4912400(6800) 0.042 1.445
Kr?0+ 3s23p* °p, 7126586 7120300(10100) 0.024 1.420
Sr2?t 3p* 3P, 8378219 8372100(12000) 0.019 1.413

4Experimental value is 1.460(4) [12].
®The same as in our previous calculations, 1.42 [17].

where J, is the total angular momentum of state v and w,,
is the frequency of the transition. Notations v and n refer to
many-electron atomic states. For the calculations of the polar-
izabilities of clock states, we apply the technique developed
in Ref. [32] for atoms or ions with open shells. The method
relies on Eq. (15) and the Dalgarno-Lewis approach [33],
which reduces the summation in Eq. (15) to solving a matrix
equation (see Ref. [32] for more details).

Results for the polarizabilities of the ground and excited
clock states are shown in Table III. It appears that the po-
larizabilities of the ground and excited clock states of all
atomic systems are similar in values. This is because both
clock states belong to the same fine-structure manifold, and
the energy intervals between them are significantly smaller
than the excitation energies to the opposite-parity states [see
Eq. (15)].

Some of these atomic systems have previously been stud-
ied for their polarizabilities. Review [29], and references
therein have investigated the ground state polarizability of Te
both theoretically and experimentally, and the recommended
value has been determined to be 38 &= 4 a.u. Compared with
the recommended value, our calculation (37.3 a.u.) is in excel-
lent agreement. In our earlier work [31] a simplified approach
was used leading to larger values of polarizabilities of Te and
Xe?"; 45.96 and 47.80 a.u. for lower and upper clock states of
Te, and 14.69 and 14.79 a.u. for lower and upper clock states
of Xe?*. These results are in reasonable agreement with our
present calculations.

In our previous work [17], we calculated the polarizability
of the ground and excited clock states for Ba** and found the
values to be 4.4 and 1.4 a.u., respectively. Those results are
in disagreement with the present results. The reason for the
disagreement comes from the fact that direct summation was

TABLE III. Scalar static polarizabilities of the ground and excited clock states [cg(GS) and «(ES), respectively], and BBR frequency
shifts for the clock transition. Svggg /v is the fractional contribution of the BBR shift, where v is the clock transition frequency. “Total” means
total scalar polarizability (core + valence). Error bars were obtained on the assumption that the accuracy for the polarizability is 10%. The last
column shows the second-order Zeeman shifts, §vsz. The notation x[y] abbreviates x x 10”.

o (a.u.) oo(GS) (a.u.) ao(ES) (a.u.) BBR (T = 300 K) Svsz
System Core Valence Total Valence Total Aa(0) Svppr (Hz) v (Hz) Svgpr/V [Hz/(mT)?]
Te-like systems
Te 8.84 28.5 37.3% 29.6 38.4 <7 < 6[—2] 1.411[14] < 4[—16] —87
Xet 0.835 10.1 10.9 10.4 11.2 <2 < 2[-2] 2.437[14] < 7[—17] —2.02
Ba*t 0.578 5.46 6.04 5.56 6.14 <1 < 1[-2] 3.388[14] < 3[—17] —0.55
Ce®* 0.421 343 3.85 3.49 391 < 0.6 < 5[-3] 4.260[14] < 1[—17] —0.22
Se-like systems
Zr% 0.083 1.87 1.95 1.89 1.97 < 0.1 < 1[-3] 3.764[14] < 1[—18] -3.72
Ccd'+ 0.024 0.466 0.490 0.467 0.491 < 1[-2] < 1[-5] 8.642[14] < 1[—20] —0.08
S-like systems
Ge'ot 0.002 0.142 0.144 0.142 0.144 < 1[-3] < 1[-5] 9.980[14] < 1[-20] -0.39
K20+ 0.001 0.0812 0.0822 0.0810 0.0820 < 1[-3] < 1[-5] 1.406[15] < 1[—20] —0.08
Sr22t 0.063 0.0276 0.0906 0.0273 0.0903 < 1[-3] < 1[-5] 1.601[15] < 1[-20] —0.04

2The polarizability of the Te atom has been studied before, and the recommended result is 38 &+ 4 a.u. [29].
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used in Ref. [17]. This method works well if the summation
is strongly dominated by the contribution of the low-lying
states of opposite parity. This is not the case for Ba*" or the
other systems considered here. In this paper, we use the more
accurate method described above. The accuracy of the current
approach can be judged by recalling our earlier calculations
[34-36]. Deviation of the calculated polarizabilities from the
experimental values varies from fraction of percent for noble
elements [34] to few percent for atoms with more compli-
cated electron structure. Given also that we have excellent
agreement for Te with the recommended value from literature,
which has 10% uncertainty, we conclude that the accuracy of
our present calculations is in the range from 1% to 10%.

