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We identify laser-accessible transitions in group-16-like highly charged ions as candidates for high-accuracy

optical clocks, including S-, Se-, and Te-like systems. For this class of ions, the ground 3PJ fine-structure mani-

fold exhibits irregular (nonmonotonic in J) energy ordering for large enough ionization degree. We consider the

| 3P2〉 ←→ | 3P0〉 (ground to first-excited state) electric quadrupole transition, performing relativistic many-body

calculations of several atomic properties important for optical clock development. All ions discussed are suitable

for production in small-scale ion sources and lend themselves to sympathetic cooling and quantum-logic readout

with singly charged ions.
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I. INTRODUCTION

The performance of optical clocks has improved rapidly

over the last few decades [1]. This has led to improvements in

frequency metrology as well as tests of fundamental physics

using atomic clocks [2]. The highest performance optical

clocks are currently based on ensembles of neutral atoms

trapped in optical lattices or singly charged ions stored in

electromagnetic traps [3–6]. However, in recent years, sev-

eral clocks based on highly charged ions (HCIs) have been

proposed as both improved optical frequency standards and

as systems with enhanced sensitivity to possible new physics

[7–9] (see also Ref. [10], and references therein). Optical

clocks based on HCIs provide several systematic advantages

over current optical clocks including reduced blackbody radi-

ation (BBR), Zeeman, and electric quadrupole shifts [10,11].

Here, we identify group-16-like HCIs as optical clock can-

didates. For this class of ions, the ground 3PJ fine-structure

manifold exhibits irregular (nonmonotonic in J) energy order-

ing for large enough ionization degree, with the 3P1 state lying

above the 3P2 (ground) and 3P0 (first-excited) states. Given

this irregular ordering, the 3P0 excited state lacks a magnetic-

dipole (M1) decay channel, resulting in a relatively long

lifetime and making the | 3P2〉 ←→ | 3P0〉 electric quadrupole

(E2) transition a viable clock transition. This irregular energy

ordering is illustrated in Fig. 1. Due to the high nuclear charge,

the ordering is irregular for Te-like systems beginning with

neutral tellurium. In the case of O-, S-, and Se-like systems,

the ionization degree must be increased before the irregular

ordering is observed. Specifically, for O-like ions, the irregu-

lar ordering is not observed until Mn17+. For this system, the

clock transition wavelength (≈ 150 nm [12,13]) is outside the

range of current clock lasers. The S-, Se-, and Te-like sys-

tems offer more favorable clock transition wavelengths. In the

present work, we perform relativistic many-body calculations

of relevant properties for optical clock development. While

we present results only for select S-, Se-, and Te-like systems,

other group-16-like systems not explicitly considered may

also be of interest.

The present work is a broader study of the group-16-like

systems started in our previous work with just Ba4+ [17].

We include Ba4+ in the list of ions considered here. Broadly

speaking, similar computational techniques are used here as

in Ref. [17]. The results of Ref. [17] are reproduced with

only small deviations, with two exceptions. First, a small

clerical error is corrected, giving a second-order Zeeman shift

that is a factor of 2 larger. The essential conclusion that this

shift is negligible remains valid. Second, an improved method

is used to calculate the scalar differential polarizability �α,

which predicts a much larger degree of cancellation between

the clock state polarizabilities. While the revised value of

�α does not support cancellation between the trap-induced

Stark and micromotion time-dilation shifts (by operating at

a “magic” rf trap drive frequency [18]), it does offer highly

suppressed Stark shifts, including the BBR shift. We find sim-

ilar cancellation between the clock state polarizabilities for the

other group-16-like systems, resulting in similarly small �α.

In the present work, we focus on the isotopes with zero

nuclear spin to avoid complications caused by the hyperfine

structure (hfs). In particular, the second-order Zeeman shift is

enhanced in isotopes with hfs, by small hfs energy intervals.

In contrast, the second-order Zeeman shift is small and can be

neglected in spin-zero isotopes.

II. METHOD

A. Calculation of energy levels

The calculations are carried out using a combination of the

configuration interaction (CI) technique with the linearized

single-double–coupled-cluster (SD) method, as described

in Ref. [19]. The combined method (CI + SD) has been
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FIG. 1. Experimental energies for group-16-like atomic systems. For each system, the lowest-lying electronic states are part of a 3PJ

fine-structure manifold, with the 3P2 ground state taken to have zero energy. Energies of the 3P1 and 3P0 states are plotted versus ionization

degree Z − N for the isoelectronic sequences, where Z and N denote the number of protons and electrons, respectively. For the O, S, and

Se isoelectronic sequences, the 3PJ energy ordering transitions from regular ordering (monotonic in J) at low ionization degree to irregular

ordering at high ionization degree. For the Te isoelectronic sequence, the ordering is irregular already for the neutral Te system. For the

systems with irregular energy ordering, the 3P0 state lacks an M1 decay channel. Energies are from the NIST Atomic Spectra Database [12]

and Refs. [14–16]. The curves are interpolating functions intended to guide the eye.

demonstrated to be efficient and very precise for systems with

several valence electrons. With the SD technique, it is pos-

sible to accurately determine the core-valence and core-core

electron correlations, while the CI method takes the valence-

valence correlations into account. Our calculations are done

using the VN−M approximation [19], where N is the total

number of electrons and M is the number of valence electrons.

For all atomic systems considered (see, e.g., Table I), the

calculations begin with the relativistic Hartree-Fock (RHF)

method for a closed-shell core, which removes all valence

electrons. We treat all systems as M = 6 valence systems,

except for Te and Sr22+, which are treated as M = 4 valence

systems; this is because NIST data [12] indicate that Te and

Sr22+ have no low-lying states with the excitations from the

5s and 3s subshells, respectively. Therefore, it is reasonable

to treat 5s electrons in Te and 3s electrons in Sr22+ as core

electrons. The RHF Hamiltonian has the following form:

ĤRHF = cα · p + (β − 1)mc2 + Vnuc(r) + Vcore(r), (1)

where c is the speed of light, α and β are the Dirac matrices,

p is the electron momentum, m is the electron mass, Vnuc

is the nuclear potential obtained by integrating the Fermi

distribution of the nuclear charge density, and Vcore(r) is the

TABLE I. Excitation energies (E ), wavelength transitions (λ), E2 amplitudes (A), decay rates (T ), and lifetimes (τ ) for the excited clock

states. Note that for calculating λ, the experimental energies (where available) have been used.

E (cm−1) A (a.u.) T (s−1) τ (s)

System State Present Other λ (nm) Present Present Other cal. Present

Te-like systems

Te 5p4 3P0 4630 4706a 2124.9 −5.483 0.0078 0.0073e, 0.0097f 128.21

Xe2+ 5s25p4 3P0 8515 8130a 1230.0 −3.163 0.0398 0.04451f 25.13

Ba4+ 5s25p4 3P0 11548 11302a 884.8 −2.351 0.1141 0.1253f 8.76

Ce6+ 5s25p4 3P0 14697 14210b 703.7 −1.825 0.2159 0.2437f 4.63

Se-like systems

Zr6+ 4s24p4 3P0 12722 12557c 796.4 −1.131 0.0447 0.0468g 22.37

Cd14+ 4s24p4 3P0 28909 28828d 345.9 0.585 0.7612 − 1.31

S-like systems

Ge16+ 3s23p4 3P0 33635 33290a 300.4 0.228 0.2377 0.2502g 4.21

Kr20+ 3s23p4 3P0 47618 46900a 213.2 0.176 0.7859 0.8322g 1.27

Sr22+ 3p4 3P0 50911 53400a 187.3 −0.160 1.2434 1.257g 0.805

a Ref. [12]; the values are compiled from the NIST database; Te-like systems (Expt.), S-like systems (Expt. or Semi.).
b Ref. [15]; Expt.
c Ref. [16]; Expt.
d Ref. [25]; Theor.
e Ref. [26]; Theor.
f Ref. [27]; Theor.
g Ref. [28]; Theor.
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self-consistent RHF potential created by the electrons of the

closed-shell core.