BBR can have a significant impact on the clock transition
frequency in atomic clocks. The shift in the clock transition
frequency caused by BBR can be calculated as

Svppr = —1.063 x 107 12T* A (0), (16)

where T is the temperature and Aa(0) = ao(ES) — ap(GS)
is the difference between the excited and ground clock-state
polarizabilities. The proportionality factor here is for a shift in
hertz, temperature in kelvin, and differential polarizability in
atomic units. The results of the fractional BBR shifts at room
temperature are shown in Table III. It can be seen from the
table that the differential polarizabilities are extremely small,
which results in small values for BBR shifts. Note that even
the use of the most optimistic assumption about the accuracy
of the calculation of the polarizabilities (1%) leads to large
uncertainties in the BBR shift. This means that the numbers
for the BBR shift in Table III should be considered as upper
limits.

In order to calculate the second-order Zeeman shift (Svsz),
we have to take into account an influence caused by a weak
homogeneous external magnetic field. For the determination
of Svgz, the following formula can be used [37]:

1
Svgz = —EAaMIBZ, (17)

where h is Planck’s constant, B is the magnetic field, and
AaM! is the difference between the magnetic-dipole polar-
izability of the ground and excited clock states, AaM! =
oM (ES) — aM'(GS). The M1 polarizability can be calcu-
lated using Eq. (15), but the amplitude of the electric-dipole
transitions (A,,) should be replaced with the amplitude of
the magnetic-dipole transitions. Our results are shown in
Table III. It should be mentioned that the magnetic-dipole
polarizabilities can be calculated with just a few low-lying
states since their contributions dominate. In the case of the
atomic systems considered here, only the first two low-lying
states belonging to the same configuration give significant
contributions. Here only the scalar contribution is presented.
A tensor contribution of similar magnitude also exists, though
it can be canceled with certain averaging schemes. In any case,
the scalar results illustrate the scale of the second-order Zee-
man shift, which is negligibly small for small (~uT) magnetic
fields.

TABLE IV. Sensitivity of clock transitions to variation of the
fine-structure constant (g, K).

System State o (cm™") g (cm™) K
Te-like systems

Te 5p* 3P 4706 3261 1.39

Xe?* 5525p* 3Py 8130 5611 1.38

Ba*" 55%5p* 3P, 11302 5976 1.06

Cett 5525p* 3Py 14210 5907 0.83
Se-like systems

Zrt 4s24p* 3p, 12557 8939 1.42

Ccd™t 4s24p* 3 p, 28828 8837 0.61
S-like systems

Ge!o+ 3s%3p* 3Py 33290 18484 1.11

Kr?0* 3s23p* 3Py 46900 17252 0.74

Sr22+ 3p* 3Py 53400 14130 0.53

D. Sensitivity of the clock transitions to variation
of the fine-structure constant

Variations in the fine-structure constant could lead to an
observable effect on the clock transition frequency. The rela-
tionship between the clock frequency and the fine-structure
constant in the vicinity of their physical values can be ex-

pressed as
2
o
w=w0~|—q|:(—> —1}, (18)
[&00]

where g and w are the laboratory values of the fine-structure
constant and the transition frequency, respectively, and g is the
sensitivity coefficient that is determined from atomic calcula-
tions [38]. Note that we do not consider variation of atomic
unit of energy m.e*/H* since it cancels out in the ratio of fre-
quencies. Variation of dimensionful parameters like m,e* /1>
depend on the units one uses. For example, in atomic units
it is equal to 1 and does not vary. Therefore, dependence of
frequencies on « appears due to relativistic corrections.
The change in a frequency ratio w;/w, caused by a change
inais
w Sw Swy Sa
5(—) =—-—=K-K)—. (19)
w7 w1 wr o

The value K = 2¢q/w is often called the enhancement factor.
We calculate ¢ and K by using two different values of « and
calculating the numerical derivative

LR 0,

X

where x = (a/ag)? — 1 [see Eq. (18)]. In order to achieve
linear behavior, the x value must be small; however, it must
be large enough to suppress numerical noise. Accurate results
can be obtained by using x = 0.01. A summary of the calcu-
lated values of ¢ and K is given in Table I'V.