Following the completion of the self-consistent procedure

for the core, the B-spline technique [20,21] is used to develop

a complete set of single-electron wave functions. Based on

B splines, one can make linear combinations of basis states,

which are eigenstates of the RHF Hamiltonian. The basis set

is built up of 40 B splines of order 9 in a box that has a radius

Rmax = 40aB, where aB is the Bohr radius, with the orbital

angular momentum 0 � l � 6. There are two types of basis

states: core states and valence states. Core states are used to

calculate the effective potential of the core. Valence states are

used as a basis for the SD equations and for obtaining the

many-electron states required for the CI calculations.

In the process of solving the SD equations for the core and

valence states, we generate correlation operators �1 and �2

[19,22,23]. �1 is the correlation interaction between a partic-

ular valence electron and the core, and accordingly, one-body

part ĥ1 can be described as follows:

ĥ1 = ĤRHF + �1. (2)

�2 represents the screening of the Coulomb interaction be-

tween a pair of valence electrons; hence, the two-body

Coulomb interaction operator, ĥ2, is modified so as to include

the two-body part of the core-valence interaction as follows

(we use Gaussian electromagnetic expressions; e is electron

charge):

ĥ2 =
e2

|ri − r j |
+ �2. (3)

Whenever there is more than one valence electron above the

closed-shell core, these � operators can be used in the sub-

sequent CI calculations to account for the core-valence and

core-core correlations. By solving the SD equations for exter-

nal states, the single-electron energies of an atom or ion with

one valence electron can also be obtained. However, we note

that there are slight differences between the SD equations used

for this purpose and those to be used for CI calculations. In

this case, one term in the SD equations needs to be eliminated

because its contribution is accounted for by the CI calcula-

tions (refer to Ref. [19]). This contribution is relatively small;

therefore, differences in the SD equations can be ignored.

In the CI approach, we build the effective CI + SD

Hamiltonian for many valence electrons as a sum of one- and

two-electron parts with the addition of �1 and �2 operators in

order to account for the correlation between core and valence

electrons,

Ĥ eff =
M

∑

i=1

(ĤRHF + �1)i +
M

∑

i< j

(

e2

|ri − r j |
+ �2i j

)

, (4)

where i and j enumerate valence electrons.

It is well recognized that increasing the number of valence

electrons exponentially increases the size of the CI matrix.

Our present work has up to six valence electrons, which

leads to an extremely large CI matrix. In order to deal with

a matrix of this magnitude, it would require considerable

computational power. However, the size of the CI matrix can

be decreased by orders of magnitude at the expense of some

accuracy. In order to accomplish this, we use the recently

developed version of the CI method called the CIPT method

[24]. The method combines CI with perturbation theory and is

used to ignore the off-diagonal matrix elements between high-

energy states in the CI matrix. This step is justified because

the high-energy states provide only a minimal correction to

the wave function.

The wave function for valence electrons is presented as

an expansion over single-determinant basis states, which is

divided into two parts:

�(r1, . . . , rM ) =
Neff
∑

i=1

ci	i(r1, . . . , rM )

+
Ntotal
∑

i=Neff +1

ci	i(r1, . . . , rM ). (5)

Here ci are the expansion coefficients and 	i are single-

determinant many-electron basis functions. The first part of

the wave function represents a small number of low-energy

terms that contribute a great deal to the CI valence wave

function (1 � i � Neff, where Neff is the number of low-energy

basis states), while the second part represents a large number

of high-energy states that introduce minor corrections to the

valence wave function (Neff < i � Ntotal, where Ntotal is the

total number of the basis states). Consequently, this allows us

to truncate the CI Hamiltonian by ignoring the off-diagonal

matrix elements between terms in the second summation in

Eq. (5) (〈i|H eff |h〉 = 0 for Neff < i, h � Ntotal), which in turn

reduces computation time with a negligible loss in precision.