IV. EXPERIMENTAL OUTLOOK

Here, we discuss the experimental outlook for the devel-
opment of optical atomic clocks based on these systems. The
systematic shifts considered in previous sections are limited
by the atomic properties of the respective system. However,

043101-6



HIGH-ACCURACY OPTICAL CLOCKS BASED ON ...

PHYSICAL REVIEW A 106, 043101 (2022)

TABLE V. Lifetime-limited frequency instability for a single
clock ion and the optimal logic ion based on charge-to-mass ratio
(g/m); m are the average values of mass over all isotopes, taken from
NIST data [12]. The notation x[y] abbreviates x x 10”.

System v (Hz) oy (1s) Logic ion E%%
Te-like systems

Te 1.411[14] 2.6[—16] - -

Xe** 2.437[14] 3.4[—16] Srt 0.749

Ba*t 3.388[14] 4.1[—16] Ca®* 0.857

CeS* 4.260[14] 4.5[—16] Mg* 0.961
Se-like systems

Zr%F 3.764[14] 2.3[—16] Be*t 1.687

Ccd+ 8.642[14] 4.2[—16] Be® 0.891
S-like systems

Ge!®* 9.980[14] 2.0[—16] Bet 0.504

K2+ 1.406[15] 2.6[—16] Be* 0.465

Sr*2+ 1.601[15] 2.9[—16] Be*t 0.442

when estimating the expected clock performance, it is impor-
tant to also consider systematic shifts due to ion motion (time
dilation) and the expected frequency instability. To estimate
the frequency instability, we consider a Ramsey interrogation
sequence for a single ion with interrogation time equal to
the natural lifetime, assuming the instability to be limited
by fundamental quantum projection noise [39]. Under these
conditions, the fractional instability is given by [10,40]

o) = —= @1

where v is the clock frequency, 7 is the lifetime of the excited
clock state, and ¢ is the averaging time. These results are
summarized in Table V. All systems exhibit frequency insta-
bilities, for a single clock ion, of oy (t) <5 x 10719/ /1/s.
This level of performance is comparable to recent demon-
strations in Al™ and Yb™ [3,41,42]. Since none of the ions
proposed here possess electric-dipole-allowed (E1) transi-
tions for cooling and state readout, it will be necessary to
utilize a scheme such as quantum-logic spectroscopy (QLS)
for clock operations [43]. The application of QLS requires the
clock ion to be cotrapped with an auxiliary readout “logic” ion
which does possess a laser-accessible transition for cooling

and state readout operations. In addition, ion-based optical
clocks are susceptible to time-dilation shifts due to driven
excess micromotion (EMM) and secular (thermal) motion due
to the finite ion temperature. The secular motion can be re-
duced by applying sympathetic cooling of the clock ion via the
cotrapped logic ion. The most efficient sympathetic cooling
occurs when the charge-to-mass ratio of the clock ion is equal
to that of the logic ion [44]. For each ion considered here,
we estimate the logic ion which would be the best match for
sympathetic cooling. These results are listed in Table V.

The excess micromotion shift is a result of imperfections
in the trap potential, typically caused by stray electric fields
and/or phase shifts between rf drive electrodes that lead to
residual rf fields at the location of the ion [18]. This shift can
be minimized by using a trap design which has been shown to
have low EMM [3,45].

V. SUMMARY

In conclusion, we identify group-16-like ions as promis-
ing candidates for high-accuracy optical clocks. This class of
ions exhibit irregular ordering in the ground 3 P; fine-structure
manifold for large enough ionization degree, leading to E2
clock transitions with narrow natural linewidths. Due to the
increased charge state, several common systematic shifts are
reduced compared to many of the current species used for
optical clocks.
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