The matrix elements between low-energy states i and g are

corrected by the following formula similar to the second-order

perturbative correction to the energy:

〈i|H eff |g〉 → 〈i|H eff |g〉 +
∑

k

〈i|H eff |k〉〈k|H eff |g〉
E − Ek

. (6)

Here, i, g � Neff , Neff < k � Ntotal, E is the energy of the

state of interest, and Ek denotes the diagonal matrix element

for high-energy states, Ek = 〈k|H eff |k〉. The summation in

(6) runs over all high-energy states. Note that neglecting

off-diagonal matrix elements between highly excited states

corresponds to neglecting the third-order contribution

δE
(3)
ig =

∑

k,l

〈i|H eff |k〉〈k|H eff |l〉〈l|H eff |g〉
(E − Ek )(E − El )

. (7)

This contribution is suppressed by large energy denominators.

Neglecting the third-order corrections over the second-order

corrections cannot cause any false contributions to the spin-

orbit splitting or break the symmetry of the CI Hamiltonian.

The problem of finding the wave function and correspond-

ing energy can be reduced to a modified CI matrix eigenvalue

equation Ĥ eff [Eq. (4)] with size Neff

(Ĥ eff − EI )X = 0, (8)

where I is the identity matrix and X is the vector

{c1, . . . , cNeff
}. Note that for accurate solution the energy pa-

rameter E must be the same in Eqs. (6) and (8). Since this

energy is not known in advance, the equations (6) and (8) are

solved by iterations. The starting point for the iterations can

be, e.g., the solution of (8) with the matrix (6) without the
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second-order corrections. A more comprehensive description

of this technique is given in Ref. [24].

B. Calculation of transition amplitudes and lifetimes

The method we use for computing transition amplitudes

is based on the time-dependent Hartree-Fock method [22],

which is the same as the well-known random-phase approx-

imation (RPA). The RPA equations are defined as

(ĤRHF − εc)δψc = −
(

f̂ + δV f
core

)

ψc, (9)

where the operator f̂ refers to an external field. The index

c denotes single-electron states, ψc is a single-electron wave

function with corresponding energy εc, δψc is a correction to

the wave function due to the external field, and δV
f

core is the

correction to the self-consistent RHF potential caused by the

amendment of all core states in the external field. For all states

in the core, the RPA equations (9) are solved self-consistently.

The transition amplitudes are found by calculating matrix

elements between states a and b using the formula

Aab = 〈b| f̂ + δV f
core|a〉. (10)

Here, |a〉 and |b〉 are the many-electron wave functions calcu-

lated with the method described above. These wave functions

are given by Eq. (5). In the present work, only the rates of E2

transitions are taken into account. The rates are computed as

follows (in atomic units):

Tab =
1

15
(αωab)5 A2

ab

2Jb + 1
, (11)

where α is the fine-structure constant (α ≈ 1
137

), ωab is the fre-

quency of the transition, Jb is the total angular momentum of

the upper state b, and Aab represents the transition amplitude

(reduced matrix element) of the E2 operator. The lifetimes of

each excited state b, τb, expressed in seconds, are given as

τb = 2.4189 × 10−17
/

∑

a

Tab, (12)

where the summation runs over all possible transitions to

lower states a.

III. RESULTS

A. Energy levels, transition amplitudes, and lifetimes

of the systems

Table I presents the calculated energy levels of the systems

and compares them to the results of previous work; note that

all earlier data presented in the table are either experimental or

semiempirical, except for the value for Cd14+, which has been

calculated. The calculated energies are in good agreement

with experiment, within a few percent. In Table I, we also

present the E2 amplitudes and corresponding decay rates for

excited clock states decaying to the ground state. The rates

are in good agreement with previous studies. The rates and

lifetimes of the excited clock states were calculated using

calculated amplitudes and experimental energies.

B. Ionization potential, Landé g factors, and electric

quadrupole moments

Table II presents the results of the calculated ionization

potential (IP) of all atomic systems. The IP of a system

can be calculated as a difference in the ground state energy

between the system of interest (EM) and the following ion

(EM−1), IP = EM−1 − EM . The results of our calculations are

compared with data compiled by NIST. With the exception of

the first two systems, the NIST data have large uncertainties

ranging from 6800 cm−1 to 22 000 cm−1. Within these uncer-

tainties, our calculations agree with the NIST data. In Table II,

we also present the calculated values of the Landé g factors for

the ground states of all systems. The g factors are calculated

as expectation values of the M1 operator.

Electric quadrupole shifts are known to be caused by an

interaction between the quadrupole moment of an atomic state

and an external electric-field gradient, and in the Hamiltonian,

the corresponding term is given as [30]

HQ =
−1
∑

q=1

(−1)q∇E
(2)
q �̂−q. (13)

Here, the tensor ∇E (2)
q represents the external electric field

gradient at the atom’s position, and �̂q describes the electric-

quadrupole operator for the atom. It is the same as for the E2

transitions, �̂q = r2C(2)
q , where C(2)

q is the normalized spher-

ical function and q indicates the operator component. The

electric quadrupole moment, �, is defined as the expectation

value of �̂0 for the extended state

� = 〈nJJ|�̂0|nJJ〉

= 〈nJ‖�̂‖nJ〉

√

J (2J − 1)

(2J + 3)(2J + 1)(J + 1)
, (14)

where 〈nJ‖�̂‖nJ〉 indicates the reduced matrix element of

the electric quadrupole operator. We compute the values of

� using the CI + SD and RPA methods described in the

previous section. The results are presented in Table II. Note

that the excited clock states of all atomic systems have � = 0

since the total angular momentum J is zero. Some of these

atomic systems have been investigated before. In our early

work [31] a different approach was used leading to quadrupole

moments Q(Te) = −2.58 a.u. and Q(Xe2+) = −1.17 a.u. It

should be noted that in this earlier work [31], the electric

quadrupole moment Q is defined in a way which differs from

our definition by a factor of 2, so that � = Q/2. Taking this

into account, the results for the two calculations are in good

agreement.

C. Polarizabilities, blackbody radiation shifts, and second-order

Zeeman shifts

The scalar polarizability αv (0) of an atomic system in state

v is given by a sum over a complete set of excited states n

connected to state v by the electric-dipole (E1) reduced matrix

elements (we use atomic units)

αv (0) =
2

3(2Jv + 1)

∑

n

A2
vn

ωvn

, (15)
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TABLE II. Ionization potential (IP; cm−1), quadrupole moment (�; a.u.), and Landé g factor of the ground state.

IP

System State Present NIST � g factor

Te-like systems

Te 5p4 3P2 70939 72669.006(0.047) 1.22 1.467a

Xe2+ 5s25p4 3P2 247505 250400(300) 0.53 1.441

Ba4+ 5s25p4 3P2 475734 468000(15000) 0.32 1.424b

Ce6+ 5s25p4 3P2 748287 734000(16000) 0.19 1.407

Se-like systems

Zr6+ 4s24p4 3P2 913400 903000(16000) 0.23 1.457

Cd14+ 4s24p4 3P2 2894809 2887000(22000) 0.062 1.407

S-like systems

Ge16+ 3s23p4 3P2 4916400 4912400(6800) 0.042 1.445

Kr20+ 3s23p4 3P2 7126586 7120300(10100) 0.024 1.420

Sr22+ 3p4 3P2 8378219 8372100(12000) 0.019 1.413

aExperimental value is 1.460(4) [12].
bThe same as in our previous calculations, 1.42 [17].

where Jv is the total angular momentum of state v and ωvn

is the frequency of the transition. Notations v and n refer to

many-electron atomic states. For the calculations of the polar-

izabilities of clock states, we apply the technique developed

in Ref. [32] for atoms or ions with open shells. The method

relies on Eq. (15) and the Dalgarno-Lewis approach [33],

which reduces the summation in Eq. (15) to solving a matrix

equation (see Ref. [32] for more details).

Results for the polarizabilities of the ground and excited

clock states are shown in Table III. It appears that the po-

larizabilities of the ground and excited clock states of all

atomic systems are similar in values. This is because both

clock states belong to the same fine-structure manifold, and

the energy intervals between them are significantly smaller

than the excitation energies to the opposite-parity states [see

Eq. (15)].

Some of these atomic systems have previously been stud-

ied for their polarizabilities. Review [29], and references

therein have investigated the ground state polarizability of Te

both theoretically and experimentally, and the recommended

value has been determined to be 38 ± 4 a.u. Compared with

the recommended value, our calculation (37.3 a.u.) is in excel-

lent agreement. In our earlier work [31] a simplified approach

was used leading to larger values of polarizabilities of Te and

Xe2+; 45.96 and 47.80 a.u. for lower and upper clock states of

Te, and 14.69 and 14.79 a.u. for lower and upper clock states

of Xe2+. These results are in reasonable agreement with our

present calculations.

In our previous work [17], we calculated the polarizability

of the ground and excited clock states for Ba4+ and found the

values to be 4.4 and 1.4 a.u., respectively. Those results are

in disagreement with the present results. The reason for the

disagreement comes from the fact that direct summation was

TABLE III. Scalar static polarizabilities of the ground and excited clock states [α0(GS) and α0(ES), respectively], and BBR frequency

shifts for the clock transition. δνBBR/ν is the fractional contribution of the BBR shift, where ν is the clock transition frequency. “Total” means

total scalar polarizability (core + valence). Error bars were obtained on the assumption that the accuracy for the polarizability is 10%. The last

column shows the second-order Zeeman shifts, δνSZ. The notation x[y] abbreviates x × 10y.

α0 (a.u.) α0(GS) (a.u.) α0(ES) (a.u.) BBR (T = 300 K) δνSZ

System Core Valence Total Valence Total �α(0) δνBBR (Hz) ν (Hz) δνBBR/ν [Hz/(mT)2]

Te-like systems

Te 8.84 28.5 37.3a 29.6 38.4 < 7 < 6[−2] 1.411[14] < 4[−16] −87

Xe2+ 0.835 10.1 10.9 10.4 11.2 < 2 < 2[−2] 2.437[14] < 7[−17] −2.02

Ba4+ 0.578 5.46 6.04 5.56 6.14 < 1 < 1[−2] 3.388[14] < 3[−17] −0.55

Ce6+ 0.421 3.43 3.85 3.49 3.91 < 0.6 < 5[−3] 4.260[14] < 1[−17] −0.22

Se-like systems

Zr6+ 0.083 1.87 1.95 1.89 1.97 < 0.1 < 1[−3] 3.764[14] < 1[−18] −3.72

Cd14+ 0.024 0.466 0.490 0.467 0.491 < 1[−2] < 1[−5] 8.642[14] < 1[−20] −0.08

S-like systems

Ge16+ 0.002 0.142 0.144 0.142 0.144 < 1[−3] < 1[−5] 9.980[14] < 1[−20] −0.39

Kr20+ 0.001 0.0812 0.0822 0.0810 0.0820 < 1[−3] < 1[−5] 1.406[15] < 1[−20] −0.08

Sr22+ 0.063 0.0276 0.0906 0.0273 0.0903 < 1[−3] < 1[−5] 1.601[15] < 1[−20] −0.04

aThe polarizability of the Te atom has been studied before, and the recommended result is 38 ± 4 a.u. [29].
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used in Ref. [17]. This method works well if the summation

is strongly dominated by the contribution of the low-lying

states of opposite parity. This is not the case for Ba4+ or the

other systems considered here. In this paper, we use the more

accurate method described above. The accuracy of the current

approach can be judged by recalling our earlier calculations

[34–36]. Deviation of the calculated polarizabilities from the

experimental values varies from fraction of percent for noble

elements [34] to few percent for atoms with more compli-

cated electron structure. Given also that we have excellent

agreement for Te with the recommended value from literature,

which has 10% uncertainty, we conclude that the accuracy of

our present calculations is in the range from 1% to 10%.

BBR can have a significant impact on the clock transition

frequency in atomic clocks. The shift in the clock transition

frequency caused by BBR can be calculated as

δνBBR = −1.063 × 10−12T 4�α(0), (16)

where T is the temperature and �α(0) = α0(ES) − α0(GS)

is the difference between the excited and ground clock-state

polarizabilities. The proportionality factor here is for a shift in

hertz, temperature in kelvin, and differential polarizability in

atomic units. The results of the fractional BBR shifts at room

temperature are shown in Table III. It can be seen from the

table that the differential polarizabilities are extremely small,

which results in small values for BBR shifts. Note that even

the use of the most optimistic assumption about the accuracy

of the calculation of the polarizabilities (1%) leads to large

uncertainties in the BBR shift. This means that the numbers

for the BBR shift in Table III should be considered as upper

limits.

In order to calculate the second-order Zeeman shift (δνSZ),

we have to take into account an influence caused by a weak

homogeneous external magnetic field. For the determination

of δνSZ, the following formula can be used [37]:

δνSZ = −
1

2h
�αM1B2, (17)

where h is Planck’s constant, B is the magnetic field, and

�αM1 is the difference between the magnetic-dipole polar-

izability of the ground and excited clock states, �αM1 =
αM1(ES) − αM1(GS). The M1 polarizability can be calcu-

lated using Eq. (15), but the amplitude of the electric-dipole

transitions (Avn) should be replaced with the amplitude of

the magnetic-dipole transitions. Our results are shown in

Table III. It should be mentioned that the magnetic-dipole

polarizabilities can be calculated with just a few low-lying

states since their contributions dominate. In the case of the

atomic systems considered here, only the first two low-lying

states belonging to the same configuration give significant

contributions. Here only the scalar contribution is presented.

A tensor contribution of similar magnitude also exists, though

it can be canceled with certain averaging schemes. In any case,

the scalar results illustrate the scale of the second-order Zee-

man shift, which is negligibly small for small (∼μT) magnetic

fields.

TABLE IV. Sensitivity of clock transitions to variation of the

fine-structure constant (q, K).

System State ω (cm−1) q (cm−1) K

Te-like systems

Te 5p4 3P0 4706 3261 1.39

Xe2+ 5s25p4 3P0 8130 5611 1.38

Ba4+ 5s25p4 3P0 11302 5976 1.06

Ce6+ 5s25p4 3P0 14210 5907 0.83

Se-like systems

Zr6+ 4s24p4 3P0 12557 8939 1.42

Cd14+ 4s24p4 3P0 28828 8837 0.61

S-like systems

Ge16+ 3s23p4 3P0 33290 18484 1.11

Kr20+ 3s23p4 3P0 46900 17252 0.74

Sr22+ 3p4 3P0 53400 14130 0.53

D. Sensitivity of the clock transitions to variation

of the fine-structure constant

Variations in the fine-structure constant could lead to an

observable effect on the clock transition frequency. The rela-

tionship between the clock frequency and the fine-structure

constant in the vicinity of their physical values can be ex-

pressed as

ω = ω0 + q

[(

α

α0

)2

− 1

]

, (18)

where α0 and ω0 are the laboratory values of the fine-structure

constant and the transition frequency, respectively, and q is the

sensitivity coefficient that is determined from atomic calcula-

tions [38]. Note that we do not consider variation of atomic

unit of energy mee4/h̄2 since it cancels out in the ratio of fre-

quencies. Variation of dimensionful parameters like mee4/h̄2

depend on the units one uses. For example, in atomic units

it is equal to 1 and does not vary. Therefore, dependence of

frequencies on α appears due to relativistic corrections.

The change in a frequency ratio ω1/ω2 caused by a change

in α is

δ

(

ω1

ω2

)

=
δω1

ω1

−
δω2

ω2

= (K1 − K2)
δα

α
. (19)

The value K = 2q/ω is often called the enhancement factor.

We calculate q and K by using two different values of α and

calculating the numerical derivative

q =
ω(x) − ω(−x)

2x
, (20)

where x = (α/α0)2 − 1 [see Eq. (18)]. In order to achieve

linear behavior, the x value must be small; however, it must

be large enough to suppress numerical noise. Accurate results

can be obtained by using x = 0.01. A summary of the calcu-

lated values of q and K is given in Table IV.

IV. EXPERIMENTAL OUTLOOK

Here, we discuss the experimental outlook for the devel-

opment of optical atomic clocks based on these systems. The

systematic shifts considered in previous sections are limited

by the atomic properties of the respective system. However,
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TABLE V. Lifetime-limited frequency instability for a single

clock ion and the optimal logic ion based on charge-to-mass ratio

(q/m); m are the average values of mass over all isotopes, taken from

NIST data [12]. The notation x[y] abbreviates x × 10y.

System ν (Hz) σy (1s) Logic ion
(q/m)Logic Ion

(q/m)Clock Ion

Te-like systems

Te 1.411[14] 2.6[−16] − −
Xe2+ 2.437[14] 3.4[−16] Sr+ 0.749

Ba4+ 3.388[14] 4.1[−16] Ca+ 0.857

Ce6+ 4.260[14] 4.5[−16] Mg+ 0.961

Se-like systems

Zr6+ 3.764[14] 2.3[−16] Be+ 1.687

Cd14+ 8.642[14] 4.2[−16] Be+ 0.891

S-like systems

Ge16+ 9.980[14] 2.0[−16] Be+ 0.504

Kr20+ 1.406[15] 2.6[−16] Be+ 0.465

Sr22+ 1.601[15] 2.9[−16] Be+ 0.442

when estimating the expected clock performance, it is impor-

tant to also consider systematic shifts due to ion motion (time

dilation) and the expected frequency instability. To estimate

the frequency instability, we consider a Ramsey interrogation

sequence for a single ion with interrogation time equal to

the natural lifetime, assuming the instability to be limited

by fundamental quantum projection noise [39]. Under these

conditions, the fractional instability is given by [10,40]

σy(t ) =
0.412

ν
√

τ t
, (21)

where ν is the clock frequency, τ is the lifetime of the excited

clock state, and t is the averaging time. These results are

summarized in Table V. All systems exhibit frequency insta-

bilities, for a single clock ion, of σy(t ) < 5 × 10−16/
√

t/s.

This level of performance is comparable to recent demon-

strations in Al+ and Yb+ [3,41,42]. Since none of the ions

proposed here possess electric-dipole-allowed (E1) transi-

tions for cooling and state readout, it will be necessary to

utilize a scheme such as quantum-logic spectroscopy (QLS)

for clock operations [43]. The application of QLS requires the

clock ion to be cotrapped with an auxiliary readout “logic” ion

which does possess a laser-accessible transition for cooling

and state readout operations. In addition, ion-based optical

clocks are susceptible to time-dilation shifts due to driven

excess micromotion (EMM) and secular (thermal) motion due

to the finite ion temperature. The secular motion can be re-

duced by applying sympathetic cooling of the clock ion via the

cotrapped logic ion. The most efficient sympathetic cooling

occurs when the charge-to-mass ratio of the clock ion is equal

to that of the logic ion [44]. For each ion considered here,

we estimate the logic ion which would be the best match for

sympathetic cooling. These results are listed in Table V.

The excess micromotion shift is a result of imperfections

in the trap potential, typically caused by stray electric fields

and/or phase shifts between rf drive electrodes that lead to

residual rf fields at the location of the ion [18]. This shift can

be minimized by using a trap design which has been shown to

have low EMM [3,45].

V. SUMMARY

In conclusion, we identify group-16-like ions as promis-

ing candidates for high-accuracy optical clocks. This class of

ions exhibit irregular ordering in the ground 3PJ fine-structure

manifold for large enough ionization degree, leading to E2

clock transitions with narrow natural linewidths. Due to the

increased charge state, several common systematic shifts are

reduced compared to many of the current species used for

optical clocks.
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